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Abstract: It is largely accepted that non-linear modes of vibration may be particularly suitable
for obtaining ‘reduced-order’ models in non-linear dynamics, for their ability to grasp the essen-
tial qualitative system information that a much larger number of linear modes are required to.
Previous work by the first author on ‘reduced-order’ modelling in non-linear dynamics did not
account for the velocity contents within non-linear modes. For many systems, this simplifying
assumption does not, in fact, spoil the quality of the ‘reduced-order’ model. Nevertheless, it is not
to be generally taken for granted. In this article, a generalised procedure for ‘reduced-order’
modelling in non-linear dynamics that uses the full displacement and velocity contents of
non-linear modes is addressed and illustrated. Two case studies are presented and conclusions
regarding the relevance of the velocity contents are drawn. Comparison between non-linear
dynamic responses of finite-element and ‘reduced-order’ models under different load conditions
is made. For both external and parametric resonances, a remarkable agreement between them
was achieved, provided the velocity contents within the non-linear modes are retained. In the
second case study, damping is essential to help the system settling down in a post-critical peri-
odic attractor, otherwise wave propagation and reflection will have an enduring effect.

Keywords: non-linear dynamics, non-linear modes, non-linear Galerkin method, reduced-
order model, parametric resonance

1 INTRODUCTION

In the past two decades, great effort has been made to

develop ‘reduced-order’ modelling methodologies in

non-linear dynamics, so that adequate qualitative

and quantitative representation of ‘high-order’

models might be achieved [1–7]. This was also an

issue of particular interest to Steindl and Troger [8],

who published a precious synthesis of different

approaches used by the beginning of this century.

In this article, the subject is recast, to address an

improved version of the first author’s earlier work

[9, 10], based on the use of non-linear modes to

project the full kinematics onto a low-dimensional

subspace, in a non-linear Galerkin fashion.

It is largely accepted that non-linear modes of

vibration may be particularly suitable for obtaining

‘reduced-order’ models in non-linear dynamics, for

their ability to grasp, even when just a few of them are

taken into account, the essential qualitative system

information that a much larger number of linear

modes is required to [6, 7]. Previous work by the

first author [9, 10] on ‘reduced-order’ modelling in

non-linear dynamics did not account for the velocity

contents that are present in the non-linear normal

and multi-modes. It is acknowledged that a few

authors have recently considered the velocity terms

within non-linear normal modes to obtain ‘reduced-

order’ models. That is the case of Touzé and Amabili

[6], for whom the ‘non-linear change of co-ordinates’

that allows for the evaluation of the generalised
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displacements and velocities of the ‘high-order’

model in terms of the modal co-ordinates of the

‘reduced-order’ model does take the modal velocities

into account, for non-gyroscopic systems with elastic

non-linearities. A broader class of systems is here

considered, since gyroscopic effects and inertial

non-linearities may also be included. Still, the pur-

pose of this study goes beyond the consideration of

the velocity contents within the non-linear modes to

arrive at the ‘reduced-order’ model itself: it is also

meant to assess the impact of such terms onto the

response, compared to that of displacement-only-

based projections, which are standard in non-linear

Galerkin procedures. For many systems, this simpli-

fying assumption does not, in fact, spoil the quality of

the ‘reduced-order’ model. Nevertheless, this is not to

be generally taken for granted, as it will be shown

here.

Hence, the purpose of this article is twofold: to

pursue a generalised procedure for ‘reduced-order’

modelling in non-linear dynamics that uses the full

displacement and velocity contents of non-linear

modes and to discuss two case studies envisaging to

draw conclusions about the relevance of the velocity

contents within the reduction technique.

Although the proposed procedure is also applicable

to continuous systems, only discrete systems are

here addressed. It is assumed that generalised

co-ordinates ps , s ¼ 1, 2, . . . , n and velocities _ps , s ¼

1, 2, . . . , n describe the ‘high-order’ model kinemat-

ics. The equations of motion of a wide class of non-

linear discrete systems can be written in the form

Mrs pð Þ €ps þDrs p, _pð Þ _ps þ Krs pð Þps ¼ Rr ,

r ¼ 1, 2, . . . , n, sum in s ¼ 1 to n
ð1Þ

where

Mrs pð Þ ¼ M 0
rs þM 1

rsk pk þM 2
rsk‘pkp‘

Drs p, _pð Þ ¼ D0
rs þD1

rsk
_pk þD2

rsk‘ _pkp‘

Krs pð Þ ¼ K 0
rs þ K 1

rsk pk þ K 2
rsk‘pk p‘

ð2Þ

M 0
rs , M 1

rsk , M 2
rsk‘, D0

rs , D1
rsk , D2

rsk‘, and K 0
rs , K 1

rsk , K 2
rsk‘

are constants defining the (possibly non-linear)

matrices of mass, equivalent damping, and stiffness,

respectively. Gyroscopic effects can also be consid-

ered in Drs p, _pð Þ. Rr is a loading vector component.

The non-linear equations of motion of a planar

frame, for instance, can be put in the form of (1)

and (2), as shown in reference [11].

With respect to the ‘reduced-order’ model, it is

assumed that the original generalised co-ordinates

(pr , r ¼ 1, 2, . . . , n) and velocities ( _pr , r ¼

1, 2, . . . , n) can be written, up to cubic non-linear-

ities, as functions of the modal displacements

Uu and velocities _Uu, with u ¼ 1, 2, . . . , m � n,

according to the so-called ‘modal relationships’, cor-

responding to the ‘non-linear change of co-ordinates’

referred to in [6]

pr U, _U
� �

¼p0rþau
1r Uuþau

2r
_Uuþauv

3r UuUvþauv
4r Uu

_Uv

þauv
5r

_Uu
_Uvþauvw

6r UuUvUwþauvw
7r UuUv

_Uw

þauvw
8r Uu

_Uv
_Uwþauvw

9r
_Uu

_Uv
_Uw ,

_pr U, _U
� �

¼bu
1r Uuþbu

2r
_Uuþbuv

3r UuUvþbuv
4r Uu

_Uv

þbuv
5r

_Uu
_Uvþbuvw

6r UuUv Uwþbuvw
7r UuUv

_Uw

þbuvw
8r Uu

_Uv
_Uwþbuvw

9r
_Uu

_Uv
_Uw ,

ð3Þ

sum in u, v, w ¼ 1 to m; p0r , r ¼ 1, 2, . . . , n, stands

for the generalised co-ordinate values of the static

configuration.

