
5930300 – Química Quântica

Prof. Dr. Antonio G. S. de Oliveira Filho



E. Cinética
(elétrons)

E. Cinética
(núcleos)

Coulomb
(e – e) 

Coulomb
(N – N) 

Coulomb
(e – N) 

324 

FIGURE 9.1 
Definition of the distances between the nuclei 
and the electrons involved in the Hamiltonian 
operator for a hydrogen molecule (Equations 9 .I 
through 9.3) 

Figure 9 .1. The first two terms of the Hamiltonian operator in Equation 9.1 correspond 
to the kinetic energy of the two nuclei; the next two terms represent the kinetic energy 
of the two electrons; the four ensuing negative terms describe the contributions to the 
potential energy that arise from the attraction between the nuclei and the electrons; and 
the final two positive terms account for electron-electron and nuclear-nuclear repulsion, 
respectively. 

Because of the large difference between the masses of the nuclei and the electrons, 
we can reasonably view the nuclei as fixed in position relative to the motion of the 
electrons. Under such an approximation, the kinetic energy terms of the nuclei (the 
first two terms in the Hamiltonian operator, Equation 9.1) can be treated separately. 
This approximation of neglecting the nuclear motion is called the Born-Oppenheimer 
approximation. Although the Born-Oppenheimer approximation will lead to approx-
imate values of the energies and wave functions, it can be systematically corrected 
using perturbation theory. For most practical purposes, however, these corrections are 
on the order of the mass 10-3

), and so the Born-Oppenheimer approximation 
is a very good approximation. Neglecting the nuclear energy terms in Equation 9.1 
gives the Hamiltonian operator for the motion of the electrons around the two nuclei 
fixed at an internuclear separation: 

(9.2) 

Because the nuclei are considered to be fixed, the quantity R in Equation 9.2 is treated 
as a parameter; the energy we will calculate using the above Hamiltonian operator will 
depend upon R. As usual, we will express all our equations in atomic units (Section 
8-1 ), and so Equation 9.2 becomes (Problem 9-1) 

A 12 2 1 1 1 1 11 
H=--(\71 +\72 )--------+-+- (9.3) 

2 riA riB r2A r2B ri2 R 

O Hamiltoniano molecular (H2)
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O Hamiltoniano molecular (H2)

Não há como resolver exatamente a equação de Schrödinger com este

Hamiltoniano. É possível separar as variáveis (aproximadamente)? 
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A aproximação de Born-Oppenheimer

Para moléculas poliatômicas, usamos uma separação de variáveis
aproximada entre as variáveis eletrônicas e nucleares

Primeiramente, resolvemos a equação de Schrödinger eletrônica, 

em que os núcleos estão fixos. 

Em seguida, resolvemos a equação de Schrödinger nuclear.

A aproximação de Born–Oppenheimer introduz conceitos

químicos importantes como superfícies de energia potencial, 
geometrias de equilíbrio, energias de ligação, etc. 
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Hamiltoniano eletrônico

Em unidades atômicas:
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H2
+: Modelo para Teoria do Orbital Molecular

Molécula mais simples: um elétron.

Energia de ligação: 268 kJ mol–1

Distância de ligação: 1,06 Å

Parâmetro

326 
e 

FIGURE 9.2 
Definition of the distances involved in the 
Hamiltonian operator for Hi (Equation 9.4). 

to the energy if we use an appropriate trial function. As a trial function for ljfj (rA, r8; R), 
we take the linear combinations 

(9.6) 

where lsA and ls8 are hydrogen atomic orbitals centered on nuclei A and B, respectively. 
The molecular orbital given by Equation 9.6 is a Linear Combination of Atomic Orbitals, 
and is called a LCAO molecular orbital. 

Equation 9.6 for ljJ + is sketched in Figure 9.3 for the case c1 = cz- Note that ljJ + 
has the property you might expect of a molecular orbital in that it does indeed spread 
over both nuclei. Because the two nuclei in Hi are identical, the weighting or the 
relative importance of lsA and ls8 must be the same, and so c1 must equal c2 • For 
simplicity, we will set c1 = c2 = 1, but note that before we can discuss a probability 
density associated with these molecular orbitals, ljJ ± must be normalized. 

1 
lf/2 

+ 

• R • 
HA HB 

FIGURE 9.3 
A sketch of the Hi molecular orbital formed by a sum of hydrogen atomic ls orbitals situated 
on each nucleus. Note that the molecular orbital spreads over both nuclei, or over the entire 
molecule. 
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H2
+: Modelo para Teoria do Orbital Molecular

Parâmetro

• Parâmetros são argumentos de uma função arguments com os 
quais nenhuma integração ou diferenciação são realizadas. Por 
exemplo, a massa do elétron é um parâmetro. Parâmetros são 
mantidos fixos.

