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A B S T R A C T   

Environmental concerns arising from the release of greenhouse gases have stimulated the search for more sus
tainable technologies, including bioethanol production from lignocellulosic biomass. However, the rigid and 
complex structure of this biomass means that lignocellulosic biomass conversion to bioethanol requires 
numerous stages, such as pretreatment, enzymatic hydrolysis, and fermentation, not to mention the underlying 
costs and time, especially during enzymatic hydrolysis and fermentation. For all these reasons, this technology 
still is not attractive for industrial use. Response Surface Methodology (RSM) has helped to optimize the bio
ethanol production stages with a view to obtaining an economical process and to improving process efficiency. 
This review presents an overview of RSM and analyzes how this tool can be applied to study and to optimize the 
factors that influence lignocellulosic biomass pretreatment, enzymatic hydrolysis to obtain sugars, and sugar 
fermentation for ethanol production.   

1. Introduction 

Bioethanol is a biofuel that can be produced from different ligno
cellulosic biomass, including sugarcane bagasse, rice straw, corn straw, 
and wheat straw, all of which are considered agro-industrial waste. In 
this sense, bioethanol could become a sustainable alternative to fossil 
fuels [1,2]. In Brazil, sugarcane bagasse is the most promising substrate 
for this technology—large amounts of this biomass are generated during 
sugar and first-generation (1G) ethanol production; more specifically, 
around 270–280 kg of bagasse and 140 kg of sugarcane straw originate 
for each ton of processed sugarcane [3,4]. Brazil is the second largest 
producer of 1G ethanol (7060 million gallons of 1G ethanol were pro
duced only in 2017), but the production of second-generation (2G) 
ethanol is still not competitive in the country due to the high operating 
costs and lack of robust technologies in the operating plants [1]. 

Lignocellulosic biomass is a heterogeneous polymer that consists 
mainly of cellulose (40–60%), hemicellulose (20–40%), and lignin 
(10–24%), whose intrinsic association provides a biomass with a recal
citrant structure [5]. This makes access to fermentable sugars difficult 
and constitutes the principal challenge regarding 2G ethanol production 
[5,6]. Cellulose is a highly stable polymer consisting of up to 12,000 
glucose residues attached through linear chains. It is composed mostly of 

(1,4)-D-glucopyranose units that are attached by β-1,4 linkages and has 
an average molecular weight of around 100,000 [7,8]. Hemicellulose is 
the second most abundant heterogeneous polymer and comprises 
mainly glucuronoxylan and glucomannan, but it also contains trace 
amounts of other polysaccharides. Grasses and straws contain arabinan, 
galactan, and xylan, while mannan is a component of hardwood and 
softwood hemicellulose [8]. They are catalogued with sugar as a back
bone; i.e., xylans, mannans, and glucans, being xylans and mannans the 
most common [9]. Lignin is a long-chain, heterogeneous polymer 
composed largely of phenyl-propane units that are most frequently 
linked by ether bonds [8]. Lignin acts like a glue that fills the voids 
between and around the cellulose and hemicellulose structures within 
the biomass. Lignin exists in all plant biomass, so it is considered a 
byproduct or residue of bioethanol production [8]. 

In the lignocellulosic structure, cellulose strains are bundled together 
to form the cellulose fibrils via hydrogen bonding, whereas hemicellu
lose serves as a connection between lignin and cellulose [10]. The rigid 
and complex structure resulting from the spatial interaction of cellulose, 
hemicelluloses, and lignin limits lignocellulosic biomass conversion to 
the desired product [11]. Therefore, lignocellulosic biomass conversion 
to bioethanol requires different stages, such as pretreatment, enzymatic 
hydrolysis, and fermentation [12]. 
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The pretreatment step involves changing the cellulose- 
hemicellulose-lignin matrix structure, so that hydrolytic enzymes act 
on cellulose and convert it to fermentable sugars, finally allowing the 
fermentation process for bioethanol production to occur [13,14]. This is 
the stage that consumes the most energy, and it is considered one of the 
most expensive stages in 2G bioethanol production. Pretreatment can be 
classified as physical, chemical, physicochemical, and biological pre
treatment. Physical pretreatment comprises techniques such as milling, 
extrusion, freezing, and microwave heating. Chemical pretreatment in
cludes treatment with alkali or acid, dilute acid, ionic liquids, organic 
solvents, and ozonolysis. As for physicochemical pretreatment, explo
sion, fiber explosion, ammonium, CO2 explosion, liquid hot water, and 
wet oxidation can be used. Lastly, biological pretreatment involves fungi 
[15]. Several factors can influence lignocellulosic biomass pretreatment; 
e.g., temperature, pressure, pH, high-temperature steam, and concen
trations of H2SO4, H3PO4, and NaOH solutions, given that these factors 
affect lignin extraction and hydrolysis of hemicelluloses. Moreover, 
these variables impact the generation of inhibitors, thereby affecting 
sugar degradation [1,16]. 

To break down the polysaccharides and the crystalline cellulose of 
the lignocellulosic biomass, some enzymes are necessary, including 
cellulases like endoglucanases, cellobiohydrolases, and β-glucosidases. 
Endoglucanases hydrolyze β-1,4-glycosidic bonds in amorphous regions 
of the cellulose chains, to release cello-oligosaccharide. Cellobiohy
drolases act on short cellulose molecules and cello-oligosaccharides, 
releasing cellobiose, whereas β-glucosidases cleave cellobiose into 
glucose [17]. In turn, lytic polysaccharide monooxygenases (LPMO) are 
copper-dependent enzymes that improve the hydrolytic performance of 
cellulases and increase accessibility to cellulose by degrading cellulose 
through an oxidative mechanism [17,18]. Given that enzymatic hy
drolysis is the central step in 2G ethanol biorefineries, some factors, such 
as temperature, saccharification time, pH, enzyme load, substrate load, 
addition of chemical agents like surfactants, and mechanical agitation 
should be studied and optimized. A high concentration of reducing 
sugars, such as glucose, can increase the fermentation efficiency, which 
allows for higher conversion to ethanol [19,20]. 

Finally, there is the fermentation stage, during which fermentable 
sugars released in the previous stages are converted into bioethanol by 
action of fermenting microorganisms. Saccharomyces cerevisiae, which 
can produce ethanol with high productivity and yield, is the most widely 
used organism in fermentation [21]. This stage poses two main diffi
culties. The first is to obtain efficient conversion of xylose, which con
stitutes more than 35% of fermentable sugars in lignocellulosic biomass. 
The second difficulty is related to the presence of fermentation in
hibitors (phenolic compounds, weak acids, and furan aldehydes) 
released during the pretreatment and hydrolysis stages [22]. Therefore, 
both the pretreatment and the hydrolysis steps are crucial for optimum 
fermentation to be achieved [23]. Some factors that are commonly 
evaluated in the fermentation stage include fermentation time, inoc
ulum size, process temperature, agitation, supplement addition, and 
solid-liquid ratio [24–26]. 

Design of Experiment (DoE) tools and Response Surface Methodol
ogy (RSM) are great strategies that provide more accurate conclusions 
than the one-factor-at-time (OFAT) approach and reduce the number of 
experimental attempts and furnish more informative datasets. More
over, DoE allows the interaction between several factors to be studied 
and the different tested conditions to be optimized, to improve process 
performance [27]. In this sense, DoE and RSM tools have been 
increasingly employed to optimize the various bioethanol production 
stages such as pretreatment, enzymatic hydrolysis, and fermentation 
stages —each step of the process has numerous factors that influence 
both the efficiency of biomass conversion to bioethanol and process 
costs, as mentioned previously. Thus, these tools can contribute to the 
development of feasible and efficient processes for bioethanol produc
tion from lignocellulosic biomass for economically viable application in 
the industry [28–31]. Review papers on the use of DoE and RSM tools in 

the three main stages of ethanol production have not been found in the 
literature. 

In this context, this review aims to contextualize and to discuss the 
use of DoE and RSM tools in the study of the factors and the optimization 
of the 2G bioethanol production stages. The sections that follow will 
address some literature research papers that have applied DoE and RSM 
tools in the context of ethanol production over the last seven years. We 
believe that the contexts covered in this article are of interest to the 
scientific community and can contribute to future research into 2G 
bioethanol production. 

2. Design of experiment (DoE) 

Design of Experiment is a set of methods and procedures that are 
mainly used to analyze data about specific variables regarding a specific 
research problem. There are various types of DoE such as Full Factorial 
Design, Fractional Factorial Design, Plackett-Burman Design, Central 
Composite Rotational Design, and Box-Behnken Design, among others. 
All these designs have advantages and disadvantages, so which one 
should be chosen depends mostly on the aim of the research and avail
able resources [32]. The first step in using DoE is to define the inde
pendent and dependent variables. The independent variables, or factors, 
can be altered in different levels or values, while the dependent variable, 
or response, is influenced by the factors [33]. To validate the mathe
matical model obtained in the DoE and to determine a set of conditions, 
one must calculate the residue, which is the difference between the 
experimental result and the estimated result. A good mathematical 
model has a low residue value [33]. 

