5930300 - Química Quântica

Prof. Dr. Antonio G. S. de Oliveira Filho

O Hamiltoniano molecular $\left(\mathrm{H}_{2}\right)$

Coulomb
$(N-N)$

$$
\hat{H}=\underbrace{-\frac{\hbar^{2}}{2 M}\left(\nabla_{\mathrm{A}}^{2}+\nabla_{\mathrm{B}}^{2}\right)}_{\begin{array}{c}
\text { E. Cinética } \\
\text { (núcleos) }
\end{array}}-\underbrace{-\frac{\hbar^{2}}{2 m_{\mathrm{e}}}\left(\nabla_{1}^{2}+\nabla_{2}^{2}\right)}_{\begin{array}{c}
\text { E. Cinética } \\
\text { (elétrons) }
\end{array}} \underbrace{-\frac{e^{2}}{4 \pi \varepsilon_{0} r_{1 \mathrm{~A}}}-\frac{e^{2}}{4 \pi \varepsilon_{0} r_{1 \mathrm{~B}}}-\frac{e^{2}}{4 \pi \varepsilon_{0} r_{2 \mathrm{~A}}}-\frac{e^{2}}{4 \pi \varepsilon_{0} r_{2 \mathrm{~B}}}}_{\begin{array}{c}
\text { Coulomb } \\
(e-N)
\end{array}}+\underbrace{+\underbrace{\frac{e^{2}}{4 \pi \varepsilon_{0} r_{12}}}}_{\begin{array}{c}
\text { Coulomb } \\
(e-e)
\end{array}}
$$

O Hamiltoniano molecular (H2)

$$
\hat{H}=\underbrace{-\underbrace{\frac{\hbar^{2}}{2 M}\left(\nabla_{\mathrm{A}}^{2}+\nabla_{\mathrm{B}}^{2}\right)}_{\begin{array}{c}
\text { E. Cinética } \\
\text { (elétrons) }
\end{array}}-\underbrace{\frac{\hbar^{2}}{2 m_{\mathrm{e}}}\left(\nabla_{1}^{2}+\nabla_{2}^{2}\right)}_{\begin{array}{c}
\text { Coulomb } \\
(e-N)
\end{array}}-\underbrace{\frac{e^{2}}{4 \pi \varepsilon_{0} r_{1 \mathrm{~A}}}-\frac{e^{2}}{4 \pi \varepsilon_{0} r_{1 \mathrm{~B}}}-\frac{e^{2}}{4 \pi \varepsilon_{0} r_{2 \mathrm{~A}}}-\frac{e^{2}}{4 \pi \varepsilon_{0} r_{2 \mathrm{~B}}}}_{\begin{array}{c}
\text { Coulomb } \\
(e-e)
\end{array}}+\underbrace{\frac{e^{2}}{4 \pi \varepsilon_{0} r_{12}}}+\frac{e^{2}}{4 \pi \varepsilon_{0} R}}_{\begin{array}{c}
\text { E. Cinética } \\
\text { (núcleos) }
\end{array}}
$$

Coulomb

$$
(N-N)
$$

Não há como resolver exatamente a equação de Schrödinger com este Hamiltoniano. É possível separar as variáveis (aproximadamente)?

A aproximação de Born-Oppenheimer

Para moléculas poliatômicas, usamos uma separação de variáveis aproximada entre as variáveis eletrônicas e nucleares

Primeiramente, resolvemos a equação de Schrödinger eletrônica, em que os núcleos estão fixos.

Em seguida, resolvemos a equação de Schrödinger nuclear.
A aproximação de Born-Oppenheimer introduz conceitos químicos importantes como superfícies de energia potencial, geometrias de equilíbrio, energias de ligação, etc.

