5930300 – Química Quântica Lista 3

- 1. Use a teoria do orbital molecular para explicar porque a energia de dissociação do N_2 é maior que aquela do N_2^+ , mas a energia de dissociação do O_2^+ é maior que a do O_2 .
- 2. Preveja as estabilidades relativas das espécies $N_2,\,N_2^+$ e $N_2^-.$
- 3. Determine o termo espectroscópico do estado fundamental de O_2 , N_2 , N_2^+ e O_2^+ .
- 4. Na aproximação de Born-Oppenheimer, assumimos que devido a enorme diferença de massa entre os núcleos e os elétrons, os elétrons podem se ajustar essencialmente instantaneamente a qualquer movimento nuclear e, portanto, temos uma única energia bem definida, E(R), a cada separação internuclear R. Dentro desta mesma aproximação, E(R) é o potencial internuclear e é o potencial no qual os núcleos vibram. Com base nesta ideia, justifique porque, dentro da aproximação de Born-Oppenheimer, a constante de força é independente de substituição isotópica. Empregando esta mesma linha de raciocínio, e dado que a energia de dissociação para o H₂ é D₀ = 432,1 kJ mol⁻¹ e que a frequência vibracional fundamental ν é 1,319 ×10¹⁴ s⁻¹, calcule D₀ e ν para a molécula de deutério, D₂. Note que a energia de dissociação observada é dada por:

$$D_0 = D_e - \frac{1}{2}h\nu$$

em que D_e é o valor de E(R) em R_e .

- 5. Discuta as propriedades de ligação de ${\rm F_2}$ e ${\rm F_2^+}$ usando a teoria do orbital molecular.
- 6. As constantes de força para moléculas diatômicas de B₂ a F₂ são dadas na tabela abaixo. Esta é a ordem que você esperaria? Explique.

Molécula diatômica	$k / \text{N} \cdot \text{m}^{-1}$
B_2	350
C_2	930
N_2	2260
O_2	1140
$_{-}$	450

Dica: Compare os dados da tabela com a ordem de ligação das moléculas.

- 7. Deduza o termo espectroscópico do estado fundamental das seguintes moléculas diatômicas: $H_2^+, H_2, He_2^+, Li_2, B_2, C_2 \in F_2$. R.: $H_2^+ \to^2 \Sigma_g^+, H_2 \to^1 \Sigma_g^+, He_2^+ \to^2 \Sigma_u^+, Li_2 \to^1 \Sigma_g^+, B_2 \to^3 \Sigma_g^-, C_2 \to^1 \Sigma_g^+ \in F_2 \to^1 \Sigma_g^+$.
- 8. Preveja as forças de ligação e os comprimentos de ligação relativos para a molécula diatômica de carbono, C_2 , e seu íon negativo, C_2^- .

 Dica: Determine as ordens de ligação.
- 9. Determine as configurações eletrônicas do estado fundamental de ${\rm NO^+}$ e ${\rm NO}$. Compare as ordens de ligação dessas duas espécies.

- 10. Determine a ordem de ligação do íon cianeto.
- 11. A molécula CH_3Cl pertence ao grupo C_{3v} . Dê os elementos de simetria do grupo e localize-os em um desenho da molécula.
- 12. A molécula CCl_4 pertence ao grupo T_d . Dê os elementos do grupo e localize-os em um desenho da molécula.
- 13. Dê os elementos de simetria das seguintes moléculas e identifique o grupo de simetria a que pertencem:
 - (i) NO_2 ,
 - (ii) N_2O ,
 - (iii) CHCl₃,
 - (iv) $CH_2 = CH_2$.
- 14. Quais, dentre as moléculas seguintes, podem ser polares?
 - (i) CH₃Cl,
 - (ii) $HW_2(CO)_{10}$,
 - (iii) SnCl₄.
- 15. As moléculas pertencentes aos grupos pontuais D_{2h} ou C_{3h} podem ser quirais? Explique sua resposta.
- 16. Dê os elementos de simetria das seguintes moléculas e identifique o grupo de simetria a que cada uma pertence:
 - (a) CH₃CH₃ na conformação alternada,
 - (b) ciclo-hexano na conformação cadeira e bote,
 - (c) B_2H_6 ,
 - (d) $[Co(en)_3]^{3+}$, em que en é a etilenodiamina (1,2-diaminoetano; não eleve em conta a sua estrutura),
 - (e) S_8 na forma coroa.

Quais, dentre essas moléculas, podem ser (i) polares e (ii) quirais?

- 17. Explique o que se quer dizer com "grupo".
- 18. Mostre que todas as três operações \hat{C}_3 no grupo D_{3h} pertencem à mesma classe.
- 19. O grupo C_{2h} é constituído pelos elementos E, C_2, σ_h, i . Construa a tabela de multiplicação do grupo e dê um exemplo de uma molécula que pertença ao grupo.
- 20. Construa a tabela de multiplicação das matrizes de spin de Pauli, σ , e da matriz unidade 2×2 :

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \sigma_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

As quatro matrizes formam um grupo com relação à operação de multiplicação?