• Variáveis are são argumentos de uma função com os quais se 
realiza integração ou diferenciação. Por exemplo, as coordenadas 
eletrônicas na eq. de Schrödinger para o átomo de hidrogênio 
são variáveis. Variáveis variam.  
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H2
+: Modelo para Teoria do Orbital Molecular

Como resolver a equação? 

Método variacional.
Qual função tentativa?

Combinação linear de orbitais atômicos

24/10/2023 5930300 - Química Quântica 8



H2
+: Modelo para Teoria do Orbital Molecular

Combinação linear de orbitais atômicos

326 
e 

FIGURE 9.2 
Definition of the distances involved in the 
Hamiltonian operator for Hi (Equation 9.4). 
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H2
+: Modelo para Teoria do Orbital Molecular

Equação de Schrödinger

Diferença de energia entre H isolado e Molécula H2
+
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S é a integral de superposição (overlap)

A B

rA rB

R

328 

A B .-------.. 
R 

Small overlap 

FIGURE 9.4 

A B 

R 

Large overlap 

The overlap of the 1s orbitals centered on hydrogen nuclei located at A and B, a distance 
R apart. 

internuclear separations, Sis very close to zero. With decreasing internuclear distance, 
the value of S increases, approaching a value of one when R = 0 (Figure 9.5). 

The integrals in Equation 9.10 are somewhat complicated to evaluate, but they can 
be evaluated analytically (Problems 9-3 and 9-42). The resulting function S(R) for 
the overlap of two hydrogen 1s atomic orbitals is given by 

S(R) = e-R ( 1 + R + (9.11) 

and is plotted in Figure 9.5. Thus, we can write the denominator of Equation 9. 7 as 

(9.12) 

where we write S(R) to emphasize that the functionS depends upon the parameter R. 

1.0 
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0.0 '--------'-----------'--------'------'---
0 3 4 

FIGURE 9.5 
The overlap integral S(R), Equation 9.11, for two hydrogen atom ls orbitals plotted versus the 
internuclear separation in atomic units. 
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J é a integral de Coulomb
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K é a integral de troca
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∆E+ é função de R
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FIGURE 9.6 
The energies t:,. E + = E + - E 1, and t:. E _ = E _ - E 1, corresponding to the 'if!+ and 'if!_ 
molecular orbital wave functions given in Equation 9.6 (with c1 = c2) plotted as a function 
of intermolecular separation R for Hi. The plot shows that 'if!+ leads to a bonding molecular 
orbital whereas 'if!_ leads to an antibonding molecular orbital. 

According to Equation 9.22, !lE+ is made up of two terms 

J K 
!lE =--+--

+ l+S l+S 

Figure 9.7 shows a plot of these two terms separately. Note that the Coulomb integral 
term is always positive (see also Equation 9.23), and therefore the exchange integral is 
entirely responsible for the existence of the chemical bond in Hi. Because the exchange 
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FIGURE 9.7 
The separate contributions of the Coulomb integral, J, and the exchange integral, K, to the 
stability of Hi. 

Experimental
Emin = 268 kJ mol–1
Re = 1,06 Å

Calculado 
Emin = 170 kJ mol–1
Re = 1,32 Å
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H2
+: Modelo para Teoria do Orbital Molecular

Outra função de onda possível:
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FIGURE 9.7 
The separate contributions of the Coulomb integral, J, and the exchange integral, K, to the 
stability of Hi. 

9-5. Bonding Orbital and an Antibonding Orbital 

term has no classical analog, this result serves to highlight the quantum-mechanical 
nature of the chemical bond. 

9-5. The Simplest Molecular Orbital Treatment of Hi Yields a 
Bonding Orbital and an Antibonding Orbital 

The two molecular orbitals 1/f + and 1/f _ describe quite different states. The orbital 1/f + 
describes a state that exhibits a stable chemical bond and is called a bonding orbital. 
The other possible linear combination of the two ls atomic orbitals is 

1/f_ =c1 lsA -c2 lsB (9.25) 

and Problem 9-10 has you show that this molecular orbital results in an energy given 
by 

D.E_ = E _ E _ 1 - K - I - --
s 1- s (9.26) 

Figure 9.6 also shows a plot of D.E_ as a function of internuclear separation relative 
to that of the separated nuclei. The wave function 1/f _ leads to a repulsive interac-
tion between the two nuclei for all internuclear distances and is therefore called an 
antibonding orbital. 

