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CHAPTER
THIRTEEN

The partial equilibrium models of perfect competition that were introduced in Chapter
12 are clearly inadequate for describing all the effects that occur when changes in one
market have repercussions in other markets. Therefore, they are also inadequate for
making general welfare statements about how well market economies perform. Instead,
what is needed is an economic model that permits us to view many markets simulta-
neously. In this chapter we will develop a few simple versions of such models. The
Extensions to the chapter show how general equilibrium models are applied to the real
world.

PERFECTLY COMPETITIVE PRICE SYSTEM )

The model we will develop in this chapter is primarily an elaboration of the supply—
demand mechanism presented in Chapter 12. Here we will assume that all markets are of
the type described in that chapter and refer to such a set of markets as a perfectly competi-
tive price system. The assumption is that there is some large number of homogeneous
goods in this simple economy. Included in this list of goods are not only consumption
items but also factors of production. Each of these goods has an equilibrium price, estab-
lished by the action of supply and demand." At this set of prices, every market is cleared
in the sense that suppliers are willing to supply the quantity that is demanded and con-
sumers will demand the quantity that is supplied. We also assume that there are no trans-
action or transportation charges and that both individuals and firms have perfect
knowledge of prevailing market prices.

The law of one price

Because we assume zero transaction cost and perfect information, each good obeys the
law of one price: A homogeneous good trades at the same price no matter who buys it or
which firm sells it. If one good traded at two different prices, demanders would rush to
buy the good where it was cheaper, and firms would try to sell all their output where the
good was more expensive. These actions in themselves would tend to equalize the price
of the good. In the perfectly competitive market, each good must have only one price.
This is why we may speak unambiguously of the price of a good.

!One aspect of this market interaction should be made clear from the outset. The perfectly competitive market determines only
relative (not absolute) prices. In this chapter, we speak only of relative prices. It makes no difference whether the prices of
apples and oranges are $.10 and $.20, respectively, or $10 and $20. The important point in either case is that two apples can be
exchanged for one orange in the market. The absolute level of prices is determined mainly by monetary factors—a topic usually
covered in macroeconomics.
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458 Part5: Competitive Markets

Behavioral assumptions

The perfectly competitive model assumes that people and firms react to prices in specific
ways.

1. There are assumed to be a large number of people buying any one good. Each
person takes all prices as given and adjusts his or her behavior to maximize utility,
given the prices and his or her budget constraint. People may also be suppliers of
productive services (e.g., labor), and in such decisions they also regard prices as
given.?

2. There are assumed to be a large number of firms producing each good, and each firm
produces only a small share of the output of any one good. In making input and out-
put choices, firms are assumed to operate to maximize profits. The firms treat all
prices as given when making these profit-maximizing decisions.

These various assumptions should be familiar because we have been making them
throughout this book. Our purpose here is to show how an entire economic system oper-
ates when all markets work in this way.

A GRAPHICAL MODEL OF GENERAL R
EQUILIBRIUM WITH TWO GOODS

We begin our analysis with a graphical model of general equilibrium involving only two
goods, which we will call x and y. This model will prove useful because it incorporates
many of the features of far more complex general equilibrium representations of the
economy.

General equilibrium demand

Ultimately, demand patterns in an economy are determined by individuals’ preferences.
For our simple model we will assume that all individuals have identical preferences,
which can be represented by an indifference curve map® defined over quantities of the
two goods, x and y. The benefit of this approach for our purposes is that this indifference
curve map (which is identical to the ones used in Chapters 3-6) shows how individuals
rank consumption bundles containing both goods. These rankings are precisely what we
mean by “demand” in a general equilibrium context. Of course, we cannot illustrate
which bundles of commodities will be chosen until we know the budget constraints that
demanders face. Because incomes are generated as individuals supply labor, capital, and
other resources to the production process, we must delay any detailed illustration until
we have examined the forces of production and supply in our model.

General equilibrium supply

Developing a notion of general equilibrium supply in this two-good model is a somewhat
more complex process than describing the demand side of the market because we have
not thus far illustrated production and supply of two goods simultaneously. Our

*Hence, unlike our partial equilibrium models, incomes are endogenously determined in general equilibrium models.

*There are some technical problems in using a single indifference curve map to represent the preferences of an entire commu-
nity of individuals. In this case the marginal rate of substitution (i.e., the slope of the community indifference curve) will depend
on how the available goods are distributed among individuals: The increase in total y required to compensate for a one-unit
reduction in x will depend on which specific individual(s) the x is taken from. Although we will not discuss this issue in detail
here, it has been widely examined in the international trade literature.
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approach is to use the familiar production possibility curve (see Chapter 1) for this pur-
pose. By detailing the way in which this curve is constructed, we can illustrate, in a simple
context, the ways in which markets for outputs and inputs are related.

Edgeworth box diagram for production

Construction of the production possibility curve for two outputs (x and y) begins with
the assumption that there are fixed amounts of capital and labor inputs that must be allo-
cated to the production of the two goods. The possible allocations of these inputs can be
illustrated with an Edgeworth box diagram with dimensions given by the total amounts
of capital and labor available.

In Figure 13.1, the length of the box represents total labor-hours, and the height of the
box represents total capital-hours. The lower left corner of the box represents the “origin”
for measuring capital and labor devoted to production of good x. The upper right corner
of the box represents the origin for resources devoted to y. Using these conventions, any
point in the box can be regarded as a fully employed allocation of the available resources
between goods x and y. Point A, for example, represents an allocation in which the indi-
cated number of labor hours are devoted to x production together with a specified num-
ber of hours of capital. Production of good y uses whatever labor and capital are “left
over.” Point A in Figure 13.1, for example, also shows the exact amount of labor and cap-
ital used in the production of good y. Any other point in the box has a similar interpreta-
tion. Thus, the Edgeworth box shows every possible way the existing capital and labor
might be used to produce x and y.

The dimensions of this diagram are given by the total quantities of labor and capital available. Quantities
of these resources devoted to x production are measured from origin O,; quantities devoted to y are
measured from O,. Any point in the box represents a fully employed allocation of the available resources
to the two goods.
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geworth Box Diagram
of Efficiency in
| Production

Efficient allocations

Many of the allocations shown in Figure 13.1 are technically inefficient in that it is possi-
ble to produce both more x and more y by shifting capital and labor around a bit. In our
model we assume that competitive markets will not exhibit such inefficient input choices
(for reasons we will explore in more detail later in the chapter). Hence we wish to dis-
cover the efficient allocations in Figure 13.1 because these illustrate the production out-
comes in this model. To do so, we introduce isoquant maps for good x (using O, as the
origin) and good y (using O, as the origin), as shown in Figure 13.2. In this figure it is
clear that the arbitrarily chosen allocation A is inefficient. By reallocating capital and
labor, one can produce both more x than x, and more y than y,.

The efficient allocations in Figure 13.2 are those such as P, P,, Ps, and P4, where the
isoquants are tangent to one another. At any other points in the box diagram, the two
goods’ isoquants will intersect, and we can show inefficiency as we did for point A. At the
points of tangency, however, this kind of unambiguous improvement cannot be made. In
going from P, to P, for example, more x is being produced, but at the cost of less y being
produced; therefore, P; is not “more efficient” than P,—both of the points are efficient.
Tangency of the isoquants for good x and good y implies that their slopes are equal. That
is, the RTS of capital for labor is equal in x and y production. Later we will show how
competitive input markets will lead firms to make such efficient input choices.

Therefore, the curve joining O, and O, that includes all these points of tangency shows
all the efficient allocations of capital and labor. Points off this curve are inefficient in that
unambiguous increases in output can be obtained by reshuffling inputs between the two
goods. Points on the curve O,0, are all efficient allocations, however, because more x can
be produced only by cutting back on y production and vice versa.

This diagram adds production isoquants for x and y to Figure 13.1. It then shows technically efficient
ways to allocate the fixed amounts of k and / between the production of the two outputs. The line joining
O, and O, is the locus of these efficient points. Along this line, the RTS (of [ for k) in the production of
good x is equal to the RTS in the production of y.
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The production possibility frontier shows the alternative combinations of x and y that can be efficiently
produced by a firm with fixed resources. The curve can be derived from Figure 13.2 by varying inputs
between the production of x and y while maintaining the conditions for efficiency. The negative of the
slope of the production possibility curve is called the rate of product transformation (RPT).
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Production possibility frontier

The efficiency locus in Figure 13.2 shows the maximum output of y that can be produced
for any preassigned output of x. We can use this information to construct a production pos-
sibility frontier, which shows the alternative outputs of x and y that can be produced with
the fixed capital and labor inputs. In Figure 13.3 the O,O, locus has been taken from Fig-
ure 13.2 and transferred onto a graph with x and y outputs on the axes. At O,, for example,
no resources are devoted to x production; consequently, y output is as large as is possible
with the existing resources. Similarly, at O,, the output of x is as large as possible. The other
points on the production possibility frontier (say, Py, P,, Ps, and P,) are derived from the
efficiency locus in an identical way. Hence we have derived the following definition.

Production possibility frontier. The production possibility frontier shows the alternative combinations
of two outputs that can be produced with fixed quantities of inputs if those inputs are employed
efficiently.

Rate of product transformation

The slope of the production possibility frontier shows how x output can be substituted
for y output when total resources are held constant. For example, for points near O, on



462 Part5: Competitive Markets

DEFINITION

the production possibility frontier, the slope is a small negative number—say, —1/4; this
implies that, by reducing y output by 1 unit, x output could be increased by 4. Near O,,
on the other hand, the slope is a large negative number (say, —5), implying that y output
must be reduced by 5 units to permit the production of one more x. The slope of the pro-
duction possibility frontier clearly shows the possibilities that exist for trading y for x in
production. The negative of this slope is called the rate of product transformation (RPT).

Rate of product transformation. The rate of product transformation (RPT) between two outputs is
the negative of the slope of the production possibility frontier for those outputs. Mathematically,

RPT (of x for y) = —[slope of production possibility frontier]

(13.1)
=— % (along 0,0,),

The RPT records how x can be technically traded for y while continuing to keep the avail-
able productive inputs efficiently employed.

Shape of the production possibility frontier

The production possibility frontier illustrated in Figure 13.3 exhibits an increasing RPT.
For output levels near O,, relatively little y must be sacrificed to obtain one more x (-dy/dx
is small). Near O,, on the other hand, additional x may be obtained only by substantial
reductions in y output (-dy/dx is large). In this section we will show why this concave
shape might be expected to characterize most production situations.

A first step in that analysis is to recognize that RPT is equal to the ratio of the mar-
ginal cost of x (MC,) to the marginal cost of y (MC,). Intuitively, this result is obvious.
Suppose, for example, that x and y are produced only with labor. If it takes two labor
hours to produce one more x, we might say that MC, is equal to 2. Similarly, if it takes
only one labor hour to produce an extra y, then MC, is equal to 1. But in this situation it
is clear that the RPT is 2: two y must be forgone to provide enough labor so that x may
be increased by one unit. Hence the RPT is equal to the ratio of the marginal costs of the
two goods.

