

1. Aplicabilidades de PMC (Resumo) Principais classes de problemas

- Redes PMC podem ser consideradas as mais utilizadas na solução de problemas advindos das mais variadas áreas de conhecimento.
- Redes PMC são as mais amplamente empregadas em diferentes temáticas envolvendo as engenharias como um todo, em especial a Engenharia Elétrica.
- Existe ainda aplicações de redes *PMC* em medicina, biologia, química, física, economia, geologia, ecologia e psicologia.
- Considerando esses leques de aplicabilidades em que as redes PMC são passíveis de serem utilizadas, destacam-se três classes de problemas que acabam concentrando grande parte de suas aplicações, isto é:
 - Problemas envolvendo aproximação funcional (Fim da Unidade 4).
 - Problemas envolvendo classificação de padrões (Unidade 5).
 - Problemas envolvendo sistemas variantes no tempo (Esta Aula).

2. Problemas Variantes no Tempo Aspectos de definição (I)

- Como o próprio nome sugere, sistemas dinâmicos ou sistemas variantes no tempo são aqueles cujos comportamentos são dependentes do tempo.
 - A resposta atual depende dos valores das respostas anteriores.
- Como exemplos de aplicação, têm-se os seguintes:
 - Previsão de consumo de energia para os próximos meses.
 - Previsão de valores futuros para ações do mercado financeiro frente a um horizonte semanal.
 - Previsão de temperatura, precipitação atmosférica, etc.
- Em contraste aos problemas de Aproximação de Funções ou Classificação de Padrões (considerados estáticos), tem-se:
 - As saídas dos sistemas denominados dinâmicos, assumindo um instante de tempo qualquer, dependem de seus valores anteriores de saída e de entrada.

3

2. Problemas Variantes no Tempo (Aproximação de Funções) X (Sistemas Variantes) // (I) Para problemas de Aproximação de Funções: > O domínio de definição referente aos dados de treinamento/teste são delimitados pelos valores mínimos e máximos associados a cada uma de suas variáveis de entrada. > O domínio de operação em que a efetiva aplicação da rede PMC estará sujeita, após ter sido treinada, deve obrigatoriamente coincidir com o seu domínio de definição.

2. Problemas Variantes no Tempo (Aproximação de Funções) X (Sistemas Variantes) // (II) Para problemas de Sistemas Variantes no Tempo: Aqui, ambos os domínios são regidos pelo tempo, sendo que o domínio de operação se inicia após o seu domínio de definição. Como a saída atual depende das saídas/entradas anteriores, utiliza-se então dados de treinamento/teste para ajustar seus parâmetros internos. Em seguida, a rede estará apta para estimar valores futuros que estarão pertencendo ao seu domínio de operação.

2. Problemas Variantes no Tempo Topologias de PMC para sistemas variantes no tempo • Em se tratando de aplicação de redes PMC no mapeamento de problemas envolvendo sistemas variantes no tempo, duas configurações topológicas podem ser utilizadas: • Configuração TDNN → rede PMC com entradas atrasadas no tempo (Time Delay Neural Network - TDNN). • Configuração RECORRENTE→ rede PMC com saídas recorrentes às entradas (Recurrent Perceptron).

3. Configuração TDNN

Aspectos de estrutura de modelo

- Redes PMC em configuração TDNN (entradas atrasadas no tempo) são enquadradas dentro da arquitetura feedforward de camadas múltiplas:
 - Inexiste qualquer realimentação das saídas de neurônios de camadas posteriores em direção aos neurônios da primeira camada.
- A previsão de valores futuros a partir do instante t, associados ao comportamento do processo, é computada em função do conhecimento de seus valores temporariamente anteriores, isto é:

$$x(t) = f(x(t-1), x(t-2), ..., x(t-n_p))$$

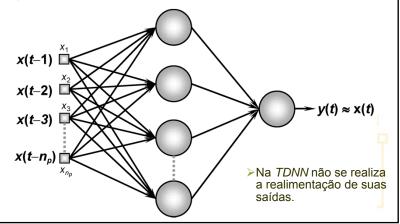
- \triangleright Onde $n_{
 ho}$ é a ordem do estimador, ou seja, a quantidade de medidas (amostras) passadas que serão necessárias para a estimação do valor x(t).
- O modelo representado pela expressão acima é também conhecido como Auto-Regressivo (AR).