Figure 9.8 shows plots of the molecular orbitals 1/f + and 1/f _ and their squares. 
In the case of the bonding molecular orbital, 1/f +f electron density builds up in the 
region between the nuclei. For the anti bonding molecular orbital, 1/f _, however, there 
is a node at the midpoint between the two nuclei and consequently a lack of electron 

lfl+ If/_ 

lfl] If!! 

--R-

FIGURE 9.8 
The molecular orbitals 1/1 + (bonding) and 1/J _ (antibonding) and their squares are plotted along 
the internuclear axis. 
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H2
+: Modelo para Teoria do Orbital Molecular

24/10/2023 5930300 - Química Quântica 16



Teoria do Orbital Molecular para H2
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Teoria do Orbital Molecular para H2
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FIGURE 9.9 
The ground-state energy of H2 (relative 
to two separated ground-state hydrogen 
atoms) calculated according to molecular-
orbital theory, Equation 9.31. The quantity 
!1E+ is the energy difference (EM0 -
2E1) corresponding to 1/!Mo in Equation 
9.30. The quantity !1E_ is the energy 
difference corresponding to 1/!Mo = 
1/Ja (1)1/Ja (2). 

illustrate this procedure in some detail for homonuclear diatomic molecules and then 
present some results for heteronuclear diatomic molecules. 

We will use the LCAO-MO approximation and form molecular orbitals from linear 
combinations of atomic orbitals. In the simplest case, a molecular orbital consists of 
one atomic orbital centered on each atom. Starting with the ls orbitals on each atom 
(as done in the treatment of H2), the first two molecular orbitals we will discuss are 

ljr± = lsA ± lsB (9.32) 

These two molecular orbitals are shown in Figure 9.1 0, which shows that the resulting 
molecular orbitals are cylindrically symmetric about the internuclear axis. 

An orbital that is symmetric about the internuclear axis is called a a- orbital. Both 
1jr + and 1jr _ are a- orbitals. Because many combinations of atomic orbitals lead to 
symmetric distributions about the internuclear axis, we must identify which atomic 
orbitals constitute a particular a- orbital. Molecular orbitals constructed from atomic 
ls orbitals are denoted by a-ls. 

Remember that 1jr + concentrates electron density in the region between the two 
nuclei, whereas 1jr _ excludes electron density from that region and even has a nodal 
plane at the midpoint between the two nuclej;(Figure 9.10). Consequently, as discussed 
in Section 9-5, 1jr + is a bonding orbital and 1jr _ is an antibonding orbital. Because a 
a- ls orbital may be a bonding orbital or an anti bonding orbital, we need to distinguish 
between the two possibilities. There are two common ways to make this distinction. 
One is to use a superscript asterisk to denote an antibonding orbital, so that the two 
orbitals in Figure 9.10 are denoted by a-ls (bonding) and a-*ls (antibonding). The 
other way is based upon the difference in the symmetry of the two molecular orbitals 
under an inversion of the orbital through the point midway between the two nucleiJ If 
the orbital does not change its sign under this inversion, we label the wave function 
gerade after the German word for even, and we subscript the orbital with a g. Referring 
to Figure 9.10, we see that 1/r+ = lsA + Iss• does not change its sign under inversion, 
so we denote 1jr +by a-g ls/ We see from Figure 9.10 that 1jr _ = lsA - lsB changes sign 
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Experimental
Emin = 457 kJ mol–1

Re = 0,74 Å

Calculado
Emin = 260 kJ mol–1

Re = 0,85 Å
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Orbitais moleculares são identificados 
por simetria
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𝜎 - simetria cilíndrica
g – gerade – par (centro de inversão)
u – ungerade – ímpar (centro de inversão)
* - antiligante

Orbital ligante: 𝜎 1s ou 𝜎g 1s
Orbital antiligante: 𝜎* 1s ou 𝜎u 1s

 



EX±X±X3 
CJg2Pz CJu2Pz 

z z 

FIGURE 9.11 
The a

8
2pz and au2pz molecular orbitals formed from linear combinations of the 2pz atomic 

orbitals. Note that the bonding orbital (a
8
2p) corresponds to the combination, 2pzA- 2pzB' 

and that the antibonding orbital (a"2p) corresponds to the combination, 2pzA + 2pzB' in 
contrast to the corresponding combinations of s orbitals. 