When the significance of the mathematical model is evaluated, t-test 
and Analysis of Variance (ANOVA) are the most often applied statistical 
methods. t-Test is used to compare two samples or treatments, whereas 
ANOVA is employed when there are more than two treatments. For both 
analyses, the level of significance must be fixed; for example, 5% (p <
0.05), to indicate that the treatments have statistically significant dif
ference. The level of significance is also called “α”, which is the proba
bility of a null hypothesis being rejected. Hence, when “p” calculated by 
ANOVA is lower than the level of significance, the results can be 
considered significant, whilst “p” greater than the level of significance 
means that the null hypothesis is real and that the results are not 
significantly different, so there are no evidences to reject the null hy
pothesis [34]. 

2.1. Full Factorial Design 

Full Factorial Design is generally employed in RSM. The factors (k) 
and their levels are combined in a way that the design has all the 
possible combinations. This type of DoE provides the main effects and 
the interaction effects. Factor is the parameter that the researcher wishes 
to evaluate experimentally, and level is a value that a factor can assume 
[35]. The Full Factorial Design can be symmetric, when the number of 
levels is the same for all the studied factors, or asymmetric, when each 
factor has a distinct number of levels [36]. 

Designs with two levels, 2k, are the simple forms of an orthogonal 
design. They are usually used to screen variables and to analyze their 
factors, and they encompass analysis of k factors in two levels: high (+) 
and low (− ). Designs with three or more levels are more frequently 
applied to construct the response surface because they show the effects 
of not only linear factors, but also quadratic factors [36]. 

The Full Factorial Design may not be viable for a large number of 
factors because implementing many experimental conditions is costly 
and complex. In these cases, the researcher can consider a Fractional 
Factorial Design as an alternative [37]. 

2.2. Fractional Factorial Design 

A Fractional Factorial Design involves using a subset selected from 
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the experimental conditions of a Full Factorial Design; in other words, 
just some conditions of a Full Factorial Design will be employed [38]. 
This is more economical because it reduces the number of experiments. 
However, decreasing the number of experiments makes it impossible for 
some effects of the study factors to be distinguished, so the degree of 
fractionation will depend on the resolution that one wants to get. 
Low-resolution designs are normally applied to define the principal ef
fects and disregard the interactions, while higher-resolution designs 
indicate both the principal effects and the interactions [36]. 

The notation that is frequently used for this type of design is Ik− p, 
where I is the number of levels that is analyzed in each factor; k is the 
number of factors that is employed in the analysis, and p is the size of the 
fraction of the applied full factorial [39]. 

2.3. Plackett-Burman Design 

A Plackett-Burman Design (PBD) experiment uses N number of 
experimental runs and allows up to N-1 factors to be tested (N is defined 
as a multiple of 4) [40]. PBD does not take possible interactions between 
the factors into account. Therefore, this tool is only useful to estimate the 
main effect of the factors that are involved in the process, and it cannot 
be used to obtain the response surface during optimization of said pro
cess [36]. 

Like the 2k design, PBD allows two levels for each one of the factors 
of the control k (− 1, +1), but it requires a much smaller number of 
experiments. To construct PBD in k factors, the first line in which the 
elements are equal to − 1 or +1 must be selected, so that the number of 
1’s is (k+1)/2, and the number of -1’s is (k-1)/2. In the next step, k-1 
lines are generated from the first line by cyclically shifting from a place 
to the right k-1 times. Then, the last line of the design is only added with 
-1’s [41]. For PBD to be used correctly, Rodrigues and Lemma [42] 
suggested choosing a matrix with four tests or more than the number of 
factors to be studied. 

Wu [43] employed PBD to evaluate how seven factors, namely initial 
pH, (NH4)2SO4, KH2PO4, inoculation amount, fermentation time, tem
perature, and rotation speed, influenced the mixed fermentation of 
Aspergillus niger and Candida shehatae, which allowed the author to 
choose the most significant factors in this process by using just 12 ex
periments. Compared to a full design 27, this was a more economical 
strategy that resulted in 128 experiments [43]. 

2.4. Central Composite Rotational Design 

The Central Composite Rotational Design (CCRD) is most often used 
to obtain the response surface because it allows a second-order 
(quadratic) model for the response to be constructed [39]. This kind 
of design occurs when the distances to both the axial points, as the 
factorial points of the Central Composite Design, to the center are the 
same central distance, so that chances in the available response are the 
same in all the points of a centralized sphere at the origin. Equation (1) 
shows the second-order mathematical model [36]: 

y = βo +
∑k

i=1
βixi +

∑k

i=1
βiix2

i +
∑k

i=1

∑k

j=1
βijxij + ε

(1)  

where y is the response, β0 is the intercept, βi values represent the co
efficient of the main effects, βij are the coefficients of interaction effects, 
βii are the second-order terms and ε is the random error component that 
is determined by fitting the model to the data [36]. The design consists 
of factorial (− 1, +1) and axial (-α, + α) points and of repetitions at the 
central point, which provides properties such as orthogonality and 
rotativity to the adjustment of quadratic polynomials. The axial points 
(2k) enable the curvature to be evaluated and to estimate new extremes 
for all the study factors in high and low configurations. This design is 
useful because it provides full knowledge of responses with the smallest 

number of experiments [36,44]. The number of experiments for this 
design can be obtained from Equation (2). 

N = k2 + 2k + Cp (2)  

where k represents the number of factors, and Cp represents the number 
of replicates of the central point [45]. 

2.5. Box-Behnken Design 

The difference between this design and CCRD is that it uses three 
levels for the study factors (− 1, 0, +1), while CCRD uses five levels (-α, 
− 1, 0, +1, +α). Equation (3) gives the number of experiments (N) that is 
required for the Box-Behnken Design [46], where k is the number of 
factors and Cp is the number of replicates of the central point: 

N = 2k(k − 1) + Cp (3) 

This design is also employed in RSM to obtain the second-order 
mathematical model (Equation (1)), which allows the studied process 
to be optimized. The advantage of the Box-Behnken Design is that it 
points out where the problems of the experimental limits are and avoids 
unnecessary combinations of treatments [47]. 

Despite the advantages of employing RSM for analyzing experi
mental data, the technique does not specify which design type should be 
used to collect and to analyze the information [48]. The Central Com
posite Design and the Box-Behnken Design are the two most commonly 
employed in studies of 2G ethanol production. The Box-Behnken Design 
has been the most employed to study and to optimize the several stages 
of 2G bioethanol production. This can be justified by the fact that the 
Box-Behnken Design requires only three levels for each factor: 1, 0, and 
+1, while CCRDs require five levels (-α, − 1, 0, +1, and α). All the design 
points (except at the center) have length two; that is, they all lie on the 
same sphere. These designs are particularly suitable for spherical re
gions. Because of the spherical property, there should be at least three to 
five runs at the central point. For example, in the case of a Box-Behnken 
Design for k = 3, all the points are located in the edge region, and all of 
them are at a distance of √2 from the design center. There are no 
factorial points or face points. Despite covering the edge points, the 
Box-Behnken Design does not include the entire cube because it does not 
have any corner points even at a distance of √3 from the design center. 
In this design, the combination of its spherical nature with the rotatable 
designs (or near-rotatable designs) indicates that broad center runs 
should be used. For instance, for k = 3, three to five runs should be used 
in the central point [49,50]. 

Table 1 summarizes the different types of Experimental Design and 
their advantages and disadvantages. 

3. Response surface methodology for process optimization 

Response surface methodology (RSM) is a statistical technique that 
effectively optimizes complex processes by using an approach of many 
factors and responses [54]. The first step of RSM is to determine which 
factors will be employed in the study. This step can be carried out 
through a fractional design or PBD, as described previously, thereby 
allowing the factors that are statistically significant for the responses to 
be evaluated by using a smaller number of assays. 

Optimization by the RSM method involves three major steps: sta
tistically designing the experiments, estimating the coefficients in a 
mathematical model, and predicting the response and checking the 
adequacy of the model (Equations (1) and (4)) within the setup of the 
experiments [55]. 

Y = f (X1,X2,X3,…..Xn) (4)  

where Y is the system response, and Xn is the factor of action called 
factors. Y can be obtained from the second-order mathematical model 
shown in Equation (1). ANOVA analysis of each term of this equation 
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will determine whether the two-factor interactions and the higher-order 
interactions can be neglected. 

The graphical representation of the model is a suitable way to find 
the optimum location. Two types of graphs may be helpful: the response 
surface in the three-dimensional space (Fig. 1a) and the graph of con
tours, which is the projection of the surface on a plane, represented as 
lines of constant response (Fig. 1b). Each contour corresponds to a 
specific height of the surface. In these graphs, the response is repre
sented as a function of two factors. According to the established opti
mization criterion, the optimum value that is sought may correspond to 
a maximum, a minimum, or a specific value that can be found by simple 
visual inspection of the graph. When more than two factors are studied, 

the values that are not plotted must be set at a constant value, so a 
limited part of the experimental domain is shown, and the optimum is 
not necessarily seen in the graph. For this reason, the value of the fixed 
factor must be selected very carefully. Overlaying the contour plots 
constructed with pair combination of three factors allows the best 
compromise region to be visually searched, satisfying response 
requirements. 