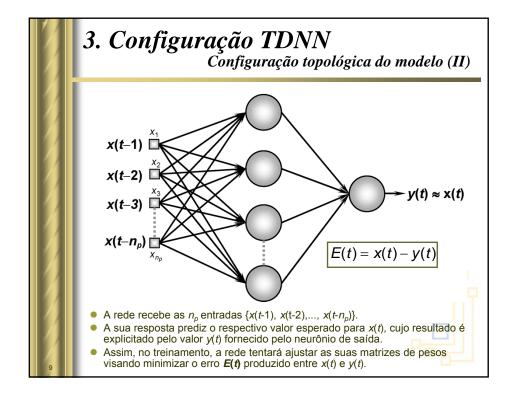
7

3. Configuração TDNN

Configuração topológica do modelo (I)

- De fato, a configuração TDNN estará aqui introduzindo linha de atrasos de tempo somente na camada de entrada.
- Esta linha funciona como uma memória, garantindo que amostras anteriores, que refletem o comportamento temporal do processo, sejam sempre inseridas dentro da rede.





3. Configuração TDNN Composição do conjunto de treinamento e teste (I) O treinamento da rede PMC com configuração TDNN é similar ao PMC convencional, e o processo de aprendizado é também efetuado de maneira idêntica. Os cuidados que devem ser tomados estão associados com a montagem do conjunto de treinamento da rede. Do slide anterior, tem-se que: E(t) = x(t) - y(t), onde (n_p + 1) ≤ t ≤ N Onde N é a quantidade total de medidas (amostras) disponíveis. Para elucidar tal mecanismo, considera-se que para um determinado sistema dinâmico foram colhidas as seguintes oito medidas {N = 8} ao longo do tempo: x(t) = [0,11 0,32 0,53 0,17 0,98 0,67 0,83 0,79]^T x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(8)

3. Configuração TDNN

Composição do conjunto de treinamento e teste (II)

$$\boldsymbol{x}(t) = \begin{bmatrix} t=1 & t=2 & t=3 & t=4 & t=5 & t=6 & t=7 & t=8 \\ 0.11 & 0.32 & 0.53 & 0.17 & 0.98 & 0.67 & 0.83 & 0.79 \end{bmatrix}^T$$

• Como exemplo, assume-se que o processo possa ser mapeado com uma ordem de predição igual a três $\{n_p=3\}$. Então, tem-se:

$$E(t) = x(t) - y(t)$$
, onde $(n_p + 1) \le t \le N$

• Por intermédio da expressão acima, ter-se-á então um conjunto de treinamento composto por um total de 5 amostras, com parâmetro t variando de $4 \le t \le 8$.

	relação entradas/saídas							
	<i>X</i> ₁	<i>X</i> ₂	saída desejada					
t = 4	<i>x</i> (3)	x(2)	<i>x</i> (1)	x(4)				
<i>t</i> = 5	x(4)	x(3)	x(2)	x(5)				
<i>t</i> = 6	x(5)	x(4)	<i>x</i> (3)	x(6)				
<i>t</i> = 7	<i>x</i> (6)	x(5)	<i>x</i> (4)	x(7)				
<i>t</i> = 8	x(7)	<i>x</i> (6)	<i>x</i> (5)	x(8)				

 $\begin{array}{c|c}
4 \le t \le 8 & \mathbf{x}^{(1)} \\
\hline
\text{(ordem 3)} & \mathbf{x}^{(2)} \\
n_p = 3 & \mathbf{x}^{(4)}
\end{array}$

	conjunto de treinamento									
		<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	d					
	x ⁽¹⁾	0,53	0,32	0,11	$a^{(1)} = 0,17$					
.	x ⁽²⁾	0,17	0,53	0,32	$d^{(2)} = 0,98$					
	x ⁽³⁾	0,98	0,17	0,53	$d^{(3)} = 0,67$					
	x ⁽⁴⁾	0,67	0,98	0,17	$d^{(4)} = 0.83$					
	x ⁽⁵⁾	0,83	0,67	0,98	$a^{(5)} = 0,79$					

onde o valor {x₀ = -1}, associado ao limiar do neurônio, deverá ser considerado em todos eles.