---z z 

rcu2Px rcg2Px 

FIGURE 9.12 
The bonding n" 2 p x and anti bonding n 

8 
2 p x molecular orbitals formed from linear combinations 

of the 2 p x atomic orbitals. 

to give a differently shaped molecular orbital than that made by combining either the 
atomic 2px or 2pY orbitals. The two molecular orbitals 2pzA ± 2pzB are cylindrically 
symmetric about the internuclear axis and therefore are O" orbitals. Once again, both 
a bonding orbital and an antibonding molecular orbital are generated, and the two 
orbitals are designated by 0"

8
2pz and O"u2pz, respectively. 

J Unlike the 2pz orbitals, the 2px and 2pY orbitals combine to give molecular orbitals 
that are not cylindrically symmetric about the internuclear axis; Figure 9.12 shows that 
the y-z plane is a nodal plane in both the bonding and antibonding combinations of 
the 2px orbitals./Molecular orbitals with one nodal plane that contains the internuclear 
axis are called Jr orbitals/ The bonding and antibonding molecular orbitals that arise 
from a combination of the 2p orbitals are denoted Jr 2p and Jr 2p , respectively/ 

1 X U X g X 

Note that the antibonding orbital Jr
8
2px also has a second nodal plane perpendicular to 

the internuclear axis that is not present in the Jru2px bonding orbital. The 2pY orbitals 
combine in a similar manner, and the resulting molecular orbitals look like those in 
Figure 9.12 but are directed along they-axis instead of the x-axis. The x-z plane is 
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Orbitais moleculares são identificados
por simetria
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𝜎 - simetria cilíndrica
π – um plano nodal que contém o 
eixo internuclear
g – gerade – par (centro de 
inversão)
u – ungerade – ímpar (centro de 
inversão)
* - antiligante

Orbitais ligantes: 𝜎 2pz e π 2px ou 𝜎g 2pz e πu 2px
Orbitais antiligantes: 𝜎* 2pz  e π* 2px ou 𝜎u 2pz e 
πg 2px

 



Orbitais moleculares são ordenados por 
energia
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340 Chapter 9 I The Chemical Bond: Diatomic Molecules 

the nodal plane for the n: 2p and n: 2p orbitals. Because the 2p and 2p orbitals 
U y g y X y 

have identical energy and the resulting molecular orbitals differ only in their spatial 
orientation, the pairs of orbitals, n: 2p , n: 2p and n: 2p , n: 2p , are degenerate. Note 

U X U y g X g y 
:.· that unlike the bonding a orbitals, the bonding n: orbitals have ungerade symmetry and 
·the antibonding n: orbitals have gerade symmetry. 

Now that we have developed a set of molecular orbitals by combining atomic 
ls, 2s, and 2p orbitals, we need to know the order of these molecular orbitals with 
respect to energy. We can then determine the electronic configurations of molecules 
by placing electrons into these orbitals in accord with the Pauli Exclusion Principle 
and Hund's rules, just as we did for multielectron atoms in Chapter 8. The order of 
the various molecular orbitals depends upon the atomic number (nuclear charge) on 
the nuclei. As the atomic number increases from three for lithium to nine for fluorine, 
the energies of the ag2pz and n:u2px, n:u2Py orbitals approach each other and actually 
interchange order in going from N2 to 0 2 , as shown in Figure 9.13. The somewhat 
complicated ordering shown in Figure 9.13, which is consistent with calculations 
and experimental spectroscopic observations, is reminiscent of the ordering of the 
energies of atomic orbitals as the atomic number increases. We will use Figure 9.13 to 
deduce electron configurations of the second-row homonuclear diatomic molecules in 
Section 9-9, but first we will consider H2 through He2 in the next section. 

FIGURE 9.13 

++ ** 
* ++ ** ** ** * * * 

The relative energies (not to scale) of the molecular orbitals for the homonuclear diatomic 
molecules Li2 through F2 . Then: 2p and n: 2p orbitals are degenerate, as are then 2p and 

U X U y g X 

n
8
2pY orbitals. 



Ordem de Ligação
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Ordem de ligação = 1/2 [(nº de e– em orbitais ligantes) – (nº de e– em orbitais antiligantes)]
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T A 8 l E 9.1 
Molecular properties of Hi, H2 , Hei, and He2 . 

Number of Ground-state Bond Bond Binding energy/ 
Species electrons electron configuration order length/pm kJ-mol- 1 

H+ (a 1s) 1 1/2 106 268 2 g 

Hz 2 (a 1s)2 74 457 g 

Hei 3 (a 1s)2 (a 1s) 1 112 108 241 g u 

He2 4 (a 1s)2 (a 1s)2 0 6000 «1 g u 

The molecular orbitals we are using here are very simple, being linear combinations 
of only two atomic orbitals in each case. This simple molecular orbital description 
predicts that the bond order of He2 is zero and therefore should not exist. But in 1993, 
Gentry and his coworkers reported the spectroscopic observation of He2 in a gas-phase 
sample of helium that had a temperature near 0.001 K. The He2 bond, however, is by 
far the weakest chemical bond known, with Eb. ct. 0.01 kJ·mol-1

. A more refined m mg 
version of molecular-orbital theory predicts the weak bond in He2 . 