Hamiltoniano eletrônico

$$
\hat{H}=-\frac{\hbar^{2}}{2 m_{\mathrm{e}}}\left(\nabla_{1}^{2}+\nabla_{2}^{2}\right)-\frac{e^{2}}{4 \pi \varepsilon_{0} r_{1 \mathrm{~A}}}-\frac{e^{2}}{4 \pi \varepsilon_{0} r_{1 \mathrm{~B}}}-\frac{e^{2}}{4 \pi \varepsilon_{0} r_{2 \mathrm{~A}}}-\frac{e^{2}}{4 \pi \varepsilon_{0} r_{2 \mathrm{~B}}}+\frac{e^{2}}{4 \pi \varepsilon_{0} r_{12}}+\frac{e^{2}}{4 \pi \varepsilon_{0} R}
$$

$$
\hat{H}=-\frac{1}{2}\left(\nabla_{1}^{2}+\nabla_{2}^{2}\right)-\frac{1}{r_{1 \mathrm{~A}}}-\frac{1}{r_{1 \mathrm{~B}}}-\frac{1}{r_{2 \mathrm{~A}}}-\frac{1}{r_{2 \mathrm{~B}}}+\frac{1}{r_{12}}+\frac{1}{R}
$$

$\mathrm{H}_{2}{ }^{+}$: Modelo para Teoria do Orbital Molecular

Molécula mais simples: um elétron.
Energia de ligação: $268 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Distância de ligação: 1,06 A

$$
\hat{H}=-\frac{1}{2} \nabla^{2}-\frac{1}{r_{\mathrm{A}}}-\frac{1}{r_{\mathrm{B}}}+\frac{1}{R}
$$

Parâmetro

$\mathrm{H}_{2}{ }^{+}$: Modelo para Teoria do Orbital Molecular

$$
\hat{H} \psi_{j}\left(r_{\mathrm{A}}, r_{\mathrm{B}}, R\right)=E_{j} \psi_{j}\left(r_{\mathrm{A}}, r_{\mathrm{B}}, R\right)
$$

Parâmetro

- Parâmetros são argumentos de uma função arguments com os quais nenhuma integração ou diferenciação são realizadas. Por exemplo, a massa do elétron é um parâmetro. Parâmetros são mantidos fixos.
- Variáveis are são argumentos de uma função com os quais se realiza integração ou diferenciação. Por exemplo, as coordenadas eletrônicas na eq. de Schrödinger para o átomo de hidrogênio são variáveis. Variáveis variam.

$\mathrm{H}_{2}{ }^{+}$: Modelo para Teoria do Orbital Molecular

$\hat{H} \psi_{j}\left(r_{\mathrm{A}}, r_{\mathrm{B}} ; R\right)=E_{j} \psi_{j}\left(r_{\mathrm{A}}, r_{\mathrm{B}} ; R\right)$

Como resolver a equação?
Método variacional.
Qual função tentativa?

$$
\psi_{ \pm}=c_{1} 1 s_{\mathrm{A}} \pm c_{2} 1 s_{\mathrm{B}}
$$

Combinação linear de orbitais atômicos

$\mathrm{H}_{2}{ }^{+}$: Modelo para Teoria do Orbital Molecular

$$
\psi_{ \pm}=c_{1} 1 s_{\mathrm{A}} \pm c_{2} 1 s_{\mathrm{B}} \quad \psi_{1 s}=\frac{1}{\sqrt{\pi}}\left(\frac{Z}{a_{0}}\right)^{3 / 2} e^{-Z r / a_{0}}
$$

Combinação linear de orbitais atômicos

$\mathrm{H}_{2}{ }^{+}$: Modelo para Teoria do Orbital Molecular

$$
\hat{H} \psi_{+}(\mathbf{r} ; R)=E_{+} \psi_{+}(\mathbf{r} ; R)
$$

Equação de Schrödinger

$$
\begin{array}{cl}
E_{+}=\frac{\int d \mathbf{r} \psi_{+}^{*} \hat{H} \psi_{+}}{\int d \mathbf{r} \psi_{+}^{*} \psi_{+}} & \psi_{ \pm}=c_{1} 1 s_{\mathrm{A}} \pm c_{2} 1 s_{\mathrm{B}} \\
E_{+}=\frac{J+K}{1+S}+E_{1 s} & \psi_{1 s}=\frac{1}{\sqrt{\pi}}\left(\frac{Z}{a_{0}}\right)^{3 / 2} e^{-Z r / a_{0}} \\
\Delta E_{+}=E_{+}-E_{1 s}= & \frac{J+K}{1+S}
\end{array}
$$