In previous works [9, 10], following the usual

trend in non-linear Galerkin procedures, only

the displacement-dependent terms pr Uð Þ ¼ p0rþ

au
1r Uu þ auv

3r UuUv þ auvw
6r UuUvUw have been taken

into account to achieve ‘reduced-order’ models,

implicitly assuming that the velocity-dependent

terms would play a minor role. As already mentioned,

in this article the full expression (3) will be used

instead, to perform the model reduction. Note that

in (3), both the non-linear normal modes and the

internally resonant non-linear multi-modes (for

which coefficients a’s and b’s may be non-null for

u 6¼ v 6¼ w), are included. The next section refers in

more detail to the invariant manifold procedure to

obtain coefficients a’s and b’s.

It is observed that (3) allows for the consideration of

any number of non-linear normal modes and/or

multi-modes, although it should not be missed that

it is always meant to be used the least number of

modes that can efficiently represent the original

system. A thorough discussion on the criteria to

choose the non-linear modes to obtain reliable

‘reduced-order’ models is beyond the present

scope, but some comments on the effect of adding

new modes are made in Section 3. It could be said

that (3) supports a ‘non-linear mode-superposition

method’. Of course, such a statement should not be

taken as a naı̈ve application of the principle of mode

superposition of linear systems theory, which is of

course not valid in non-linear dynamics. On the con-

trary, besides defining the ‘reduced-order’ subspace

where non-linear response is assumed, it allows for

non-linear contributions of both pure and coupled

modes. By the way, an analogous assumption is

made in reference [6]. It remains, of course, to

detail the procedure that renders the solutions to

the non-linear equations of motion of the ‘reduced-

order’ model.
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2 NON-LINEAR MODAL OSCILLATORS AND

MODEL REDUCTION

The origins of non-linear normal modes date back to

Lyapunov and Poincaré, but they effectively became a

central issue in non-linear dynamics after the works

by Rosenberg [12–14], Vakakis [15–17], and Shaw and

Pierre [18–20]. Non-linear normal mode, as proposed

in references [18–20], is assumed to be a motion

restricted to a two-dimensional invariant manifold

in the phase space that is tangent to the correspond-

ing eigenplane at the equilibrium state. In a non-

linear system, several static equilibrium configura-

tions may co-exist, so that the non-linear normal

modes are different for each one of them and are

locally valid. In a case of competing equilibrium con-

figurations, the initial conditions become an impor-

tant issue, since they define in which attracting basin

the system will respond and, therefore, which non-

linear normal modes should be used in the vicinity of

the corresponding equilibrium configuration.

There are different approaches to obtain non-linear

normal modes, such as those based on the evaluation

of the so-called normal forms [21–23] and those

based on the evaluation of the invariant manifolds

[18–20] themselves; with regard to the procedures

used to determine them, there are those based on

analytical methods [24, 25] and a number of different

numerical techniques [26, 27]. An extension of the

invariant manifold procedure to harmonically

driven systems has been recently proposed [28] to

take into account its time dependence, which may

be required in case of strong non-linearities.

Nevertheless, the standard time-independent invari-

ant manifold procedure is here used, since only mod-

erate non-linearities are supposed to occur. In fact,

from physical reasoning, Hooke’s law realistically

holds for elastic materials while strains are small

and displacements are kept within certain bounds.

Also, the kinematical approximations implicit in the

non-linear beam theory used here are such that both

‘high-order’ and ‘reduced-order’ mathematical

models become meaningless outside of those

bounds. In other words, while performing parametric

analyses, scenarios that drag the mathematical model

well beyond those bounds should not be even con-

sidered. By the way, the standard time-independent

invariant manifolds for harmonically driven systems

are also used for ‘reduced-order’ modelling in refer-

ence [6].

The set of non-linear second-order differential

equations of motion (1) for a ‘high-order’ model has

to be converted into a first-order one, using a simple

variable transformation, before the invariant mani-

fold that characterises the non-linear normal mode

can be evaluated. This is a costly operation for large

‘high-order’ models, from the computational view-

point. The ‘modal relationships’ (3) are then intro-

duced into the first-order equations of motion,

posing the problem of evaluation of coefficients a’s

and b’s by solving a set of linear algebraic systems

[26]. It is implicit the local validity of the computed

non-linear normal modes due to a truncation of (3) in

the cubic non-linearities, so that they can be consid-

ered accurate only in the vicinity of the equilibrium

state, and therefore they are not applicable to strong

non-linearities. In cases of internal resonance, a more

appropriate extension to non-linear multi-modes

should be used [29], so that coupling terms will

appear, distinctively of the case of the ‘pure’ normal

modes.

Another output of the invariant manifold technique

is the equation of motion of the non-linear modal

oscillator, which is conveniently expressed in terms

of accelerations in (4), after division by the modal

mass Mu of the uth mode. It can be written, up to

cubic non-linearities, as

€Uuþ cu
1 Uuþcu

2
_Uuþ cuv

3 UuUvþcuv
4 Uu

_Uvþ cuv
5

_Uu
_Uv

þ cuvw
6 UuUvUw þ cuvw

7 UuUv
_Uw þ cuvw

8 Uu
_Uv

_Uw

þ cuvw
9

_Uu
_Uv

_Uw ¼Pu ð4Þ

where cu
1 ¼ !

2
0u, cu

2 ¼ 2�u!0u, with !0u and �u being,

respectively, the linear frequency and the modal

damping ratio, for free oscillations (Pu ¼ 0). Of

course, the modal mass Mu can be evaluated in the

standard way, as in the linear theory, from

Mu ¼
P

r

P
s

au
1r

� �
au

1s

� �
M 0

rs . Details of the procedure to

evaluate coefficients a’s, b’s, and c’s that characterise
a non-linear mode can be found in reference [26].

From (3), the virtual generalised displacements can

be obtained in terms of the virtual modal

displacements

�pr U, _U
� �

¼ au
1r þ auv

3r þ avu
3r

� �
Uv þ auv

4r
_Uv

�

þ auvw
6r þ avuw

6r þ awvu
6r

� �
UvUw

þ auvw
7r þ avuw

7r

� �
Uv

_Uw þ auvw
8r

_Uv
_Uw

�
�Uu

ð5Þ

To allow for the characterization of the modal accel-

eration Pu, in forced systems, the criterion here pro-

posed for model reduction is that the virtual work in

the ‘high-order’ model should be equal to that in the

‘reduced-order’ model. Such equality corresponds to

a constraint equation, namely that the virtual work, or

the ‘energy’, imparted to the modes excluded from

the ‘reduced-order’ model should be zero, which, of

course, is not an exact statement

�W ¼ �pT Fp ¼ �UT FU ð6Þ
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where Fp and FU stand for the generalised-load vec-

tors, as well as �p and �U stand for the generalised-

co-ordinate vectors of the ‘high-order’ and the

‘reduced-order’ model, respectively. With regard to

the generalised load Rr , on the right-hand side of

(4), the corresponding virtual work term is

Rr�pr ¼ PuMu�Uu. Hence, the corresponding modal

generalised acceleration Pu can be readily recognised

once (5) is used

Pu ¼ �
r
u au

1r þ auv
3r þ avu

3r

� �
Uv þ auv

4r
_Uv

�

þ auvw
6r þ avuw

6r þ awvu
6r

� �
Uv Uw

þ auvw
7r þ avuw

7r

� �
Uv

_Uw þ auvw
8r

_Uv
_Uw

�
ð7Þ

sum in u, v, w ¼ 1 to m and r ¼ 1 to n. In (7), the fol-

lowing notation was introduced: �r
u ¼ Rr=Mu.