More formally, suppose that the costs (say, in terms of the “disutility” experienced by
factor suppliers) of any output combination are denoted by C(x, y). Along the production
possibility frontier, C(x, y) will be constant because the inputs are in fixed supply. If we
call this constant level of costs C, we can write C(x, y) — C = 0. It is this implicit func-
tion that underlies the production possibility frontier. Applying the results from Chapter 2
for such a function yields:

Cy MC,

dy
_ e , 13.2
dx |C(x, y) = C=0 G MC, (132)

RPT

To demonstrate reasons why the RPT might be expected to increase for clockwise
movements along the production possibility frontier, we can proceed by showing why the
ratio of MC, to MC, should increase as x output expands and y output contracts. We first
present two relatively simple arguments that apply only to special cases; then we turn to a
more sophisticated general argument.

Diminishing returns

The most common rationale offered for the concave shape of the production possibility
frontier is the assumption that both goods are produced under conditions of diminishing
returns. Hence increasing the output of good x will raise its marginal cost, whereas
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decreasing the output of y will reduce its marginal cost. Equation 13.2 then shows that
the RPT will increase for movements along the production possibility frontier from O, to
O,. A problem with this explanation, of course, is that it applies only to cases in which
both goods exhibit diminishing returns to scale, and that assumption is at variance with
the theoretical reasons for preferring the assumption of constant or even increasing
returns to scale as mentioned elsewhere in this book.

Specialized inputs

If some inputs were “more suited” for x production than for y production (and vice
versa), the concave shape of the production frontier also could be explained. In that case,
increases in x output would require drawing progressively less suitable inputs into the
production of that good. Therefore, marginal costs of x would increase. Marginal costs
for y, on the other hand, would decrease because smaller output levels for y would permit
the use of only those inputs most suited for y production. Such an argument might apply,
for example, to a farmer with a variety of types of land under cultivation in different
crops. In trying to increase the production of any one crop, the farmer would be forced
to grow it on increasingly unsuitable parcels of land. Although this type of specialized
input assumption has considerable importance in explaining a variety of real-world phe-
nomena, it is nonetheless at variance with our general assumption of homogeneous fac-
tors of production. Hence it cannot serve as a fundamental explanation for concavity.

Differing factor intensities

Even if inputs are homogeneous and production functions exhibit constant returns to
scale, the production possibility frontier will be concave if goods x and y use inputs in dif-
ferent proportions.* In the production box diagram of Figure 13.2, for example, good x is
capital intensive relative to good y. That is, at every point along the 0,0, contract curve,
the ratio of k to [ in x production exceeds the ratio of k to [ in y production: The bowed
curve 0,0, is always above the main diagonal of the Edgeworth box. If, on the other
hand, good y had been relatively capital intensive, the OO, contract curve would have
been bowed downward below the diagonal. Although a formal proof that unequal factor
intensities result in a concave production possibility frontier will not be presented here, it
is possible to suggest intuitively why that occurs. Consider any two points on the frontier
OO, in Figure 13.3—say, P; (with coordinates x;, y,) and P; (with coordinates x3, y).
One way of producing an output combination “between” P; and P; would be to produce
the combination
Xi+Xx3 yaty

>

2 2

Because of the constant returns-to-scale assumption, that combination would be feasi-
ble and would fully use both factors of production. The combination would lie at the mid-
point of a straight-line chord joining points P, and P;. Although such a point is feasible, it
is not efficient, as can be seen by examining points P; and P; in the box diagram of Figure
13.2. Because of the bowed nature of the contract curve, production at a point midway
between P; and P; would be off the contract curve: Producing at a point such as P, would
provide more of both goods. Therefore, the production possibility frontier in Figure 13.3
must “bulge out” beyond the straight line P, P5. Because such a proof could be constructed
for any two points on 0,0,, we have shown that the frontier is concave; that is, the RPT
increases as the output of good X increases. When production is reallocated in a northeast

“If, in addition to homogeneous factors and constant returns to scale, each good also used k and [ in the same proportions under
optimal allocations, then the production possibility frontier would be a straight line.
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direction along the 0,0, contract curve (in Figure 13.3), the capital-labor ratio decreases
in the production of both x and y. Because good x is capital intensive, this change
increases MC,. On the other hand, because good y is labor intensive, MC, decreases.
Hence the relative marginal cost of x (as represented by the RPT) increases.

Opportunity cost and supply

The production possibility curve demonstrates that there are many possible efficient com-
binations of the two goods and that producing more of one good necessitates cutting back
on the production of some other good. This is precisely what economists mean by the
term opportunity cost. The cost of producing more x can be most readily measured by the
reduction in y output that this entails. Therefore, the cost of one more unit of x is best
measured as the RPT (of x for y) at the prevailing point on the production possibility
frontier. The fact that this cost increases as more x is produced represents the formula-
tion of supply in a general equilibrium context.

EXAMPLE 13.1 Concavity of the Production Possibility Frontier

In this example we look at two characteristics of production functions that may cause the
production possibility frontier to be concave.

Diminishing returns. Suppose that the production of both x and y depends only on labor
input and that the production functions for these goods are

x=f(l) =137,
y=f) = 12'5-

Hence production of each of these goods exhibits diminishing returns to scale. If total labor
supply is limited by

(13.3)

Ly + 1, = 100, (13.4)
then simple substitution shows that the production possibility frontier is given by
x*+y?> =100 for x, y>0. (13.5)

In this case, the frontier is a quarter-circle and is concave. The RPT can now be computed
directly from the equation for the production possibility frontier (written in implicit form as
f(x y) = x* + y* — 100 = 0):

RPT = -V (e XX (13.6)

dx 52y

and this slope increases as x output increases. A numerical illustration of concavity starts by
noting that the points (10, 0) and (0, 10) both lie on the frontier. A straight line joining these
two points would also include the point (5, 5), but that point lies below the frontier. If equal
amounts of labor are devoted to both goods, then production is x = y = /50, which yields
more of both goods than the midpoint.

Factor intensity. To show how differing factor intensities yield a concave production
possibility frontier, suppose that the two goods are produced under constant returns to scale but
with different Cobb-Douglas production functions:

x=flk 1) = K319,

13.7
y=gk )= k3'2513'75. 13.)
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Suppose also that total capital and labor are constrained by
ks + k, = 100, Iy 41, = 100. (13.8)
It is easy to show that
ks

!

3k
= Ky RTS, = 2 3%y, (13.9)

ly

RTS, =

where «; = k;/l;. Being located on the production possibility frontier requires RTS, = RTS, or
Ky = 3K, That is, no matter how total resources are allocated to production, being on the
production possibility frontier requires that x be the capital-intensive good (because, in some
sense, capital is more productive in x production than in y production). The capital-labor ratios
in the production of the two goods are also constrained by the available resources:

ki+k, ke k, 100

= = ak, + (1 — =—=1, 13.10
L+l L+l L+l ks (1=K = 755 (13.10)

where o = L/(I, + ,)—that is, o is the share of total labor devoted to x production. Using the
condition that «, = 3i,, we can find the input ratios of the two goods in terms of the overall
allocation of labor:

1 3

= > Ky = . (13.11)
14 2a 1+ 2a

Ky

Now we are in a position to phrase the production possibility frontier in terms of the share of
labor devoted to x production:

3 0.5
x = k2L = k27 (100) = 1000((1 = ) ,
* (13.12)

1 0.25
IR )R)'S /RN 0125 o
y =K%l = (l—a)(IOO)—100(1—0L)(1+2a) :

We could push this algebra even further to eliminate o from these two equations to get an
explicit functional form for the production possibility frontier that involves only x and y, but we
can show concavity with what we already have. First, notice that if & = 0 (x production gets no
labor or capital inputs), then x = 0, y = 100. With o = 1, we have x = 100, y = 0. Hence a
linear production possibility frontier would include the point (50, 50). But if o = 0.39, say, then

3 0.5 3 0.5
0= IOOOL(l 2 ) =§30 (m> = 50.6,
“ ' (13.13)

1 0.25 1 0.25
y=100(1 — ) =61(—) =528,
1+ 2a 1.78

which shows that the actual frontier is bowed outward beyond a linear frontier. It is worth
repeating that both of the goods in this example are produced under constant returns to scale
and that the two inputs are fully homogeneous. It is only the differing input intensities involved
in the production of the two goods that yields the concave production possibility frontier.

QUERY: How would an increase in the total amount of labor available shift the production
possibility frontiers in these examples?

Determination of equilibrium prices

Given these notions of demand and supply in our simple two-good economy, we can
now illustrate how equilibrium prices are determined. Figure 13.4 shows PP, the



466 Part5: Competitive Markets

termination of
quilibrium Prices

With a price ratio given by p./p,, firms will produce x;, y;; society’s budget constraint will be given by
line C. With this budget constraint, individuals demand x| and y; that is, there is an excess demand for
good x and an excess supply of good y. The workings of the market will move these prices toward their
equilibrium levels py, p;. At those prices, society’s budget constraint will be given by line C*, and supply
and demand will be in equilibrium. The combination x*, y* of goods will be chosen.
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production possibility frontier for the economy, and the set of indifference curves rep-
resents individuals’ preferences for these goods. First, consider the price ratio p./p,. At
this price ratio, firms will choose to produce the output combination x;, y;. Profit-
maximizing firms will choose the more profitable point on PP. At x;, y; the ratio of
the two goods’ prices (p,/p,) is equal to the ratio of the goods’ marginal costs (the
RPT); thus, profits are maximized there. On the other hand, given this budget con-
straint (line C),” individuals will demand «/, ;. Consequently, with these prices, there
is an excess demand for good x (individuals demand more than is being produced) but
an excess supply of good y. The workings of the marketplace will cause p, to increase
and p, to decrease. The price ratio p,/p, will increase; the price line will take on a
steeper slope. Firms will respond to these price changes by moving clockwise along the
production possibility frontier; that is, they will increase their production of good x
and decrease their production of good y. Similarly, individuals will respond to the
changing prices by substituting y for x in their consumption choices. These actions of
both firms and individuals serve to eliminate the excess demand for x and the excess
supply of y as market prices change.

°It is important to recognize why the budget constraint has this location. Because p, and py are given, the value of total produc-
tion is py - x1 + py - y1. This is the value of “GDP” in the simple economy pictured in Figure 13.4. It is also, therefore, the total
income accruing to people in society. Society’s budget constraint therefore passes through x;, y; and has a slope of —p,/p,. This
is precisely the budget constraint labeled C in the figure.
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Equilibrium is reached at x", y* with a price ratio of p;/p}. With this price ratio,® sup-
ply and demand are equilibrated for both good x and good y. Given p, and p,, firms will
produce x* and y* in maximizing their profits. Similarly, with a budget constraint given
by C*, individuals will demand x* and y*. The operation of the price system has cleared
the markets for both x and y simultaneously. Therefore, this figure provides a “general
equilibrium” view of the supply-demand process for two markets working together. For
this reason we will make considerable use of this figure in our subsequent analysis.

