5930300 – Química Quântica

Prof. Dr. Antonio G. S. de Oliveira Filho

Orbitais Híbridos e a Geometria Molecular

- •Estado fundamental do C: 1s² 2s² 2p_x¹ 2p_y¹
- Duas ou quatro ligações químicas?
- Hibridização

Orbitais Híbridos e a Geometria Molecular

- •Molécula BeH₂
- •Linear, rBeH = 1,33 Å, estável
- •Configuração eletrônica Be: 1s²2s²
- Como construir os orbitais moleculares adequados?
- •Contribuição de mais de um orbital atômico

$$\psi_{Be-H} = c_1 \psi_{Be(2s)} + c_2 \psi_{Be(2p)} + c_3 \psi_{H(1s)}$$
 Orbital híbrido

•Coeficientes determinam se é ligante ou antiligante

Orbitais híbridos sp

$$\psi_{sp} = \frac{1}{\sqrt{2}} (2s \pm 2p_z)$$

Orbitais híbridos sp

Orbitais sp

Orbitais sp, p_x e p_y

Orbitais híbridos sp – BeH₂

Orbitais Híbridos e a Geometria Molecular

- •Molécula BH₃
- •Planar, rBH = 1,19 Å, estável
- •Configuração eletrônica B: 1s²2s²2p
- •Três ligações equivalentes: três orbitais atômicos (s + $p_x + p_y$)
- Orbitais híbridos sp²

Orbitais híbridos sp²

$$\psi_1 = \frac{1}{\sqrt{3}} 2s + \sqrt{\frac{2}{3}} 2p_x$$

$$\psi_2 = \frac{1}{\sqrt{3}} 2s - \frac{1}{\sqrt{6}} 2p_x + \frac{1}{\sqrt{2}} 2p_y$$

$$\psi_3 = \frac{1}{\sqrt{3}} 2s - \frac{1}{\sqrt{6}} 2p_x - \frac{1}{\sqrt{2}} 2p_y$$

Orbitais híbridos sp²

Orbitais sp²

Orbitais sp² e p_z

Orbitais híbridos sp² – BH₃

Orbitais Híbridos e a Geometria Molecular

- Molécula CH₄
- •Tetraédrico, rCH = 1,09 Å, estável
- Configuração eletrônica C: 1s²2s²2p²
- •Quatro ligações equivalentes: quatro orbitais atômicos ($s + p_x + p_y + p_z$)
- Orbitais híbridos sp³

Orbitais híbridos sp³

Orbitais híbridos sp³

Orbitais híbridos sp³ – CH₃CH₃

Ligações σ , π , δ e φ

Ligações σ : nenhum plano nodal contendo o eixo internuclear

Ligações π: um plano nodal contendo o eixo internuclear

Ligações σ , π , δ e φ

Ligações δ : dois planos nodais contendo o eixo internuclear

[Re₂Cl₈]²⁻ : Ligação quádrupla ReRe

- 1 ligação σ
- 2 ligações π
- 1 ligação δ

Ligações σ , π , δ e φ

U₂: Ligação quíntupla UU

- 1 ligação σ
- 2 ligações π
- 1 ligação δ
- 1 ligação φ

Ligações φ : três planos nodais contendo o eixo internuclear

$$\psi = c_1 1 s_{H_a} + c_2 1 s_{H_b} + c_3 2 s_A + c_4 2 p_{xA} + c_5 2 p_{yA} + c_6 2 p_{zA}$$