3. Configuração TDNN

Composição do conjunto de treinamento e teste (III)

• Na realidade, procede-se no vetor $\mathbf{x}(t)$, uma operação de janela deslizante de largura n_p , movimentando-a de uma unidade para a direita em cada iteração de tempo.

$$\mathbf{x}(t) = \begin{bmatrix} 0.11 & 0.32 & 0.53 & 0.17 & 0.98 & 0.67 & 0.83 & 0.79 \end{bmatrix}^{T}$$

$$\mathbf{x}(t) = \begin{bmatrix} 0.11 & 0.32 & 0.53 & 0.17 & 0.98 & 0.67 & 0.83 & 0.79 \end{bmatrix}^{T}$$

$$\mathbf{x}(t) = \begin{bmatrix} 0.11 & 0.32 & 0.53 & 0.17 & 0.98 & 0.67 & 0.83 & 0.79 \end{bmatrix}^{T}$$

$$\mathbf{x}(t) = \begin{bmatrix} 0.11 & 0.32 & 0.53 & 0.17 & 0.98 & 0.67 & 0.83 & 0.79 \end{bmatrix}^{T}$$

$$\mathbf{x}(t) = \begin{bmatrix} 0.11 & 0.32 & 0.53 & 0.17 & 0.98 & 0.67 & 0.83 & 0.79 \end{bmatrix}^{T}$$

$$\mathbf{x}(t) = \begin{bmatrix} 0.11 & 0.32 & 0.53 & 0.17 & 0.98 & 0.67 & 0.83 & 0.79 \end{bmatrix}^{T}$$

$$\mathbf{x}(t) = \begin{bmatrix} 0.11 & 0.32 & 0.53 & 0.17 & 0.98 & 0.67 & 0.83 & 0.79 \end{bmatrix}^{T}$$

 Após o treinamento da rede, basta realizar a inserção de amostras anteriores da série a fim de se executar a predição de seus valores futuros (posteriores).

1

3. Configuração TDNN

Composição do conjunto de treinamento e teste (IV)

- Considerando-se agora o seu domínio de operação, a rede já treinada pode ser usada para estimação de valores futuros.
- Para o exemplo anterior, considerando agora $\{t \ge 9\}$, tal procedimento é realizado da seguinte maneira:

predição de valores futuros

	X ₁	X ₂	<i>X</i> ₃	saída estimada	
t = 9	x(8)	x(7)	x(6)	$x(9) \approx y(9)$	1
<i>t</i> = 10	x(9)	x(8)	x(7)	$x(10) \approx y(10)$	1
<i>t</i> = 11	<i>x</i> (10)	x(9)	x(8)	$x(11) \approx y(11)$	
()	()	()	()	()	

- ➤ Para obter x(9) → Entradas $\{x_1 = x(8), x_2 = x(7), x_3 = x(6)\}$
- ➤ Para obter x(10) → Entradas $\{x_1 = x(9), x_2 = x(8), x_3 = x(7)\}$
- ➤ Para obter x(11) → Entradas $\{x_1 = x(10), x_2 = x(9), x_3 = x(8)\}$

$$\boldsymbol{x}(t) = \begin{bmatrix} t = 1 & t = 2 & t = 3 & t = 4 & t = 5 & t = 6 & t = 7 & t = 8 \\ 0,11 & 0,32 & 0,53 & 0,17 & 0,98 & 0,67 & 0,83 & 0,79 \end{bmatrix}^T$$

3. Configuração TDNN

Composição do conjunto de treinamento e teste (V)

- Assim, para o exemplo anterior, conclui-se que a rede sempre realiza uma predição de um passo à frente, calculando seqüencialmente o seu valor atual ou futuro a partir de seus 3 últimos valores.
- Contudo, há situações em que a ordem de predição deve ser incrementada a fim de assegurar uma maior precisão na estimação do comportamento futuro do processo.
- Como exemplo, para a ação de se utilizar uma ordem de predição igual a 4 $\{n_p = 4\}$, o próximo valor obtido pela rede estaria em função dos 4 últimos valores, sendo que sua topologia seria agora composta de 4 entradas.
- Generalizando, tem-se:
 - > Para $n_p = 4$ \rightarrow Utiliza os 4 últimos valores para predizer o valor atual. > Para $n_p = 5$ \rightarrow Utiliza os 5 últimos valores para predizer o valor atual.