Now, the ‘forced’ modal equations of motion (4),

with Pu given by (7), can be integrated and the gen-

eralised co-ordinates and velocities of the original

model can be recovered from (3). In the case studies

that follow, this integration is carried out numerically,

using Runge–Kutta’s fourth-order method. Of course,

once the ‘reduced-order’ model becomes available,

the computational cost of the analyses performed is

considerably less than that for the ‘high-order’ model.

Nevertheless, the computational cost to evaluate the

non-linear modes cannot be underestimated, nor the

one to obtain the ‘reduced-order’ model. Direct com-

parison of computational costs is not, however, the

central issue here. Tempting as it may be, ‘reduced-

order’ models should not be taken as useful just

because they can be qualitatively and quantitatively

accurate substitutes for ‘high-order’ models at lower

computational cost. They are especially useful

because they allow for the application of non-linear

dynamics methods to the associated ‘reduced-order’

models, while they are not powerful enough to handle

directly the original ‘high-order’ models to perform

thorough parametric analyses and identify complex

scenarios, in which bifurcations, multiple solutions,

erosion of basins of attraction and transition to chaos,

among other phenomena may appear. Obviously,

once the relevant scenarios have been identified in

the ‘reduced-order’ model, it is highly recommended

that the ‘high-order’ model should be recast for the

final quantitative analysis.

3 CASE STUDIES

Two case studies are considered, both of them refer-

ring to a clamped–free prismatic beam with non-pro-

portional damping, yet with different parameters –

cross-section dimensions b � h, damping coefficient

c, and loading R14 tð Þ, R28 tð Þ or R29 tð Þ –, as depicted in

Fig. 1. It is seen from the non-linear modal analysis

that internal resonance does not come into play in

both the case studies, thus justifying the use of non-

linear normal modes.

The ‘high-order’ model with ten beam finite ele-

ments of equal length and 30-degrees-of-freedom

(p1 to p30), and the associated ‘reduced-order’

models are discussed. Figure 1 also indicates the gen-

eralised co-ordinates p29 and p30, respectively, the

end-beam transversal displacement and rotation.

A two-degree-of-freedom ‘reduced-order’ model

is considered in what follows and the modal

co-ordinate is chosen to be Uu ¼ p29 for both

modes u ¼ 1, 2.

3.1 First case study

This first case study is concerned with the non-linear

response under externally resonant transversal load-

ing. The following parameters are used: b ¼ 0:010 m,

h ¼ 0:010 m, E ¼ 2:1� 1011 N=m (Young’s modulus),

� ¼ 7800 kg=m3 (specific mass), c ¼ 0:7 Ns=m. Here,

the loading is comprised by two harmonic forces,

which are externally resonant with the second

and the first linear modes, respectively: R14 tð Þ ¼

6:6 cosð!02 t Þ and R29 tð Þ ¼ 6:6 cosð!01 t Þ, with values

in Newton (Fig. 1). The axial load R28 tð Þ is assumed

to be null. The first two non-linear normal modes

were determined using MODONL [26], which is

a finite-element code based on the invariant mani-

fold procedure [18–20]. The following non-null

Fig. 1 Clamped–free prismatic beam with dash-pot
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coefficients – see (3) and (4) – are obtained for the first

mode

c1
1 ¼ 0:17345E þ 03 c1

2 ¼ 0:17959E þ 01
c111

6 ¼ �0:40506E þ 02 c111
7 ¼ �0:28403E þ 00

c111
8 ¼ 0:21383E þ 00 c111

9 ¼ �0:59973E � 03
a1

1,14 ¼ 0:33951E þ 00 a111
6,14 ¼ �0:57529E � 02

a111
7,14 ¼ �0:91501E � 04 a111

8,14 ¼ 0:47231� 04

a1
1,29 ¼ 0:10000E þ 01

and for the second mode

c2
1 ¼ 0:68055E þ 04 c2

2 ¼ 0:17946E þ 01
c222

6 ¼ �0:10416E þ 06 c222
7 ¼ 0:18909E þ 03

c222
8 ¼ 0:27836E þ 02 c222

9 ¼ �0:93038E � 02
a2

1,14 ¼ �0:71314E þ 00 a222
6,14 ¼ �0:133399E þ 01

a222
7,14 ¼ 0:75882E � 02 a222

8,14 ¼ 0:17499E � 03

a2
1,29 ¼ 0:1000E þ 01

The linear natural frequency and the damping

ratio for the first mode are !01 ¼
ffiffiffiffiffi
c1

1

p
¼ 13:17 rad=s

and �1 ¼ c1
2=2

ffiffiffiffiffi
c1

1

p
¼ 0:0681, respectively. For the

second mode, the corresponding values are

!02 ¼
ffiffiffiffiffi
c2

1

p
¼ 82:49 rad=s and �2 ¼ c2

2=2
ffiffiffiffiffi
c2

1

p
¼ 0:0108.

By the way, due to the fact that this is not a system

with proportional damping, the modes are not,

strictly speaking, standing waves. This is particularly

seen to be the case of the second mode [26].

It can be readily observed that the modal oscilla-

tor equation of the first mode contains important

cubic non-linearities – c111
6 U1ð Þ

3
þc111

7 U1ð Þ
2 _U1þ

c111
8 U1

_U1

� �2
þc111

9
_U1

� �3
– but the modal load P1 is

basically dominated by the linear terms – �14
1 a1

1,14þ

�29
1 a1

1,29 – since the non-linearities – �14
1 3a111

6,14 U1ð Þ
2
þ

�
2a111

7,14U1
_U1 þ a111

8,14
_U1

� �2
� – are relatively weak. As for

the second-mode oscillator equation, besides the

cubic non-linearities – c222
6 U2ð Þ

3
þc222

7 U2ð Þ
2 _U2þ

c222
8 U2

_U2

� �2
þc222

9
_U2

� �3
, the modal load P2, in addition

to the linear terms – �14
2 a2

1,14 þ �
29
2 a2

1,29, is also strongly

influenced by non-linear terms – �14
2 �

3a222
6,14 U2ð Þ

2
þ2a222

7,14U2
_U2 þ a222

8,14
_U2

� �2
h i

. It should be

recalled that the order of magnitude of the modal

velocity O _Uu

� �
is much larger than that of the

modal displacement O Uuð Þ, since O _Uu

� �
¼

!0uO Uuð Þ, which leads to non-linearly-amplified

velocity-dependent terms particularly in the

second mode, because !02 ¼ 82:49 rad=s is large.