COMPARATIVE STATICS ANALYSIS h

As in our partial equilibrium analysis, the equilibrium price ratio p;/p} illustrated in
Figure 13.4 will tend to persist until either preferences or production technologies change.
This competitively determined price ratio reflects these two basic economic forces. If pret-
erences were to shift, say, toward good x, then p,/p, would increase and a new equilibrium
would be established by a clockwise move along the production possibility curve. More x
and less y would be produced to meet these changed preferences. Similarly, technical prog-
ress in the production of good x would shift the production possibility curve outward, as
illustrated in Figure 13.5. This would tend to decrease the relative price of x and increase
the quantity of x consumed (assuming x is a normal good). In the figure the quantity of y

Technical advances that lower marginal costs of x production will shift the production possibility
frontier. This will generally create income and substitution effects that cause the quantity of x produced
to increase (assuming x is a normal good). Effects on the production of y are ambiguous because income
and substitution effects work in opposite directions.
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®Notice again that competitive markets determine only equilibrium relative prices. Determination of the absolute price level
requires the introduction of money into this barter model.
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consumed also increases as a result of the income effect arising from the technical advance;
however, a slightly different drawing of the figure could have reversed that result if the sub-
stitution effect had been dominant. Example 13.2 looks at a few such effects.

EXAMPLE 13.2 Comparative Statics in a General Equilibrium Model

To explore how general equilibrium models work, let’s start with a simple example based on the
production possibility frontier in Example 13.1. In that example we assumed that production of
both goods was characterized by decreasing returns x = I and y = [ and also that total labor
available was given by L. + [, = 100. The resulting production possibility frontier was given by
x* + y° = 100, and RPT = x/y. To complete this model we assume that the typical individual’s

utility function is given by U(x, y) = x**y">, so the demand functions for the two goods are
0.51
x=x(p py I) = i
0 g I (13.14)
y:y(px’py’ I) = — gl
Py

Base-case equilibrium. Profit maximization by firms requires that p./p, = MC/MC, = RPT
= x/y, and utility-maximizing demand requires that p,/p, = y/x. Thus, equilibrium requires that
X/y = y/x, or x = y. Inserting this result into the equation for the production possibility frontier
shows that

= — /50—7.07 and %:1. (13.15)
Y

This is the equilibrium for our base case with this model.

The budget constraint. The budget constraint that faces individuals is not especially
transparent in this illustration; therefore, it may be useful to discuss it explicitly. To bring some
degree of absolute pricing into the model, let’s consider all prices in terms of the wage rate, w.
Because total labor supply is 100, it follows that total labor income is 100w. However, because
of the diminishing returns assumed for production, each firm also earns profits. For firm x, say,
the total cost function is C(w, x) = wl, = wx*, so p, = MC, = 2wx = 2w+/50. Therefore, the
profits for firm x are @, = (p, - AC)x = (px — wx)x = wx® = 50w. A similar computation
shows that profits for firm y are also given by 50w. Because general equilibrium models must
obey the national income identity, we assume that consumers are also shareholders in the two
firms and treat these profits also as part of their spendable incomes. Hence total consumer
income is

total income = labor income + profits

(13.16)
= 100w + 2(50w) = 200w.

This income will just permit consumers to spend 100w on each good by buying /50 units at a
price of 2w+/50, so the model is internally consistent.

A shift in supply. There are only two ways in which this base-case equilibrium can be
disturbed: (1) by changes in “supply”—that is, by changes in the underlying technology of this
economy; or (2) by changes in “demand”—that is, by changes in preferences. Let’s first consider
changes in technology. Suppose that there is technical improvement in x production so that the
production function is x = 212, Now the production possibility frontier is given by x*/4 + y* =
100, and RPT = x/4y. Proceeding as before to find the equilibrium in this model:
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x
= — (supply),
b, % (supply)
» (13.17)
e (demand),
p, x
50 x> = 4y” and the equilibrium is
1
x* = 2/50, Y= V50 and Py —. (13.18)

p, 2

Technical improvements in x production have caused its relative price to decrease and the
consumption of this good to increase. As in many examples with Cobb-Douglas utility, the income
and substitution effects of this price decrease on y demand are precisely offsetting. Technical
improvements clearly make consumers better off, however. Whereas utility was previously given
by U(x, y) = x°%)%% = /50 = 7.07, now it has increased to U(x, y) = x*%** = (24/50)*°
(\/%)0‘5 = /2 - /50 = 10. Technical change has increased consumer welfare substantially.

A shift in demand. If consumer preferences were to switch to favor good y as U(x, y) =
x"'y°?, then demand functions would be given by x = 0.1I/p, and y = 0.9I/p,, and demand
equilibrium would require p,/p, = y/9x. Returning to the original production possibility frontier

to arrive at an overall equilibrium, we have

52
% =~ (supply),
y
(13.19)
Pi_ Y (demand),
p, 9
50 9x* = y* and the equilibrium is given by
x* = /10, Y= 3v/10 and Py :% (13.20)

by

Hence the decrease in demand for x has significantly reduced its relative price. Observe that in
this case, however, we cannot make a welfare comparison to the previous cases because the
utility function has changed.

QUERY: What are the budget constraints in these two alternative scenarios? How is income
distributed between wages and profits in each case? Explain the differences intuitively.

GENERAL EQUILIBRIUM MODELING
AND FACTOR PRICES

This simple general equilibrium model reinforces Marshall’s observations about the im-
portance of both supply and demand forces in the price determination process. By pro-
viding an explicit connection between the markets for all goods, the general equilibrium
model makes it possible to examine more complex questions about market relationships
than is possible by looking at only one market at a time. General equilibrium modeling
also permits an examination of the connections between goods and factor markets; we

can illustrate that with an important historical case.
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nalysis of the Corn
aws Debate

The Corn Laws debate

High tariffs on grain imports were imposed by the British government following the
Napoleonic wars. Debate over the effects of these Corn Laws dominated the analytical
efforts of economists between the years 1829 and 1845. A principal focus of the debate
concerned the effect that elimination of the tariffs would have on factor prices—a ques-
tion that continues to have relevance today, as we will see.

The production possibility frontier in Figure 13.6 shows those combinations of grain
(x) and manufactured goods (y) that could be produced by British factors of production.
Assuming (somewhat contrary to actuality) that the Corn Laws completely prevented
trade, market equilibrium would be at E with the domestic price ratio given by pi/ py-
Removal of the tariffs would reduce this price ratio to p; /p). Given that new ratio, Britain
would produce combination A and consume combination B. Grain imports would
amount to xp - x4, and these would be financed by export of manufactured goods equal
to ya — yp. Overall utility for the typical British consumer would be increased by the
opening of trade. Therefore, use of the production possibility diagram demonstrates the
implications that relaxing the tariffs would have for the production of both goods.

Trade and factor prices

By referring to the Edgeworth production box diagram (Figure 13.2) that lies behind the
production possibility frontier (Figure 13.3), it is also possible to analyze the effect of

Reduction of tariff barriers on grain would cause production to be reallocated from point E to point A;
consumption would be reallocated from E to B. If grain production is relatively capital intensive, the
relative price of capital would decrease as a result of these reallocations.

/ N\
Output of
manufactured

goods (y)

Slope = —p;/p;

P Slope = —p%, /P;
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tariff reductions on factor prices. The movement from point E to point A in Figure 13.6
is similar to a movement from P; to P; in Figure 13.2, where production of x is decreased
and production of y is increased.

This figure also records the reallocation of capital and labor made necessary by such a
move. If we assume that grain production is relatively capital intensive, then the move-
ment from P; to P, causes the ratio of k to [ to increase in both industries.” This in turn
will cause the relative price of capital to decrease (and the relative price of labor to
increase). Hence we conclude that repeal of the Corn Laws would be harmful to capital
owners (i.e., landlords) and helpful to laborers. It is not surprising that landed interests
fought repeal of the laws.

Political support for trade policies

The possibility that trade policies may affect the relative incomes of various factors of
production continues to exert a major influence on political debates about such policies.
In the United States, for example, exports tend to be intensive in their use of skilled labor,
whereas imports tend to be intensive in unskilled labor input. By analogy to our discus-
sion of the Corn Laws, it might thus be expected that further movements toward free
trade policies would result in increasing relative wages for skilled workers and in decreas-
ing relative wages for unskilled workers. Therefore, it is not surprising that unions repre-
senting skilled workers (the machinists or aircraft workers) tend to favor free trade,
whereas unions of unskilled workers (those in textiles, shoes, and related businesses) tend
to oppose it.®

A MATHEMATICAL MODEL R
OF EXCHANGE

Although the previous graphical model of general equilibrium with two goods is fairly
instructive, it cannot reflect all the features of general equilibrium modeling with an
arbitrary number of goods and productive inputs. In the remainder of this chapter we will
illustrate how such a more general model can be constructed, and we will look at some of
the insights that such a model can provide. For most of our presentation we will look
only at a model of exchange—quantities of various goods already exist and are merely
traded among individuals. In such a model there is no production. Later in the chapter
we will look briefly at how production can be incorporated into the general model we
have constructed.

Vector notation

Most general equilibrium modeling is conducted using vector notation. This provides
great flexibility in specifying an arbitrary number of goods or individuals in the models.
Consequently, this seems to be a good place to offer a brief introduction to such notation.
A vector is simply an ordered array of variables (which each may take on specific values).
Here we will usually adopt the convention that the vectors we use are column vectors.
Hence we will write an n x 1 column vector as:

In the Corn Laws debate, attention centered on the factors of land and labor.

8The finding that the opening of trade will raise the relative price of the abundant factor is called the Stolper-Samuelson theo-
rem after the economists who rigorously proved it in the 1950s.
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x=| |, (13.21)

where each x; is a variable that can take on any value. If x and y are two n x 1 column
vectors, then the (vector) sum of them is defined as:

X1 N X1+
bY) »2 X2+ )2

x+y=| " |+]| | = ' . (13.22)
Xn Yn Xn + Yn

Notice that this sum only is defined if the two vectors are of equal length. In fact, check-
ing the length of vectors is one good way of deciding whether one has written a meaning-
ful vector equation.

The (dot) product of two vectors is defined as the sum of the component-by-component
product of the elements in the two vectors. That is:

Xy =X1)1 +X2)2 + 0+ Xp Y- (13.23)

Notice again that this operation is only defined if the vectors are of the same length. With
these few concepts we are now ready to illustrate the general equilibrium model of
exchange.