Diferença de energia entre H isolado e Molécula $\mathrm{H}_{2}{ }^{+}$

S é a integral de superposição (overlap)

$$
\Delta E_{+}=E_{+}-E_{1 s}=\frac{J+K}{1+S}
$$

$$
S=\int d \mathbf{r} 1 s_{\mathrm{A}}^{*} 1 s_{\mathrm{B}}=\int d \mathbf{r} 1 s_{\mathrm{B}}^{*} 1 s_{\mathrm{A}}=\int d \mathbf{r} 1 s_{\mathrm{A}} 1 s_{\mathrm{B}}
$$

$$
S(R)=e^{-R}\left(1+R+\frac{R^{2}}{3}\right)
$$

R grande, S pequeno

R pequeno, S grande

Jé a integral de Coulomb

$$
\Delta E_{+}=E_{+}-E_{1 s}=\frac{J+K}{1+S}
$$

$$
\begin{aligned}
J & =\int d \mathbf{r} 1 s_{\mathrm{A}}^{*}\left(-\frac{1}{r_{\mathrm{B}}}+\frac{1}{R}\right) 1 s_{\mathrm{A}} \\
& =-\int \frac{d \mathbf{r} 1 s_{\mathrm{A}}^{*} 1 s_{\mathrm{A}}}{r_{\mathrm{B}}}+\frac{1}{R} \\
J & =e^{-2 R}\left(1+\frac{1}{R}\right)
\end{aligned}
$$

K é a integral de troca

$$
\begin{aligned}
& \quad \Delta E_{+}=E_{+}-E_{1 s}=\frac{J+K}{1+S} \\
& K=\int d \mathbf{r} 1 s_{\mathrm{B}}^{*}\left(-\frac{1}{r_{\mathrm{B}}}+\frac{1}{R}\right) 1 s_{\mathrm{A}} \\
&=-\int \frac{d \mathbf{r} 1 s_{\mathrm{B}}^{*} 1 s_{\mathrm{A}}}{r_{\mathrm{B}}}+\frac{S}{R} \\
& K=\frac{S}{R}-e^{-R}(1+R)
\end{aligned}
$$

ΔE_{+}é função de R

$$
\Delta E_{+}=E_{+}-E_{1 s}=\frac{J+K}{1+S}=\frac{J}{1+S}+\frac{K}{1+S}
$$

$$
\begin{aligned}
& S=e^{-R}\left(1+R+\frac{R^{2}}{3}\right) \\
& J=e^{-2 R}\left(1+\frac{1}{R}\right) \\
& K=\frac{S}{R}-e^{-R}(1+R)
\end{aligned}
$$

$\mathrm{H}_{2}{ }^{+}$: Modelo para Teoria do Orbital Molecular

Outra função de onda possível:

$$
\psi_{-}=c_{1} 1 s_{\mathrm{A}}-c_{2} 1 s_{\mathrm{B}}
$$

$$
\Delta E_{-}=E_{-}-E_{1 s}=\frac{J-K}{1-S}
$$

$$
\begin{aligned}
& \psi_{\mathrm{b}}=\psi_{+}=\frac{1}{\sqrt{2(1+S)}}\left(1 s_{\mathrm{A}}+1 s_{\mathrm{B}}\right) \\
& \psi_{\mathrm{a}}=\psi_{-}=\frac{1}{\sqrt{2(1-S)}}\left(1 s_{\mathrm{A}}-1 s_{\mathrm{B}}\right)
\end{aligned}
$$