The relevance of velocity-dependent terms in the

response of the ‘reduced-order’ model goes

beyond this: in fact, if only displacement-depen-

dent terms were considered, a softening behaviour

would be anticipated, due to the negative value

of both c111
6 and c222

6 ; nevertheless, the velocity-

dependent terms can affect that conclusion, both

quantitatively and qualitatively, including a harden-

ing possibility.

For both modes, the modal masses in this partic-

ular case study coincidently happen to be equal

M1 ¼ M2 ¼ 0:44 kg
� �

. Hence, the applied loading

can be characterised by same-amplitude accelera-

tions �14
1 ¼ �

14
2 ¼ �0 cosð82:2 t Þ and �29

1 ¼ �
29
2 ¼

�0 cosð13:17 t Þ, with �0 ¼ 15 m/s2. Figure 2 displays

Fig. 2 p29 and _p29 modal-variable comparison between the ANDROS (full line) and the total response of the ‘reduced-
order’ model (dashed line): (a) the projection onto the phase plane _p29 � p29; (b) p29 time response; and (c) _p29

time response, �0 ¼ 15 m/s2
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the results obtained for p29 and shows that the

‘reduced-order’ model compares surprisingly well

with the finite-element model, even for displace-

ments that are not small, using ANDROS [11],

which is a non-linear finite-element time-domain

analysis code that uses the same beam theory. In

fact, deviations of the order of only 1 per cent for

the maximum amplitudes are observed. Of course,

neither the finite-element solution nor the

‘reduced-order’ model can be claimed to be

‘exact’, so that error estimations are not made,

just deviations between them are computed.

Nevertheless, it should be reckoned that, in spite

of a very good agreement for displacements, differ-

ences are noticeable in the phase-plane projection
_p29 � p29 due to the poorer approximation in the

velocity field, which anyhow should be expected

both in the ‘reduced-order’ and in the finite-ele-

ment approximations. Further, the velocity time–

response plot shows that the ‘reduced-order’

model is obviously able to capture contributions

from the only-two modes used, while the finite-ele-

ment solution reveals a ‘dirtier’ signal and a much

more complex modal combination. Nevertheless,

the two models describe a similar transient regime

and reach basically the same amplitudes and peri-

ods in the quasi-steady state, thus allowing infer-

ring that the ‘reduced-order’ model is an adequate

representation of the ‘high-order’ model. The

steady-state solution is seen to be insensitive to ini-

tial conditions.

When the modal relationships (3) are used, any

other generalised co-ordinate and velocity of the

‘high-order’ model can be recovered, provided both

the modal displacement and velocity are known. To

illustrate it, the p30 generalised co-ordinate is consid-

ered. From (3)

p30¼a1
1,30U1þa2

1,30U2þa1
2,30

_U1þa2
2,30

_U2þa11
3,30 U1ð Þ

2

þa22
3,30 U1ð Þ

2
þa11

4,30U1
_U1þa22

4,30U2
_U2þa11

5,30
_U1

� �2

þa22
5,30

_U2

� �2
þa111

6,30 U1ð Þ
3
þa222

6,30 U2ð Þ
3
þa111

7,30 U1ð Þ
2 _U1

þa222
7,30 U2ð Þ

2 _U2þa111
8,30U1

_U1

� �2
þa222

8,30U2
_U2

� �2

þa111
9,30

_U1

� �3
þa222

9,30
_U2

� �3

_p30¼b1
1,30U1þb2

1,30U2þb1
2,30

_U1þb2
2,30

_U2þb11
3,30 U1ð Þ

2

þb22
3,30 U1ð Þ

2
þb11

4,30U1
_U1þb22

4,30U2
_U2þb11

5,30
_U1

� �2

þb22
5,30

_U2

� �2
þb111

6,30 U1ð Þ
3
þb222

6,30 U2ð Þ
3
þb111

7,30 U1ð Þ
2 _U1

þb222
7,30 U2ð Þ

2 _U2þb111
8,30U1

_U1

� �2
þb222

8,30U2
_U2

� �2

þb111
9,30

_U1

� �3
þb222

9,30
_U2

� �3

with the following non-null coefficients, from

MODONL [26], for the first mode

a1
1,30 ¼ 0:68828E þ 00 a1

2,30 ¼ �0:67052E � 03

a111
6,30 ¼ 0:76285E � 02 a111

7,30 ¼ 0:13231E � 03

a111
8,30 ¼ �0:69597E � 04

b1
1,30 ¼ 0:11630E þ 00 b1

2,30 ¼ 0:68948E þ 00

b111
6,30 ¼ �0:50102E � 01 b111

7,30 ¼ 0:46600E � 01

b111
8,30 ¼ 0:69290E � 03 b111

9,30 ¼ �0:69117E � 04

and for the second mode

a2
1,30 ¼ 0:23896E þ 01 a2

2,30 ¼ �0:59586E � 03

a222
6,30 ¼ 0:20454E þ 00 a222

7,30 ¼ �0:28702E � 02

a222
8,30 ¼ 0:63985E � 03

b2
1,30 ¼ 0:40551E þ 01 b2

2,30 ¼ 0:23907E þ 01

b222
6,30 ¼ �0:42533E þ 02 b222

7,30 ¼ �0:79776E þ 01

b222
8,30 ¼ 0:17033E � 01 b222

9,30 ¼ 0:63941E � 03

It is seen that, besides the linear terms, there is only

one non-linearity with (a moderate) influence on the

p30 response, namely a222
8,30U2

_U2

� �2
, which is a second-

mode contribution. Still, for _p30, besides the linear

terms, there are non-linear relevant contributions,

b222
6,30 U2ð Þ

3
þb222

7,30 U2ð Þ
2 _U2 þ b222

8,30U2ð _U2Þ
2
þ b222

9,30ð
_U2Þ

3,

which are also associated to the second mode. It

should be again recalled that O _Uu

� �
¼ !0uO Uuð Þ,

which leads to non-linearly-amplified velocity-

dependent terms particularly in the second mode,

because !02 ¼ 82:49 rad=s is large.

Figure 3 displays the results for p30 and _p30, which

are evaluated for the ‘reduced-order’ model as in (3),

after the forced modal oscillator equations (4) have

been numerically integrated.

