

Introdução aos Elementos de Máquinas

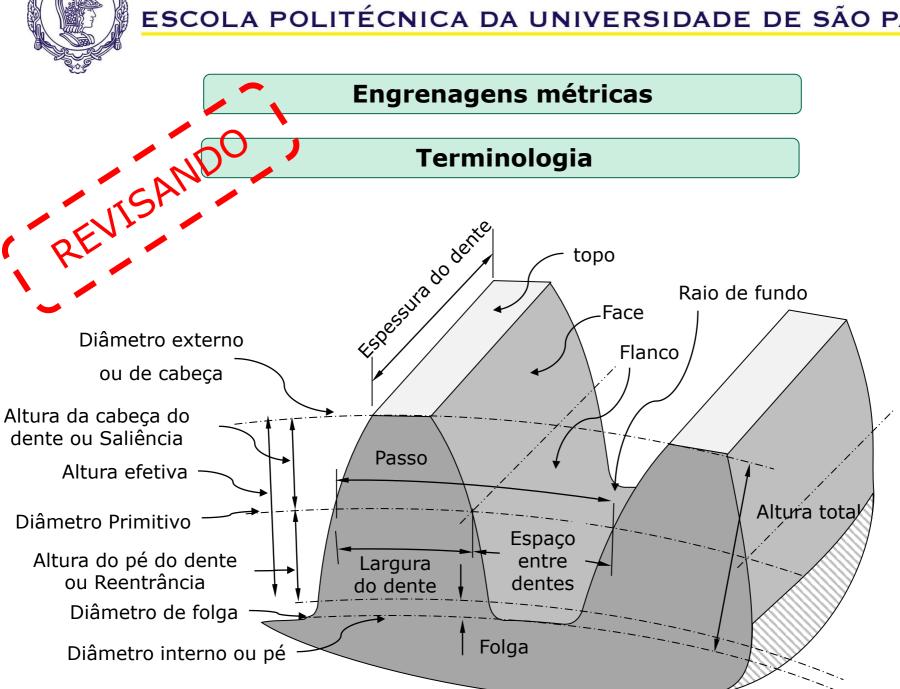
PMR 3320 - A12

Introdução ao projeto de engrenagens Dimensionamento AGMA

2023.2



Tópicos


Capítulos 13, 14 e 15 do Shigley's Mechanical Engineering Design, Eighth Edition, McGraw-Hill Primis, 2006

- Equação de Lewis para flexão
- Durabilidade da superfície
- Equações de tensão da AGMA
- ► Equações de deformação da ► Fator de razão de dureza CH **AGMA**
- ► Fator geométrico *I* e *J* (*ZI* e *YJ*)
- Fator de Coeficiente elástico *Cp* (ZE)
- Fator dinâmico Kv
- Fator de sobrecarga *Ko*
- Fator de condicionamento de superfície *Cf* (*ZR*)

- Fator de forma Ks
- ▶ Fator de distribuição de carga *Km* (KH)
- Fator de ciclo de vida de tensão YN e ZN
- ► Fator de confiabilidade KR (YZ)
- Fator de temperatura KT ($Y\theta$)
- Fator de espessura de Rim *KB*
- Fatores de segurança SF e SH
- Análise
- Projeto de *mesh* de engrenagens

Engrenagens Imperiais (polegadas)

Terminologia

REVISANO Largura da tace topo Raio de fundo Face Flanco Diâmetro de Adendun **Passo** Adendun Diâmetro Pitch Espaço Dedendun Largura entre dentes do dente Diâmetro de folga Diâmetro de Dedendun Folga

Terminologia das engrenagens

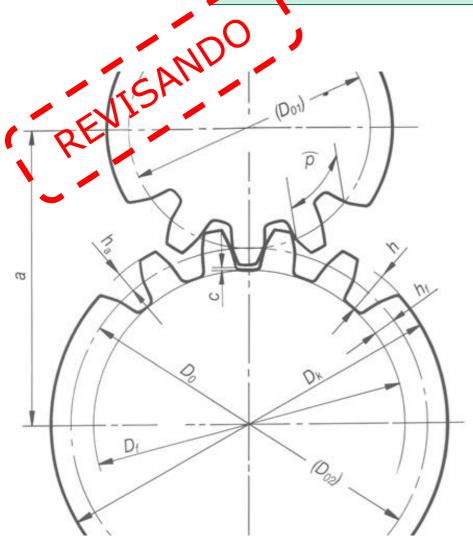
- Círcula Primitivo (Pitch circle) é o círculo teórico, sobre o qual
 cálculos são normalmente efetuados.
 - **Diâmetro Primitivo (pitch diameter) d** diâmetro do círculo primitivo.
- ▶ Passo Primitivo (circular pitch) p é a distância, medida no círculo primitivo, de um ponto num dente, até ao ponto correspondente no dente adjacente. O passo primitivo é igual á soma da espessura do dente (tooth thickness) e intervalo entre dentes (width of space).
- ▶ Módulo (module) m é a razão entre o diâmetro primitivo, "d" e o número de dentes, "N". [m = d/N]
- ▶ Diametral Pitch P é a razão entre o número de dentes da engrenagem - N e o diâmetro primitivo - d. [P = N/d]

Terminologia das engrenagens

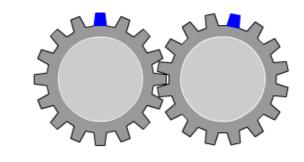
- Saliencia (addendum) a é a distância radial entre a superfície da coroa (topland) e o diâmetro primitivo.
 - **Reentrância (**dedendum
 de a distância radial entre a
 superfície da raiz (bottomland) e o diâmetro primitivo.
- Altura do dente (whole depth) ht é a soma da saliência e da reentrância.
- círculo de folga (clearance circle) é o círculo tangente ao círculo de saliência da engrenagem.
- ► Folga (clearance) c é a saliência subtraída da reentrância.
- ▶ Backlash é a quantidade que o intervalo entre dentes (width of space) excede a espessura do dente engrenado no círculo primitivo.

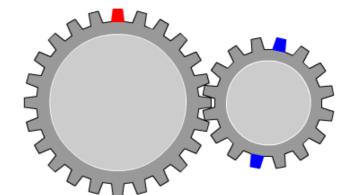
Grau de recobrimento

PMR-3320


Diâmetro externo ou de cabeça Salilencia Altura efetiva Dilametro Primitivo Recentrância o Diâmetro de folga Diâmetro ou pe	Face Ralo de fundo Flanco Flanco Flanco Altura total Espaço Go dente Floiga	Diâmetro de Adendun Adendun Diâmetro Pitch Decembun Diâmetro de Coga Diâmetro de Decembun	Passo Face Flanco Face Flanco Face Flanco Flanco
	orma ISO		A – Shigley
Numero de dentes	Z	Número de dentes	N
Módyło	m	Módulo	m
Passo	t_0	Circular pitch	p
Largura do dente	S_0	Largura do dente	t
Espaço entre dentes	l_0	Espaço entre dentes	
Diâmetro primitivo	d_0	Diâmetro pitch	d
Diâmetro entre centros	a_0	Diâmetro entre centros	C
Altura comum do dente	h	Altura comum do dente	h
Altura da cabeça do dente	h_k	Addendum	a
Altura do pé do dente	h_f	Dedendum	b
Altura do dente	h_z	Altura do dente	h_t
folga	S_k	folga	C
Diâmetro externo	d_k	Diâmetro de addendum	D_a
Diâmetro do pé do dente	d_f	Diâmetro de raiz	D_R
Diâmetro de base	d_g	Diâmetro de trabalho	D_K
Ângulo de pressão	α_0	Ângulo de pressão	ϕ
Relação de transmissão	i	Relação de transmissão	i
passo na linha de engrenan	t_e	passo na linha de engrenar	? 8
		_ ~ .	