$\mathrm{H}_{2}{ }^{+}$: Modelo para Teoria do Orbital Molecular

$$
\begin{aligned}
& \Delta E_{+}=E_{+}-E_{1 s}=\frac{J+K}{1+S} \\
& \Delta E_{-}=E_{-}-E_{1 s}=\frac{J-K}{1-S}
\end{aligned}
$$

$$
\begin{aligned}
& \psi_{\mathrm{b}}=\psi_{+}=\frac{1}{\sqrt{2(1+S)}}\left(1 s_{\mathrm{A}}+1 s_{\mathrm{B}}\right) \\
& \psi_{\mathrm{a}}=\psi_{-}=\frac{1}{\sqrt{2(1-S)}}\left(1 s_{\mathrm{A}}-1 s_{\mathrm{B}}\right)
\end{aligned}
$$

Teoria do Orbital Molecular para H_{2}

$$
\begin{aligned}
& \psi=\frac{1}{\sqrt{2!}}\left|\begin{array}{ll}
\psi_{\mathrm{b}} \alpha(1) & \psi_{\mathrm{b}} \beta(1) \\
\psi_{\mathrm{b}} \alpha(2) & \psi_{\mathrm{b}} \beta(2)
\end{array}\right|=\psi_{\mathrm{b}}(1) \psi_{\mathrm{b}}(2)\left\{\frac{1}{\sqrt{2}}[\alpha(1) \beta(2)-\alpha(2) \beta(1)]\right\} \\
& \psi_{\mathrm{b}}=\psi_{+}=\frac{1}{\sqrt{2(1+S)}}\left(1 s_{\mathrm{A}}+1 s_{\mathrm{B}}\right) \\
& \psi_{\mathrm{MO}}=\frac{1}{2(1+S)}\left[1 s_{\mathrm{A}}(1)+1 s_{\mathrm{B}}(1)\right]\left[1 s_{\mathrm{A}}(2)+1 s_{\mathrm{B}}(2)\right] \\
& E_{\mathrm{MO}}=\int d \mathbf{r}_{1} d \mathbf{r}_{2} \psi_{\mathrm{MO}}^{*}(1,2) \hat{H} \psi_{\mathrm{MO}}(1,2)
\end{aligned}
$$

Teoria do Orbital Molecular para H_{2}

Orbitais moleculares são identificados por simetria

$$
\psi_{\mathrm{b}}=\psi_{+}=\frac{1}{\sqrt{2(1+S)}}\left(1 s_{\mathrm{A}}+1 s_{\mathrm{B}}\right) \psi_{\mathrm{a}}=\psi_{-}=\frac{1}{\sqrt{2(1-S)}}\left(1 s_{\mathrm{A}}-1 s_{\mathrm{B}}\right)
$$

$$
1 s_{\mathrm{A}}+1 s_{\mathrm{B}}
$$

$$
1 s_{\mathrm{A}}-1 s_{\mathrm{B}}
$$

$$
=\quad \sigma_{g} 1 s
$$

σ - simetria cilíndrica
g - gerade - par (centro de inversão)
u - ungerade - ímpar (centro de inversão)
*- antiligante

Orbital ligante: σ 1s ou $\sigma_{\mathrm{g}} 1 \mathrm{~s}$ Orbital antiligante: σ^{*} 1s ou $\sigma_{\mathrm{u}} 1 \mathrm{~s}$

Orbitais moleculares são identificados por simetria

$2 p_{z \mathrm{~A}}-2 p_{z \mathrm{~B}}$

$\sigma_{u} 2 p_{z}$

$2 p_{z \mathrm{~A}}+2 p_{z \mathrm{~B}}$
z σ - simetria cilíndrica
π - um plano nodal que contém o eixo internuclear
g - gerade - par (centro de inversão)
u - ungerade - ímpar (centro de inversão)