 - **>** (...)
- Entretanto, quanto maior a ordem de predição assumida, menor será também a quantidade de amostras para o processo de treinamento.

$$\boldsymbol{x}(t) = \begin{bmatrix} t = 1 & t = 2 & t = 3 & t = 4 & t = 5 & t = 6 & t = 7 & t = 8 \\ 0,11 & 0,32 & 0,53 & 0,17 & 0,98 & 0,67 & 0,83 & 0,79 \end{bmatrix}^T$$

E(t) = x(t) - y(t), onde $(n_p + 1) \le t \le N$

4. Configuração Recorrente

Aspectos de estrutura de modelo

- Diferentemente da TDNN, a arquitetura com saídas recorrentes às entradas possibilitam a recuperação de respostas passadas a partir da realimentação de sinais produzidos em instantes anteriores.
- Pode-se dizer que <u>a configuração recorrente possui memória</u>, sendo capazes de "relembrar" saídas passadas a fim de produzir a resposta atual ou futura.
- Tais redes pertencem à classe de <u>arquiteturas recorrentes ou</u> <u>realimentadas</u>.
- A previsão de valores futuros a partir do instante t, associados ao comportamento do processo, é computada em função do conhecimento de seus valores temporariamente anteriores, assim como de valores anteriores produzidos por suas saídas, isto é:

$$x(t) = f(x(t-1), x(t-2), ..., x(t-n_p), y(t-1), y(t-2), ..., y(t-n_q))$$

- \triangleright Onde n_p é a ordem do estimador, ou seja, a quantidade de medidas (amostras) passadas que serão necessárias para a estimação do valor x(t).
- O valor n_q expressa a ordem de contexto, ou seja, a quantidade de saídas passadas que serão também utilizadas na estimação de x(t).

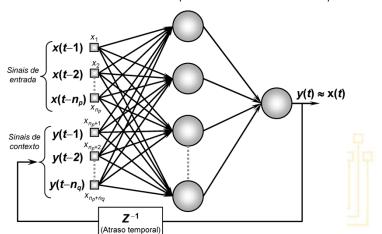
15

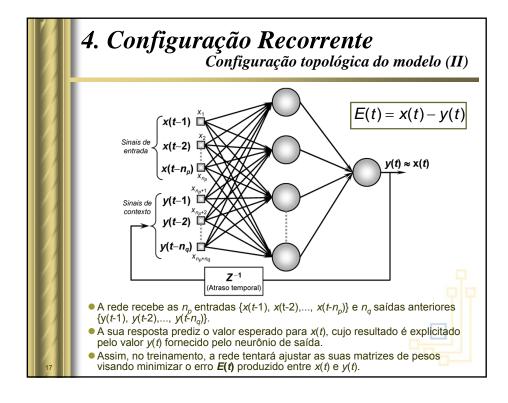
4. Configuração Recorrente

Configuração topológica do modelo (I)

 A figura seguinte ilustra um modelo de *PMC* recorrente que implementa o processo dinâmico explicitado por:

$$x(t) = f\big(x(t-1), x(t-2), \dots, x(t-n_p), y(t-1), y(t-2), \dots, y(t-n_q)\big)$$





4. Configuração Recorrente

Composição do conjunto de treinamento e teste (I)

- O treinamento da rede *PMC* com configuração Recorrente é similar ao *PMC* convencional, e o processo de aprendizado é também efetuado de maneira idêntica.
- Os cuidados que devem ser tomados estão associados com a montagem do conjunto de treinamento da rede.
- Do slide anterior, tem-se que:

$$E(t) = x(t) - y(t)$$
, onde $(n_p + 1) \le t \le N$

- onde N é a quantidade total de medidas (amostras) disponíveis.
- Para elucidar tal mecanismo, considera-se que para um determinado sistema dinâmico foram colhidas as seguintes oito medidas {N = 8} ao longo do tempo:

$$\mathbf{x}(t) = \begin{bmatrix} t=1 & t=2 & t=3 & t=4 & t=5 & t=6 & t=7 & t=8 \\ 0.11 & 0.32 & 0.53 & 0.17 & 0.98 & 0.67 & 0.83 & 0.79 \end{bmatrix}^T$$

18

4. Configuração Recorrente

Composição do conjunto de treinamento e teste (II)

$$\mathbf{x}(t) = \begin{bmatrix} t=1 & t=2 & t=3 & t=4 & t=5 & t=6 & t=7 & t=8 \\ 0,11 & 0,32 & 0,53 & 0,17 & 0,98 & 0,67 & 0,83 & 0,79 \end{bmatrix}^T$$

• Como exemplo, assume-se que o processo possa ser mapeado com ordem de predição igual a três $\{n_p=3\}$ e ordem de contexto igual a dois $\{n_q=2\}$. Então, tem-se:

$$E(t) = x(t) - y(t)$$
, onde $(n_p + 1) \le t \le N$

 Por intermédio da expressão acima, ter-se-á então um conjunto de treinamento composto por um total de 5 amostras, com parâmetro t variando de 4 ≤ t ≤ 8.