Razão de contato


 m_p



Leis do engrenamento

$$i = \frac{d_2}{d_1} = \frac{n_1}{n_2} = \frac{Z_2}{Z_1} = \frac{\omega_1}{\omega_2} = \frac{r_2}{r_1}$$

$$z = \frac{d}{m} = \frac{D_a - 2m}{m}$$
módulo

$$p = \frac{\pi . d}{Z}$$

p = circular pitch

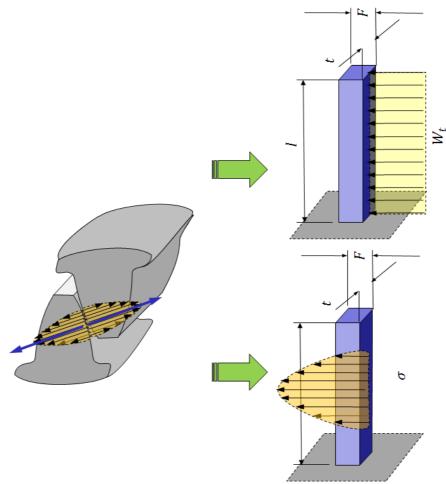
Módulos

A popula DIN 780 P1 e P2 definem o perfil do dente e as dimensões da envolvente e **MÓDULOS (m) normalizados**

Interferência

 Número mínimo de dentes para evitar problemas de interferência

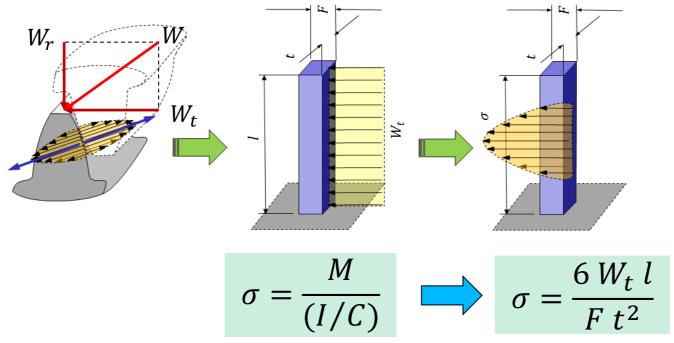
Número de		Númer	o de de	ntes da	engrena	agem		
dentes do			Ângul	o de cor	ntato			
pinhão	0	5	10	15	20	25	30	35
8								12
9							12	34
10						12	26	∞
					13	23	93	
12			12	16	24	57	œ	
13	16	17	20	27	50			
14	26	27	34	53	207			
15	45	49	69	181	90			
16	101	121	287	90				
17		96	96					

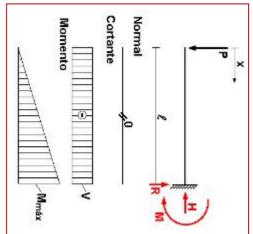


contato

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

Introdução


Um dente de engrenagem deve ser analisado sobe o pronto de vista dos esforços de flexão, fadiga e das tensões de



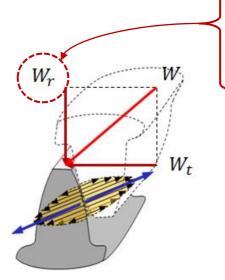
Equação de Lewis para flexão

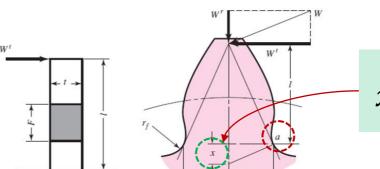
- Wilfred Lewis (1892) desenvolveu uma equação para estimar a tensão em um dente de engrenagem
- ▶ É a equação base no projeto de engrenagens

Relembrando!

Equação de Lewis para flexão

▶ Equação de Lewis:


$$\sigma = \frac{W_t P}{F Y}$$


► Onde:

$$Y = \frac{2x P}{3}$$

► Y – Fator de forma da Lewis

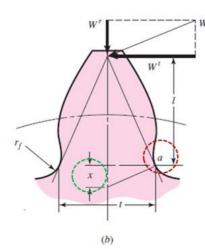
Isto significa que somente a flexão do dente é considerada, a compressão resultante da decomposição da força de contato é desprezada

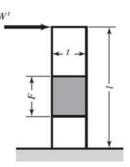
$$x = \frac{t^2}{4 l}$$

Equação de Lewis para flexão

Valores do fator forma de Lewis para um ângulo de contato de 20°, no diâmetro pitch.

$$\sigma = \frac{W_t P}{F Y}$$


Teeth	Y	Teeth	Υ
12	0.245	28	0.353
13	0.261	30	0.359
14	0.277	34	0.371
15	0.290	38	0.384
16	0.296	43	0.397
17	0.303	50	0.409
18	0.309	60	0.422
19	0.314	75	0.435
20	0.322	100	0.447
21	0.328	150	0.460
22	0.331	300	0.472
24	0.337	400	0.480
26	0.346	Rack	0.485



Equação de Lewis para flexão

► Considerações sobre a Equação de Lewis:

$$\sigma = \frac{W_t P}{F Y}$$

- O uso da equação de Lewis implica em considerar que o dente não compartilha o carregamento e que a máxima força é exercida no fim do dente
- Como a razão de contato pode ser maior do que 1, cerca de 1.5, é desconsiderado o efeito de distribuição do carregamento
- Mesmo que a engrenagem seja perfeitamente fabricada, assumir que o carregamento máximo ocorre na parte superior do dente é ser conservativo, pois mais de um dente deve estar em contato, reduzindo o carregamento.
- O exame do engrenamento revela que o carregamento ocorre no meio do dente
- A pior condição ocorre quando somente um par engrenado transmite todo o carregamento