* - antiligante

Orbitais ligantes: $\sigma 2 p_{z}$ e $\pi 2 p_{x}$ ou $\sigma_{g} 2 p_{z}$ e $\pi_{u} 2 p_{x}$ Orbitais antiligantes: $\sigma^{*} 2 \mathrm{p}_{\mathrm{z}}$ e $\pi^{*} 2 \mathrm{p}_{\mathrm{x}}$ ou $\sigma_{\mathrm{u}} 2 \mathrm{p}_{\mathrm{z}} \mathrm{e}$ $\pi_{g} 2 p_{x}$
$\pi_{u} 2 p_{x}$
$\pi_{g} 2 p_{x}$

Orbitais moleculares são ordenados por energia

Ordem de Ligação

Ordem de ligação = 1/2 [(no de e e^{-}em orbitais ligantes) $-\left(\mathrm{n} o\right.$ de e^{-}em orbitais antiligantes $\left.)\right]$

Species	Number of electrons	Ground-state electron configuration	Bond order	Bond length/pm	Binding energy/ $\mathrm{kJ} \cdot \mathrm{mol}^{-1}$
H_{2}^{+}	1	$\left(\sigma_{g} 1 s\right)^{1}$	$1 / 2$	106	268
H_{2}	2	$\left(\sigma_{g} 1 s\right)^{2}$	1	74	457
He_{2}^{+}	3	$\left(\sigma_{g} 1 s\right)^{2}\left(\sigma_{u} 1 s\right)^{1}$	$1 / 2$	108	241
He_{2}	4	$\left(\sigma_{g} 1 s\right)^{2}\left(\sigma_{u} 1 s\right)^{2}$	0	≈ 6000	$\ll 1$

Previsões importantes

Forças de ligação, distâncias de ligação e paramagnetismo do oxigênio

Species	Ground-state electron configuration	Bond order	Bond length/pm	Bond energy/ $\mathrm{kJ} \cdot \mathrm{mol}^{-1}$
Li_{2}	$K K\left(\sigma_{g} 2 s\right)^{2}$	1	267	105
Be_{2}	$K K\left(\sigma_{g} 2 s\right)^{2}\left(\sigma_{u} 2 s\right)^{2}$	0	245	≈ 9
B_{2}	$K K\left(\sigma_{g} 2 s\right)^{2}\left(\sigma_{u} 2 s\right)^{2}\left(\pi_{u} 2 p_{x}\right)^{1}\left(\pi_{u} 2 p_{y}\right)^{1}$	1	159	289
C_{2}	$K K\left(\sigma_{g} 2 s\right)^{2}\left(\sigma_{u} 2 s\right)^{2}\left(\pi_{u} 2 p_{x}\right)^{2}\left(\pi_{u} 2 p_{y}\right)^{2}$	2	124	599
N_{2}	$K K\left(\sigma_{g} 2 s\right)^{2}\left(\sigma_{u} 2 s\right)^{2}\left(\pi_{u} 2 p_{x}\right)^{2}\left(\pi_{u} 2 p_{y}\right)^{2}\left(\sigma_{g} 2 p_{z}\right)^{2}$	3	110	942
O_{2}	$K K\left(\sigma_{g} 2 s\right)^{2}\left(\sigma_{u} 2 s\right)^{2}\left(\sigma_{g} 2 p_{z}\right)^{2}\left(\pi_{u} 2 p_{x}\right)^{2}\left(\pi_{u} 2 p_{y}\right)^{2}\left(\pi_{g} 2 p_{x}\right)^{1}\left(\pi_{g} 2 p_{y}\right)^{1}$	2	121	494
F_{2}	$K K\left(\sigma_{g} 2 s\right)^{2}\left(\sigma_{u} 2 s\right)^{2}\left(\sigma_{g} 2 p_{z}\right)^{2}\left(\pi_{u} 2 p_{x}\right)^{2}\left(\pi_{u} 2 p_{y}\right)^{2}\left(\pi_{g} 2 p_{x}\right)^{2}\left(\pi_{g} 2 p_{y}\right)^{2}$	1	141	154
Ne_{2}	$K K\left(\sigma_{g} 2 s\right)^{2}\left(\sigma_{u} 2 s\right)^{2}\left(\sigma_{g} 2 p_{z}\right)^{2}\left(\pi_{u} 2 p_{x}\right)^{2}\left(\pi_{u} 2 p_{y}\right)^{2}\left(\pi_{g} 2 p_{x}\right)^{2}\left(\pi_{g} 2 p_{y}\right)^{2}\left(\sigma_{u} 2 p_{z}\right)^{2}$	0	310	<1