relação entradas/saídas									conjunto de treinamento							
	X ₁	X2	X3	X4	X5	saída	saída				X1	X2	<i>X</i> ₃	Χa	X5	d
_		_	_	7.14	7.5	desejada				(4)		-	_	7.4	7.5	-
t = 4	x(3)	x(2)	x(1)	0	0	x(4)	y(4)	\supset	$4 \le t \le 8$	x ⁽¹⁾	0,53	0,32	0,11	0	0	$d^{(1)} = 0,17$
t = 5	x(4)	x(3)	x(2)	y(4)	0	x(5)	y(5)	5	\Leftrightarrow	x ⁽²⁾	0,17	0,53	0,32	y(4)	0	$d^{(2)} = 0.98$
t = 6	x(5)	x(4)	x(3)	y(5)	y(4)	x(6)	<i>y</i> (6)	8	(ordem 3)	x ⁽³⁾	0,98	0,17	0,53			$d^{(3)} = 0,67$
t = 7	x(6)	x(5)	x(4)	y(6)	y(5)	x(7)	y(7)	2	$n_p = 3$	x ⁽⁴⁾						$d^{(4)} = 0.83$
t = 8	x(7)	x(6)	x(5)	y(7)	y(6)	x(8)	y(8)	Ø	$n_q = 2$	x ⁽⁵⁾	0,83	0,67	0,98	y(7)	y(6)	$d^{(5)} = 0,79$

onde o valor {x₀ = -1}, associado ao limiar do neurônio, deverá ser considerado em todos eles.

4. Configuração Recorrente

Composição do conjunto de treinamento e teste (III)

- Considerando-se agora o seu domínio de operação, a rede recorrente já treinada pode ser usada para estimação de valores futuros
- Para o exemplo anterior, considerando agora {t≥9}, tal procedimento é realizado da seguinte maneira:

	<i>X</i> ₁	X ₂	<i>X</i> ₃	X ₄	X ₅	saída estimada	
t = 9	x(8)	x(7)	x(6)	<i>y</i> (8)	<i>y</i> (7)	$x(9) \approx y(9)$	
<i>t</i> = 10	x(9)	x(8)	x(7)	<i>y</i> (9)	<i>y</i> (8)	$x(10) \approx y(10)$	
<i>t</i> = 11	<i>x</i> (10)	x(9)	x(8)	<i>y</i> (10)	<i>y</i> (9)	$x(11) \approx y(11)$	
()	()	()	()	()	()	()	

- ➤ Para obter x(9) → Entradas $\{x_1=x(8), x_2=x(7), x_3=x(6), x_4=y(8), x_5=y(7)\}$
- ➤ Para obter x(10) → Entradas $\{x_1=x(9), x_2=x(8), x_3=x(7), x_4=y(9), x_5=y(8)\}$
- ➤ Para obter x(11) → Entradas $\{x_1 = x(10), x_2 = x(9), x_3 = x(8), x_4 = y(10), x_5 = y(9)\}$

(...)

$$\mathbf{x}(t) = \begin{bmatrix} 0.11 & t=2 & t=3 & t=4 & t=5 & t=6 & t=7 & t=8 \\ 0.11 & 0.32 & 0.53 & 0.17 & 0.98 & 0.67 & 0.83 & 0.79 \end{bmatrix}^T$$

4. Configuração Recorrente Composição do conjunto de treinamento e teste (IV) Assim, para o exemplo anterior, a predição de seus valores futuros sempre levará em conta tanto as 3 entradas atrasadas no tempo como as 2 últimas saídas produzidas pela rede. Contudo, há situações em que tanto a ordem de predição como a ordem de contexto $\{n_a\}$ deve ser incrementada a fim de assegurar maior precisão na estimação do comportamento futuro do processo. O número de sinais de entrada p/ a rede será a soma de no com no. Generalizando, tem-se: ➤ Para n_p = 4 e n_q = 2 → Utiliza as 4 últimas entradas atrasadas no tempo, mais as 2 últimas saídas produzidas pela rede: > Rede terá 6 entradas. ► Para $n_0 = 6$ e $n_0 = 3$ → Utiliza as 6 últimas entradas atrasadas no tempo, mais as 3 últimas saídas produzidas pela rede: Rede terá 9 entradas. Então, quanto maior a ordem de predição e/ou ordem de contexto assumida, menor será também a quantidade de amostras para o processo de treinamento.