Utility, initial endowments, and budget constraints

In our model of exchange there are assumed to be n goods and m individuals. Each individ-
ual gains utility from the vector of goods he or she consumes u/(x’) where i = 1. .. m. Indi-
viduals also possess initial endowments of the goods given by X'. Individuals are free to
exchange their initial endowments with other individuals or to keep some or all the endow-
ment for themselves. In their trading individuals are assumed to be price-takers—that is,
they face a price vector (p) that specifies the market price for each of the n goods. Each
individual seeks to maximize utility and is bound by a budget constraint that requires that
the total amount spent on consumption equals the total value of his or her endowment:

pxi = pii, (1324)

Although this budget constraint has a simple form, it may be worth contemplating it for a
minute. The right side of Equation 13.24 is the market value of this individual’s endow-
ment (sometimes referred to as his or her full income). He or she could “afford” to con-
sume this endowment (and only this endowment) if he or she wished to be self-sufficient.
But the endowment can also be spent on some other consumption bundle (which, presum-
ably, provides more utility). Because consuming items in one’s own endowment has an
opportunity cost, the terms on the left of Equation 13.24 consider the costs of all items that
enter into the final consumption bundle, including endowment goods that are retained.

Demand functions and homogeneity

The utility maximization problem outlined in the previous section is identical to the one
we studied in detail in Part 2 of this book. As we showed in Chapter 4, one outcome of
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this process is a set of # individual demand functions (one for each good) in which quan-
tities demanded depend on all prices and income. Here we can denote these in vector
form as x'(p, pX'). These demand functions are continuous, and, as we showed in Chap-
ter 4, they are homogeneous of degree 0 in all prices and income. This latter property can
be indicated in vector notation by

x'(tp, tpx') = x'(p, pX') (13.25)

for any ¢t > 0. This property will be useful because it will permit us to adopt a convenient
normalization scheme for prices, which, because it does not alter relative prices, leaves
quantities demanded unchanged.

Equilibrium and Walras’ law

Equilibrium in this simple model of exchange requires that the total quantities of each
good demanded be equal to the total endowment of each good available (remember, there
is no production in this model). Because the model used is similar to the one originally
developed by Leon Walras,” this equilibrium concept is customarily attributed to him.

Walrasian equilibrium. Walrasian equilibrium is an allocation of resources and an associated price
vector, p*, such that

> xX(p,pE) =) %, (13.26)
i=1 i=1
where the summation is taken over the m individuals in this exchange economy.

The n equations in Equation 13.26 state that in equilibrium demand equals supply in
each market. This is the multimarket analog of the single market equilibria examined in
the previous chapter. Because there are n prices to be determined, a simple counting of
equations and unknowns might suggest that the existence of such a set of prices is guar-
anteed by the simultaneous equation solution procedures studied in elementary algebra.
Such a supposition would be incorrect for two reasons. First, the algebraic theorem about
simultaneous equation systems applies only to linear equations. Nothing suggests that the
demand equations in this problem will be linear—in fact, most examples of demand
equations we encountered in Part 2 were definitely nonlinear.

A second problem with Equation 13.26 is that the equations are not independent of
one another—they are related by what is known as Walras’ law. Because each individual
in this exchange economy is bound by a budget constraint of the form given in Equation
13.24, we can sum over all individuals to obtain

Zm:pxi = Zpii or Zp(xi —-x)=0. (13.27)
i—1

i=1 i=1

In words, Walras’ law states that the value of all quantities demanded must equal the
value of all endowments. This result holds for any set of prices, not just for equilibrium

“The concept is named for the nineteenth century French/Swiss economist Leon Walras, who pioneered the development of
general equilibrium models. Models of the type discussed in this chapter are often referred to as models of Walrasian equilib-
rium, primarily because of the price-taking assumptions inherent in them.
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prices.'” The general lesson is that the logic of individual budget constraints necessarily
creates a relationship among the prices in any economy. It is this connection that helps
to ensure that a demand-supply equilibrium exists, as we now show.

Existence of equilibrium in the exchange model

The question of whether all markets can reach equilibrium together has fascinated
economists for nearly 200 years. Although intuitive evidence from the real world sug-
gests that this must indeed be possible (market prices do not tend to fluctuate wildly
from one day to the next), proving the result mathematically proved to be rather dif-
ficult. Walras himself thought he had a good proof that relied on evidence from the
market to adjust prices toward equilibrium. The price would increase for any good
for which demand exceeded supply and decrease when supply exceeded demand.
Walras believed that if this process continued long enough, a full set of equilibrium
prices would eventually be found. Unfortunately, the pure mathematics of Walras’ so-
lution were difficult to state, and ultimately there was no guarantee that a solution
would be found. But Walras’ idea of adjusting prices toward equilibrium using mar-
ket forces provided a starting point for the modern proofs, which were largely devel-
oped during the 1950s.

A key aspect of the modern proofs of the existence of equilibrium prices is the choice
of a good normalization rule. Homogeneity of demand functions makes it possible to use
any absolute scale for prices, providing that relative prices are unaffected by this choice.
Such an especially convenient scale is to normalize prices so that they sum to one. Con-
sider an arbitrary set of n non-negative prices p, p, . .. p,. We can normalize'' these to
form a new set of prices

p=-t (13.28)

n
These new prices will have the properties that » p, = 1 and that relative price ratios are
maintained: k=1

Pi _Pi/2 Pk _pi (13.29)
Pi pi/>X Pk P

Because this sort of mathematical process can always be done, we will assume, without
loss of generality, that the price vectors we use (p) have all been normalized in this
way.

Therefore, proving the existence of equilibrium prices in our model of exchange
amounts to showing that there will always exist a price vector p* that achieves equilib-
rium in all markets. That is,

Zx phLp¥ =Z X Zx p.p'Y) Zi’: or z(p")=0,
(13.30)

where we use z(p) as a shorthand way of recording the “excess demands” for goods at a
particular set of prices. In equilibrium, excess demand is zero in all markets."?

%Walras’ law holds trivially for equilibrium prices as multiplication of Equation 13.26 by p shows.

"!This is possible only if at least one of the prices is nonzero. Throughout our discussion we will assume that not all equilibrium
prices can be zero.

'2Goods that are in excess supply at equilibrium will have a zero price. We will not be concerned with such “free goods” here.
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Because any continuous function must cross the 45° line somewhere in the unit square, this function
must have a point for which f(x") = x*. This point is called a fixed point.

4 N
fx)

Fixed point

f(x*)
f(x)
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Now consider the following way of implementing Walras’ idea that goods in excess
demand should have their prices increased, whereas those in excess supply should have
their prices reduced.”” Starting from any arbitrary set of prices, po, we define a new
set, py, as

P = f(Po) = Po + kz(py) (13.31)

where k is a positive constant. This function will be continuous (because demand func-
tions are continuous), and it will map one set of normalized prices into another (because
of our assumption that all prices are normalized). Hence it will meet the conditions of
the Brouwer’s fixed point theorem, which states that any continuous function from a
closed compact set onto itself (in the present case, from the “unit simplex” onto itself)
will have a “fixed point” such that x = f(x). The theorem is illustrated for a single dimen-
sion in Figure 13.7. There, no matter what shape the function f(x) takes, as long as it is
continuous, it must somewhere cross the 45° line and at that point x = f(x).

If we let p* represent the fixed point identified by Brouwer’s theorem for Equation
13.31, we have:

p*=f(p") =p" +kz(p). (13.32)

*

Hence at this point z(p*) = 0; thus, p* is an equilibrium price vector. The proof that
Walras sought is easily accomplished using an important mathematical result developed
a few years after his death. The elegance of the proof may obscure the fact that it uses a
number of assumptions about economic behavior such as: (1) price-taking by all parties;
(2) homogeneity of demand functions; (3) continuity of demand functions; and (4) pres-
ence of budget constraints and Walras® law. All these play important roles in showing
that a system of simple markets can indeed achieve a multimarket equilibrium.

What follows is an extremely simplified version of the proof of the existence of equilibrium prices. In particular, problems of
free goods and appropriate normalizations have been largely assumed away. For a mathematically correct proof, see, for example,
G. Debreu, Theory of Value (New York: John Wiley & Sons, 1959).
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DEFINITION

First theorem of welfare economics

Given that the forces of supply and demand can establish equilibrium prices in the gen-
eral equilibrium model of exchange we have developed, it is natural to ask what are the
welfare consequences of this finding. Adam Smith'* hypothesized that market forces pro-
vide an “invisible hand” that leads each market participant to “promote an end [social
welfare] which was no part of his intention.” Modern welfare economics seeks to under-
stand the extent to which Smith was correct.

Perhaps the most important welfare result that can be derived from the exchange
model is that the resulting Walrasian equilibrium is “efficient” in the sense that it is not
possible to devise some alternative allocation of resources in which at least some people
are better off and no one is worse off. This definition of efficiency was originally devel-
oped by Italian economist Vilfredo Pareto in the early 1900s. Understanding the defini-
tion is easiest if we consider what an “inefficient” allocation might be. The total
quantities of goods included in initial endowments would be allocated inefficiently if it
were possible, by shifting goods around among individuals, to make at least one person
better off (i.e., receive a higher utility) and no one worse off. Clearly, if individuals’ pref-
erences are to count, such a situation would be undesirable. Hence we have a formal
definition.

Pareto efficient allocation. An allocation of the available goods in an exchange economy is
efficient if it is not possible to devise an alternative allocation in which at least one person is better
off and no one is worse off.

A proof that all Walrasian equilibria are Pareto efficient proceeds indirectly. Suppose
that p* generates a Walrasian equilibrium in which the quantity of goods consumed by
each person is denoted by “x*(k = 1 ... m). Now assume that there is some alternative
allocation of the available goods x*(k =1 ... m) such that, for at least one person, say,
person i, it is that case that 'x’ is preferred to *x'. For this person, it must be the case that

p'x > prx (13.33)

because otherwise this person would have bought the preferred bundle in the first place.
If all other individuals are to be equally well off under this new proposed allocation, it
must be the case for them that

px=pxk k=1 ..m k#i (13.34)

If the new bundle were less expensive, such individuals could not have been minimizing
expenditures at p*. Finally, to be feasible, the new allocation must obey the quantity
constraints

m
X =) X (13.35)
i—1 i—1
Multiplying Equation 13.35 by p“yields
dopx =) px, (13.36)

i=1 i=1

"“Adam Smith, The Wealth of Nations (New York: Modern Library, 1937) p. 423.
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but Equations 13.33 and 13.34 together with Walras’ law applied to the original equilib-
rium imply that

Zm:p* x> Zm:p* X =) px. (13.37)
P P

i=1

Hence we have a contradiction and must conclude that no such alternative allocation can
exist. Therefore, we can summarize our analysis with the following definition.

First theorem of welfare economics. Every Walrasian equilibrium is Pareto efficient.