The desirability function can be applied to optimize one or multiple 
responses, thereby maximizing or minimizing the studied object and 
transforming the values of the obtained responses into values of desir
ability functions that range between 0 and 1. The value 0 is designated 
when the values do not have a desirable response, and the value 1 is 
designated for the ideal performance of the study factors. This combi
nation of RSM with the desirability function is called optimization 
methodology of desirability, or DOM [56]. When the optimization of 
process conditions depends on several responses, the optimization 
criteria are often contradictory. The overall solution must be compre
hended in an optimum region, leading to an accord solution. In this 
sense, the desirability function defined by Harrington [57] and 
Derringer and Suich [58] solves optimization of multiple responses [58]. 
The general approach involves transforming each response yi into an 
individual desirability function di that varies over the following interval: 

0= ≤ di ≤ 1 (5) 

If the obtained response (yi) is at the study goal, di is equal to 1; if the 
response is outside the region that is considered acceptable by the study, 
di is equal to 0. Then, the factor parameters are chosen in order to 
maximize the overall desirability [57]. 

D=(di, d2,….dm)
1/m (6)  

where m is the number of responses. If the goal T for the response y is a 
maximum value,  

d =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 y < L
(

y − L
T − L

)r

L ≤ y ≤ T

1 y > T

(7) 

If the weight r is equal to 1, the desirability function is linear. When r 
> 1, proximity to the goal value is emphasized; when r falls between 
0 and 1, this is less important. 

When the desirable target for the response is a minimum value, 
Equation (7) is changed to Equation (8): 

d =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 y < T
(

U − y
U − T

)r

T ≤ y ≤ U

0 y > U

(8)  

4. Using RSM in lignocellulosic biomass pretreatment 

Among the bioethanol production stages, pretreatment is the most 
crucial step because it greatly impacts the general bioconversion effi
ciency. In lignocellulosic biomass, cellulose and hemicellulose are 
densely compacted with lignin, which has various functions including 
protecting the plant against enzymatic hydrolysis [59]. Pretreatment 
methods alter the structure and chemical composition of the lignocel
lulosic matrix in different ways; for example, they increase the porosity 
and accessible surface area of the enzymes, thus modifying substrate 
hydrophilicity; remove hemicellulose and lignin; or decrease the cellu
lose degree of polymerization and crystallinity [10,30]. An ideal pre
treatment is economically viable; that is, it consumes less energy, has 
shorter operational time, produces fewer effluents, and avoids degra
dation of carbohydrates and production of enzymatic inhibitors and 
products that are toxic to fermentation microorganisms [30]. 

Table 1 
Types of experimental design.  

Types of 
Design 

Function Advantages and 
disadvantages 

References 

Full Factorial 
Design 

It is convenient for a 
small number of 
factors if the resources 
are available. 

Advantages: It is the 
only design that allows 
for categorical variables 
with 3 or more levels to 
be used for screening. 

[51,52] 

It investigates the 
effects of factors and 
their interactions on 
the dependent 
variable. 

Disadvantages: It cannot 
be used for optimization 
by RSM. 

Fractional 
Factorial 
Design 

It only takes into 
account a small 
number of main effects 
and lower-order 
interactions. The 
higher- order 
interactions are 
neglected due to their 
negligible effects on 
the response variable. 

Advantages: It is very 
economical and can be 
used for screening. 

[51,52] 

The number of factors 
to be studied ranges 
from 3 to 13. 

Disadvantages: The 
researcher must 
determine which 
variables can be 
ignored. Not all the 
interactions can be 
evaluated. 

Plackett- 
Burman 
Design 

It is an economical 
alternative to the 
Fractional Factorial 
Design, but it only 
studies the main 
effects of factors. 

Advantages: It is used 
for screening. 

[53] 

The number of factors 
to be studied ranges 
from 8 to 35. 

Disadvantages: It is not 
used for optimization. 

Central 
Composite 
Rotational 
Design 
(CCRD) 

It determines the 
optimal levels of 
design variables by 
including a few more 
experiments to a Full 
Factorial Design. 

Advantages: It is used 
for optimization. 

[51–53] 

The number of factors 
to be studied ranges 
from 2 to 6. 

Disadvantages: It 
requires five levels for 
the studied factors. 

Box-Behnken 
Design 

It is an alternative to 
Central Composite 
Designs when 
preceding results from 
a factorial design are 
not available and 
when the optimum 
response is not located 
at the extremes of the 
experimental region. 

Advantages: It is used 
for optimization. 

[51–53] 

The number of factors 
to be studied ranges 
from 3 to 6. 

Disadvantages: It 
requires more central 
points (03–05).  
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Fig. 1. Representation of Response Surface (a) Response surface in the three-dimensional space, (b) Graph of contours. Y: response, X1 and X2: factors. Adapted from 
Rodrigues and Lemma [42]. 

Fig. 2. Representative scheme of the variables that were studied and optimized in the pretreatment stage by using DoE tools and RSM.  
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Fig. 2 illustrates the pretreatment process and the main factors that 
are involved in this stage: 

Some authors have employed RSM by using either CCRD or the Box- 
Behnken Design to optimize lignocellulosic biomass pretreatment 
(Table 2). Researchers have considered different factors such as the 
concentration of acid or alkali or bleaching agent, solid biomass load, 
chemical treatment temperature and time, and concentration of enzyme. 
These variables and their values can be chosen in preliminary tests or by 
using screening designs such as the Fractional Factorial Design or PBD. 

Turhan et al. [60] used the Box-Behnken Design to optimize ethanol 
production by considering the factors of pretreatment by micro
fluidization (pressure: 500, 1000, and 1500 bar and solid load: 1, 2, and 
3%), enzymatic hydrolysis at different enzyme loads (5, 10, and 15 FPU. 
g− 1 of dry wheat straw), and simultaneous saccharification and 
co-fermentation (SSCF) experiments with addition of a mutant Saccha
romyces cerevisiae (ATCC 20618) yeast, which can ferment both xylose 
and glucose. The responses were glucose, xylose, and ethanol yields. The 
authors observed that, regardless of the applied pressure, wheat straw 
pretreated at 1% solid load gave the maximum delignification. ANOVA 
showed that the solid concentration of biomass slurry was the most 
important parameter and significantly impacted the glucose and xylose 
yields. Thus, a reduction in solid load while keeping the other process 
variables constant increased the glucose and xylose yields. For the 
ethanol yield, the authors observed that the solid load and enzyme 
concentration had statistically significant negative and positive impacts, 
respectively. The authors obtained the second-order regression models 
for the glucose, xylose, and ethanol yield by including all the terms, but 
the microfluidization pressure did not significantly affect any response 
variables. The authors did not show the p-value of the model 

coefficients. By means of RSM analysis, they found that the optimum 
conditions were pressure of 1500 bar, 1% solid load, and 15 FPU.g− 1 of 
enzyme load, which was experimentally validated. The predicted re
sponses were 82% glucose yield, 94% xylose yield, and 65% ethanol 
yield. 

Lavudi et al. [61] studied the sweet sorghum bagasse pretreatment 
stage by CCRD. Initially, the authors analyzed two types of pre
treatments, acid and alkaline, and verified that alkaline pretreatment 
increased the glucose concentration the most efficiently. Therefore, the 
authors decided to continue optimizing the alkaline pretreatment by 
using CCRD. The factors (and their levels) were alkali concentration 
(0.65–4.85%), pretreatment temperature (119.89–145.11 ◦C), and pre
treatment time (3.18–36.82 min); the evaluated responses were glucose 
and xylose content. The experiments performed according to CCRD 23 

afforded values in the range of 36.11–59.83 g L− 1 for glucose and 
5.91–12.61 g L− 1 for xylose. All the factors significantly influenced 
glucose production (p < 0.05). RSM allowed the authors to optimize the 
pretreatment conditions, which were 67.24 g L− 1 glucose and 10.14 g 
L− 1 xylose when the pretreatment was conducted with 4% sodium hy
droxide solution at 140 ◦C for 30 min. 

Ramaraj and Unpapromm [62] investigated the potential of 
small-flowered nutsedge for ethanol production. For this purpose, the 
authors optimized the alkaline pretreatment stage by using the 
Box-Behnken Design and by considering four factors: solid.liquid− 1 ratio 
(0.05–0.3), NaOH concentration (1–2%), H2O2 concentration 
(0.5–1.5%), and time (24–72 h). The authors successfully selected the 
ranges of the studied factors and established the optimum values, which 
were 0.05 solid.liquid− 1 ratio, 1% NaOH, 1% H2O2, and 72 h. The 
optimized conditions furnished 0.194 g g− 1 of total sugars 

Table 2 
Response Surface Methodology (RSM) applied in the pretreatment stage of lignocellulosic biomass.  