Efeito dinâmico - Equação de Barth

- O carregamento no engrenamento é um problema dinâmico, é torna-se crítico em médias e altas velocidades.
- Ele representa a relação entre a falha de uma engrenagem e a velocidade pitch, atuando sob mesmo carregamento
- As normas ANSI/AGMA 2001-D04 e 2101-D04 definem o fator dinâmico como sendo maior do que 1.
- ightharpoonup Barth acrescenta um fator de correção dinâmica (K_v) a equação de Lewis

$$\sigma = \frac{W_t \ P}{F \ Y} \qquad \sigma = K_v \frac{W_t \ P}{F \ Y} \qquad \sigma = K_v \frac{W_t \ P}{F \ Y} \qquad Para sistema americano$$

$$\sigma = K_v \frac{W_t \ P}{F \ Y} \qquad \sigma = K_v \frac{W_t \ P}{F \ W_t} \qquad Para sistema americano$$

$$\sigma = K_v \frac{W_t \ P}{F \ M \ Y} \qquad Para sistema métrico$$

$$\sigma = K_v \frac{W_t \ P}{F \ M \ Y} \qquad Para sistema métrico$$

Onde: ⇒ m = módulo,

- ⇒ F = largura do dente em mm
- Wt = carregamento tangencial em MPa

Efeito dinâmico

▶ fator de correção dinâmica (K_v) (sistema métrico)

$$K_v = \frac{3,05 + V}{3,05}$$

 $K_v = \frac{3,05 + V}{3,05}$ Para engrenagens de fofo com perfil de dentes fundidos

$$K_v = \frac{6,01 + V}{6,01}$$

▶ Para engrenagens com perfil de dentes fresados

$$K_{v} = \frac{3,56 + \sqrt{V}}{3,56}$$

 $K_v = \frac{3.56 + \sqrt{V}}{3.56}$ Para engrenagens com perfil de dentes gerados

$$K_v = \sqrt{\frac{5,56 + \sqrt{V}}{5,56}}$$

 $K_v = \sqrt{\frac{5,56 + \sqrt{V}}{5,56}}$ Para engrenagens com perfil de dentes gerados e retificados

▶ V (m/s)

Equação AGMA de tensão/deformação

> As equações de Lewis/Barth são a base do sistema AGMA

$$\sigma = K_v \frac{W_t P}{F Y}$$

$$\sigma = K_v \frac{W_t P}{F Y} \qquad \qquad \sigma = K_v \frac{W_t}{F m Y}$$

A metodologia AGMA utiliza duas equações

tensões de deformação

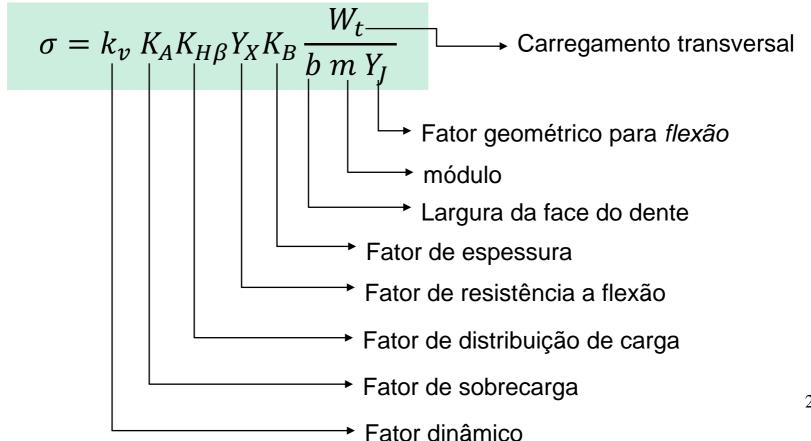
Efeito dinâmico

tensões de contato

$$\sigma = W_t K_o K_v K_s \frac{P_d}{F} \frac{K_m K_b}{I}$$

$$\sigma_c = C_p \sqrt{W_t K_o K_v K_s \frac{K_m}{d_p F} \frac{C_f}{l}}$$

$$\sigma = W_t K_o K_v K_s \frac{1}{b m_t} \frac{K_H K_B}{Y_i}$$


$$\sigma_c = Z_E \sqrt{W_t K_o K_v K_s \frac{K_H}{d_{w_1} b} \frac{Z_R}{Z_l}}$$

- **Unidades Americanas**
- Sistema métrico

Equação AGMA de tensão/deformação

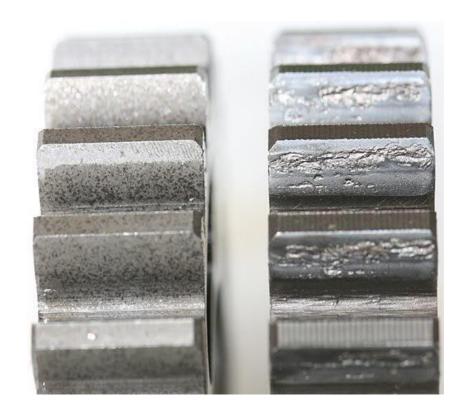
Na metodologia AGMA a equação de Lewis/Barth são corrigidas por uma série de fatores que procuram considerar todas as possíveis causas de falha de uma engrenagem.

Equação AGMA de tensão/deformação

Equação para tensão de flexão admissível

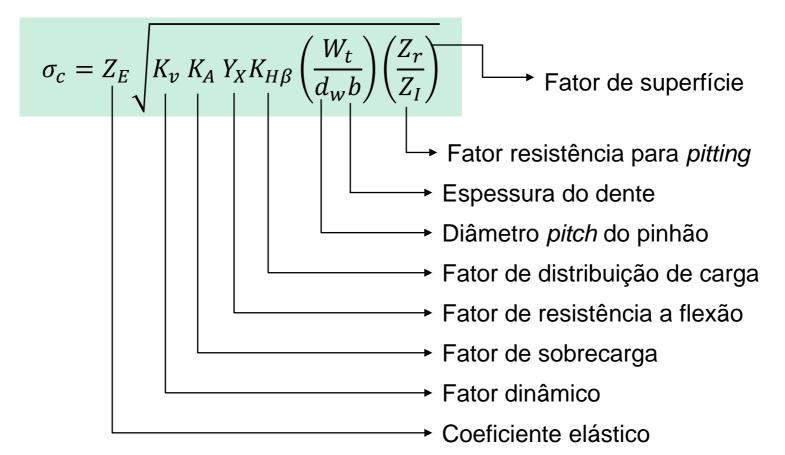
$$\sigma_{all} = \frac{S_t}{S_f} \frac{Y_n}{K_T K_R}$$
 • Unidades Americanas

$$\sigma_{all} = \frac{S_t}{S_f} \frac{Y_n}{Y_\theta Y_Z}$$
 Sistema métrico


Onde:

- \triangleright St = tensão de flexão permitida (N/mm²)
- $ightharpoonup Y_N = Fator do ciclo de tensão para tensão de dobramento$
- ightharpoonup K_T ou Y₀ fator de temperatura
- K_R ou Y₇ fator de confiabilidade
- $ightharpoonup S_F = fator de segurança AGMA$

Durabilidade da superfície

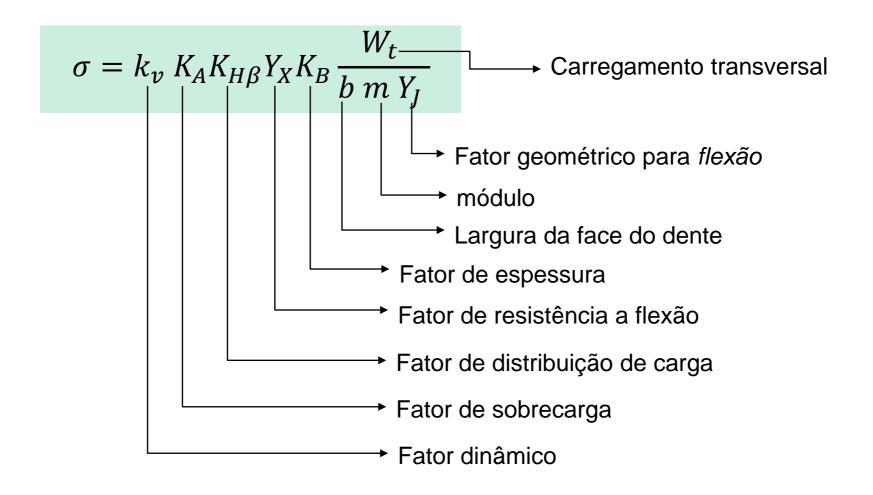

- Um dos modos de falha de engrenagens está relacionado a fadiga superficial dos dentes, pitting.
- Este é formado pela ação cíclica das tensões de contato que geram fadiga de contato

Equação AGMA de tensão de contato

Na metodologia AGMA a equação de Lewis/Barth são corrigidas por uma série de fatores que procuram considerar todas as possíveis causas de falha de uma engrenagem.