The significance of this “theorem” should not be overstated. The theorem does not say
that every Walrasian equilibrium is in some sense socially desirable. Walrasian equilibria
can, for example, exhibit vast inequalities among individuals arising in part from inequal-
ities in their initial endowments (see the discussion in the next section). The theorem also
assumes price-taking behavior and full information about prices—assumptions that need
not hold in other models. Finally, the theorem does not consider possible effects of one
individual’s consumption on another. In the presence of such externalities even a perfect
competitive price system may not yield Pareto optimal results (see Chapter 19).

Still, the theorem does show that Smith’s “invisible hand” conjecture has some valid-
ity. The simple markets in this exchange world can find equilibrium prices, and at those
equilibrium prices the resulting allocation of resources will be efficient in the Pareto
sense. Developing this proof is one of the key achievements of welfare economics.

A graphic illustration of the first theorem

In Figure 13.8 we again use the Edgeworth box diagram, this time to illustrate an
exchange economy. In this economy there are only two goods (x and y) and two individ-
uals (A and B). The total dimensions of the Edgeworth box are determined by the total
quantities of the two goods available (X and ¥). Goods allocated to individual A are
recorded using 04 as an origin. Individual B gets those quantities of the two goods that
are “left over” and can be measured using Oy as an origin. Individual A’s indifference
curve map is drawn in the usual way, whereas individual B’s map is drawn from the
perspective of Op. Point E in the Edgeworth box represents the initial endowments of
these two individuals. Individual A starts with ¥* and y*. Individual B starts with
¥=x-x andy’ =y — 3.

The initial endowments provide a utility level of U for person A and U} for person B.
These levels are clearly inefficient in the Pareto sense. For example, we could, by reallo-
cating the available goods,'” increase person B’s utility to Uj while holding person A’s
utility constant at U3 (point B). Or we could increase person A’s utility to U; while keep-
ing person B on the Uj indifference curve (point A). Allocations A and B are Pareto effi-
cient, however, because at these allocations it is not possible to make either person better
off without making the other worse off. There are many other efficient allocations in the
Edgeworth box diagram. These are identified by the tangencies of the two individuals’
indifference curves. The set of all such efficient points is shown by the line joining O,4 to
Og. This line is sometimes called the “contract curve” because it represents all the Pareto-
efficient contracts that might be reached by these two individuals. Notice, however, that
(assuming that no individual would voluntarily opt for a contract that made him or her

This point could in principle be found by solving the following constrained optimization problem: Maximize
Ug(xp, yp) subject to the constraint Uy (x4, y4) = U3.See Example 13.3.
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e First Theorem of
elfare Economics

With initial endowments at point E, individuals trade along the price line PP until they reach point E".
This equilibrium is Pareto efficient.
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worse off) only contracts between points B and A are viable with initial endowments
given by point E.

The line PP in Figure 13.8 shows the competitively established price ratio that is guar-
anteed by our earlier existence proof. The line passes through the initial endowments (E)
and shows the terms at which these two individuals can trade away from these initial
positions. Notice that such trading is beneficial to both parties—that is, it allows them to
get a higher utility level than is provided by their initial endowments. Such trading will
continue until all such mutual beneficial trades have been completed. That will occur at
allocation E* on the contract curve. Because the individuals’ indifference curves are tan-
gent at this point, no further trading would yield gains to both parties. Therefore, the
competitive allocation E* meets the Pareto criterion for efficiency, as we showed mathe-
matically earlier.

Second theorem of welfare economics

The first theorem of welfare economics shows that a Walrasian equilibrium is Pareto effi-
cient, but the social welfare consequences of this result are limited because of the role
played by initial endowments in the demonstration. The location of the Walrasian equi-
librium at E* in Figure 13.8 was significantly influenced by the designation of E as the
starting point for trading. Points on the contract curve outside the range of AB are not
attainable through voluntary transactions, even though these may in fact be more socially
desirable than E* (perhaps because utilities are more equal). The second theorem of wel-
fare economics addresses this issue. It states that for any Pareto optimal allocation of
resources there exists a set of initial endowments and a related price vector such that this
allocation is also a Walrasian equilibrium. Phrased another way, any Pareto optimal allo-
cation of resources can also be a Walrasian equilibrium, providing that initial endow-
ments are adjusted accordingly.
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If allocation Q" is regarded as socially optimal, this allocation can be supported by any initial
endowments on the price line P'P'. To move from E to, say, Q would require transfers of initial
he Second Theorem of endowments.
Welfare Economics
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A graphical proof of the second theorem should suffice. Figure 13.9 repeats the key
aspects of the exchange economy pictures in Figure 13.8. Given the initial endowments at
point E, all voluntary Walrasian equilibrium must lie between points A and B on the con-
tract curve. Suppose, however, that these allocations were thought to be undesirable—
perhaps because they involve too much inequality of utility. Assume that the Pareto
optimal allocation Q" is believed to be socially preferable, but it is not attainable from the
initial endowments at point E. The second theorem states that one can draw a price line
through Q" that is tangent to both individuals’ respective indifference curves. This line is
denoted by P'P’ in Figure 13.9. Because the slope of this line shows potential trades these
individuals are willing to make, any point on the line can serve as an initial endowment
from which trades lead to Q. One such point is denoted by Q. If a benevolent govern-
ment wished to ensure that Q" would emerge as a Walrasian equilibrium, it would have
to transfer initial endowments of the goods from E to Q (making person A better off and
person B worse off in the process).

EXAMPLE 13.3 A Two-Person Exchange Economy

To illustrate these various principles, consider a simple two-person, two-good exchange
economy. Suppose that total quantities of the goods are fixed at X =¥ = 1,000. Person A’s
utility takes the Cobb-Douglas form:

Ua(xar ya) = %3 °yi%, (13.38)
and person B’s preferences are given by:

Us(xz, ys) = x3 yi”. (13.39)
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Notice that person A has a relative preference for good x and person B has a relative preference
for good y. Hence you might expect that the Pareto-efficient allocations in this model would
have the property that person A would consume relatively more x and person B would consume
relatively more y. To find these allocations explicitly, we need to find a way of dividing the
available goods in such a way that the utility of person A is maximized for any preassigned
utility level for person B. Setting up the Lagrangian expression for this problem, we have:

L (x4, y4) = Ua(xa, ya) + MUs(1,000 — x4, 1,000 — y4) — Us]. (13.40)
Substituting for the explicit utility functions assumed here yields

L(xa> ya) = £y + 1[(1,000 — x4)'3(1,000 — y4)?/* — Ty, (13.41)

and the first-order conditions for a maximum are

AL 2 (ya\? & (1,000 -y, 2/3_0
8XA_3 XA 3 I,OOO—XA o

23 13 (13.42)
AL 1 (x4 21 (1,000 — x4 /_0
s 3\ 3 \1,000 —y4 )
Moving the terms in A to the right and dividing the top equation by the bottom gives
) ya\ _ 11,000 -y,
x4) 2 \1,000 — x4
or (13.43)

XA a 4}//\
1,000 — x4 1,000 — y,

This equation allows us to identify all the Pareto optimal allocations in this exchange economy.
For example, if we were to arbitrarily choose x4 = xp = 500, Equation 13.43 would become

4)/A

—f = = 200, y3 = 800. 13.44
1,000 — s SO Ya VB (13.44)

This allocation is relatively favorable to person B. At this point on the contract curve U, =
500*°200'" = 369, Uy = 500'°800** = 683. Notice that although the available quantity of x is
divided evenly (by assumption), most of good y goes to person B as efficiency requires.

Equilibrium price ratio. To calculate the equilibrium price ratio at this point on the contract
curve, we need to know the two individuals’ marginal rates of substitution. For person A,

OUy/Oxs YA _ 2@

MRS = = =0.8 13.45
AUy /Oya XA 500 ( )
and for person B
8UB/8xB YA 800
MRS = ———F—=05—==0.5—=10.8. 13.46
8U5/8y5 XA 500 ( )

Hence the marginal rates of substitution are indeed equal (as they should be), and they imply a
price ratio of p,/p, = 0.8.

Initial endowments. Because this equilibrium price ratio will permit these individuals to
trade 8 units of y for each 10 units of x, it is a simple matter to devise initial endowments
consistent with this Pareto optimum. Consider, for example, the endowment
Xa = 350, y, = 320; Xg = 650, y; = 680. If p, = 0.8, py=1 the value of person A’s initial
endowment is 600. If he or she spends two thirds of this amount on good x, it is possible to
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purchase 500 units of good x and 200 units of good y. This would increase utility from U, =
3502 320'° = 340 to 369. Similarly, the value of person B’s endowment is 1,200. If he or she
spends one third of this on good x, 500 units can be bought. With the remaining two thirds of
the value of the endowment being spent on good y, 800 units can be bought. In the process, B’s
utility increases from 670 to 683. Thus, trading from the proposed initial endowment to the
contract curve is indeed mutually beneficial (as shown in Figure 13.8).

QUERY: Why did starting with the assumption that good x would be divided equally on the
contract curve result in a situation favoring person B throughout this problem? What point on
the contract curve would provide equal utility to persons A and B? What would the price ratio
of the two goods be at this point?

Social welfare functions

Figure 13.9 shows that there are many Pareto-efficient allocations of the available goods in
an exchange economy. We are assured by the second theorem of welfare economics that any
of these can be supported by a Walrasian system of competitively determined prices, provid-
ing that initial endowments are adjusted accordingly. A major question for welfare econom-
ics is how (if at all) to develop criteria for choosing among all these allocations. In this
section we look briefly at one strand of this large topic—the study of social welfare functions.
Simply put, a social welfare function is a hypothetical scheme for ranking potential alloca-
tions of resources based on the utility they provide to individuals. In mathematical terms:

Social Welfare = SW[U,(x'), Uy(x?), ..., Un(x™)]. (13.47)

The “social planner’s” goal then is to choose allocations of goods among the m individu-
als in the economy in a way that maximizes SW. Of course, this exercise is a purely con-
ceptual one—in reality there are no clearly articulated social welfare functions in any
economy, and there are serious doubts about whether such a function could ever arise
from some type of democratic process.'® Still, assuming the existence of such a function
can help to illuminate many of the thorniest problems in welfare economics.

A first observation that might be made about the social welfare function in Equation
13.47 is that any welfare maximum must also be Pareto efficient. If we assume that every
individual’s utility is to “count,” it seems clear that any allocation that permits further
Pareto improvements (that make one person better off and no one else worse off) cannot
be a welfare maximum. Hence achieving a welfare maximum is a problem in choosing
among Pareto-efficient allocations and their related Walrasian price systems.

