

UNIVERSIDADE DE SÃO PAULO

Faculdade de Zootecnia e Engenharia de Alimentos

ZAB1111 - ESTATÍSTICA BÁSICA

Aula 13

INTERVALO DE CONFIANÇA PARA A PROPORÇÃO, VARIÂNCIA E DESVIO PADRÃO

3.2.2. INTERVALO DE CONFIANÇA PARA A PROPORÇÃO

O IC para a proporção (p) com coeficiente de confiança γ é definido para situações em que temos grandes ou pequenas amostras. Não discutiremos o IC(p) exato baseado na distribuição binomial.

a) Para **grandes amostras** (Teorema do Limite Central):

$$IC(p; 100\gamma\%) = \left[\hat{p} - z_c \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}; \hat{p} + z_c \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right]$$

b) Para **pequenas amostras** (Intervalo de Confiança Conservativo):

$$IC(p; 100\gamma\%) = \left[\hat{p} - z_c \sqrt{\frac{0.25}{n}}; \hat{p} + z_c \sqrt{\frac{0.25}{n}}\right]$$

Fixando o valor do coeficiente de confiança (γ) o **erro amostral** ou **margem de erro** da estimativa da proporção (\hat{p}) é calculada por:

$$\varepsilon_{\hat{p}} = z_c \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Exemplo 3.4 Construir um *IC* para a proporção de eleitores favoráveis ao candidato José da Silva, com 99% de confiança, sabendo-se que de uma pesquisa envolvendo uma amostra de 1000 eleitores, somente 248 foram favoráveis à sua eleição.

Resolução:

- $\hat{p} = 248/1000 = 0,248$ é a proporção de eleitores favoráveis ao candidato.
- Para $\gamma = 0.99 = P(-z_c < Z < z_c) \Rightarrow z_c = 2.58$

• Como o tamanho da amostra, n = 1000, é grande, temos:

$$IC(p; 99\%): 0.248 \pm 2.58 \sqrt{\frac{0.248(1-0.248)}{1000}} = 0.248 \pm 0.035$$

 $\Rightarrow IC(p; 99\%) = [0.213; 0.283]$

Conclusão: Este intervalo de amplitude 0,07 contém a verdadeira proporção de eleitores favoráveis à eleição do candidato José da Silva, com 99% de confiança.

Notícia: "A proporção de eleitores favoráveis à eleição do candidato José da Silva é de 24,8%, com margem de erro de 3,5 pontos percentuais para mais ou para menos, com 99% de confiança".

Tamanho de amostra para estimar a proporção p

Fixando a confiança (γ) e a margem de erro ($\varepsilon_{\hat{p}}$) pode-se estimar o **tamanho ideal de uma amostra** para estudar a proporção (p) utilizando:

- $n = \hat{p}(1-\hat{p})\left(\frac{z_c}{\varepsilon_{\hat{p}}}\right)^2$ se tivermos uma boa estimativa \hat{p} obtida de alguma pesquisa anterior ou de uma pesquisa piloto.
- $n=0.25 \Big(\frac{z_c}{\varepsilon_{\widehat{p}}}\Big)^2$ se não tivermos qualquer informação a priori da proporção.

Exemplo. Simular o tamanho de amostra para uma pesquisa eleitoral sobre o candidato José da Silva, usando diferentes coeficientes de confiança e diferentes margens de erro, sabendo que, de pesquisas anteriores, $\hat{p} = 0.248$.

$arepsilon_{\widehat{p}}$	0,050	0,040	0,030	0,020	0,010	0,005
$\gamma = 0.90$	204	318	565	1270	5078	20310
$\gamma = 0.95$	287	448	797	1792	7165	28658

Note que:

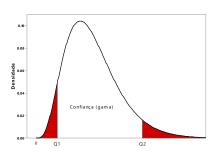
- Quanto menor a margem de erro que queremos no resultado da pesquisa, maior é o tamanho da amostra.
- Quanto maior a confiança que se quer no resultado da pesquisa, maior é o tamanho da amostra.

3.2.3. INTERVALO DE CONFIANÇA PARA A VARIÂNCIA (σ^2)

$$IC(\sigma^2, 100\gamma\%) = \left[\frac{(n-1)s^2}{Q_2}, \frac{(n-1)s^2}{Q_1}\right]$$

Onde s^2 é a variância amostral; Q_1 e Q_2 são os valores críticos da distribuição quiquadrado (Tábua II) com v=n-1 graus de liberdade, tais que

$$\gamma = P(Q_1 < Q < Q_2)$$
, com $Q \sim \chi^2_{(n-1)}$



Observe que a distribuição quiquadrado não é simétrica e está definida somente para os reais positivos. Isso dificulta a obtenção dos valores críticos, Q_1 e Q_2 .

Exemplo: Obter os valores críticos Q_1 e Q_2 , para $\gamma = 1 - p = 0.95$ e $\nu = 15$ gl.

 $Q_1 = 6,262$ é obtido no cruzamento da linha v = 15 g.l. com a coluna p = 0,975.

 $Q_2 = 27,49$ é obtido no cruzamento da linha v = 15 g.l. com a coluna p = 0,025.

Exemplo 3.3. Construir um IC(90%) para a variância dos ganhos de peso de animais alimentados com certa ração por 15 dias.

Resolução: n = 10 e $s^2 = 0,3081$. Da Tábua 2, com 9 gl e $\gamma = 0,90$ obtemos $Q_1 = 3,325$ (p = 0,95) e $Q_2 = 16,919$ (p = 0,05).

Então:

$$IC(\sigma^2, 90\%) = \left[\frac{(9-1)0,3081}{16,919}, \frac{(9-1)0,3081}{3,325}\right]$$
$$= [0,1639; 0,8340] kg^2$$

Conclusão: Este *IC* contém a verdadeira variância dos ganhos de peso dos animais alimentados com a ração por 15 dias, com 90% de confiança.

3.2.4. INTERVALO DE CONFIANÇA PARA O DESVIO PADRÃO (σ)

Para calcular os limites de confiança, basta calcular a raiz quadrada dos limites do intervalo de confiança para a variância:

$$IC(\sigma, 100\gamma\%) = \left[\sqrt{\frac{(n-1)s^2}{Q_2}}, \sqrt{\frac{(n-1)s^2}{Q_1}}\right]$$

No **Exemplo 3.3**: um *IC* para o desvio padrão dos ganhos de peso dos animais é dado por:

$$IC(\sigma; 90\%) = [\sqrt{0,1639}; \sqrt{0,8340}] kg = [0,405; 0,913]kg$$

Conclusão: Este *IC* contém o verdadeiro desvio padrão dos pesos dos animais alimentados com certa ração por 15 dias, com 90% de confiança.

EXERCÍCIOS

1) O tamanho de tilápias (em cm) aos 3 meses de idade tem distribuição normal com média e variância <u>desconhecidas</u>. Com nos comprimentos (cm) de 15 tilápias:

Pede-se:

- a) Calcular um IC para a média, com 90% de confiança
- b) Calcular um *IC* para o desvio padrão dos comprimentos, com 95% de confiança.

2) A eleição para prefeito em certa cidade tem somente dois candidatos, sendo um deles, o atual prefeito. Uma pesquisa foi feita com 500 eleitores e somente 220 disseram que votariam nele.

Calcule um IC para a proporção de eleitores que votarão no atual prefeito e comente sobre o resultado. Baseado no IC(p) ele pode se considerar eleito?