It is seen from Fig. 3(c) that the total veloc-

ity response _p30 tð Þ indicates a modulated pattern,

as a result of the composition of two non-

commensurable harmonic contributions, resulting

in a strictly-speaking non-periodic function.

Figure 3(c) separately depicts de forced response for

the first and the second non-linear modes, together

with the total response obtained by the ‘non-linear

mode superposition’, as proposed in (3). As already

mentioned, the first mode is dominated by the linear

terms, leading to the typical ‘elliptical’ closed orbits in

the phase plane projection _p30 � p30. For the second

mode, the relevant cubic non-linearities introduce a

‘bouncing’ effect about an average ‘elliptical’ phase

trajectory. Comparison with finite-element results,

using ANDROS [11], reveals a good qualitative agree-

ment, although with deviations of the order of 14 per

cent for the maximum p30 displacements, which is

understandably larger than that obtained for the

modal co-ordinate p29. It should be recalled that a

propagation error is expected within the modal rela-

tionships (3).
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Finally, to assess the role played by the velocity-

dependent terms within the non-linear modes,

when it comes to obtain ‘reduced-order’ models, a

comparison is shown in Fig. 4 between results with

and without it.

Non-negligible deviations – as large as 8 per cent –

for maximum displacements can be observed in

Fig. 4, thus justifying the use of the improved proce-

dure for ‘reduced-order’ modelling. Deviations

should, of course, be much smaller if the structure

were not so slender, so lightly damped and also sub-

jected to external resonance. Still, the improved pro-

cedure to obtain ‘reduced-order’ models is not much

more laborious and renders more reliable results than

the previously proposed one [9, 10], so that it should

be used even when the scenario is not as critical as the

one addressed here.

3.2 Second case study

As a second case study (Fig. 1), a much slender

clamped–free beam subjected to a harmonic axial

load R28 tð Þ ¼ 1:62 cosð2!0ut Þ, values in Newton, is

considered with twice the frequency of either the

first (u = 1) or the second mode (u = 2), so that the

system may be driven into parametric resonance

[30]. Now, it is assumed that R14 tð Þ ¼ R29 tð Þ ¼ 0. The

following parameters are used: b ¼ 0:040 m,

h ¼ 0:003 m, E ¼ 2:1� 1011 N=m (Young’s modulus),

� ¼ 7800 kg=m3 (specific mass). As before, a two-

degree-of-freedom ‘reduced-order’ model is

considered and the modal co-ordinate is chosen to

be Uu ¼ p29 for both modes u ¼ 1, 2.

Assuming initially the system to be undamped,

c ¼ 0, the first non-linear mode is characterised by

the following non-null coefficients, which define the

modal oscillator equation (4) and the modal relation-

ships (3), according to MODONL [26]

c1
1 ¼ 0:15602E þ 02 c111

6 ¼ 0:53036E þ 00
c111

8 ¼ 0:28812E þ 00
a11

3,28 ¼ �0:29049E þ 00:

Analogously, for the second mode, the following

non-null coefficients are obtained, according to

MODONL [26]

c2
1 ¼ 0:61277E þ 03 c222

6 ¼ �0:93646E þ 04
c222

8 ¼ 0:27923E þ 02
a22

3,28 ¼ �0:20261E þ 01

Now, the linear natural frequencies for the first and

second modes are !01 ¼
ffiffiffiffiffi
c1

1

p
¼ 3:95 rad=s and

!02 ¼
ffiffiffiffiffi
c2

1

p
¼ 24:75 rad=s, respectively.

It is readily seen that the modal-oscillator equation

of the first mode contains important cubic non-

linearities – c111
6 U1ð Þ

3
þc111

8 U1
_U1

� �2
and the modal

load P1 is strongly dominated by a non-linear

term – �28
1 a11

3,28U1. Analogously, for the second

mode, besides the cubic non-linearities in the oscil-

lator equation – c222
6 U2ð Þ

3
þc222

8 U2
_U2

� �2
, the modal

load P2 is also strongly influenced by a non-linear

term – �28
2 a22

3,28U2. It should be recalled that

Fig. 3 (a) The projection onto the phase plane _p30 � p30 of the first mode, the second mode and the total response of
the ‘reduced-order’ model; (b) p30 time response comparison between the ANDROS (full line) and the total
response of the ‘reduced-order’ model (dashed line); and (c) _p30 time response of the first mode, the second
mode and the total response of the ‘reduced-order’ model, �0 ¼ 15 m/s2
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O _Uu

� �
¼ !0uO Uuð Þ, which leads to non-linearly-

amplified velocity-dependent terms particularly in

the second mode, because !02 ¼ 24:75 rad=s is large.

Again, the relevance of velocity-dependent terms

in the response of the ‘reduced-order’ model

goes beyond this: in fact, if only displacement-depen-

dent terms were considered, a first mode with hard-

ening and a second mode with softening would be

anticipated, due to a positive c111
6 and a negative

c222
6 ; nevertheless, the velocity-dependent terms can

affect this conclusion, both quantitatively and

qualitatively.

For both modes, the modal masses in this particu-

lar case study coincidently happen to be equal

M1 ¼ M2 ¼ 0:54 kg
� �

. Hence, the applied load

R28 tð Þ ¼ 1:62 cosð2!0ut Þ can be characterised

by same-amplitude modal accelerations �28
u ¼

�0 cos 2!0ut , u ¼ 1, 2, with �0 ¼ 3:0 m/s2. Figure 5

displays the results obtained for p29, when either the

first or the second mode is subjected to parametric

excitation. It also shows that the results of the

‘reduced-order’ model compare well with those

from the finite-element analysis, using ANDROS

[11], even for relatively large displacements.

With respect to the parametric resonance with the

first mode, it is seen from Fig. 5 that both the ‘high-

order’ and the ‘reduced-order’ models present similar

‘pulses’, with very close maximum displacements

(deviation of 2 per cent). It is noticeable, however,

that the finite-element model indicates a ‘jammed’

pattern, which could probably be explained by the

composition of incoming and reflected longitudinal

waves. Hence, it seems that the ‘reduced-order’

model was not able to fully capture the wave propa-

gation effects for the undamped model. It is also

noticeable that the non-linear response of the

‘reduced-order’ model ‘awakes’ sooner than that of

the finite-element analysis. Similar conclusions can

be drawn for the parametric resonance with respect

to the second mode, although a larger relative devia-

tion (34 per cent) is observed for the maximum dis-

placements, which are nevertheless much smaller

(and therefore less important) than those for the

parametric resonance of the first mode. It also takes

much longer for the finite-element response to build

up, which probably indicates the influence of numer-

ical damping.