We can make further progress in examining the idea of social welfare maximization
by considering the precise functional form that SW might take. Specifically, if we assume
utility is measurable, using the CES form can be particularly instructive:

UR UR UR
SW(U,, Uz,...,Um):?l+?2+...+Tm R<1. (13.48)

Because we have used this functional form many times before in this book, its properties
should by now be familiar. Specifically, if R = 1, the function becomes:

SWUL Uy, oo, Up) =Ur + Up + ... + Uy, (13.49)

'*The “impossibility” of developing a social welfare function from the underlying preferences of people in society was first stud-
ied by K. Arrow in Social Choice and Individual Values, 2nd ed. (New York: Wiley, 1963). There is a large body of literature
stemming from Arrow’s initial discovery.
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Thus, utility is a simple sum of the utility of every person in the economy. Such a social
welfare function is sometimes called a utilitarian function. With such a function, social
welfare is judged by the aggregate sum of utility (or perhaps even income) with no regard
for how utility (income) is distributed among the members of society.

At the other extreme, consider the case R = —oo. In this case, social welfare has a
“fixed proportions” character and (as we have seen in many other applications),

SW(Uy, Uy, ..., Uy) = Min[Uy, Uy, ..., Uy]. (13.50)

Therefore, this function focuses on the worse-off person in any allocation and chooses
that allocation for which this person has the highest utility. Such a social welfare function
is called a maximin function. It was made popular by the philosopher John Rawls, who
argued that if individuals did not know which position they would ultimately have in
society (i.e., they operate under a “veil of ignorance”), they would opt for this sort of social
welfare function to guard against being the worse-off person.'” Our analysis in Chapter 7
suggests that people may not be this risk averse in choosing social arrangements. However,
Rawls’ focus on the bottom of the utility distribution is probably a good antidote to think-
ing about social welfare in purely utilitarian terms.

It is possible to explore many other potential functional forms for a hypothetical wel-
fare function. Problem 13.14 looks at some connections between social welfare functions
and the income distribution, for example. But such illustrations largely miss a crucial
point if they focus only on an exchange economy. Because the quantities of goods in such
an economy are fixed, issues related to production incentives do not arise when evaluat-
ing social welfare alternatives. In actuality, however, any attempt to redistribute income
(or utility) through taxes and transfers will necessarily affect production incentives and
therefore affect the size of the Edgeworth box. Therefore, assessing social welfare will
involve studying the trade-off between achieving distributional goals and maintaining lev-
els of production. To examine such possibilities we must introduce production into our
general equilibrium framework.

A MATHEMATICAL MODEL OF R
PRODUCTION AND EXCHANGE

Adding production to the model of exchange developed in the previous section is a rela-
tively simple process. First, the notion of a “good” needs to be expanded to include fac-
tors of production. Therefore, we will assume that our list of # goods now includes inputs
whose prices also will be determined within the general equilibrium model. Some inputs
for one firm in a general equilibrium model are produced by other firms. Some of these
goods may also be consumed by individuals (cars are used by both firms and final con-
sumers), and some of these may be used only as intermediate goods (steel sheets are used
only to make cars and are not bought by consumers). Other inputs may be part of indi-
viduals’ initial endowments. Most importantly, this is the way labor supply is treated in
general equilibrium models. Individuals are endowed with a certain number of potential
labor hours. They may sell these to firms by taking jobs at competitively determined
wages, or they may choose to consume the hours themselves in the form of “leisure,”
In making such choices we continue to assume that individuals maximize utility.'®

We will assume that there are r firms involved in production. Each of these firms is
bound by a production function that describes the physical constraints on the ways the

'7]. Rawls, A Theory of Justice (Cambridge, MA: Harvard University Press, 1971).
'8A detailed study of labor supply theory is presented in Chapter 16.
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firm can turn inputs into outputs. By convention, outputs of the firm take a positive sign,
whereas inputs take a negative sign. Using this convention, each firm’s production plan can
be described by an # x 1 column vector, y/(j = 1 ... r), which contains both positive and
negative entries. The only vectors that the firm may consider are those that are feasible given
the current state of technology. Sometimes it is convenient to assume each firm produces
only one output. But that is not necessary for a more general treatment of production.

Firms are assumed to maximize profits. Production functions are assumed to be suffi-
ciently convex to ensure a unique profit maximum for any set of output and input prices.
This rules out both increasing returns to scale technologies and constant returns because
neither yields a unique maxima. Many general equilibrium models can handle such possi-
bilities, but there is no need to introduce such complexities here. Given these assump-
tions, the profits for any firm can be written as:

mi(p) = py’ if m(p) 20 and (13.51)

y/ =0 if m(p) < 0. ’
Hence this model has a “long run” orientation in which firms that lose money (at a par-
ticular price configuration) hire no inputs and produce no output. Notice how the con-
vention that outputs have a positive sign and inputs a negative sign makes it possible to
phrase profits in a compact way.'

Budget constraints and Walras’ law

In an exchange model, individuals’ purchasing power is determined by the values of their
initial endowments. Once firms are introduced, we must also consider the income stream
that may flow from ownership of these firms. To do so, we adopt the simplifying assump-

m
tion that each individual owns a predefined share, s; (where > s; = 1) of the profits
i=1
of all firms. That is, each person owns an “index fund” that can claim a proportionate
share of all firms’ profits. We can now rewrite each individual’s budget constraint (from

Equation 13.24) as:

px'=5) py +px i=1..m. (13.52)
j=1

Of course, if all firms were in long-run equilibrium in perfectly competitive industries, all
profits would be zero and the budget constraint in Equation 13.52 would revert to that in
Equation 13.24. But allowing for long-term profits does not greatly complicate our model;
therefore, we might as well consider the possibility.

As in the exchange model, the existence of these m budget constraints implies a con-
straint of the prices that are possible—a generalization of Walras’ law. Summing the
budget constraints in Equation 13.52 over all individuals yields:

r m
pY xX()=pY v +p) X (13.53)
i=1 =1 i=1

and letting x(p) = >_x'(p), y(p) = D ¥/(p), X = D_X provides a simple statement of
Walras’ law:

px(p) = py(p) + pX. (13.54)

'YAs we saw in Chapter 11, profit functions are homogeneous of degree 1 in all prices. Hence both output supply functions and
input demand functions are homogeneous of degree 0 in all prices because they are derivatives of the profit function.
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Notice again that Walras’ law holds for any set of prices because it is based on individuals’
budget constraints.

Walrasian equilibrium

As before, we define a Walrasian equilibrium price vector (p*) as a set of prices at which
demand equals supply in all markets simultaneously. In mathematical terms this means
that:

x(p*) =y(p*) +X% (13.55)

Initial endowments continue to play an important role in this equilibrium. For example,
it is individuals’ endowments of potential labor time that provide the most important
input for firms’ production processes. Therefore, determination of equilibrium wage rates
is a major output of general equilibrium models operating under Walrasian conditions.
Examining changes in wage rates that result from changes in exogenous influences is per-
haps the most important practical use of such models.

As in the study of an exchange economy, it is possible to use some form of fixed point
theorem®” to show that there exists a set of equilibrium prices that satisfy the # equations
in Equation 13.55. Because of the constraint of Walras” law, such an equilibrium price
vector will be unique only up to a scalar multiple—that is, any absolute price level that
preserves relative prices can also achieve equilibrium in all markets. Technically, excess
demand functions

z(p) =x(p) —y(p) — X (13.56)

are homogeneous of degree 0 in prices; therefore, any price vector for which z(p*) = 0
will also have the property that z(tp“) = 0 and ¢ > 0. Frequently it is convenient to nor-
malize prices so that they sum to one. But many other normalization rules can also be
used. In macroeconomic versions of general equilibrium models it is usually the case that
the absolute level of prices is determined by monetary factors.

Welfare economics in the Walrasian model

with production

Adding production to the model of an exchange economy greatly expands the number of
feasible allocations of resources. One way to visualize this is shown in Figure 13.10. There
PP represents that production possibility frontier for a two-good economy with a fixed
endowment of primary factors of production. Any point on this frontier is feasible. Con-
sider one such allocation, say, allocation A. If this economy were to produce x4 and y4,
we could use these amounts for the dimensions of the Edgeworth exchange box shown
inside the frontier. Any point within this box would also be a feasible allocation of the
available goods between the two people whose preferences are shown. Clearly a similar
argument could be made for any other point on the production possibility frontier.

Despite these complications, the first theorem of welfare economics continues to hold
in a general equilibrium model with production. At a Walrasian equilibrium there are no
further market opportunities (either by producing something else or by reallocating the
available goods among individuals) that would make some one individual (or group of
individuals) better off without making other individuals worse off. Adam Smith’s “invisible
hand” continues to exert its logic to ensure that all such mutually beneficial opportunities
are exploited (in part because transaction costs are assumed to be zero).

*°For some illustrative proofs, see K. J. Arrow and F. H. Hahn, General Competitive Analysis (San Francisco: Holden-Day, 1971)
chap. 5.
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Any point on the production possibility frontier PP can serve as the dimensions of an Edgeworth
exchange box.

4 N
Quantity of y

Ya

Quantity of x

Again, the general social welfare implications of the first theorem of welfare economics
are far from clear. There is, of course, a second theorem, which shows that practically any
Walrasian equilibrium can be supported by suitable changes in initial endowments. One
also could hypothesize a social welfare function to choose among these. But most such
exercises are rather uninformative about actual policy issues.

More interesting is the use of the Walrasian mechanism to judge the hypothetical
impact of various tax and transfer policies that seek to achieve specific social welfare cri-
teria. In this case (as we shall see) the fact that Walrasian models stress interconnections
among markets, especially among product and input markets, can yield important and
often surprising results. In the next section we look at a few of these.

COMPUTABLE GENERAL EQUILIBRIUM )
MODELS

Two advances have spurred the rapid development of general equilibrium models in
recent years. First, the theory of general equilibrium itself has been expanded to include
many features of real-world markets such as imperfect competition, environmental exter-
nalities, and complex tax systems. Models that involve uncertainty and that have a
dynamic structure also have been devised, most importantly in the field of macroeconom-
ics. A second related trend has been the rapid development of computer power and the
associated software for solving general equilibrium models. This has made it possible to
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study models with virtually any number of goods and types of households. In this section
we will briefly explore some conceptual aspects of these models.”’ The Extensions to the
chapter describe a few important applications.

Structure of general equilibrium models

Specification of any general equilibrium model begins by defining the number of goods
to be included in the model. These “goods” include not only consumption goods but also
intermediate goods that are used in the production of other goods (e.g., capital equip-
ment), productive inputs such as labor or natural resources, and goods that are to be pro-
duced by the government (public goods). The goal of the model is then to solve for
equilibrium prices for all these goods and to study how these prices change when condi-
tions change.

Some of the goods in a general equilibrium model are produced by firms. The technol-
ogy of this production must be specified by production functions. The most common
such specification is to use the types of CES production functions that we studied in
Chapters 9 and 10 because these can yield some important insights about the ways in
which inputs are substituted in the face of changing prices. In general, firms are assumed
to maximize their profits given their production functions and given the input and output
prices they face.