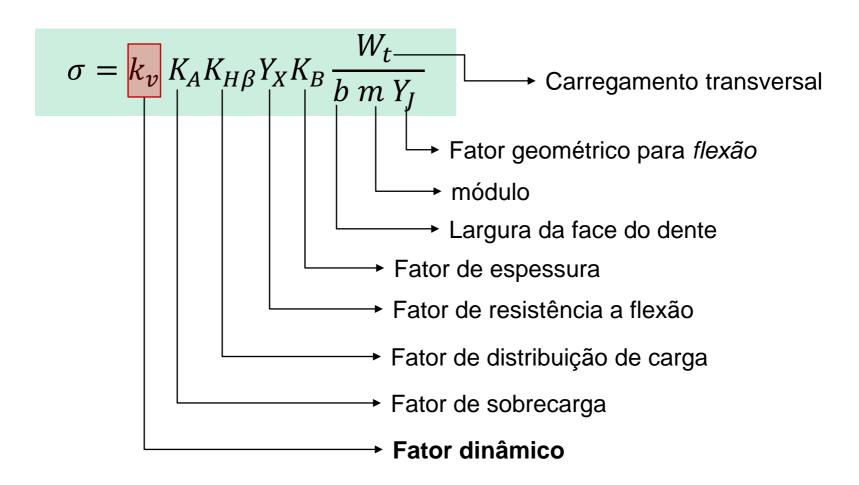
Equação AGMA de tensão/deformação

Equação para tensão de contato admissível


$$\sigma_{c_{all}} = \frac{S_C}{S_H} \frac{Z_n Z_w}{Y_\theta Y_Z}$$
 Sistema métrico

Onde:

- > S_C = tensão de contato admissível (N/mm²)
- \gt Z_N = Fator do ciclo de tensão
- K_T ou Y_θ fator de temperatura
- K_R ou Y₇ fator de confiabilidade
- > S_H = fator de segurança AGMA


Equação AGMA de tensão/deformação

Equação AGMA de tensão/deformação

▶ Fator dinâmico - k_v

Fator dinâmico K_v

- ▶ O fator dinâmico tenta compensar erros de manufatura e operação
- Os principais erros observados são:
 - Erros geométricos e dimensionais nos dentes resultantes da fabricação
 - Vibração do dente durante o engrenamento devido a sua rigidez
 - Intensidade da velocidade na linha de pitch
 - Desbalanceamento do elementos em rotação
 - Desgaste e deformação plástica na face de contato
 - Desalinhamentos lineares e angulares, resultantes da flexão dos eixos
 - Atrito nos dentes

Fator dinâmico K_v

- Para compensar estes erros a AGMA definiu graus de qualidade (quality numbers)
- Estes definem as tolerâncias para engrenagens de diversos tamanhos
- Graus de 3 a 7 engrenagens comerciais
- ▶ Graus de 8 a 12 engrenagens de precisão

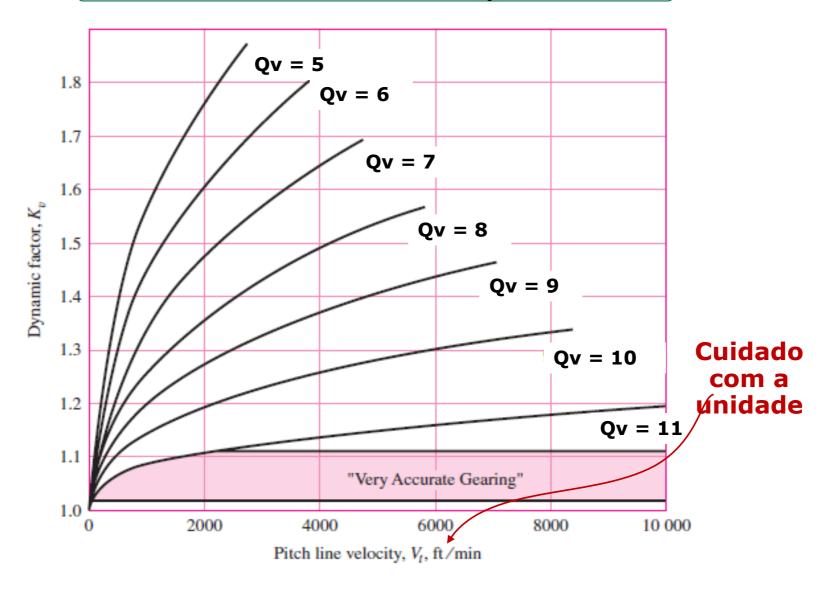
Fator dinâmico K_v

Equações para o fator dinâmico:

$$K_v = \left(\frac{A + \sqrt{V}}{A}\right)^{B}$$
 • Unidades Americanas

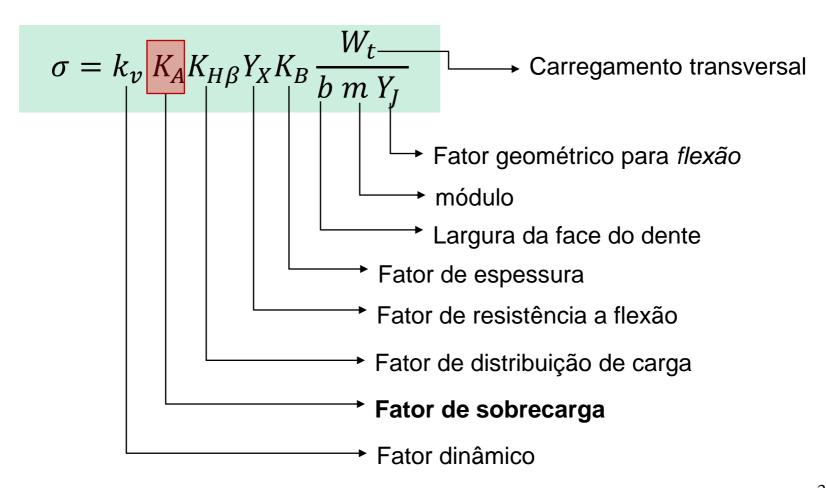
$$K_v = \left(\frac{A + \sqrt{200V}}{A}\right)^{\rm B}$$
 Sistema métrico