9-9. Electrons Are Placed into Molecular Orbitals in Accord 
with the Pauli Exclusion Principle 

Consider the homonuclear diatomic molecules Li2 through Ne2 • Each lithium atom 
has three electrons, so the ground-state electron configuration for Li2 is ( O"g 1s )2 

( O")s ) 2 

( O" 2s )2
, and the bond order is one. We predict that the diatomic lithium molecule g 

is stable relative to two separated lithium atoms. Lithium vapor is known to contain 
diatomic lithium molecules, which have a bond length of 267 pm and a bond energy 
of 105 kJ·mol-1 • 

Contour maps of the electron density in the individual molecular orbitals and the 
total electron density in Li2 are shown in Figure 9 .14. These contour maps were obtained 
by solving the Schrodinger equation for Li2 to high accuracy using a computer. Each line 
in a contour map corresponds to a fixed value of electron density. Contours are generally 
plotted for fixed increments of electron density. Thus, the distance between contours 
provides information about how rapidly the electron density is changing. Figure 9.14 
shows clearly that there is little difference between the electron densities of the 0"

8 
1s and 

O"u 1s molecular orbitals of Li2 and the electron densities of the two 1s atomic orbitals 
of the individual lithium atoms. This observation underlies the common assumption 
that only electrons in the valence shell need be included in discussions of chemical 
bonding. In the case of Li2 , the 1s electrons are held tightly about each nucleus and do 
not participate significantly in the bonding. The ground-state electron configuration of 
Li2 can therefore be written as K K (0"

8
2s)2

, where K represents the filled n = 1 shell 
on a lithium atom. 



Previsões importantes
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346 
TABlE 9.2 
The ground-state electron configurations and various physical properties of homonuclear diatomic 
molecules of elements in the second row of the periodic table. 

Species 

Li2 
Be2 
B2 

c2 

N2 

02 

F2 
Ne2 

Ground-state Bond 

electron configuration order 

KK(a
8

2s) 2 

K K(a 2s)2 (a 2s)2 0 g u 

KK(a 2s)2(a 2s)2(rr 2p )1(rr 2p )1 
g U U X U )' 

K K(a 2s)2 (a 2s)2(rr 2p )2(rr 2p )2 2 g U U X U )' 

K K(a 2s) 2 (a 2s)2(rr 2p )2(rr 2p )2(a 2p )2 3 g u ux uygz 

K K(a 2s)2(a 2d(a 2p )2(rr 2p )2(rr 2p )2(rr 2p )1(rr 2p )1 2 g u gz ux uy gx gy 

K K (a
8 

2s )2 (au 2s )2 (a
8 

2pz )2 (rru 2px )2 (rru 2py)2 (rr8 2p x)2 (rr8 2py )2 

K K(a 2s)2 (a 2d(a 2p )2(rr 2p )2(rr 2p )2(rr 2p )2(rr 2p )2(a 2p )2 0 g u gz ux uy gx gyuz 

9-11. Photoelectron Spectra Support the Existence 
of Molecular Orbitals 

Bond Bond energy/ 

length/pm kJ·mol- 1 

267 105 
245 ""9 
159 289 
124 599 

110 942 

121 494 

141 154 

310 < 1 

The idea of atomic orbitals and molecular orbitals is rather abstract and sometimes 
appears far removed from reality. It so happens, however, that the electron configu-
rations of molecules can be demonstrated experimentally. The approach used is very 
similar to the photoelectric effect discussed in Chapter 1. If high energy electromag-
netic radiation is directed into a gas, electrons are ejected from the molecules in the 
gas. The energy required to eject an electron from a molecule, called the ionization 
energy, is a direct measure of how strongly bound the electron is within the molecule. 
The ionization energy of an electron within a molecule depends upon the molecular 
orbital the electron occupies; the lower the energy of the molecular orbital, the more 
energy needed to remove, or ionize, an electron from that molecular orbital. 

The measurement of the energies of the electrons ejected by radiation incident on 
gaseous molecules is called photoelectron spectroscopy. A photoelectron spectrum of 
N2 is shown in Figure 9.16. According to Figure 9.13, the ground-state configuration 
ofN2 is K K(a 2s) 2 (a 2s) 2 (n 2p )2 (n 2p )2 (a 2p )2 • The peaks in the photoelectron g u ux uy gz 
spectrum correspond to the energies of occupied molecular orbitals. Photoelectron 
spectra provide striking experimental support for the molecular-orbital picture being 
developed here. 