Demand is specified in general equilibrium models by defining utility functions for
various types of households. Utility is treated as a function both of goods that are con-
sumed and of inputs that are not supplied to the marketplace (e.g., available labor that is
not supplied to the market is consumed as leisure). Households are assumed to maximize
utility. Their incomes are determined by the amounts of inputs they “sell” in the market
and by the net result of any taxes they pay or transfers they receive.

Finally, a full general equilibrium model must specify how the government operates.
If there are taxes in the model, how those taxes are to be spent on transfers or on pub-
lic goods (which provide utility to consumers) must be modeled. If government borrow-
ing is allowed, the bond market must be explicitly modeled. In short, the model must
fully specify the flow of both sources and uses of income that characterize the economy
being modeled.

Solving general equilibrium models

Once technology (supply) and preferences (demand) have been specified, a general equi-
librium model must be solved for equilibrium prices and quantities. The proof earlier in
this chapter shows that such a model will generally have such a solution, but actually
finding that solution can sometimes be difficult—especially when the number of goods
and households is large. General equilibrium models are usually solved on computers via
modifications of an algorithm originally developed by Herbert Scarf in the 1970s.*?
This algorithm (or more modern versions of it) searches for market equilibria by mimick-
ing the way markets work. That is, an initial solution is specified and then prices are
raised in markets with excess demand and lowered in markets with excess supply until an
equilibrium is found in which all excess demands are zero. Sometimes multiple equilibria
will occur, but usually economic models have sufficient curvature in the underlying pro-
duction and utility functions that the equilibrium found by the Scarf algorithm will be
unique.

*'For more detail on the issues discussed here, see W. Nicholson and F. Westhoff, “General Equilibrium Models: Improving the
Microeconomics Classroom,” Journal of Economic Education (Summer 2009): 297-314.

*Herbert Scarf with Terje Hansen, On the Computation of Economic Equilibria (New Haven, CT: Yale University Press, 1973).
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Economic insights from general equilibrium models

General equilibrium models provide a number of insights about how economies operate
that cannot be obtained from the types of partial equilibrium models studied in Chapter 12.
Some of the most important of these are:

o All prices are endogenous in economic models. The exogenous elements of models
are preferences and productive technologies.

o All firms and productive inputs are owned by households. All income ultimately
accrues to households.

« Any model with a government sector is incomplete if it does not specify how tax
receipts are used.

o The “bottom line” in any policy evaluation is the utility of households. Firms and
governments are only intermediaries in getting to this final accounting.

o+ All taxes distort economic decisions along some dimension. The welfare costs of such
distortions must always be weighed against the benefits of such taxes (in terms of
public good production or equity-enhancing transfers).

Some of these insights are illustrated in the next two examples. In later chapters we will
return to general equilibrium modeling whenever such a perspective seems necessary to
gain a more complete understanding of the topic being covered.

EXAMPLE 13.4 A Simple General Equilibrium Model

Let’s look at a simple general equilibrium model with only two households, two consumer goods
(x and y), and two inputs (capital k and labor I). Each household has an “endowment” of capital
and labor that it can choose to retain or sell in the market. These endowments are denoted by
ki, I, and &y, I, respectively. Households obtain utility from the amounts of the consumer
goods they purchase and from the amount of labor they do not sell into the market (i.e., leisure =
1; — I;). The households have simple Cobb-Douglas utility functions:

Uy =% (h — 1), Uy = x84 (h — 1), (13.57)

Hence household 1 has a relatively greater preference for good x than does household 2. Notice
that capital does not enter into these utility functions directly. Consequently, each household
will provide its entire endowment of capital to the marketplace. Households will retain some
labor, however, because leisure provides utility directly.

Production of goods x and y is characterized by simple Cobb-Douglas technologies:

702708 708702
x =K,y =k (13.58)

Thus, in this example, production of x is relatively labor intensive, whereas production of y is
relatively capital intensive.

To complete this model we must specify initial endowments of capital and labor. Here we
assume that

ki =40,1;, =24 and k, =10, ], = 24. (13.59)

Although the households have equal labor endowments (ie., 24 “hours”), household 1 has
significantly more capital than does household 2.

Base-case simulation. Equations 13.57-13.59 specify our complete general equilibrium
model in the absence of a government. A solution to this model will consist of four equilibrium
prices (for x, y, k, and I) at which households maximize utility and firms maximize profits.>>

*Because firms’ production functions are characterized by constant returns to scale, in equilibrium each earns zero profits;
therefore, there is no need to specify firm ownership in this model.



488 Part5: Competitive Markets

Because any general equilibrium model can compute only relative prices, we are free to impose a
price-normalization scheme. Here we assume that the prices will always sum to unity. That is,

Solving®* for these prices yields

p,=0363, p,=0253, p,=0136 p =0.248. (13.61)

At these prices, total production of x is 23.7 and production of y is 25.1. The utility-maximizing
choices for household 1 are

x; =157, y, =8.1, 71 — 1, =24—-148=9.2, U, =13.5 (13.62)
for household 2, these choices are
X, =81, y,=116, L—L=24—181=59, U,=875. (13.63)

Observe that household 1 consumes quite a bit of good x but provides less in labor supply than
does household 2. This reflects the greater capital endowment of household 1 in this base-case
simulation. We will return to this base case in several later simulations.

QUERY: How would you show that each household obeys its budget constraint in this
simulation? Does the budgetary allocation of each household exhibit the budget shares that are
implied by the form of its utility function?

EXAMPLE 13.5 The Excess Burden of a Tax

In Chapter 12 we showed that taxation may impose an excess burden in addition to the tax
revenues collected because of the incentive effects of the tax. With a general equilibrium model we
can show much more about this effect. Specifically, assume that the government in the economy
of Example 13.4 imposes an ad valorem tax of 0.4 on good x. This introduces a wedge between
what demanders pay for this good x (p,) and what suppliers receive for the good (p', = (1 - t)p, =
0.6p,). To complete the model we must specify what happens to the revenues generated by this
tax. For simplicity we assume that these revenues are rebated to the households in a 50-50 split.
In all other respects the economy remains as described in Example 13.4.
Solving for the new equilibrium prices in this model yields

p, = 0472, p, = 0218, p, =0.121, p, = 0.188. (13.64)

At these prices, total production of x is 17.9, and total production of y is 28.8. Hence the
allocation of resources has shifted significantly toward y production. Even though the relative
price of x experienced by consumers (= p,/p, = 0.472/0.218 = 2.17) has increased significantly
from its value (of 1.43) in Example 13.4, the price ratio experienced by firms (0.6p,/p, = 1.30)
has decreased somewhat from this prior value. Therefore, one might expect, based on a partial
equilibrium analysis, that consumers would demand less of good x and likewise that firms
would similarly produce less of that good. Partial equilibrium analysis would not, however,
allow us to predict the increased production of y (which comes about because the relative price

**The computer program used to find these solutions is accessible at www.amherst.edu/~fwesthoff/compequ/FixedPoints
CompEquApplet.html.
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of y has decreased for consumers but has increased for firms) nor the reduction in relative input
prices (because there is less being produced overall). A more complete picture of all these effects
can be obtained by looking at the final equilibrium positions of the two households. The post-
tax allocation for household 1 is

x =116,y = 152, 1, =, = 11.8, U; = 12.7; (13.65)
for household 2,

X =63,y,=136,1,— 1, =79, U, = 8.96. (13.66)

Hence imposition of the tax has made household 1 considerably worse off: utility decreases from
13.5 to 12.7. Household 2 is made slightly better off by this tax and transfer scheme, primarily
because it receives a relatively large share of the tax proceeds that come mainly from household
1. Although total utility has decreased (as predicted by the simple partial equilibrium analysis of
excess burden), general equilibrium analysis gives a more complete picture of the distributional
consequences of the tax. Notice also that the total amount of labor supplied decreases as a result
of the tax: total leisure increases from 15.1 (hours) to 19.7. Therefore, imposition of a tax on
good x has had a relatively substantial labor supply effect that is completely invisible in a partial
equilibrium model.

QUERY: Would it be possible to make both households better off (relative to Example 13.4) in
this taxation scenario by changing how the tax revenues are redistributed?

L SUMMARY

This chapter has provided a general exploration of Adam
Smith’s conjectures about the efficiency properties of com-
petitive markets. We began with a description of how to
model many competitive markets simultaneously and then
used that model to make a few statements about welfare.
Some highlights of this chapter are listed here.

o Preferences and production technologies provide the
building blocks on which all general equilibrium
models are based. One particularly simple version of
such a model uses individual preferences for two goods
together with a concave production possibility frontier
for those two goods.

o Competitive markets can establish equilibrium prices
by making marginal adjustments in prices in response
to information about the demand and supply for indi-
vidual goods. Walras’ law ties markets together so that
such a solution is assured (in most cases).

+ General equilibrium models can usually be solved by
using computer algorithms. The resulting solutions

yield many insights about the economy that are not
obtainable from partial equilibrium analysis of single
markets.

Competitive prices will result in a Pareto-efficient allo-
cation of resources. This is the first theorem of welfare
economics.

Factors that interfere with competitive markets’ abil-
ities to achieve efficiency include (1) market power,
(2) externalities, (3) existence of public goods, and
(4) imperfect information. We explore all these issues
in detail in later chapters.

Competitive markets need not yield equitable distribu-
tions of resources, especially when initial endowments
are highly skewed. In theory, any desired distribution
can be attained through competitive markets accompa-
nied by appropriate transfers of initial endowments
(the second theorem of welfare economics). But there
are many practical problems in implementing such
transfers.
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L PROBLEMS

13.1
Suppose the production possibility frontier for guns (x) and butter (y) is given by

x2+2y% = 900.

a. Graph this frontier.

b. If individuals always prefer consumption bundles in which y = 2x, how much x and y will be produced?

c. At the point described in part (b), what will be the RPT and hence what price ratio will cause production to take place at
that point? (This slope should be approximated by considering small changes in x and y around the optimal point.)

d. Show your solution on the figure from part (a).

13.2

Suppose two individuals (Smith and Jones) each have 10 hours of labor to devote to producing either ice cream (x) or chicken
soup (y). Smith’s utility function is given by

Us = x°3y°7
whereas Jones’ is given by

Uy = x%505.

The individuals do not care whether they produce x or y, and the production function for each good is given by
x=2l and y=3],

where [ is the total labor devoted to production of each good.

a. What must the price ratio, p./p,, be?
b. Given this price ratio, how much x and y will Smith and Jones demand? Hint: Set the wage equal to 1 here.
c. How should labor be allocated between x and y to satisfy the demand calculated in part (b)?

13.3

Consider an economy with just one technique available for the production of each good.
Good Food Cloth
Labor per unit output 1 1
Land per unit output 2 1

a. Suppose land is unlimited but labor equals 100. Write and sketch the production possibility frontier.

. Suppose labor is unlimited but land equals 150. Write and sketch the production possibility frontier.

. Suppose labor equals 100 and land equals 150. Write and sketch the production possibility frontier. Hint: What are the
intercepts of the production possibility frontier? When is land fully employed? Labor? Both?