• Onde:
$$A = 50 + 56 (1 - B)$$
 $B = 0.25 (12 - Q_v)^{2/3}$


$$B = 0.25 (12 - Q_v)^{2/3}$$

$$V_{t_{max}} = (A + (Q_v - 3))^2$$
 • Unidades Americanas

$$V_{t_{max}} = \frac{(A + (Q_v - 3))^2}{200}$$
 > Sistema métrico


Fator dinâmico K_v

Equação AGMA de tensão/deformação

Fator de sobrecarga

Fator de sobrecarga K_A

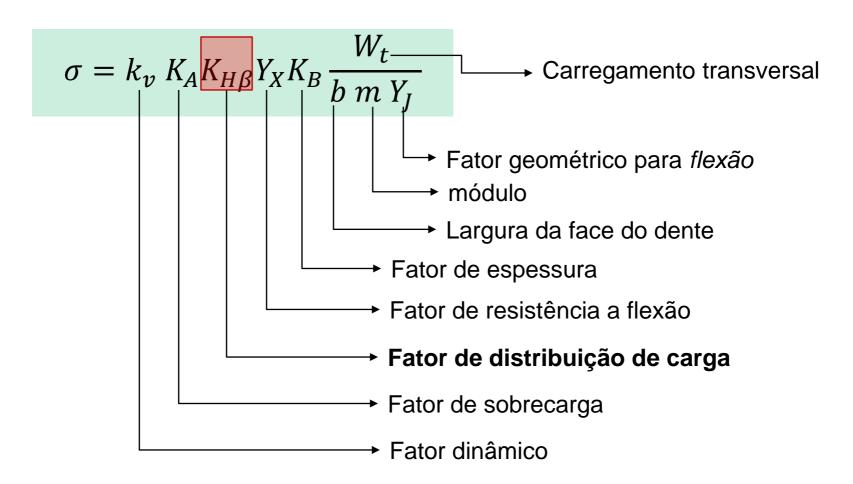
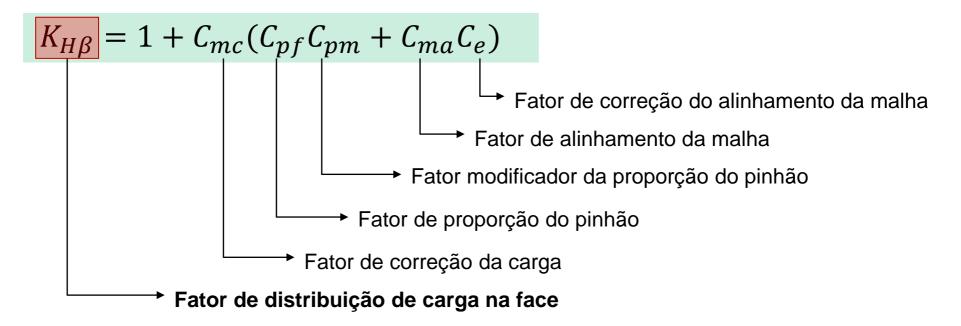

▶ Fator de sobrecarga - $K_A = K_o$

Table of Overload Factors, K_o $K_A = K_o$					
Driven Machine					
Power source	Uniform	Moderate shock	Heavy shock		
Uniform Light shock Medium shock	1.00 1.25 1.50	1.25 1.50 1.75	1.75 2.00 2.25		

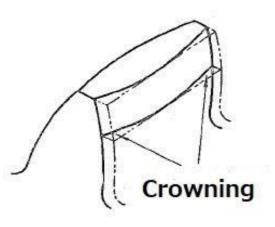
Equação AGMA de tensão/deformação

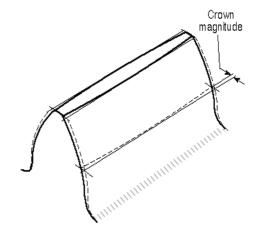

Fator de distribuição de carga

Fator de distribuição de carga - $K_{H\beta}$

Fator de distribuição de carga - $K_{H\beta}$

O fator de distribuição de carrega modifica as equações de tensões de forma a refletir uma distribuição não uniforme ao longo da linha de contato.




Fator de distribuição de carga - $K_{H\beta}$

ightharpoonup Fator de correção da carga - C_{mc}

$$K_{H\beta} = 1 + C_{mc}(C_{pf}C_{pm} + C_{ma}C_{e})$$
Fator de correção da carga

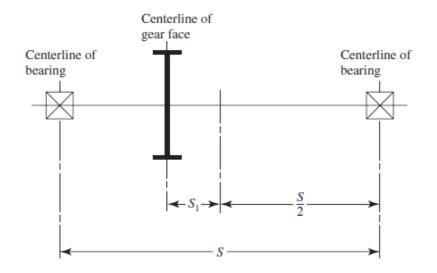
$$C_{mc} = \begin{cases} 1 & \text{for uncrowned teeth} \\ 0.8 & \text{for crowned teeth} \end{cases}$$

Fator de distribuição de carga - $K_{H\beta}$

ightharpoonup Fator de proporção do pinhão - C_{pf}

$$K_{H\beta} = 1 + C_{mc}(C_{pf}C_{pm} + C_{ma}C_{e})$$
Fator de proporção do pinhão

$$C_{pf} = \begin{cases} \frac{b}{10d} - 0.0025 & b \le 25,4 \text{ mm } (1 \text{ pol.}) \\ \frac{b}{10d} - 0.0375 + 0.0125b & 25,4 < b \le 431,8 \text{ mm } (17 \text{ pol.}) \\ \frac{b}{10d} - 0.1109 + 0.0207b - 0.000228 b^2 & 431,8 < b \le 1.016 \text{ mm } (40 \text{ pol.}) \end{cases}$$


onde: b = largura da face do dente d = espessura da engrenagem

Fator de distribuição de carga - $K_{H\beta}$

ightharpoonup Fator modificador de proporção do pinhão - C_{pm}

$$K_{Heta}=1+C_{mc}(C_{pf}C_{pm}+C_{ma}C_{e})$$
 Fator modificador da proporção do pinhão

Fator modificador da proporção do pinhão Como a engrenagem está montada no eixo

$$C_{pm} = \begin{cases} 1 & \Rightarrow \frac{S_1}{S} < 0,175 \\ \\ 1,1 & \Rightarrow \frac{S_1}{S} \ge 0,175 \end{cases}$$

Equação AGMA de tensão/deformação

ightharpoonup Fator alinhamento da malha - C_{ma}

$$K_{H\beta} = 1 + C_{mc}(C_{pf}C_{pm} + C_{ma}C_e)$$

Fator de alinhamento da malha

$$C_{ma} = A + B F + C F^2$$

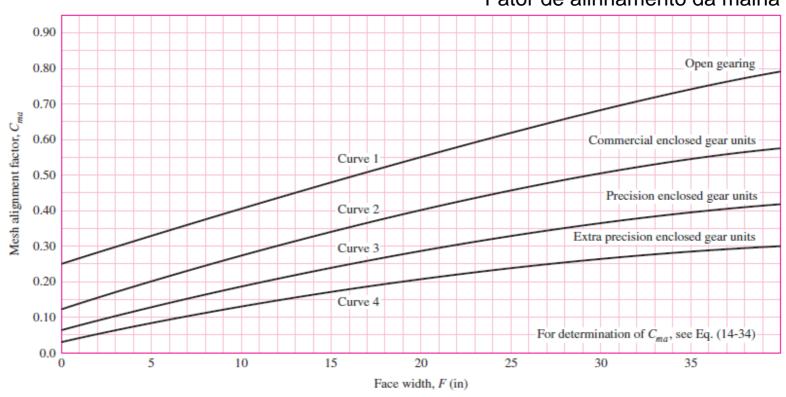
Onde **F** é a largura da face do dente em polegadas