When the ‘modal relationships’ (3) are used, any

other generalised co-ordinate and velocity of the

‘high-order’ model can be recovered, provided the

modal displacement and velocity are known. To illus-

trate it, the p30 generalised co-ordinate is considered.

From (3)

p30¼a1
1,30U1þa2

1,30U2þa1
2,30

_U1þa2
2,30

_U2þa11
3,30 U1ð Þ

2

þa22
3,30 U1ð Þ

2
þa11

4,30U1
_U1þa22

4,30U2
_U2þa11

5,30
_U1

� �2

þa22
5,30

_U2

� �2
þa111

6,30 U1ð Þ
3
þa222

6,30 U2ð Þ
3
þa111

7,30 U1ð Þ
2 _U1

þa222
7,30 U2ð Þ

2 _U2þa111
8,30U1

_U1

� �2
þa222

8,30U2
_U2

� �2

þa111
9,30

_U1

� �3
þa222

9,30
_U2

� �3

Fig. 4 p29 and _p29 modal-variable comparison of the total response considering a ‘reduced-order’ model with (dashed
line) or without (full line) velocity contents in the non-linear mode: (a) the projection onto the phase plane
_p29 � p29; (b) p29 time response; and (c) zooming for time response, �0 ¼ 15 m/s2
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_p30¼b1
1,30U1þb2

1,30U2þb1
2,30

_U1þb2
2,30

_U2þb11
3,30 U1ð Þ

2

þb22
3,30 U1ð Þ

2
þb11

4,30U1
_U1þb22

4,30U2
_U2þb11

5,30
_U1

� �2

þb22
5,30

_U2

� �2
þb111

6,30 U1ð Þ
3
þb222

6,30 U2ð Þ
3
þb111

7,30 U1ð Þ
2 _U1

þb222
7,30 U2ð Þ

2 _U2þb111
8,30U1

_U1

� �2
þb222

8,30U2
_U2

� �2

þb111
9,30

_U1

� �3
þb222

9,30
_U2

� �3

with the following non-null coefficients, from

MODONL [26], for the first mode

a1
1,30 ¼ 0:68825E þ 00 a111

6,30 ¼ �0:14670E � 01

a111
8,30 ¼ �0:57711E � 03

b1
2,30 ¼ 0:68825E þ 00 b111

7,30 ¼ �0:26003E � 01

b111
9,30 ¼ �0:57711E � 03

and for the second mode

a2
1,30 ¼ 0:23904E þ 01 a222

6,30 ¼ �0:18395E þ 00

a222
8,30 ¼ �0:70873E � 02

b2
2,30 ¼ 0:23904E þ 01 b222

7,30 ¼ �0:81339E þ 01

b222
9,30 ¼ �0:70873E � 02

For parametric resonance with the first mode, it is

seen that the linear term prevails in the p30 response.

The non-linear terms – a111
6,30 U1ð Þ

3
þa111

8,30U1
_U1

� �2
– have

just a moderate influence on it. Still, for _p30, besides

the linear term, the non-linearities – b111
7,30 U1ð Þ

2 _U1þ

b111
9,30

_U1

� �3
– become relevant. For parametric reso-

nance with the second mode, besides the linear

term, non-linearities – a222
6,30 U2ð Þ

3
þa222

8,30U2
_U2

� �2
– have

a pronounced influence on the p30 response.

Further, for _p30, besides the linear term, the non--

linearities – b222
7,30 U2ð Þ

2 _U2 þ b222
9,30

_U2

� �3
– are impor-

tant. It should be recalled that O _Uu

� �
¼ !0uO Uuð Þ,

which leads to non-linearly-amplified velocity-

dependent terms particularly in the second mode,

because !02 ¼ 24:75 rad=s is large.

Figure 6 displays the results for p30 and _p30, which

are evaluated for the ‘reduced-order’ model as in (3),

after the forced modal oscillator equations (4) have

been integrated, and for the finite-element model

using ANDROS [11].

Again, the ‘reduced-order’ model gives satisfactory

results when compared to ANDROS [11], the main

conclusions being similar to those mentioned for

Fig. 5, with respect to the amplitudes and ‘jammed’

patterns. Deviations in the maximum amplitudes

were of the order of 11 per cent and 44 per cent, for

parametric resonance with respect to the first and the

second modes, respectively. As already pointed out, a

propagation error is expected when the modal rela-

tionships (3) are used to evaluate an original general-

ised co-ordinate (such as p30) in terms of the modal

co-ordinate (p29). That is why the deviations just

found are larger than those of Fig. 5.

Finally, to assess the role played by the velocity con-

tents within the non-linear modes, when it comes to

obtain ‘reduced-order’ models, a comparison is

shown in Fig. 7 between results with and without it.

Deviations as large as 50 per cent for the maximum

amplitudes and 17 per cent for the modulation period

can be observed in Fig. 7, thus justifying the use of the

Fig. 5 p29 in the ‘reduced-order’ model and ANDROS, for parametric resonance with respect to the first or the second
mode, c ¼ 0 Ns/m, �0 ¼ 3:0 m/s2
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improved procedure for ‘reduced-order’ modelling.

Velocity-dependent terms in the non-linear modes

may act either to decrease (for the parametric reso-

nance with respect to the first mode) or increase (for

the parametric resonance with respect to the second

mode) the response amplitudes. Deviations should,

of course, be much smaller if the structure were not so

slender, undamped and also subjected to parametric

resonance. Still, the improved procedure to obtain

‘reduced-order’ models is not much more laborious

and renders more reliable results than the previously

proposed one [9, 10], so that it should be used even

when the scenario is not as critical as the one

addressed here.

Considering now the case of a lightly damped

system, c ¼ 0:01 Ns=m, the first non-linear mode is

Fig. 6 p30 tð Þ in the ‘reduced-order’ model and ANDROS, for parametric resonance with respect to the first or the
second mode, c ¼ 0, �0 ¼ 3:0 m/s2

Fig. 7 p29 in the ‘reduced-order’ model with or without velocity contents in the non-linear mode, for parametric
resonance with respect to the first or the second mode, c ¼ 0, �0 ¼ 3:0 m/s2
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characterised by the following non-null coefficients,

which define the modal oscillator equation (4)

and the modal relationships (3), according to

MODONL [26]

c1
1 ¼ 0:15602E þ 02 c1

2 ¼ 0:21368E � 01
c111

6 ¼ 0:53032E þ 00 c111
7 ¼ �0:50348E � 02

c111
8 ¼ 0:28812E þ 00

a11
3,28 ¼ �0:29049E þ 00

Analogously, for the second mode, the following

non-null coefficients are obtained, according to

MODONL [26]

c2
1 ¼ 0:61277E þ 03 c2

2 ¼ 0:21370E � 01
c222

6 ¼ �0:93645E þ 04 c222
7 ¼ 0:22620E þ 01

c222
8 ¼ 0:27923E þ 02

a22
3,28 ¼ �0:20261E þ 01

Now, the linear natural frequency and the damping

ratio are, respectively, !01 ¼
ffiffiffiffiffi
c1

1

p
¼ 3:95 rad=s and

�1 ¼ c1
2=2

ffiffiffiffiffi
c1

1

p
¼ 0:002, for the first mode, and

!02 ¼
ffiffiffiffiffi
c2

1

p
¼ 24:75 rad=s and �2 ¼ c2

2=2
ffiffiffiffiffi
c2

1

p
¼ 0:0005,

for the second mode. The same comments of the

undamped case with regard to the relevant non-

linear terms in the modal-oscillator equation and

the modal load apply here.