Type of Design Numbers of 
experiments 

Independent variable Measured response Optimized conditions Optimized response Ref. 

Box-Behnken 15 Microfluidizer pressure (bar), 
solid load of wheat straw 
solution (%), and enzyme 
dosage (FPU.g− 1 of pretreated 
biomass) 

Glucose, xylose, and 
ethanol yields from the 
pretreatment of wheat 
straw with microfluidizer 

Microfluidizer pressure (500–1000 
bar), solid load of wheat straw 
solution (1–3%) and enzyme dosage 
(5–15 FPU.g¡1) 

82% glucose, 94% xylose, 
and 65% ethanol 

[60] 

Central 
Composite 
Rotational 
Design 
(CCRD) 

27 Alkali concentration (%), 
temperature (◦C), and time 
(min) 

Glucose and xylose yield 
from the pretreatment of 
sweet sorghum bagasse 

Alkali concentration (0.65–4.85%), 
temperature (119.9–145.1 ◦C), and 
time (3.2–36.8 min) 

57.24 g L− 1 glucose and 
10.14 g L− 1 xylose 

[61] 

Box-Behnken 27 Solid.liquid− 1 ratio, NaOH 
concentration (%), H2O2 

concentration (%), and time 
(h) 

Sugar concentration 
obtained from the 
pretreatment of nutmeg 

Solid.liquid− 1 ratio (0.05–0.3), 
NaOH concentration (1–2%), H2O2 

concentration (%) (0.5–1.5%), and 
time (24–72 h) 

0.183 g. g− 1 sugar 
concentration 

[62] 

Box-Behnken 17 Temperature (◦C), time (min), 
and organic acid concentration 
(%) 

Reducing sugars 
concentration from the 
pretreatment stage of 
palm oil stem biomass 

Temperature (120–140 ◦C), time 
(30–60 min), and organic acid 
concentration (5–15%) 

For acetic acid: 1.0336 mg 
mL− 1. For citric acid: 1.2302 
mg mL− 1. For oxalic acid: 
1.7975 mg mL− 1 of reducing 
sugars 

[63] 

Box-Behnken 15 HNO3 concentration (%), 
pretreatment temperature 
(◦C), and time (min) 

Xylose yield from the 
pretreatment of rice straw 

HNO3 concentration (0.2–1.0%), 
pretreatment temperature 
(140–180 ◦C), and time (1–20 min) 

87.3% xylose [64] 

Central 
Composite 
Rotational 
Design 
(CCRD) 

20 HCl concentration (%), 
incubation time (min), and 
biomass load (%) 

Reducing sugars from 
dilute acid pretreatment 
of pine needles 

HCl concentration (0.5–1.5%), 
incubation time (20–30 min), and 
biomass load (5–10%) 

0.2 g g− 1 reducing sugars [65] 

Central 
Composite 
Rotational 
Design 
(CCRD) 

17 Temperature (◦C), time (min), 
and substrate load (% w.v− 1) 

Glucose concentration 
from water pretreatment 
of wheat straw 

Temperature (176.36–246.69 ◦C), 
time (3.18–36.82 min), and 
substrate load (0.80–9.20% w.v− 1). 

30.24 g L− 1 glucose [66] 

Central 
Composite 
Rotational 
Design 
(CCRD) 

29 Temperature (◦C), NaOH 
concentration (%), and time 
(days) 

Sugar concentration of 
sorghum stalk (SS) and 
sugarcane leaf (SL) by 
chemical pretreatment 

Temperature (30–40 ◦C), NaOH 
concentration (1–3% w/v), and 
days (1–3) 

38.977 and 32.621 g L− 1, 
respectively, of SS and SL of 
reducing sugars 

[67]  
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concentration, which was close to the value predicted by the regression 
mathematical model (0.183 g g− 1 of total sugars), indicating that the 
model had low residue value. 

Rattanaporn et al. [63] optimized the acid pretreatment conditions 
of palm oil trunk biomass by using RSM along with the Box-Behnken 
Design. They examined three different acids—acetic acid, citric acid, 
and oxalic acid—in an attempt to improve enzymatic saccharification 
and bioethanol production from palm oil trunk biomass. They evaluated 
the influence of factors such as temperature (120–140 ◦C), time (30–60 
min), and organic acid concentration (5–15%) on reducing sugars 
released during enzymatic hydrolysis for each acid in separate. They 
conducted enzymatic hydrolysis of the pretreated sample by using 20 
FPU of Celluclast ® and 100 CBU of cellobiase at 45 ◦C and 200 rpm for 
72 h. ANOVA showed that the regression models were statistically sig
nificant with coefficients of determination (R2) of 0.7890, 0.9293, and 
0.8255 for pretreatments with acetic acid, citric acid, and oxalic acid, 
respectively. All the terms of the second-order regression model were 
statistically significant (p < 0.05) for pretreatment with citric acid, 
whereas pretreatment with acetic acid and oxalic acid afforded reduced 
models. The authors generated contour plots from regression models to 
identify the optimum conditions for each type of acid, which were 
107.3 ◦C, 30 min, and 8.3% organic acid concentration for acetic acid; 
131.92 ◦C, 58.92 min, and 13.92% organic acid concentration for citric 
acid; and 100 ◦C, 60 min, and 15% organic acid concentration for oxalic 
acid. The optimal conditions were experimentally tested, which resulted 
in reducing sugars concentrations close to the values predicted by the 
regression models. 

To optimize the pretreatment of rice straw, Kim et al. [64] applied 
the Box-Behnken Design with RSM to assess how the HNO3 concentra
tion (0.2–1.0%), pretreatment temperature (140–180 ◦C), and reaction 
time (1–20 min) affected the xylose yield. The coefficients of the 
second-order model such as the HNO3 concentration, temperature, 
interaction of these factors, interaction of HNO3 concentration x time, 
and interaction of temperature x time were statistically significant (p <
0.05). Even though the time factor was not statistically significant, the 
authors maintained it in the model due to the high adjusted determi
nation coefficient (Adj. R2 = 0.9673) of the full model. The pretreatment 
optimum conditions to obtain the maximum xylose yield (87.3%) were 
0.65% HNO3, 158.8 ◦C, and 5.86 min of reaction. The predicted yield 
was validated experimentally, resulting in 86.5% xylose yield, which 
was close to the predicted value. 

Slathia et al. [65] applied RSM to optimize the dilute acid pretreat
ment of pine needles of Pinus roxburghii for bioethanol production. The 
authors initially employed one variable at time (OVAT); they used dilute 
hydrochloric acid (HCl) at 0.5%, 1%, 1.5%, and 2%, and biomass load of 
5%, 10%, and 15%. The maximum reducing sugars yield was 96 mg g− 1 

of biomass, which was achieved with 1% HCl and 5% biomass load. To 
optimize the pretreatment, they used a CCRD with 20 experiments to 
evaluate the HCl concentration (0.5–1.5%, incubation time (20–30 
min), and biomass load (5–10%). ANOVA was used to evaluate how the 
studied factors affected the reducing sugars concentration. The statisti
cal significance was established by F test. The second-order model was 
significant (F < 0.05), but the lack of fit was not statistically significant 
(F > 0.05), which indicated that the model can be used to predict the 
responses and to establish the optimum conditions. Thus, 0.5% (v.v− 1) 
HCl, 30 min, and 5% biomass load were chosen as the optimum condi
tions that allowed the reducing sugars concentration to be increased 
from 0.1 g g− 1 (obtained by OVAT) to 0.2 g g− 1 of biomass. 

In the pretreatment stage of wheat straw for bioethanol production, 
Chen et al. [66] used CCRD with RSM, to perform 17 experiments. The 
authors evaluated three factors: temperature (176.36–246.69 ◦C), time 
(3.18–36.82 min), and substrate load (0.80–9.20% w.v− 1). On the basis 
of ANOVA, the second-order model was statistically significant (p <
0.05), but the lack of fit was not significant, which indicated that the 
model was statistically valid and predictive. The R2 value was 0.9076, 
demonstrating that the results were well fitted to the second-order 

model. The optimum conditions (220.51 ◦C, 22.01 min, and 2.50% w. 
v− 1 substrate load) decreased the hemicellulose content by 18.37% and 
increased the cellulose and lignin contents by 25.92% and 8.81%, 
respectively, yielding maximum glucose concentration (30.24 g L− 1). 

Manmai et al. [67] studied the chemical pretreatment of sorghum 
stalk (SS) and sugarcane leaf (SL) for bioethanol production. The authors 
carried out RSM by using CCRD, which generated 29 experiments. They 
analyzed three variables: temperature (30–40 ◦C), NaOH concentration 
(1–3% w.v− 1), and time (1–3 days). Statistical analysis by ANOVA 
showed that the second-order model was statistically significant (F test 
and P-value < 0.05), but the lack of fit was not significant, with R2 

values of 0.9981 and 0.9917 for SS and SL, respectively. This indicated 
that the results were well fitted to the model, and that the model can be 
used to obtain the optimal conditions. Thus, the optimal conditions were 
2% NaOH, 40 ◦C, and 3 days, which yielded the highest total sugar 
concentrations (38.977 and 32.621 g L− 1 for sorghum stalk and sugar
cane leaf, respectively). 