Condition	A	В	С
Open gearing	0.247	0.0167	-0.765(10 ⁻⁴)
Commercial, enclosed units	0.127	0.0158	$-0.930(10^{-4})$
Precision, enclosed units	0.0675	0.0128	$-0.926(10^{-4})$
Extraprecision enclosed gear units	0.00360	0.0102	-0.822(10 ⁻⁴)

^{*}See ANSI/AGMA 2101-D04, pp. 20-22, for SI formulation.

$$C_{ma} = A + B\left(\frac{b}{25,4}\right) + C\left(\frac{b}{25,4}\right)^2$$

Onde **b** é a largura da face do dente em milímetros



Equação AGMA de tensão/deformação

ightharpoonup Fator alinhamento da malha - C_{ma}

$$K_{H\beta} = 1 + C_{mc}(C_{pf}C_{pm} + C_{ma}C_e)$$

Fator de alinhamento da malha

Equação AGMA de tensão/deformação

ightharpoonup Fator de correção do alinhamento da malha - \mathcal{C}_e

$$K_{H\beta} = 1 + C_{mc}(C_{pf}C_{pm} + C_{ma}C_{e})$$

Fator de correção do alinhamento da malha

$$C_e = egin{cases} 0.8 & \Rightarrow para\ engrenagens\ ajustadas\ na\ montagem, e\ ou\ ajustadas\ por\ lapidação \\ 1 & \Rightarrow para\ qualquer\ outra\ condição \end{cases}$$

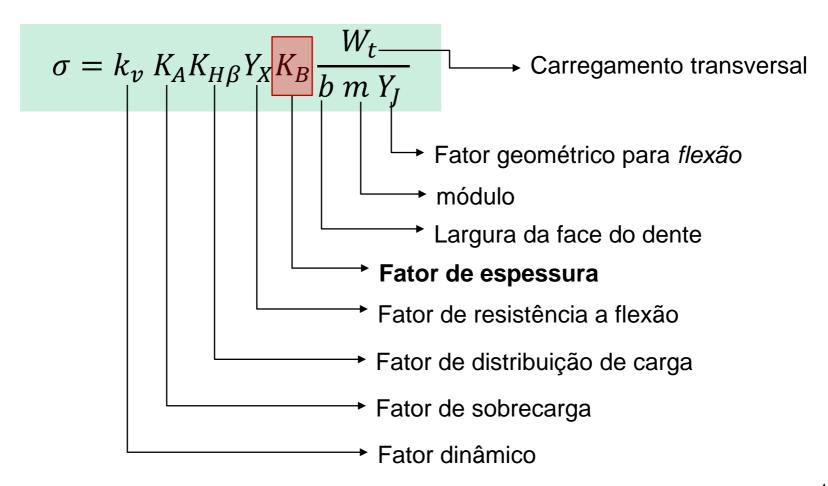
$$K_{H\beta} = 1 + C_{mc}(C_{pf}C_{pm} + C_{ma}C_e)$$

Equação AGMA de tensão/deformação

Fator de distribuição de carga

Equação AGMA de tensão/deformação

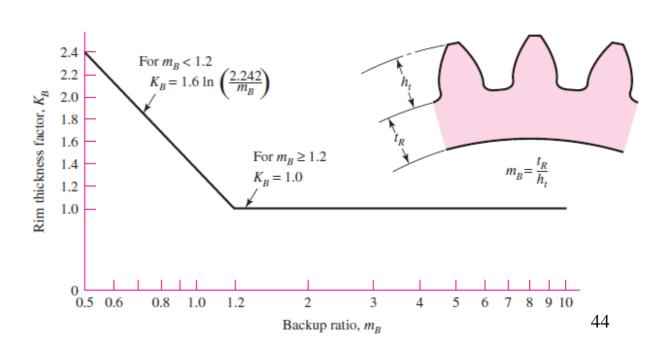
► Fator de resistência a flexão - Y_X ou K_s


$$K_S = Y_X = 1,192 \left(\frac{b\sqrt{Y}}{P}\right)^{0,0535}$$

 $K_S = Y_X = 1$ por recomendação da norma AGMA

Equação AGMA de tensão/deformação

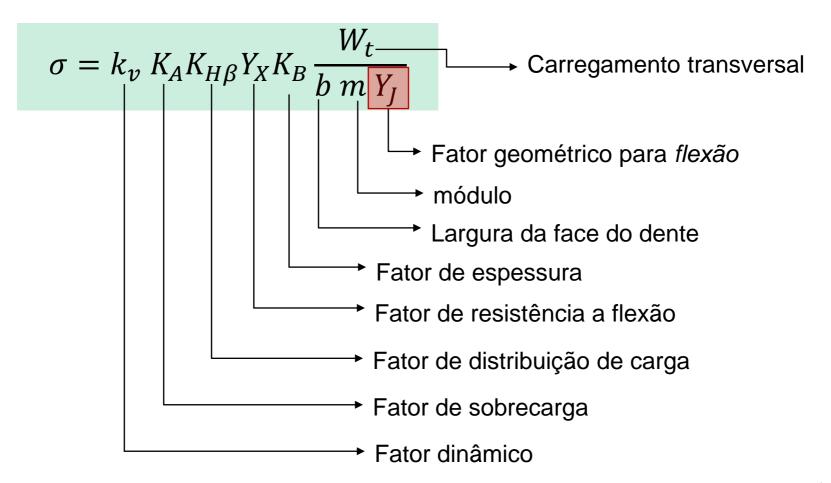
ightharpoonup Fator de espessura - K_B

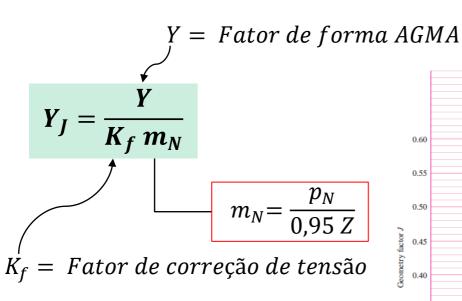


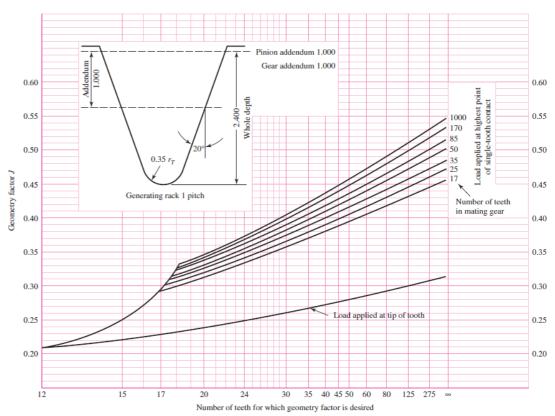
Fator de espessura - K_B

- \blacktriangleright O Fator de espessura da curvatura K_B , ajusta as estimativas da tesão de dobramento (flexão) para engrenagens de espessuras curvatura fina.
- ▶ O fator K_B depende do fator m_B:

$$m_B = \frac{t_R}{h_t}$$


$$K_B = \begin{cases} 1.6 \ln \frac{2.242}{m_B} & m_B < 1.2\\ 1 & m_B \ge 1.2 \end{cases}$$