9-12. Molecular-Orbital Theory Also Applies to Heteronuclear 
Diatomic Molecules 

The molecular-orbital theory we have developed can be extended to heteronuclear 
diatomic molecules, that is, diatomic molecules in which the two nuclei are different. 
It is important to realize that the energies of the atomic orbitals on the two atoms from 

Forças de ligação, distâncias de ligação e paramagnetismo do oxigênio



Estados Eletrônicos e Termos
Espectroscópicos
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ml = 0 p/ 𝜎, ml = ±1 p/ π, ml = ±2 p/ 𝛿, … 
ms = ±1/2



Estados Eletrônicos e Termos
Espectroscópicos
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Exemplo: H2
Configuração eletrônica: (1𝜎g)2

ml1 = ml2 = 0
ms1 = +1/2 ms2 = –1/2 

→ML = 0 + 0 = 0 
→Ms = 0 

→Σ
→2S+1 = 1

Estado 1Σ



Estados Eletrônicos e Termos
Espectroscópicos
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Exemplo: B2
Configuração eletrônica: (1𝜎g)2(1𝜎u)2(2𝜎g)2(2𝜎u)2 (1πu)1 (1πu)1

ml = ±1

ms = ± 1/2

→ML = 2, 0, –2

→Ms = 1, 0,  –1 

Estados 3Σ, 1Δ, 1Σ  

356 Chapter 9 I The Chemical Bond: Diatomic Molecules 

The spins of the two electrons must be paired to satisfy the Pauli Exclusion Principle, so 

1 1 
M = +--- =0 s 2 2 

Because M5 equals 0, S must equal zero. Therefore, the term symbol for the ground-
state electron configuration of H2 is 1 I: (a singlet sigma state). 

EXAMPLE 9-7 
Determine the term symbols for Hei and He2 ? 

SOL U Tl 0 N: Hei: The ground-state electron configuration is (la )2 (la )1
• We need g u 

to consider the values of m1 and m
5 

for all three electrons. The possible values are 
listed below. 

m11 = 0 
m12 = 0 
m13 = 0 

m,1 = +1/2 
m 52 = -1/2 
md = ±1/2 

M5 = ±1/2 

The fact that M L = 0 says that we have a I; state. The M 5 = ± 1/2 corresponds to the 
two projections of S = 1/2, so the term symbol for the ground state of Hei is 2 I: (a 
doublet sigma state). 
He2 : The ground-state electron configuration is (la

8
)

2 (la)2
• In this case, ML = 0 and 

M s = 0. Therefore, the term symbol for the ground state of He2 is 1 I;. 

Now consider B2 • This molecule is more complicated and illustrates the general 
case that needs to be considered. The ground-state electron configuration of B2 is 
(l<T )2 (1<T )2 (20" )2 (20" )2 (1Jr ) 1 (1JT )1• Because the first four molecular orbitals of B2 g u g u u u 
have M L = 0 and M 5 = 0, only the two electrons that occupy the 1 JT u orbitals need be 
considered. The lJTu orbital is doubly degenerate and, according to Hund's rules, each 
of these two electrons occupies its own 1JT" orbital and thus can have m1 = ±1 and 
ms = ±1/2. To determine the term symbol for the molecular electronic state, we use 
the same approach introduced for determining atomic term symbols. For the electron 
configuration (1JTJ 1(1JTj, the allowed values for ML are 2, 0, and -2, and M 5 can 
take on values of 1, 0, and -1. We now construct a table of all possible combinations 
of (m11 , m,) and (m12 , m52 ) that correspond to the possible values of ML and M 5 • 

2 

0 

-2 

1 +, -1 + 

-.+ / 1/+ 

1 +, 1-

1+,-1-; 1-,-1+ 

-1+,-1-

-1 

1-,-1-

1+,1+

1+,–1+

–1+,–1+

1+,1–

1+,–1–; 1–,–1+ 
–1+,–1+

1–,1–

1–,–1–

–1–,–1–

Linha do meio: ML = 0; MS = 1, 0, –1 →3Σ
Coluna do meio: ML = ±2; MS = 0 →1Δ
Célula do meio: ML = 0; MS = 0 →1Σ

Estado fundamental? 
Regras de Hund



Termos Espectroscópicos e Simetria

Exemplo: B2
Configuração eletrônica: (1𝜎g)2(1𝜎u)2(2𝜎g)2(2𝜎u)2 (1πu)1 (1πu)1

Assim como os orbitais, os termos espectroscópicos recebem os subscritos g e u (simetria
sob inversão) 