. Explain why the production possibility frontier of part (c) is concave.

. Sketch the relative price of food as a function of its output in part (c).
If consumers insist on trading 4 units of food for 5 units of cloth, what is the relative price of food? Why?

. Explain why production is exactly the same at a price ratio of pp/pc = 1.1 as at pp/pc = 1.9.

. Suppose that capital is also required for producing food and clothing and that capital requirements per unit of food and
per unit of clothing are 0.8 and 0.9, respectively. There are 100 units of capital available. What is the production possibility
curve in this case? Answer part (e) for this case.

o
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Suppose that Robinson Crusoe produces and consumes fish (F) and coconuts (C). Assume that, during a certain period, he has
decided to work 200 hours and is indifferent as to whether he spends this time fishing or gathering coconuts. Robinson’s
production for fish is given by
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F= ZF

and for coconuts by
c=l.

where Ir and I are the number of hours spent fishing or gathering coconuts. Consequently,

I + Ip = 200.
Robinson Crusoe’s utility for fish and coconuts is given by
utility = VF - C.

a. If Robinson cannot trade with the rest of the world, how will he choose to allocate his labor? What will the optimal levels
of F and C be? What will his utility be? What will be the RPT (of fish for coconuts)?

b. Suppose now that trade is opened and Robinson can trade fish and coconuts at a price ratio of pr/pc = 2/1. If Robinson
continues to produce the quantities of F and C from part (a), what will he choose to consume once given the opportunity
to trade? What will his new level of utility be?

c. How would your answer to part (b) change if Robinson adjusts his production to take advantage of the world prices?

d. Graph your results for parts (a), (b), and (c).

13.5

Smith and Jones are stranded on a desert island. Each has in his possession some slices of ham (H) and cheese (C). Smith is a
choosy eater and will eat ham and cheese only in the fixed proportions of 2 slices of cheese to 1 slice of ham. His utility
function is given by Us = min(H, C/2).

Jones is more flexible in his dietary tastes and has a utility function given by U; = 4H + 3C. Total endowments are 100
slices of ham and 200 slices of cheese.

a. Draw the Edgeworth box diagram that represents the possibilities for exchange in this situation. What is the only exchange
ratio that can prevail in any equilibrium?

b. Suppose Smith initially had 40H and 80C. What would the equilibrium position be?

. Suppose Smith initially had 60H and 80C. What would the equilibrium position be?

d. Suppose Smith (much the stronger of the two) decides not to play by the rules of the game. Then what could the final
equilibrium position be?

(]

13.6

In the country of Ruritania there are two regions, A and B. Two goods (x and y) are produced in both regions. Production
functions for region A are given by

xA:\/E;

)’A:\/E5

here I, and [, are the quantities of labor devoted to x and y production, respectively. Total labor available in region A is 100 units;
that is,

I + 1, = 100.

Using a similar notation for region B, production functions are given by

There are also 100 units of labor available in region B:
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a. Calculate the production possibility curves for regions A and B.

b. What condition must hold if production in Ruritania is to be allocated efficiently between regions A and B (assuming labor
cannot move from one region to the other)?

c. Calculate the production possibility curve for Ruritania (again assuming labor is immobile between regions). How much
total y can Ruritania produce if total x output is 122 Hint: A graphical analysis may be of some help here.

13.7

Use the computer algorithm discussed in footnote 24 to examine the consequences of the following changes to the model in
Example 13.4. For each change, describe the final results of the modeling and offer some intuition about why the results worked
as they did.

a. Change the preferences of household 1 to U, = x%¢y92(1, — 1,)°2.

b. Reverse the production functions in Equation 13.58 so that x becomes the capital-intensive good.

c. Increase the importance of leisure in each household’s utility function.

Analytical Problems

13.8 Tax equivalence theorem

Use the computer algorithm discussed in footnote 24 to show that a uniform ad valorem tax of both goods yields the same
equilibrium as does a uniform tax on both inputs that collects the same revenue. Note: This tax equivalence theorem from the
theory of public finance shows that taxation may be done on either the output or input sides of the economy with identical results.

13.9 Returns to scale and the production possibility frontier

The purpose of this problem is to examine the relationships among returns to scale, factor intensity, and the shape of the
production possibility frontier.

Suppose there are fixed supplies of capital and labor to be allocated between the production of good x and good y. The
production functions for x and y are given (respectively) by

x= k*1Pand y = KVI°,

where the parameters o, f3, v, and 6 will take on different values throughout this problem.
Using either intuition, a computer, or a formal mathematical approach, derive the production possibility frontier for x and y

in the following cases.

ao=F=y=06=1/2.
.o=B=1/2,y=1/3,0 =2/3.
La=B=1/2,y=56=2/3.
a=B=y=0=2/3
w=PB=067y=0275=10.
w=B=077y=06205=08.

e a0 o

Do increasing returns to scale always lead to a convex production possibility frontier? Explain.

13.10 The trade theorems

The construction of the production possibility curve shown in Figures 13.2 and 13.3 can be used to illustrate three important
“theorems” in international trade theory. To get started, notice in Figure 13.2 that the efficiency line O,,0, is bowed above the
main diagonal of the Edgeworth box. This shows that the production of good x is always “capital intensive” relative to the
production of good y. That is, when production is efficient, (%)x > (%)y no matter how much of the goods are produced.
Demonstration of the trade theorems assumes that the price ratio, p = p,/p,, is determined in international markets—the
domestic economy must adjust to this ratio (in trade jargon, the country under examination is assumed to be “a small country

in a large world”).
a. Factor price equalization theorem: Use Figure 13.4 to show how the international price ratio, p, determines the point in the
Edgeworth box at which domestic production will take place. Show how this determines the factor price ratio, w/v. If produc-
tion functions are the same throughout the world, what will this imply about relative factor prices throughout the world?



Chapter 13: General Equilibrium and Welfare 493

b. Stolper-Samuelson theorem: An increase in p will cause the production to move clockwise along the production possibil-
ity frontier—x production will increase and y production will decrease. Use the Edgeworth box diagram to show that such
a move will decrease k/I in the production of both goods. Explain why this will cause w/v to decrease. What are the implica-
tions of this for the opening of trade relations (which typically increases the price of the good produced intensively with a
country’s most abundant input).

c. Rybczynski theorem: Suppose again that p is set by external markets and does not change. Show that an increase in k will
increase the output of x (the capital-intensive good) and reduce the output of y (the labor-intensive good).

13.11 An example of Walras’ law
Suppose there are only three goods (x;, x, x3) in an economy and that the excess demand functions for x, and x; are given by

3 2
ED, — P2 sy
ISR 21
4 2
I N
1 P

a. Show that these functions are homogeneous of degree 0 in py, p,, and ps.
b. Use Walras’ law to show that, if ED, = ED; = 0, then ED; must also be 0. Can you also use Walras’ law to calculate ED,?
c. Solve this system of equations for the equilibrium relative prices p,/p; and p;/p;. What is the equilibrium value for p;/p,?

13.12 Productive efficiency with calculus

In Example 13.3 we showed how a Pareto efficiency exchange equilibrium can be described as the solution to a constrained
maximum problem. In this problem we provide a similar illustration for an economy involving production. Suppose that there
is only one person in a two-good economy and that his or her utility function is given by U(x, y). Suppose also that this
economy’s production possibility frontier can be written in implicit form as T(x, y) = 0.

a. What is the constrained optimization problem that this economy will seek to solve if it wishes to make the best use of its
available resources?

b. What are the first-order conditions for a maximum in this situation?

c. How would the efficient situation described in part (b) be brought about by a perfectly competitive system in which this
individual maximizes utility and the firms underlying the production possibility frontier maximize profits.

d. Under what situations might the first-order conditions described in part (b) not yield a utility maximum?

13.13 Initial endowments, equilibrium prices, and the first theorem

of welfare economics

In Example 13.3 we computed an efficient allocation of the available goods and then found the price ratio consistent with this
allocation. That then allowed us to find initial endowments that would support this equilibrium. In that way the example
demonstrates the second theorem of welfare economics. We can use the same approach to illustrate the first theorem. Assume
again that the utility functions for persons A and B are those given in the example.

a. For each individual, show how his or her demand for x and y depends on the relative prices of these two goods and on the
initial endowment that each person has. To simplify the notation here, set p, = 1 and let p represent the price of x (relative
to that of y). Hence the value of, say, A’s initial endowment can be written as px, +¥,.

b. Use the equilibrium conditions that total quantity demanded of goods x and y must equal the total quantities of these two
goods available (assumed to be 1,000 units each) to solve for the equilibrium price ratio as a function of the initial endow-
ments of the goods held by each person (remember that initial endowments must also total 1,000 for each good).

c. For the case X4 =y, = 500, compute the resulting market equilibrium and show that it is Pareto efficient.

d. Describe in general terms how changes in the initial endowments would affect the resulting equilibrium prices in this
model. Illustrate your conclusions with a few numerical examples.

13.14 Social welfare functions and income taxation

The relationship between social welfare functions and the optimal distribution of individual tax burdens is a complex one in
welfare economics. In this problem, we look at a few elements of this theory. Throughout we assume that there are m
individuals in the economy and that each individual is characterized by a skill level, a;, which indicates his or her ability to earn
income. Without loss of generality suppose also that individuals are ordered by increasing ability. Pretax income itself is
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determined by skill level and effort, ¢;, which may or may not be sensitive to taxation. That is, I; = I(a;, ¢;). Suppose also that
the utility cost of effort is given by \(c), ' > 0, " < 0, {(0) = 0. Finally, the government wishes to choose a schedule of
income taxes and transfers, T(I), which maximizes social welfare subject to a government budget constraint satisfying

> T(I;) = R (where R is the amount needed to finance public goods).

i=1

a. Suppose that each individual’s income is unaffected by effort and that each person’s utility is given by w; = w,[I; - T(I}) -
Y(c)]. Show that maximization of a CES social welfare function requires perfect equality of income no matter what the pre-
cise form of that function. (Note: for some individuals T(I;) may be negative.)

b. Suppose now that individuals’ incomes are affected by effort. Show that the results of part (a) still hold if the government

based income taxation on g; rather than on I;.

c. In general show that if income taxation is based on observed income, this will affect the level of effort individuals under-

take.

d. Characterization of the optimal tax structure when income is affected by effort is difficult and often counterintuitive.
Diamond® shows that the optimal marginal rate schedule may be U-shaped, with the highest rates for both low- and high-
income people. He shows that the optimal top rate marginal rate is given by

(1 + EL)W)(I — k,)

T’ (Imax)

T2t (U te)(1—kK)

where k;(0 < k; < 1) is the top income person’s relative weight in the social welfare function and e;,, is the elasticity of
labor supply with respect to the after-tax wage rate. Try a few simulations of possible values for these two parameters, and
describe what the top marginal rate should be. Give an intuitive discussion of these results.
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