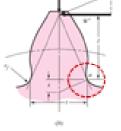

Equação AGMA de tensão/deformação


Fator geométrico para flexão - Y_I

Fator geométrico para flexão - Y_I

Fatores geométricos I e J

A equação de Lewis introduz um fator geométrico Y relativo a geometria do dente


Equação de Lewis

Assumindo que a é o ponto de máximo stress, temos:

$$\sigma = \frac{W_t}{F \ p \ y} \qquad \qquad x = \frac{t^2}{4 \ l}$$

$$x = \frac{t^2}{4 l}$$

- ► Como: $P = \frac{\pi}{v}$ e $Y = y.\pi$ ► Com P = diâmetro pitch
- Substituindo temos: $\sigma = \frac{W_t P}{F V}$
- ► Onde: $Y = \frac{2x P}{3}$ ► Isto significa que somente a flexão do dente é considerada, e a compressão resultante da decomposição da força de contato é desprezada

Fatores geométricos I e J

A determinação dos fatores geométricos \boldsymbol{I} e \boldsymbol{J} depende da razão de contato na face $\boldsymbol{m_F}$, definido como:

$$m_F = \frac{F}{P_X}$$

- ightharpoonup F = Largura do dente
- $ightharpoonup P_X = pitch axial (passo axial)$

Fatores geométricos I e J

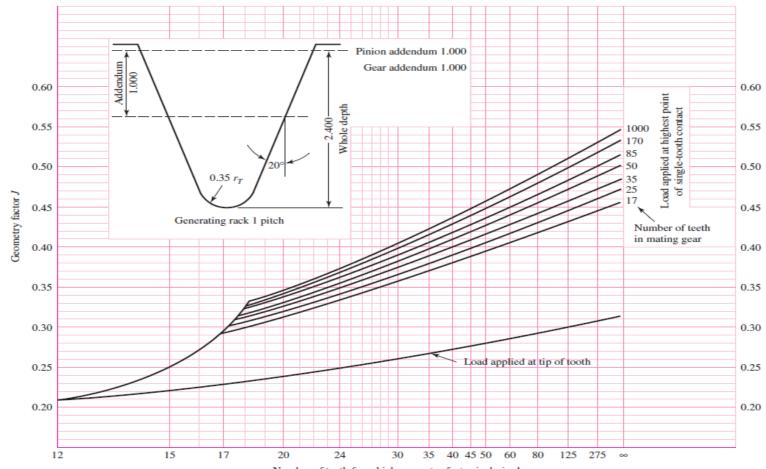
Fator de geométrico J de resistência ao dobramento :

$$J = \frac{Y}{K_f m_N}$$
 Onde: > m_N = razão de carregamento
> K_f = fator de correção de tensão AGMA

- O fator AGMA é empregado para modificar os valores do fator de forma da equação de forma
- ► Atenção esse Y não é o mesmo fator de forma da equação de Lewis

Fatores geométricos I e J

 $ightharpoonup m_N = razão de carregamento:$

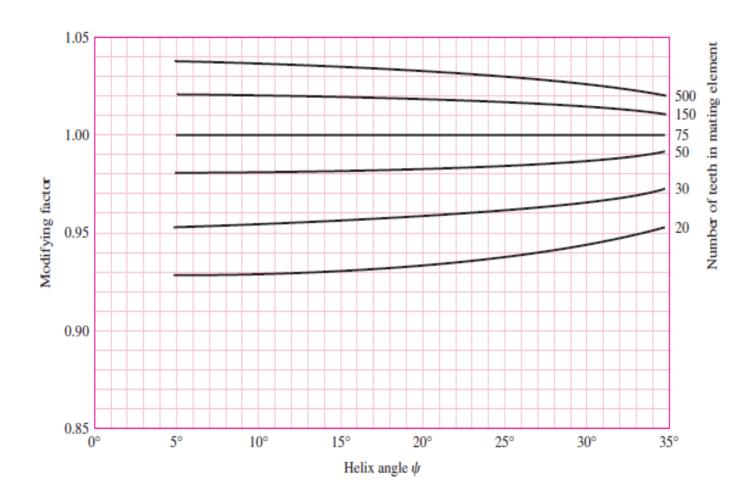

$$m_N = \frac{P_N}{0.95 Z}$$

- ► Onde:
 - $\triangleright P_N$ = Pitch normal a base
 - Z = comprimento da linha de ação no plano transversal

Fatores geométricos I e J


► Fator geométrico **J** para engrenagens cilíndricas de dentes retos com ângulo de pressão de 20°

Fatores geométricos I e J


▶ Fator geométrico \mathbf{J} para engrenagens helicoidais ângulo de pressão normal de 20°, e razão de contato $m_F=2$

Fatores geométricos I e J

Modificador do fator geométrico $\bf J$ para engrenagens helicoidais ângulo de pressão normal de 20°, e razão de contato $m_F=2$