Figure 8 displays the results obtained for p29, when

either the first or the second mode is subjected to

parametric excitation. It also shows that the

‘reduced-order’ model results compare qualitatively

well with those from the finite-element analysis,

using ANDROS [11], since both models were able to

capture a periodic attractor, and quantitatively rea-

sonably well, even for relatively large displacements

(9 per cent and 27 per cent deviations for parametric

resonance with respect to the first or the second

modes, respectively).

With respect to the parametric resonance with

the first mode, it is seen from Fig. 8 that both the

‘high-order’ and the ‘reduced-order’ models present

almost the same pulse pattern, while approaching a

periodic attractor, with very close maximum dis-

placements. This periodic attractor is in contrast

with the undamped case (Fig. 5). Damping, light

as it may be, eases the attainment of a periodic

attractor and smoothens the incoming and reflected

wave pulses. On the other hand, larger damping

might kill the non-linear periodic attractor.

Therefore, for this lightly damped system the

‘reduced-order’ model was able to adequately cap-

ture wave propagation effects. It is again noticeable

that the non-linear response of the ‘reduced-order’

model ‘awakes’ sooner than that of the finite-

element model. Similar conclusions can be drawn

for the parametric resonance with respect to the

second mode, although a larger relative deviation

is observed for the maximum displacements,

which are nevertheless much smaller (and therefore

less important) than those for the parametric reso-

nance of the first mode. It also takes longer for the

finite-element response to build up.

When the ‘modal relationships’ (3) are used, any

other generalised co-ordinate and velocity of the

‘high-order’ model can be recovered, provided the

modal displacement and velocity are known. To illus-

trate it, the p30 generalised co-ordinate is considered.

From (3)

p30¼a1
1,30U1þa2

1,30U2þa1
2,30

_U1þa2
2,30

_U2þa11
3,30 U1ð Þ

2

þa22
3,30 U1ð Þ

2
þa11

4,30U1
_U1þa22

4,30U2
_U2þa11

5,30
_U1

� �2

þa22
5,30

_U2

� �2
þa111

6,30 U1ð Þ
3
þa222

6,30 U2ð Þ
3
þa111

7,30 U1ð Þ
2 _U1

þa222
7,30 U2ð Þ

2 _U2þa111
8,30U1

_U1

� �2
þa222

8,30U2
_U2

� �2

þa111
9,30

_U1

� �3
þa222

9,30
_U2

� �3

_p30¼b1
1,30U1þb2

1,30U2þb1
2,30

_U1þb2
2,30

_U2þb11
3,30 U1ð Þ

2

þb22
3,30 U1ð Þ

2
þb11

4,30U1
_U1þb22

4,30U2
_U2þb11

5,30
_U1

� �2

þb22
5,30

_U2

� �2
þb111

6,30 U1ð Þ
3
þb222

6,30 U2ð Þ
3
þb111

7,30 U1ð Þ
2 _U1

þb222
7,30 U2ð Þ

2 _U2þb111
8,30U1

_U1

� �2
þb222

8,30U2
_U2

� �2

þb111
9,30

_U1

� �3
þb222

9,30
_U2

� �3

with the following non-null coefficients, from

MODONL [26], for the first mode

a1
1,30 ¼ 0:68825E þ 00 a1

2,30 ¼ �0:88725E � 04

a111
6,30 ¼ �0:14670E � 01 a111

7,30 ¼ 0:15287E � 04

a111
8,30 ¼ �0:57711E � 03

b1
1,30 ¼ 0:13842E � 02 b1

2,30 ¼ 0:68825E þ 00

b111
6,30 ¼ �0:19144E � 03 b111

7,30 ¼ �0:26004E � 01

b111
8,30 ¼ 0:83664E � 04 b111

9,30 ¼ �0:57710E � 03

and for the second mode

a2
1,30 ¼ 0:23904E þ 01 a2

2,30 ¼ �0:78791E � 04

a222
6,30 ¼ 0:18393E þ 00 a222

7,30 ¼ �0:37105E � 03

a222
8,30 ¼ 0:70872E � 02

b2
1,30 ¼ 0:48281E � 01 b2

2,30 ¼ 0:23904E þ 01

b222
6,30 ¼ �0:51047E þ 00 b222

7,30 ¼ �0:81337E þ 01

b222
8,30 ¼ 0:22603E � 02 b222

9,30 ¼ 0:70872E � 02

For parametric resonance with the first mode, it is

seen that the linear terms prevail in the p30 and _p30

responses. The non-linear terms have just a moderate

influence on them. For parametric resonance with

the second mode, besides the linear term, non-line-

arities – a222
6,30 U2ð Þ

3
þa222

8,30U2
_U2

� �2
– have a clear influ-

ence on the p30 response. Further, for _p30, besides the

linear term, the non-linearities – b222
7,30 U2ð Þ

2 _U2þ
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b222
8,30U2

_U2

� �2
þb222

9,30
_U2

� �3
– become strongly relevant. It

should be recalled that O _Uu

� �
¼ !0uO Uuð Þ, which

leads to non-linearly-amplified velocity-dependent

terms particularly in the second mode, because

!02 ¼ 24:75 rad=s is large.

Deviations in the steady-state amplitudes for p30

and _p30, which are evaluated for the ‘reduced-order’

and finite-element models using ANDROS [11] were

found to be of the same order of those found for p29,

in spite of expected propagation errors: for the para-

metric resonance with the first mode, the ‘reduced-

order’ model amplitude is 0.5082 rad and the

ANDROS amplitude is 0.4677 rad (deviation of 9 per

cent); for the parametric resonance with the second

mode, the ‘reduced-order’ model amplitude is 0.1515

rad and the ANDROS amplitude is 0.1144 rad (devia-

tion of 24 per cent).

Finally, to assess the role played by the velocity con-

tents within the non-linear modes, when it comes

to obtain ‘reduced-order’ models, a comparison is

shown in Fig. 9 between results with and without it.