Regra:
 
g·g=g
g·u=u
u·u=g

Estados 3Σg, 1Δg, 1Σg

→3Σg

→1Δg

→1Σg

3Σ
1Δ
1Σ
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Termos Espectroscópicos e Simetria

Exemplo: B2
Configuração eletrônica: (1𝜎g)2(1𝜎u)2(2𝜎g)2(2𝜎u)2 (1πu)1 (1πu)1

Os termos espectroscópicos recebem os sobrescritos + e – (simetria sob 
reflexão em um plano que contém o eixo internuclear z) 

Estados 3Σg
–, 1Δg, 1Σg

–

→3Σg
–

→1Δg

→1Σg
–

3Σ
1Δ
1Σ

9-15. Molecular Term Symbols Designate the Symmetry Properties of Molecular Wave Functions 

corresponding to a term symbol of 3 'E. We can ignore completely occupied orbitals, 
so the product of the symmetry of the molecular orbitals occupied by the two unpaired 
electrons is u · u = g, so the term symbol is 3 'E . g 

Finally, I: electronic states (M L = 0) are labeled with a + or - right-side su-
perscript to indicate the behavior of the molecular wave function when it is reflected 
through a plane containing the nuclei. Because a orbitals are symmetric about the 
internuclear axis, they do not change sign when they are reflected through a plane con-
taining the two nuclei. Figure 9.21 shows that one ofthe doubly degenerate nu orbitals 
changes sign and the other does not. Similarly, one of the doubly degenerate n orbitals g 
changes sign and the other one does not (see Figure 9.12). Using these observations, we 
can determine whether or not a I; electronic state is labeled with a + or - superscript. 

rcu2Px rcu2Py 

FIGURE 9.21 
The behavior of the two ln" orbitals with respect to a plane containing the two nuclei, which 
we arbitrarily choose as the y-z plane. (See Figure 9.12.) 

EXAMPLE 9-10 
Determine the complete molecular term symbol of the ground state of 0 2 • 

S 0 L UTI 0 N: According to Example 9-8, the molecular term symbol of 0 2 without 
the ± designation is 3 'E . The electron configuration is (filled orbitals)(ln 2p )1 

g g X 

(ln
8
2py)1, so the symmetry with respect to a reflection through the x-z plane is 

(+)(-) = (-).Therefore, the complete molecular term symbol of 0 2 is 
3 'E;. 

EXAMPLE 9-11 
Determine the sign designation ( +) or (-) for the ground-state electron configuration 
ofHei. 

SOLUTION: The ground-state electron configuration ofHe+2 is (la)2 (1a) 1, cor-g u 
responding to a term symbol of 1 'E . Because the la and la wave functions are u g u 
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Estados Eletrônicos Excitados

9-16. Most Molecules Have Excited Electronic States 

M, = 1, 0, -1. We now construct a table of all possible combinations of (m 11 , m , 1) 

and (m 12 , m,2) that correspond to the possible values of ML and M,. 

M s 

0 -1 

ML 0 o+,o+ o+,o-;o-,o+ o-,o-

Looking across the middle row, we see that the entries o+, o+; o+, o- (oro-, o+) and 
o-, o- correspond to ML = 0 and M, = 1, 0, -1, or a 3 :E state. The remaining entry 
o-' o+ (or o+' o- ) corresponds to M L = 0 and M, = 0, or a 1 :E state. 

The product la x la leads to au state, so we have the states 3:E and 1:E . Further-g u u u 
more, both the a

8 
and a" orbitals are symmetric with respect to a reflection through 

a plane containing the two nuclei, so the complete molecular term symbols are 3 :E: 
and 1:E:. 

According to Hund's rule, the 31:: excited state has a lower energy than the 'I:: 
excited state. Figure 9.22 shows the potential energy curves of the ground state and 
two of the excited electronic states of H2 . 

-0.500 

-0.625 

-0.750 

-" 
kl ....... 
kl -0.875 

-1.000 

- 1.125 

FIGURE 9.22 

l 
0 2 4 

Rla 0 

Hls + H2s 

Hls + His 

6 8 

The internuclear potential energy curves of the ground state and two of the excited electronic 
states of H2 • Note that the two lowest curves go to -l.OEh at large distances, indicating two 
isolated ground-state hydrogen atoms. (The ground state of a hydrogen atom is The 
other excited state shown dissociates into one ground-state hydrogen atom and one excited 
hydrogen atom with its electron in the atomic 2s orbital. 

