5930300 – Química Quântica Prof. Dr. Antonio G. S. de Oliveira Filho #### Orbitais Híbridos e a Geometria Molecular - •Estado fundamental do C: 1s² 2s² 2p_x¹ 2p_y¹ - Duas ou quatro ligações químicas? - Hibridização #### Orbitais Híbridos e a Geometria Molecular - •Molécula BeH₂ - •Linear, rBeH = 1,33 Å, estável - •Configuração eletrônica Be: 1s²2s² - Como construir os orbitais moleculares adequados? - •Contribuição de mais de um orbital atômico $$\psi_{Be-H} = c_1 \psi_{Be(2s)} + c_2 \psi_{Be(2p)} + c_3 \psi_{H(1s)}$$ Orbital híbrido •Coeficientes determinam se é ligante ou antiligante ## Orbitais híbridos sp $$\psi_{sp} = \frac{1}{\sqrt{2}} (2s \pm 2p_z)$$ ## Orbitais híbridos sp Orbitais sp Orbitais sp, p_x e p_y # Orbitais híbridos sp – BeH₂ #### Orbitais Híbridos e a Geometria Molecular - •Molécula BH₃ - •Planar, rBH = 1,19 Å, estável - •Configuração eletrônica B: 1s²2s²2p - •Três ligações equivalentes: três orbitais atômicos (s + $p_x + p_y$) - Orbitais híbridos sp² #### Orbitais híbridos sp² $$\psi_1 = \frac{1}{\sqrt{3}} 2s + \sqrt{\frac{2}{3}} 2p_x$$ $$\psi_2 = \frac{1}{\sqrt{3}} 2s - \frac{1}{\sqrt{6}} 2p_x + \frac{1}{\sqrt{2}} 2p_y$$ $$\psi_3 = \frac{1}{\sqrt{3}} 2s - \frac{1}{\sqrt{6}} 2p_x - \frac{1}{\sqrt{2}} 2p_y$$ # Orbitais híbridos sp² Orbitais sp² Orbitais sp² e p_z # Orbitais híbridos sp² – BH₃ #### Orbitais Híbridos e a Geometria Molecular - Molécula CH₄ - •Tetraédrico, rCH = 1,09 Å, estável - Configuração eletrônica C: 1s²2s²2p² - •Quatro ligações equivalentes: quatro orbitais atômicos ($s + p_x + p_y + p_z$) - Orbitais híbridos sp³ ## Orbitais híbridos sp³ # Orbitais híbridos sp³ # Orbitais híbridos sp³ – CH₃CH₃ ## Ligações σ , π , δ e φ Ligações σ : nenhum plano nodal contendo o eixo internuclear Ligações π: um plano nodal contendo o eixo internuclear #### Ligações σ , π , δ e φ Ligações δ : dois planos nodais contendo o eixo internuclear [Re₂Cl₈]²⁻ : Ligação quádrupla ReRe - 1 ligação σ - 2 ligações π - 1 ligação δ #### Ligações σ , π , δ e φ U₂: Ligação quíntupla UU - 1 ligação σ - 2 ligações π - 1 ligação δ - 1 ligação φ Ligações φ : três planos nodais contendo o eixo internuclear $$\psi = c_1 1 s_{H_a} + c_2 1 s_{H_b} + c_3 2 s_A + c_4 2 p_{xA} + c_5 2 p_{yA} + c_6 2 p_{zA}$$