Extremely large deviations – more than 92 per cent

– in the periodic-attractor displacement amplitudes

for parametric resonance with the first mode can be

observed in Fig. 9, thus justifying the use of the

improved procedure for ‘reduced-order’ modelling.

Velocity-dependent terms in the non-linear modes

may act either to decrease (for the parametric reso-

nance with respect to the first mode) or increase (for

the parametric resonance with respect to the second

mode) the response amplitudes. Deviations should,

of course, be much smaller if the structure were not so

slender, so lightly damped and also subjected to para-

metric resonance. Still, the improved procedure to

obtain ‘reduced-order’ models is not much more

laborious and renders more reliable results than the

previously proposed one [9, 10], so that it should be

used even when the scenario is not as critical as the

one addressed here.

When the forcing frequency is varied in the vicinity

of the principal parametric-resonance region

(approximately twice the natural frequency of either

the first or the second mode) keeping the excitation

amplitude constant, a typical Hopf bifurcation pat-

tern is recognizable, as shown in Fig. 10. It is observed

that the pos-critical behaviour, due to the cubic non-

linearities, is of the hardening type for the parametric

resonance with the first mode – as if the overall influ-

ence would agree with the term c111
6 U1ð Þ

3 – and soft-

ening type for the parametric resonance with the

second mode – as if the overall influence would

agree with the term c222
6 U2ð Þ

3, which is a similar sce-

nario to the well-known case of the parametric reso-

nance of the Duffing equation [31].

The expected trace of unstable limit cycles

between the stable limit cycles and the trivial (equi-

librium) solution for some frequency range could

not be captured in the numerical analysis, probably

because it is too steep. Except for the region near to

the end of the stable post-critical solution, the

problem was found to be insensitive to initial

conditions.

Fig. 8 p29 in the ‘reduced-order’ model and ANDROS, for parametric resonance with respect to the first or the second
mode, c ¼ 0:01 Ns/m, �0 ¼ 3:0 m/s2

12 C E N Mazzilli, G C Monticelli, and N A Galan Neto

Proc. IMechE Vol. 000 Part C: J. Mechanical Engineering Science

 at CIDADE UNIVERSITARIA on June 19, 2015pic.sagepub.comDownloaded from 

http://pic.sagepub.com/


It is also to be mentioned that varying the forcing

frequency ratio around 2:1, and the forcing amplitude

in the range 3–9 m/s2, for which the post-critical

beam displacements could still bear physical mean-

ing, did not show other relevant bifurcation events.

A final word refers to the adequacy of the two-

degree-of-freedom ‘reduced-order’ model and to

convergence. According to the fast-Fourier transform

of the steady-state response under perfectly tuned

parametric resonance with the first mode, the

Fig. 9 p29 in the ‘reduced-order’ model with or without velocity contents in the non-linear mode, for parametric
resonance with respect to the first or the second mode, c ¼ 0:01 Ns/m, �0 ¼ 3:0 m/s2

Fig. 10 p29 steady-state amplitudes, for the ‘reduced-order’ model, considering parametric resonance with either the
first or the second mode, c ¼ 0:01 Ns/m, �0 ¼ 3:0 m/s2
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spectral peak ratio is 100.0:6.4 (first-to-second

modes), for c ¼ 0:01 Ns/m, m/s2. If the third non-

linear normal mode is included in the ‘reduced-

order’ model, the spectral peak ratio becomes

100.0:6.2:0.9 (first-to-second-to-third modes), thus

indicating a negligible influence of the added mode.

4 CONCLUDING REMARKS

This article addresses an improved procedure for

‘reduced-order’ modelling in non-linear dynamics.

Comparison between non-linear dynamic responses of

‘high-order’ and ‘reduced-order’ models under different

load conditions is made in two case studies. For both

external and parametric resonances, it can be said that

a remarkable agreement between them was achieved,

provided the velocity contents within the non-linear

modes are retained. In the second case study, it is seen

that damping is essential to help the system settling

down in a post-critical periodic attractor, otherwise

wave propagation and reflection, with constructive and

destructive composition, will have an enduring effect.
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APPENDIX

Notations

au
1r , au

2r , auv
3r ,

auv
4r , auv

5r , auvw
6r ,

auvw
7r , auvw

8r , auvw
9r

coefficients defining invariant

manifold for generalised co-

ordinate pr and modes u,v,w
bu

1r , bu
2r , buv

3r ,
buv

4r , buv
5r , buvw

6r ,
buvw

7r , buvw
8r , buvw

9r

coefficients defining invari-

ant manifold for generalised

velocity _pr and modes u,v,w
cu

1 , cu
2 , cuv

3 ,
cuv

4 , cuv
5 , cuvw

6 ,
cuvw

7 , cuvw
8 , cuvw

9

coefficients defining non-

linear equation of motion for

mode u

Drs equivalent damping-matrix

element in line r and

column s

D0
rs linear equivalent damping-

matrix element in line r and

column s

D1
rsk , D2

rsk‘ non-linear equivalent

damping-matrix coefficients

in line r and column s

E Young’s modulus

Fp generalised-load vector of

the ‘high-order’ model

FU generalised-load vector of

the ‘reduced-order’ model

h cross-section height

Krs stiffness-matrix element in

line r and column s

K 0
rs linear stiffness-matrix ele-

ment in line r and column s

K 1
rsk , K 2

rsk‘ non-linear stiffness-matrix

coefficients in line r and

column s

L beam length

Mrs mass-matrix element in line

r and column s

M 0
rs linear mass-matrix element

in line r and column s

M 1
rsk , M 2

rsk‘ non-linear mass-matrix

coefficients in line r and

column s

Mu u modal mass

O Uuð Þ or O _Uu

� �
order of the generalised u

modal displacement or

velocity, respectively

p generalised-displacement

vector

ps generalised displacement of

degree of freedom s
_ps generalised velocity of

degree of freedom s
€ps generalised acceleration of

degree of freedom s

Pu u modal acceleration

p0s generalised displacement of

degree of freedom s, for the

equilibrium configuration

Rr generalised force of degree

of freedom r

U modal displacement vector
_U modal velocity vector

Uu modal displacement of

mode u
_Uu modal velocity of mode u
€Uu modal acceleration of

mode u

�0 modal acceleration

amplitude

�r
u contribution of generalised

force Rr to u modal

acceleration

�p generalised virtual-displace-

ment vector

�pr generalised virtual-displace-

ment of degree of freedom r
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�Uu virtual u modal-

displacement

�W virtual work

�p generalised virtual-

displacement vector

�u critical damping ratio of

mode u

� specific mass

!0u linear natural frequency of

mode u
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