361 

508 

A potential energy diagram of 0 2 , showing the vibrational states associated with the various 
electronic states. 

In electronic absorption spectroscopy, the vibronic transitions usually originate 
from the v = 0 vibrational state, because this is usually the only state appreciably 
populated at normal temperatures (see Section 18--4). Consequently, the predicted 
frequencies of an electronic transition are given by 

(13.24) 

The term f. is the difference in energies of the minima of the two electronic potential 
energy curves in wave numbers, and the single primes and double primes indicate 
the upper and lower electronic states, respectively. The difference in energy between 
the minimum of the potential energy curve and the dissociated atoms is denoted 
by De. The symbol D0 denotes the corresponding dissociation energy from the ground-
vibrational level of the potential (see Figure 13.7). Consequently, De = D0 + &hv 
in the harmonic oscillator approximation, or D0 + &h(ve- &xeve) in the anharmonic 
oscillator approximation. The values of D0 for various diatomic molecules are listed 
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(13.24) 

The term f. is the difference in energies of the minima of the two electronic potential 
energy curves in wave numbers, and the single primes and double primes indicate 
the upper and lower electronic states, respectively. The difference in energy between 
the minimum of the potential energy curve and the dissociated atoms is denoted 
by De. The symbol D0 denotes the corresponding dissociation energy from the ground-
vibrational level of the potential (see Figure 13.7). Consequently, De = D0 + &hv 
in the harmonic oscillator approximation, or D0 + &h(ve- &xeve) in the anharmonic 
oscillator approximation. The values of D0 for various diatomic molecules are listed 
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A aproximação Born–Oppenheimer

Na equação de Schrödinger eletrônica, as coordenadas são parâmetros e o 

operador energia cinética não age nelas; os núcleos estão fixos. Isto se 

justifica porque um núcleo é pelo menos 1800 vezes mais pesado que um 

elétron.

24/10/2023 5930300 - Química Quântica 30



A aproximação Born–Oppenheimer

A equação de Schrödinger eletrônica deve ser resolvida em várias posições

nucleares, gerando a curva de energia potencial

A superfície de energia potencial é o potencial efetivo ao qual os núcleos

estão submetidos e faz parte do Hamiltoniano para a equação de 

Schrödinger nuclear. 
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Conceitos químicos da aproximação de 
Born–Oppenheimer

FIGURE 13.7 

:>, 
01) ..... 
<!) 
1:: 

I:.I.1 

v' 

R 

1 1 

II 
Two electronic states of a diatomic molecule, illustrating the two quantities I: and vO,O' 

in Table 13.2. Realize that ve and xe ve depend on the shape of the electronic potential 
energy curve at its mimimum and so should differ for each electronic state. 

The first two terms in parentheses in Equation 13.24 are the zero-point energies of 
the upper and lower states. Therefore, the quantity iJ0.0 defined by 

vo.o = fe + qv;-
corresponds to the energy of the 0 --+ 0 vibronic transition. Introducing v0,0 into Equa-
tion 13.24, we obtain 

j)obs = vo,o + v;v'- .x;v;v'(v' + 1) v'=O, 1, 2, ... (13.25) 

As v', the vibrational quantum number of the upper state, takes on successive values in 
Equation 13.25, the vibronic spacing becomes progressively smaller until the spectrum 
is essentially continuous as shown in Figures 13.8 and 13.9. Example 13-6 illustrates 
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Estrutura eletrônica e dinâmica nuclear (vibração e rotação

molecular). 

Curvas de energia potencial – potenciais efetivos ao qual os

núcleos estão submetidos. Uma curva de energia potencial

para cada estado eletrônico. 

Estrutura de equilíbrio (Re), energia de ligação (De e D0), níveis

de energia vibracional, níveis de energia rotacionais. 



Sumário

A aproximação de Born–Oppenheimer é uma separação de variáveis

aproximada. 

É uma das aproximações mais precisas em Química. 

Resolvemos a equação da estrutura eletrônica que determina um 
potencial usado na dinâmica nuclear. 

Justificativa: massa dos núcleos é muito maior que a massa dos elétrons. 

É a base de muitos conceitos químicos.
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Sumário

A Teoria do Orbital Molecular é uma aproximação orbital que usa combinações
lineares de orbitais atômicos. 

A Teoria do Orbital Molecular explica a ligação em termos de orbitais ligantes e 
antiligantes.

Cada orbital molecular pode ser preenchido com dois elétrons de spin opostos. 

A ligação do H2
+ apresenta duas curvas de energia potencial uma ligada e outra

repulsiva, associadas a orbitais ligantes e antiligantes, respectivamente.
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