5930300 - Química Quântica

Prof. Dr. Antonio G. S. de Oliveira Filho

Orbitais Híbridos e a Geometria Molecular

- Estado fundamental do $\mathrm{C}: 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}_{\mathrm{x}}{ }^{1} 2 \mathrm{p}_{\mathrm{y}}{ }^{1}$
-Duas ou quatro ligações químicas?
-Hibridização

Orbitais Híbridos e a Geometria Molecular

- Molécula BeH_{2}
-Linear, rBeH = 1,33 Å, estável
-Configuração eletrônica $\mathrm{Be}: 1 s^{2} 2 s^{2}$
-Como construir os orbitais moleculares adequados?
-Contribuição de mais de um orbital atômico

$$
\cdot \psi_{B e-H}=\underbrace{c_{1} \psi_{B e(2 s)}+c_{2} \psi_{B e(2 p)}}_{\text {Orbital híbrido }}+c_{3} \psi_{H(1 s)}
$$

-Coeficientes determinam se é ligante ou antiligante

Orbitais híbridos sp

$$
\psi_{s p}=\frac{1}{\sqrt{2}}\left(2 s \pm 2 p_{z}\right)
$$

Orbitais híbridos sp

Orbitais sp

Orbitais $s p, p_{x}$ e p_{y}

Orbitais híbridos $\mathrm{sp}-\mathrm{BeH}_{2}$

Orbitais Híbridos e a Geometria Molecular

- Molécula BH_{3}
-Planar, rBH = 1,19 Å, estável
-Configuração eletrônica B: $1 s^{2} 2 s^{2} 2 p$
-Três ligações equivalentes: três orbitais atômicos (s + $\left.p_{x}+p_{y}\right)$
-Orbitais híbridos sp^{2}

Orbitais híbridos sp^{2}

$$
\begin{aligned}
& \psi_{1}=\frac{1}{\sqrt{3}} 2 s+\sqrt{\frac{2}{3}} 2 p_{x} \\
& \psi_{2}=\frac{1}{\sqrt{3}} 2 s-\frac{1}{\sqrt{6}} 2 p_{x}+\frac{1}{\sqrt{2}} 2 p_{y} \\
& \psi_{3}=\frac{1}{\sqrt{3}} 2 s-\frac{1}{\sqrt{6}} 2 p_{x}-\frac{1}{\sqrt{2}} 2 p_{y}
\end{aligned}
$$

Orbitais híbridos sp^{2}

Orbitais $s p^{2}$ e p_{z}

Orbitais híbridos $\mathrm{sp}^{2}-\mathrm{BH}_{3}$

Orbitais Híbridos e a Geometria Molecular

- Molécula CH_{4}
-Tetraédrico, $\mathrm{rCH}=1,09 \AA$, estável
-Configuração eletrônica C: $1 s^{2} 2 s^{2} 2 p^{2}$
-Quatro ligações equivalentes: quatro orbitais atômicos $\left(s+p_{x}+p_{y}+p_{z}\right)$
-Orbitais híbridos sp^{3}

Orbitais híbridos sp^{3}

Orbitais híbridos sp^{3}

Orbitais híbridos $\mathrm{sp}^{3}-\mathrm{CH}_{3} \mathrm{CH}_{3}$

Ligações σ, π, δ e ϕ

Ligações σ : nenhum plano nodal contendo o eixo internuclear

Ligações π : um plano nodal contendo o eixo internuclear

Ligações σ, π, δ e ϕ

Ligações δ : dois planos nodais contendo o eixo internuclear
$\left[\mathrm{Re}_{2} \mathrm{Cl}_{8}\right]^{2-}$: Ligação quádrupla ReRe

- 1 ligação σ
- 2 ligações π
- 1 ligação δ

Ligações σ, π, δ e ϕ

U_{2} : Ligação quíntupla UU

- 1 ligação σ
- 2 ligações π
- 1 ligação δ
- 1 ligação ϕ

Ligações ϕ : três planos nodais contendo o eixo internuclear

Por que BeH_{2} é linear e $\mathrm{H}_{2} \mathrm{O}$ é angular?

$$
\psi=c_{1} 1 s_{H_{a}}+c_{2} 1 s_{H_{b}}+c_{3} 2 s_{A}+c_{4} 2 p_{x A}+c_{5} 2 p_{y A}+c_{6} 2 p_{z A}
$$

Por que BeH_{2} é linear e $\mathrm{H}_{2} \mathrm{O}$ é angular?

Por que BeH_{2} é linear e $\mathrm{H}_{2} \mathrm{O}$ é angular?

Por que BeH_{2} é linear e $\mathrm{H}_{2} \mathrm{O}$ é angular?