5. Using RSM in enzymatic hydrolysis 

During enzymatic hydrolysis, cellulases and hemicellulases depoly
merize cellulose and hemicellulose to hexoses (glucose, galactose, and 
mannose) and pentoses (xylose and arabinose), respectively. The three 
main groups of cellulases involved in the hydrolysis reaction are endo
glucanases, 4-β-D glucan cellobiohydrolases, and β-glucosidases [68, 
69]. Compared to acid hydrolysis, enzymatic hydrolysis is more ad
vantageous because it requires less energy and milder experimental 
conditions and is less corrosive and toxic [68]. 

Enzymatic hydrolysis is the central step in 2G ethanol biorefineries, 
so optimization of this stage has been investigated to increase the effi
ciency of biomass conversion to bioproducts. A high concentration of 
reducing sugars, such as glucose, can increase the fermentation effi
ciency, which allows for higher conversion to ethanol to be achieved 
[19,20]. 

Fig. 3 represents the enzymatic hydrolysis process and shows the 
main factors and responses that are involved in this stage: 

Because factors or independent variables such as temperature, pH, 
reaction time, and substrate concentration can affect enzymatic diges
tion, the effect of all the factors and their interactions must be assessed 
when enzymatic hydrolysis is optimized. RSM has frequently been used 
for this purpose (Table 3) together with CCRD and the Box-Behnken 
Design. 

Lavudi et al. [61] optimized the second stage of ethanol production 
from pretreated sweet sorghum by using RSM and CCRD. More specif
ically, they studied and optimized substrate concentration (10–15%), 
concentration of the enzymatic cocktail Celluclast (10–20 IU.g-dwt− 1), 
incubation temperature (40–60 ◦C), and incubation time (24–60 h). The 
statistical analyses of the data showed that the four factors significantly 
affected (p < 0.05) sugar production. Thus, the authors obtained the 
regression mathematical model by considering these variables, which 
allowed them to build the response surface and to obtain the optimum 
conditions (15% substrate concentration, incubation at 60 ◦C, 20 IU. 
g-dwt− 1 Celluclast, and incubation time of 58 h). Enzymatic hydrolysis 
in the optimum conditions allowed them to obtain 68.41 g mL− 1 glucose 
and 6.1 g mL− 1 xylose. 

Ben Taher et al. [69] used the Box-Behnken Design and RSM to 
optimize potato peel enzymatic hydrolysis for ethanol production in 27 
runs. The studied factors were temperature (30–60 ◦C), pH (5–8), sub
strate concentration (2–10%), and surfactant surface (0–1%). The data 
were fitted to a second-order model (p < 0.05), which was built with the 
regression coefficients of the significant variables. Only the interaction 
pH x substrate concentration was not statistically significant (p > 0.05), 
so the authors did not include this coefficient in the model. The response 
surface was generated from the model, and the optimum 
conditions–45 ◦C, pH 5, 10% substrate, and 0.5% surfactant–resulted in 
77.1 g L− 1 reducing sugars. The authors validated the model 
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experimentally and verified that the experimental data agreed with the 
predicted values. 

Bhagwat and Kumar [70] optimized pretreated Parthenium hyster
ophorus biomass saccharification. The study comprised two steps. First, 
the authors carried out PBD to evaluate the effect of five factors, namely 
temperature (40–60 ◦C), pH (2–7), moisture content (60–100%), sub
strate load (1–5 g), incubation time (24–96 h), and enzyme load (0.1–1 
mL) by using only 12 experiments. The results showed that the 

temperature, pH, enzyme load, and substrate load significantly affected 
sugar yield (mg.g− 1 of dry biomass weight). In the second step, they 
accomplished an optimization study for which they used RSM and 
considered these four factors. To this end, they carried out Box-Behnken 
Design, which allowed them to find the ideal conditions to obtain high 
released sugars yield (550.6 ± 1.20 mg g− 1 of dry biomass), namely 
30 ◦C, pH 4.5, 0.25% enzyme load, and 0.25% substrate load. 

Irfan et al. [71] also used the Box-Behnken Design with RSM to 

Fig. 3. Representative scheme of the variables that were studied and optimized in the enzymatic hydrolysis stage by using DoE tools and RSM.  

Table 3 
Response Surface Methodology (RSM) applied in the enzymatic hydrolysis stage.  

Type of design Number of 
experiments 

Independent variables Measured responses Optimized conditions Optimized response Ref. 

Central 
Composite 
Rotational 
Design 
(CCDR) 

20 Substrate concentration, 
temperature, Celluclast 
concentration, and incubation 
time 

Glucose and xylose 
concentration (g.L− 1) from 
saccharification of 
pretreated sweet sorghum 
bagasse 

Substrate concentration (15%), 
temperature (60 ◦C), Celluclast 
concentration (20 IU.g-ds-1), and 
incubation time (58 h) 

68.41 g L− 1 glucose and 
6.1 g L− 1 xylose 

[61] 

Box-Behnken 27 Temperature, pH, substrate 
concentration, and surfactant 
concentration 

Reducing sugars 
concentration (g.L− 1) from 
saccharification of potato 
peel 

Temperature (45 ◦C), pH (5.0), 
substrate concentration (10%), and 
surfactant concentration (0.5%) 

77.1 g L− 1 reducing sugars [69] 

Box-Behnken 29 Temperature, pH, enzyme 
load, and substrate load 

Reducing sugars 
concentration (mg.g− 1) 
from saccharification of 
pretreated Parthenium 
hysterophorus biomass 

Temperature (30 ◦C), pH (4.5), 
enzyme load (0.25%), and substrate 
load (0.25%) 

550.6 ± 1.20 mg g− 1 

reducing sugars 
[70] 

Box-Behnken 15 Substrate concentration, 
enzyme concentration, and 
incubation time 

Percentage (%) of 
saccharification of wheat 
straw 

Substrate concentration (2%), 
enzyme concentration (0.5%), 
incubation time (6 h), and 
temperature (50 ◦C) 

40.12% wheat straw 
saccharification 

[71] 

Central 
Composite 
Rotational 
Design 
(CCRD) 

27 Cellulase enzyme load (FPU. 
g− 1 of substrate), β-glucosidase 
enzyme load (U.g− 1 of 
substrate), hydrolysis 
temperature (◦C), and 
hydrolysis time 

Glucose and xylose 
concentration (mg.g− 1 of 
substrate) from 
saccharification of narrow- 
leaf cattail 

Cellulase enzyme load (13.50 FPU/g 
of substrate), β-glucosidase enzyme 
load (16.50 U/g of substrate), 
hydrolysis temperature (50 ◦C), and 
hydrolysis time (24 h) 

Glucose (552.9 mg g− 1 of 
substrate) and xylose (74 
mg g− 1 of substrate) 

[72] 

Box-Behnken 29 Temperature (◦C), reaction 
time (h), pH, and enzyme load 
(mL) 

Reducing sugars yield (%) 
from saccharification of 
corn and rice straw 

Reaction time of 3.84 h and 
temperature of 51.45 ◦C at high 
enzyme dosage (2 mL) 

1.42% of reducing sugar 
yield for saccharification of 
corn straw 
1.61% of reducing sugar 
yield for saccharification of 
rice straw 

[73] 

Box-Behnken 15 Time (h), substrate load (%), 
and enzyme load 

Reducing sugars 
concentration (mg.g− 1) 

8 h, 2% substrate load, and 4% 
enzyme load 

116.93 mg g− 1 reducing 
sugars for saccharification 
of wheat bran 

[74] 

Central 
Composite 
Rotational 
Design 
(CCRD) 

29 Cellulase load (U.g− 1), 
xylanase load (U.g− 1), pH, and 
temperature (◦C) 

Reducing sugars 
concentration (g.L− 1) 

9 U g− 1 cellulase load, 9 U g− 1 

xylanase load, pH 5, and incubation 
temperature at 30 ◦C 

29.20 g L− 1 reducing 
sugars for saccharification 
of pretreated Cedrus 
deodara (deodar) sawdust 

[75] 

Box-Behnken 15 Enzyme concentration (% w. 
w− 1), reaction time (h), and 
liquid solid ratio (v.w− 1) 

Dry basis glucose (g.L− 1) 
and wet basis glucose (g. 
L− 1) 

For dry basis saccharification: 5% w. 
w− 1 enzyme, reaction for 51 h, and 
liquid solid ratio of 5:1 v.w− 1. For wet 
basis saccharification: 5% w.w− 1 

enzyme concentration, reaction for 
48 h, and liquid solid ratio of 5:1 v. 
w− 1 

For dry basis 
saccharification: 125.2 g 
L− 1 glucose. For wet basis 
saccharification: 130 g L− 1 

glucose 

[76]  
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optimize alkali pretreated wheat straw saccharification. The pretreated 
wheat straw contained 83% cellulose, 10.5% hemicelluloses, and 4.5% 
lignin. The authors considered three factors for the optimization: sub
strate concentration (2, 2.5, and 3.0%), commercial cellulase enzyme 
concentration (0.25, 0.50, and 0.75%), and incubation time (6, 8, and 
10 h). They kept the reaction temperature at 50 ◦C. The dataset was 
fitted to a second-order mathematical model, which was statistically 
significant (p < 0.05), but the coefficient of determination of model was 
low (R2 = 0.778895). The authors did not show the lack of fit of the 
mathematical model, but the residues revealed that the observed values 
might differ from the predicted values by up to 69.77%. The optimum 
conditions given by the response surfaces were 2% wheat straw, 0.5% 
enzyme, incubation for 6 h, and 50 ◦C, which gave maximum sacchar
ification of 40.12%. 