Estados Eletrônicos e Termos Espectroscópicos

${ }^{2 S+1}\left|M_{L}\right|$

$\left\|M_{L}\right\|$	Letra
0	Σ
1	Π
2	Δ
3	Φ

$$
\begin{aligned}
& m_{1}=0 \mathrm{p} / \sigma, m_{\mathrm{l}}= \pm 1 \mathrm{p} / \pi, m_{\mathrm{l}}= \pm 2 \mathrm{p} / \delta, \ldots \\
& m_{\mathrm{s}}= \pm 1 / 2
\end{aligned}
$$

Estados Eletrônicos e Termos Espectroscópicos

Exemplo: H_{2}

Configuração eletrônica: $\left(1 \sigma_{\mathrm{g}}\right)^{2}$

$$
\begin{array}{lll}
m_{11}=m_{12}=0 & \rightarrow M_{\mathrm{L}}=0+0=0 & \rightarrow \Sigma \\
m_{\mathrm{s} 1}=+1 / 2 m_{\mathrm{s} 2}=-1 / 2 & \rightarrow M_{\mathrm{s}}=0 & \rightarrow 2 \mathrm{~S}+1=1
\end{array}
$$

Estado ${ }^{1} \Sigma$

Estados Eletrônicos e Termos Espectroscópicos

Exemplo: B_{2}
Configuração eletrônica: $\left(1 \sigma_{\mathrm{g}}\right)^{2}\left(1 \sigma_{\mathrm{u}}\right)^{2}\left(2 \sigma_{\mathrm{g}}\right)^{2}\left(2 \sigma_{\mathrm{u}}\right)^{2}\left(1 \pi_{\mathrm{u}}\right)^{1}\left(1 \pi_{\mathrm{u}}\right)^{1}$

$$
\begin{array}{lll}
m_{\mathrm{l}}= \pm 1 & \rightarrow M_{\mathrm{L}}=2,0,-2 & \text { Linha do meio: } M_{\mathrm{L}}=0 ; M_{\mathrm{S}}=1,0,-1
\end{array} \rightarrow^{3} \Sigma ~\left(~ C o l u n a ~ d o ~ m e i o: ~ M_{\mathrm{L}}= \pm 2 ; M_{\mathrm{S}}=0 \quad \rightarrow^{1} \Delta .\right.
$$

M_{L}	1	M_{S}	-1
2	0		
0	$1,1^{+}$	$1,1^{-} ; 1,1^{+}$	$1,1^{-}$
-2	-1^{+}	$-1,1^{+}$	-1^{-}

$$
\operatorname{Estados}^{3} \Sigma,{ }^{1} \Delta,{ }^{1} \Sigma
$$

Estado fundamental?
Regras de Hund

Termos Espectroscópicos e Simetria

Exemplo: B_{2}
Configuração eletrônica: $\left(1 \sigma_{\mathrm{g}}\right)^{2}\left(1 \sigma_{\mathrm{u}}\right)^{2}\left(2 \sigma_{\mathrm{g}}\right)^{2}\left(2 \sigma_{\mathrm{u}}\right)^{2}\left(1 \pi_{\mathrm{u}}\right)^{1}\left(1 \pi_{\mathrm{u}}\right)^{1}$
Assim como os orbitais, os termos espectroscópicos recebem os subscritos g e u (simetria sob inversão)