For ethanol production from narrow-leaf cattail, Ruangmee and 
Sangwichien [72] used RSM to optimize enzymatic hydrolysis. Previ
ously, they treated narrow-leaf cattail with 5% w.v− 1 NaOH, which 
resulted in a material containing 65.8% cellulose, 16.2% hemicellulose, 
12.1% lignin, and 5.9% ash. The authors accomplished CCRD by 
considering four factors with five levels: cellulase enzyme load (5–25 
FPU.g− 1 of substrate), β-glucosidase load (0–20 U g− 1 of substrate), 
hydrolysis temperature (30–50 ◦C), and hydrolysis time (24–96 h). They 
obtained a second-order model or glucose and xylose release as a 
function of the studied factors. They evaluated these models in two 
states: full and reduced. The authors demonstrated that the F-value for 
the reduced models was higher after backward elimination of 
non-significant terms. The p-value of lack of fit of the reduced models 
was also greater (p > 0.05) and was considered more accurate for pre
diction. The optimum conditions were obtained from the glucose pro
duction model, which had higher R2 than the xylose production model. 
By using the optimized conditions (13.50 FPU.g− 1 of substrate for the 
cellulase enzyme, 16.50 U g− 1 of substrate for β-glucosidase, hydrolysis 
temperature of 50 ◦C, and hydrolysis time of 24 h), enzymatic hydrolysis 
of narrow-leaf cattail yielded 552.9 and 74 mg of released glucose.g− 1 of 
substrate (45.6% saccharification), respectively. 

Chen et al. [73] recently optimized enzymatic hydrolysis of rice and 
corn straw by using RSM with the Box-Behnken Design, which enhanced 
the reducing sugars yield of a unique GH5 cellulase, AgCMCase from 
Aspergillus glaucus. The studied factors and their levels were temperature 
(50, 60, and 70 ◦C), time (2, 3, and 4 h), pH (5, 6, and 7), and enzyme 
dosage (1, 1.5, and 2 mL). The authors obtained second-order mathe
matical models with high regression coefficients for rice and corn straw 
(0.9402 and 0.93, respectively). The linear coefficients for reaction time 
and enzyme dose, the quadratic coefficients for temperature and reac
tion time, and the interaction terms (reaction time x enzyme dose) were 
statistically significant (p < 0.05). The reaction time and temperature 
had greater significance for the enzymatic activity and, consequently, 
for the reducing sugars production. The enzyme lost its activity at high 
temperature, whereas a mid-level temperature increased the reducing 
sugars production. Thus, the optimum condition involved milder reac
tion conditions: 3.84 h and 51.4 ◦C, which resulted in reducing sugars 
production of 1.61% for rice straw degradation. By comparing this result 
with the value obtained in the initial condition (reaction time of 3 h and 
temperature of 60 ◦C), the authors concluded that RSM allowed straw 
degradation to be increased by 1.52-fold. 

Silva et al. [74] employed the Box-Behnken Design and RSM to 
optimize the saccharification of wheat bran; they used the endogluca
nase from Botrytis ricini URM 5627 and analyzed the following factors 
and their levels: time (4, 8, and 12 h), percent substrate load (1, 2, and 
3%), and percent enzyme load (3, 4, and 5%). They built a predictive 
mathematical model from the regression coefficient. The Pareto graph 
showed that both the linear and quadratic enzymatic load and quadratic 
time influenced saccharification the most. The second-order model was 
statistically significant and did not have lack of fit according to ANOVA. 
Therefore, the model fit the experimental results well. The authors built 
the response surface from a reduced second-order model (R2 = 0.9983) 

and found that the optimum conditions to achieve the highest concen
tration of reducing sugars (116.93 mg g− 1) were reaction time of 8 h, 2% 
substrate load, and 4% enzyme load. 

Raina et al. [75] used RSM based on Central Composite Design (CCD) 
to optimize the saccharification of pretreated Cedrus deodara (deodar) 
sawdust. After determining the optimized conditions for acid pretreat
ment (1.5% HCl concentration, 10% biomass load, and 30-min incuba
tion time), the authors optimized the enzymatic hydrolysis of the 
pretreated biomass. They performed 29 experiments to evaluate the 
following factors and their levels: cellulase load (5–13 U g− 1), xylanase 
load (5–13 U g− 1), pH (4.5–5.5), and temperature (28–32 ◦C). The ob
tained second-order model was statistically significant (p < 0.0001) 
according to ANOVA and was confirmed by the correlation between the 
experimental and theoretical results, which gave a correlation factor R2 

(0.9801) close to the adjusted value (R2 = 0.9602). The maximum value 
of reducing sugars (29.20 g L− 1) was obtained with 9 U/g cellulase load, 
9 U g− 1 xylanase load, pH 5, and incubation at 30 ◦C, which was close to 
the predicted value of 28.08 g L− 1. 

Guarneros-Flores at al [76]. used RSM and the Box-Behnken design 
to optimize the enzymatic saccharification of sweet sorghum bagasse 
(dry basis and wet basis), a biomass composed of 34–44% cellulose, 
25–27% hemicellulose, and 18–20% lignin. The authors evaluated 03 
factors with 03 levels: enzyme concentration (5, 6, and 7% w.w− 1), re
action time (24, 48, and 72 h) and liquid solid ratio (5, 7, and 9 v.w− 1). 
They generated the regression coefficient of the second-order model for 
both responses, dry and wet basis glucose. The statistical significance of 
the coefficients was evaluated by a Student’s t-test with p value at a 
confidence level of 95%. For the dry and wet basis saccharification, the 
coefficient of determination (R2) was 0.9505 and 0.926, respectively, 
which showed that both models fit the experimental data well. The 
authors mentioned that the lack of fit was not significant in any of the 
cases, but ANOVA analysis was not shown. For dry basis glucose, the 
optimum conditions were 5% (w/w) enzyme concentration, reaction for 
51 h, and 5:1 v.w− 1 liquid solid ratio, which yielded the highest glucose 
concentration (125.2 g L− 1). For wet basis saccharification, the optimum 
conditions were 5% w.w− 1 enzyme concentration, reaction for 48 h, and 
5:1 v.w− 1 liquid solid ratio, which gave the highest glucose concentra
tion (130 g L− 1). 

6. Using RSM in the fermentation stage 

Sugar fermentation by fermenting microorganisms can be conducted 
via different processes, such as simultaneous saccharification and 
fermentation (SSF), enzymatic hydrolysis and separate fermentation 
(SHF), and simultaneous saccharification and co-fermentation (SSCF) 
[77]. Starch SSF is an efficient and economical method to produce 
ethanol because it requires less costly equipment. Saccharomyces cer
evisiae and Zymomonas mobilis are the two main species used on the in
dustrial scale of bioethanol production [78]. Lignocellulosic biomass 
saccharification can release several sugars, like glucose, cellodextrins, 
and pentoses. Saccharomyces cerevisiae preferentially uses glucose as a 
primary carbon source because this yeast does not contain specific 
natural transporters of xylose or cellobiose and cannot use these sugars 
as carbon sources [79]. However, some authors have tested mutant 
yeasts that can ferment both xylose and glucose. 

The fermentation process is recognized as a limiting factor for large- 
scale production and commercialization of bioethanol, so it is important 
to evaluate and to understand the effect of different parameters involved 
in this process. Some parameters that are commonly evaluated to ach
ieve the optimum and most economically viable production are shown 
in Fig. 4. 

RSM techniques have been applied to optimize factors such as tem
perature, sugar concentration, pH, fermentation time, agitation rate, 
medium composition, and inoculum size, among others, and to enhance 
alcohol production [80]. Table 4 lists some works that have optimized 
fermentation process conditions to improve ethanol production. Some 
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authors initially performed a screening design such as PBD to select the 
factors that they later optimized by using RSM with CCRD or the 
Box-Behnken Design. 

Gawande and Patil [81] studied ethanol production from damaged 
corn grain in a process involving SSF and an A. niger and S. cerevisiae 
co-culture. The authors evaluated three factors (and their levels), pH 
(5–6), temperature (28–32 ◦C), and substrate concentration (8–16%), by 
CCRD. ANOVA of the results evidenced that only the linear and 
quadratic coefficients of pH and temperature were statistically signifi
cant (p < 0.05). The authors did not show the reduced model and did not 
determine the lack of fit of the model. Response surface analyses pro
vided the optimized conditions that afforded the maximum predicted 

ethanol production yield (4.24 g.(100 mL)− 1) after 48 h: pH of 5.6, 
31 ◦C, and 12% substrate. Ethanol productivity was 0.88 g L− 1 h− 1. The 
authors did not test these conditions experimentally, which is an 
important step to evaluate the validity of model. 

Hossain et al. [82] initially employed PBD followed by the 
Box-Behnken Design to optimize bioethanol production from potato peel 
residues. For the screening design, the analyzed factors (and levels) were 
related to the composition of the fermentation medium, namely malt 
extract (0.5–5 g.L− 1), tryptone (0.2–2 g.L− 1), MgSO4⋅7H2O (0.005–0.05 
g L− 1), (NH4)2SO4 (0.2–2 g.L− 1), KH2PO4 (0.1–1 g.L− 1), CaCl2⋅2H2O 
(0.005–0.05 g L− 1), Na2HPO4 (0.25–2.5 g L− 1), and NaCl (0.1–1 g.L− 1). 
The results showed that only the factors malt extract, tryptone, and 

Fig. 4. Representative scheme of the variables that were studied and optimized in the fermentation stage by using DoE tools and RSM.  

Table 4 
Response Surface Methodology applied in the fermentation stage.  

Type of Design Number of 
experiments 

Independent variables Response Optimized conditions Optimized response Ref. 

Central 
Composite 
Rotational 
Design 
(CCRD) 

20 pH, temperature (◦C), and substrate 
concentration (%) 

Ethanol concentration 
(g. L− 1) from damaged 
corn grains 

pH (5.6), temperature (31 ◦C), and 
substrate concentration (12%) 

4.24 g.(100 mL)− 1 

ethanol ethanol 
productivity 0.88 (g 
L− 1 h− 1). 

[81] 

Box-Behnken 15 Malt extract (g.L− 1), Tryptone (g.L− 1), 
and KH2PO4 concentration (g.L− 1) 

Ethanol concentration 
(g.L− 1) from potato peel 
waste 

Malt extract (25 g L− 1), Tryptone 
(0 g L− 1), and KH2PO4 (2.5 g L− 1) 

21.3 g L− 1 ethanol [82] 

Box-Behnken 15 Yeast extract (g.L− 1), Malt extract (g. 
L− 1), and MgSO4⋅7H2O concentration 
(g.L− 1) 

Ethanol concentration 
(g.L− 1) from industrial 
potato waste 

Malt extract (50.0 g L− 1), 
MgSO4⋅7H2O concentration (4.84 
g L− 1), and yeast extract (0.0 g L− 1) 

24.6 g L− 1 ethanol [83] 

Box-Behnken 27 Substrate concentration (g.L− 1), pH, 
fermentation time (h), and Na2HPO4 

concentration (g.L− 1) 

Ethanol concentration 
(g.L− 1) from sugarcane 
bagasse with 
hydrolysate 

Substrate concentration (40 g L− 1), 
pH (4.5), fermentation time (48 h), 
and Na2HPO4 (0.15 g L− 1) 

14.44 g L− 1 ethanol [84] 

Fractional 
Factorial 

27 Temperature (◦C), substrate 
concentration (%), enzyme load (FPU.g- 
glucan− 1), and yeast concentration (g. 
L− 1) 

Ethanol concentration 
(g.L− 1) from sweet 
sorghum bagasse 

Temperature (35 ◦C), enzyme load 
(29 FPU.g-glucan− 1), substrate 
concentration (10%), and yeast 
concentration (1.4 g L− 1) 

39 g L− 1 ethanol [85] 

Central 
Composite 
Rotational 
Design 
(CCRD) 

50 Initial sugar concentration (g.L− 1), 
bacterial dry weight (g), peptone weight 
(g), yeast extract weight (g), and time 
(h) 

Ethanol concentration 
(g.L− 1) from potato peel 
(PP) wastes 

Initial sugar concentration (61.3 g), 
bacterial dry cell (0.024 g), meat 
peptone (0.35 g), yeast extract 
(0.35 g), and fermentation time 
(31 h). 

23.3 g L− 1 ethanol [86] 

Box-Behnken 17 Yeast titre, temperature (◦C), and 
enzyme load (U.g− 1) 

Ethanol concentration 
(g.L− 1) from sugarcane 
bagasse 

yeast titre (1 time), enzyme load 
(100 U g− 1) and temperature 
(39 ◦C). 

4.88 g L− 1 ethanol [87] 

Central 
Composite 
Rotational 
Design 
(CCRD) 

31 to SHF and 
32 to SSF 

For SHF: temperature (◦C), incubation 
time (h), inoculum volume (v.v− 1) and 
inoculum age (h). For SSF, the same, 
with the addition of the substrate load 
(w.v− 1) variable 

Ethanol concentration 
(g.L− 1) from a mixture 
of lignocellulosic 
biomass 

For SSF: inoculum volume (8% v. 
v− 1), temperature (38.18 ◦C), 
inoculum age (44.84 h), incubation 
time (30 h), and substrate load (w. 
v− 1). 
For SHF: inoculum volume (8% v. 
v− 1), temperature (38.18 ◦C), 
inoculum age (24 h), and 
incubation time (27.33 h) 

41.9 g L− 1 ethanol 
from SSF and 25.49 g 
L− 1 ethanol from SHF 

[88] 

SHF: Separate hydrolysis and fermentation, SSF: Simultaneous saccharification and fermentation. 
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KH2PO4 significantly impacted bioethanol production (p < 0.05). In the 
next step, the authors optimized these factors on the basis of RSM with 
the Box-Behnken Design. Only malt extract had a positive linear influ
ence on ethanol production when potato peel waste was used as carbon 
source. The optimum medium composition to maximize ethanol pro
duction by using Wickerhamia sp. was 25 g L− 1 malt extract, 0 g L− 1 

tryptone, and 0 g L− 1 KH2PO4, which resulted in the predicted value of 
21.05 g L− 1 ethanol. The experimental value was close to the 
model-predicted value (21.7 g L− 1 ethanol after fermentation for 96 h). 

Izmirlioglu and Demirci [83] studied another potato residue for 
bioethanol production by S. cerevisiae. They optimized industrially hy
drolyzed potato waste fermentation for bioethanol production by 
employing a strategy similar to the one used by Hossain et al. [58]. 
Initially, they conducted PBD to evaluate the influence of the factors 
(and their levels) yeast extract (0.5–5 g.L− 1), malt extract (2–20 g L− 1), 
(NH4)2SO4 (2–6 g.L− 1), MgSO4⋅7H2O (0.2–2 g.L− 1), KH2PO4 (0.5–3 g. 
L− 1), CaCO3 (0.2–2 g.L− 1), FeSO4⋅7H2O (0.01–0.1 g L− 1), and 
CaCl2⋅2H2O (0.3–3 g.L− 1) on ethanol production from glucose, as sub
strate. Medium supplementation with yeast extract (g.L− 1), malt extract 
(g.L− 1), and MgSO4⋅7H2O (g.L− 1) affected ethanol production posi
tively, while KH2PO4 and CaCl2⋅2H2O exerted a negative effect. There
fore, the authors selected the first three variables to optimize ethanol 
production from potato waste by using RSM along with the Box-Behnken 
Design, which allowed them to obtain the second-order polynomial 
equation for ethanol production and cell population data. To obtain the 
model, the authors excluded the non-significant terms from the equa
tion. The linear coefficients of malt extract and MgSO4⋅7H2O and the 
quadratic coefficient of MgSO4⋅7H2O were significant for ethanol pro
duction, whereas only the linear and quadratic coefficients of malt 
extract were significant for cell population. The ideal medium compo
sition was 50.0 g L− 1 malt extract and 4.84 g L− 1 MgSO4⋅7H2O without 
yeast extract, which yielded 24.6 g L− 1 ethanol. 