Regra:
$g \cdot g=g$
$\mathrm{g} \cdot \mathrm{u}=\mathrm{u}$
$\mathrm{u} \cdot \mathrm{u}=\mathrm{g}$

$$
\begin{array}{ll}
{ }^{3} \Sigma & \rightarrow^{3} \Sigma_{\mathrm{g}} \\
{ }^{1} \Delta & \rightarrow^{1} \Delta_{\mathrm{g}} \\
{ }^{1} \Sigma & \rightarrow^{1} \Sigma_{\mathrm{g}}
\end{array}
$$

Estados ${ }^{3} \Sigma_{\mathrm{g}},{ }^{1} \Delta_{\mathrm{g}},{ }^{1} \Sigma_{\mathrm{g}}$

Termos Espectroscópicos e Simetria

Exemplo: B_{2}
Configuração eletrônica: $\left(1 \sigma_{\mathrm{g}}\right)^{2}\left(1 \sigma_{\mathrm{u}}\right)^{2}\left(2 \sigma_{\mathrm{g}}\right)^{2}\left(2 \sigma_{\mathrm{u}}\right)^{2}\left(1 \pi_{\mathrm{u}}\right)^{1}\left(1 \pi_{\mathrm{u}}\right)^{1}$
Os termos espectroscópicos recebem os sobrescritos +e - (simetria sob reflexão em um plano que contém o eixo internuclear z)

Estados Eletrônicos Excitados

A aproximação Born-Oppenheimer

Na equação de Schrödinger eletrônica, as coordenadas são parâmetros e o operador energia cinética não age nelas; os núcleos estão fixos. Isto se justifica porque um núcleo é pelo menos 1800 vezes mais pesado que um elétron.

$$
\widehat{H}_{e}=\widehat{K}_{e}+\widehat{V}_{N e}+\widehat{V}_{e e}+\widehat{V}_{N N}
$$

A aproximação Born-Oppenheimer

A equação de Schrödinger eletrônica deve ser resolvida em várias posições nucleares, gerando a curva de energia potencial
$\widehat{H}_{e} \psi_{e}=E_{e} \psi_{e} \quad \psi_{e}=\psi_{e}(r ; R) \quad E_{e}=E_{e}(R)$
A superfície de energia potencial é o potencial efetivo ao qual os núcleos
estão submetidos e faz parte do Hamiltoniano para a equação de
Schrödinger nuclear.

$$
\left(\widehat{K}_{N}+E_{e}\right) \psi_{N}=\widehat{H}_{N} \psi_{N}=E \psi_{N}
$$

Conceitos químicos da aproximação de Born-Oppenheimer

Estrutura eletrônica e dinâmica nuclear (vibração e rotação molecular).

Curvas de energia potencial - potenciais efetivos ao qual os núcleos estão submetidos. Uma curva de energia potencial para cada estado eletrônico.

Estrutura de equilíbrio (R_{e}), energia de ligação (D_{e} e D_{0}), níveis de energia vibracional, níveis de energia rotacionais.

Sumário

A aproximação de Born-Oppenheimer é uma separação de variáveis aproximada.

É uma das aproximações mais precisas em Química.
Resolvemos a equação da estrutura eletrônica que determina um potencial usado na dinâmica nuclear.

Justificativa: massa dos núcleos é muito maior que a massa dos elétrons.
É a base de muitos conceitos químicos.

Sumário

A Teoria do Orbital Molecular é uma aproximação orbital que usa combinações lineares de orbitais atômicos.

A Teoria do Orbital Molecular explica a ligação em termos de orbitais ligantes e antiligantes.

Cada orbital molecular pode ser preenchido com dois elétrons de spin opostos.
A ligação do $\mathrm{H}_{2}{ }^{+}$apresenta duas curvas de energia potencial uma ligada e outra repulsiva, associadas a orbitais ligantes e antiligantes, respectivamente.