Dasgupta et al. [84] optimized sugarcane bagasse fermentation by 
Kluyveromyces sp. IIPE453 (MTCC 5314) to maximize ethanol produc
tion by using a strategy that resembled the strategies employed by 
Izmirlioglu and Demirci [59] and Hossain et al. [58]. Initially, the au
thors performed PBD to estimate whether the factors pH (4.5–5.5), 
fermentation time (24–48 h), substrate concentration (20–40 g L− 1), 
yeast extract (1–5 g.L− 1), MgSO4 (0.06–0.12 g L− 1), (NH4)2SO4 (1–5 g. 
L− 1), Na2HPO4 (0.1–0.45 g L− 1), KH2PO4 (0.15–0.45 g L− 1), and inoc
ulum volume (5–10% v.v− 1) impacted bioethanol production signifi
cantly. In the following step, they conducted the Box-Behnken Design to 
optimize the pH, substrate concentration, sodium di-hydrogen phos
phate, and fermentation time to maximize ethanol production. Statisti
cal analyses of the data showed that the linear coefficients and the 
interactions between pH and substrate concentration, substrate con
centration and Na2HPO4 concentration, and fermentation time and 
Na2HPO4 concentration were statistically significant (p < 0.05). The 
quadratic coefficients were not significant. ANOVA of the unreduced 
regression model showed that the model was statistically significant (p 
< 0.05) and had high R2

pred (0.96). The authors did not show the 
reduced regression model after backward elimination of non-significant 
terms. By using the full model, the authors found the optimal con
ditions—40 g L− 1 substrate, pH 4.5, fermentation for 48 h, and 0.15 g 
L− 1 Na2HPO4—that yielded the maximum ethanol concentration pre
dicted by the model (17.39 g L− 1). The model was experimentally 
validated by employing the optimum conditions for fermentation, 
yielding a final ethanol concentration of 17.44 g L− 1, which was close to 
the value predicted by the model. 

Ethanol production by SSF (Simultaneous saccharification and 
fermentation) of pretreated sweet sorghum bagasse was optimized by 
using a fractional 34 factorial experimental design with a total of 27 
experiments [85]. The effect of the factors (at three levels) temperature 
(35, 40, and 45 ◦C), sorghum bagasse concentration (4, 7, and 10%), 
enzyme load (10, 20, and 30 FPU.g-glucan− 1), and yeast concentration 
(0.5, 1, and 1.5 g L− 1) on ethanol yield, production rate, and 

concentration were evaluated. By considering all the terms (significant 
and non-significant), a second-order polynomial equation was obtained 
for each analyzed response However, statistical analyses demonstrated 
that only the linear and quadratic coefficients of temperature and the 
quadratic coefficient of yeast concentration were statistically significant 
(p < 0.05). In addition to the coefficient of the interaction cellulase 
loading x yeast concentration, similar coefficients also had significance 
for the ethanol production rate model (p < 0.05). As for ethanol con
centration, the linear and quadratic coefficients of temperature, the 
linear coefficient of bagasse solid concentration, the quadratic coeffi
cient of yeast concentration, and the interaction temperature x bagasse 
solid concentration were statistically significant (p < 0.05). To find the 
optimum conditions, the response surfaces were generated from the full 
models for each response. Thus, the optimal conditions for maximum 
ethanol yield (98.8%) were 37 ◦C, 25 FP.g− 1 of glucan enzyme load, 7% 
solid bagasse, and 1.3 g L− 1 yeast, whereas the maximum ethanol con
centration (39 g L− 1) was achieved at 35 ◦C, 29 FPU.g− 1 of glucan 
enzyme load, 10% solid bagasse, and 1.4 g L− 1 yeast. The maximum 
expected rate of ethanol production was 6.42 g L− 1 h− 1, which was 
obtained with the following conditions: 45 ◦C, 30 FPU.g− 1 of glucan 
enzyme load, 4% solid, and 1.5 g L− 1 yeast. Other authors have used 
optimization of multiple responses to obtain a desirability function from 
the ethanol yield, concentration, and production rate models [57,58]. 
Screening design has also been employed to optimize the process, which 
is not recommended because important information can be lost. In 
addition, for 3⁴ experiment, 81 experiments should have been carried 
out, but the authors only conducted 27 experiments. Screening design is 
only used to study how factors affect the responses. However, the au
thors generated response surfaces by employing the mathematical 
model they obtained during screening design. 

Mazaheri and Pirouzi [86] investigated Zymomonas mobilis to pro
duce bioethanol from potato peel (PP) wastes by optimizing the 
fermentation process. Initially, the authors performed an enzymatic 
hydrolysis on potato peel for the fermentable sugars to be released. After 
that, they used the hydrolysate for ethanol fermentation by Z. mobilis; 
they employed the experimental conditions (50 runs) according to CCRD 
and optimized the fermentation process by RSM. The authors optimized 
the following factors: initial sugar concentration (40–70 g L− 1), bacterial 
dry weight (0.010–0.030 g), peptone weight (0.0–0.5 g), yeast extract 
weight (0.0–0.5 g), and time (24–48 h). According to ANOVA, the p 
value was <0.0001, demonstrating that the model was significant. The 
model included the factors initial sugar concentration (A), bacterial dry 
weight (B), peptone weight (C), yeast extract weight (D), and their in
teractions AB, AC, and BC; the quadratic coefficients A2 and C2 were also 
significant (p < 0.05). The authors obtained maximum ethanol con
centration of 23.3 g L− 1 for 61.3 g L− 1 initial sugar concentration, 0.024 
g of bacterial dry cell, 0.35 g of meat peptone, 0.35 g of yeast extract, 
and fermentation time of 31 h. 

Jugwanth at al [87]. applied RSM with the Box-Behnken design 
(BBD) to optimize the simultaneous saccharification and fermentation of 
salt-alkali pretreated sugarcane bagasse (SCB). The studied parameters 
and their levels were yeast titre (1,3 and 5 times), temperature (30, 40 
and 50 ◦C), and enzyme loading (20, 60, and 100 U g− 1) in a total of 17 
experiments. The authors obtained the second-order model from 
ANOVA, which showed high F value (5.21) and low p-value (0.0203), 
indicating that the model was significant. Moreover, the lack of fit was 
not significant, demonstrating that the experimental values fit the model 
well. The predictability of the model proved to be adequate, as judged 
from the high value of the coefficient of determination (R2 = 0.87). The 
authors achieved the highest ethanol concentration (4.88 g L− 1) under 
the conditions of 1 time of yeast titre, 100 U g− 1 enzyme load, and 
temperature of 39 ◦C. 

Althuri and Banerjee [88] accomplished the Central Composite 
design (CCD) with RSM to obtain the optimum conditions of separate 
hydrolysis and fermentation (SHF) and simultaneous saccharification 
and fermentation (SSF), to enhance ethanol productivity by using 
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Saccharomyces cerevisiae. The authors designed a CCD with 31 and 32 
experiments to optimize SHF and SSF, respectively. For SHF, they tested 
the following conditions: temperature (30–40 ◦C), incubation time 
(18–30 h), inoculum volume (8–12% v.v− 1), and inoculum age (24–72 
h). For SSF, they analyzed the same conditions as well as substrate load 
(15–25% w.v− 1). According to ANOVA, the model had F values of 32.07 
and 387.42 for SHF and SSF, respectively, with p < 0.001 in both cases, 
indicating that the model was statistically significant. They achieved the 
highest ethanol productivity in SSF (1.396 g L− 1 h− 1), at 80 U g− 1 

cellulase load, 8% (v.v− 1) inoculum volume, temperature of 38.18 ◦C, 
25% substrate load, inoculum age of 44.84 h, and incubation time of 30 
h. However, SHF provided lower ethanol production (0.929 g L− 1 h− 1) at 
8% (v.v− 1) inoculum volume, inoculum age of 24 h, temperature of 
38.18 ◦C after 27.33 h, and 139.9 U g− 1 cellulase load. The ethanol 
concentration was 41.9 g L− 1 for SSF versus 25.49 g L− 1 for SHF. 

7. Conclusion 

On the basis of this review, researchers investigating 2G ethanol 
production have been widely using Response Surface Methodology 
(RSM) with DoE tools to improve the efficiency of the ethanol produc
tion stages: pre-treatment, enzymatic hydrolysis, and fermentation. DoE 
tools such as the Central Composite Design and Box-Behnken Design 
have been the most employed to find the optimum conditions to maxi
mize sugar release during pretreatment or enzymatic hydrolysis or to 
enhance ethanol production during fermentation. We consider that, to 
achieve the desired success, researchers must choose the factors and 
their levels correctly, which can be accomplished by means of screening 
designs, such as the Fractional Factorial Design and Plackett Burman 
Design. Few studies used a screening design when more than five factors 
are being evaluated; the Placket-Burman Design was the most applied 
for this purpose. Screening designs also allow the levels of factors to be 
identified and changed when a CCRD or the Box-Behnken Design is 
applied in the optimization study by RSM. On the other hand, the use of 
screening design to optimize the process is not recommended because a 
reduction in the number of experiments affects the design resolution and 
causes important information to be lost. Another fact to consider is that 
correct statistical analysis of the data is necessary when the second-order 
polynomial model achieved by using CCRD or the Box-Behnken Design 
is used to predict a response in other non-studied conditions. In this 
review, we have seen that many authors included the statistically sig
nificant and non-significant coefficients in the models and generated 
response surfaces by using these models. Few authors correctly followed 
the procedure to obtain the reduced mathematical model to predict the 
response. In addition, some authors did not conduct the determination 
of model lack of fit or experimentally validate the optimum conditions. 
These analyses must be carried out to evaluate the prediction of the 
mathematical models. Finally, the works presented here did not use 
analyses of multiple response to determine the optimum conditions 
when they analyzed more than one response. We hope this tool will be 
used in future works. 
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