Equação AGMA de tensão/deformação

> As equações de Lewis/Barth são a base do sistema AGMA

$$\sigma = K_v \frac{W_t P}{F Y}$$

$$\sigma = K_v \frac{W_t P}{F Y} \qquad \qquad \sigma = K_v \frac{W_t}{F m Y}$$

A metodologia AGMA utiliza duas equações

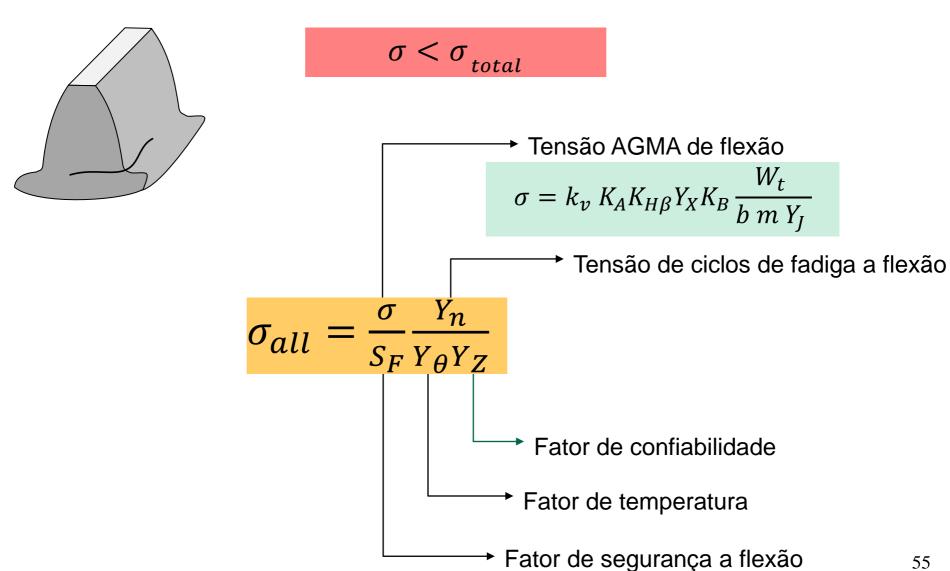
tensões de deformação

Efeito dinâmico

tensões de contato

$$\sigma = W_t K_o K_v K_s \frac{P_d}{F} \frac{K_m K_b}{I}$$

$$\sigma_c = C_p \sqrt{W_t K_o K_v K_s \frac{K_m}{d_p F} \frac{C_f}{l}}$$


$$\sigma = W_t K_o K_v K_s \frac{1}{b m_t} \frac{K_H K_B}{Y_j}$$

$$\sigma_c = Z_E \sqrt{W_t K_o K_v K_s \frac{K_H}{d_{w_1} b} \frac{Z_R}{Z_l}}$$

- **Unidades Americanas**
- Sistema métrico

Critério de falha de tensão/deformação

Equação AGMA de tensão de contato

Equação AGMA de tensão de contato

► Fator e coeficiente elástico - Z_E

$$\sigma_{c} = Z_{E} \sqrt{K_{v} K_{A} Y_{X} K_{H\beta} \left(\frac{W_{t}}{d_{w} b}\right) \left(\frac{Z_{r}}{Z_{I}}\right)}$$
Fator de Coeficiente elástico

$$Z_{E} = C_{p} = \left[\frac{1}{\pi \left(\frac{1 - \nu_{P}^{2}}{E_{P}} + \frac{1 - \nu_{G}^{2}}{E_{G}} \right)} \right]^{1/2}$$

Equação AGMA de tensão de contato

Fator de Coeficiente elástico *Cp (ZE)*

► Coeficiente elástico *Cp* (*ZE*),

		Gear Material and Modulus of Elasticity Eg, lbf/in² (MPa)*					
Pinion Material	Pinion Modulus of Elasticity E _s psi (MPa)*	Steel 30 × 10 ⁶ (2 × 10 ⁵)	Malleable Iron 25 × 10 ⁶ (1.7 × 10 ⁵)	Nodular Iron 24 × 10 ⁶ (1.7 × 10 ⁵)	Cast Iron 22 × 10 ⁶ (1.5 × 10 ⁵)	Aluminum Bronze 17.5 × 10 ⁶ (1.2 × 10 ⁵)	Tin Bronze 16 × 10 ⁶ (1.1 × 10 ⁵)
Steel	30 × 10 ⁶	2300	2180	2160	2100	1950	1900
	(2 × 10 ⁵)	(191)	(181)	(179)	(174)	(162)	(1.58)
Malleable iron	25 × 10 ⁶	2180	2090	2070	2020	1900	18 <i>5</i> 0
	(1.7 × 10 ⁵)	(181)	(174)	(172)	(168)	(158)	(1 <i>5</i> 4)
Nodular iron	24×10^6 (1.7 × 10 ⁵)	2160 (1 <i>7</i> 9)	2070 (172)	2050 (170)	2000 (166)	1880 (156)	1830 (152)
Cast iron	22×10^6	2 100	2020	2000	1960	1850	1800
	(1.5 × 10 ⁵)	(174)	(168)	(166)	(163)	(154)	(149)
Aluminum bronze	$17.5 \times 10^{\circ}$	1 950	1900	1880	18 <i>5</i> 0	1 <i>75</i> 0	1700
	$(1.2 \times 10^{\circ})$	(1 62)	(158)	(156)	(15 <i>4</i>)	(145)	(141)
Tin bronze	16 × 10 ⁶	1900	1850	1830	1800	1700	1650
	(1.1 × 10 ⁵)	(158)	(154)	(152)	(149)	(141)	(137)

Equação AGMA de tensão de contato

$$\sigma_{c} = Z_{E} \sqrt{\frac{K_{v}}{K_{A}} Y_{X} K_{H\beta} \left(\frac{W_{t}}{d_{w} b}\right) \left(\frac{Z_{r}}{Z_{I}}\right)}$$
Fator dinâmico

$$K_v = \left(\frac{A + \sqrt{200V}}{A}\right)^{\mathrm{B}}$$
 Sistema métrico

Equação AGMA de tensão de contato

$$\sigma_{c} = Z_{E} \sqrt{K_{v} K_{A}} Y_{X} K_{H\beta} \left(\frac{W_{t}}{d_{w} b}\right) \left(\frac{Z_{r}}{Z_{I}}\right)$$
Fator de sobrecarga

Table of Overload Factors, K_o				
Driven Machine				
Power source	Uniform	Moderate shock	Heavy shock	
Uniform Light shock Medium shock	1.00 1.25 1.50	1.25 1.50 1.75	1.75 2.00 2.25	

Equação AGMA de tensão de contato

$$\sigma_{c} = Z_{E} \sqrt{K_{v} K_{A} \frac{Y_{X}}{Y_{X}} K_{H\beta} \left(\frac{W_{t}}{d_{w} b}\right) \left(\frac{Z_{r}}{Z_{I}}\right)}$$
Fato

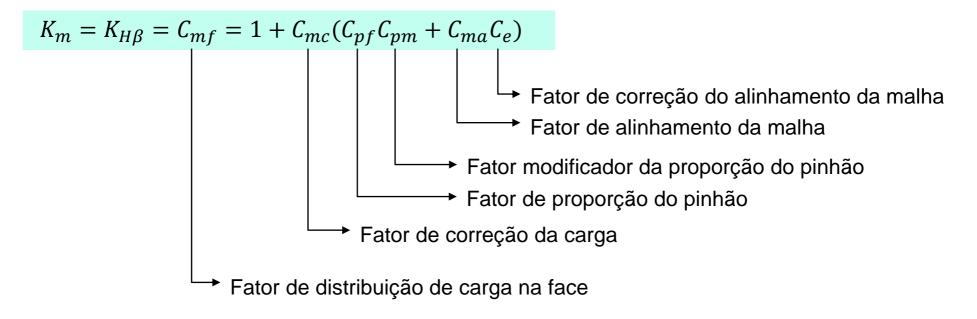
→ Fator de resistência a flexão

$$K_S = Y_X = 1,192 \left(\frac{b\sqrt{Y}}{P}\right)^{0,0535}$$

 $K_S = Y_X = 1$ por recomendação da norma AGMA

Equação AGMA de tensão de contato

Fator de forma - Ks ou Yx


- O fator de forma não uniformemente as propriedades do material em função do tamanho do dente. Este depende:
 - Da dimensão do dente
 - Diâmetro da peça
 - Razão entre a dimensão do dente e e diâmetro da peça
 - Largura da face
 - Padrão da área de tensão
 - Razão entre e a profundidade total e do dente
 - Dureza e tratamento térmico
- Em geral Ks = 1, principalmente por que as pesquisas ainda não são conclusivas

$$Yx = Ks = \frac{1}{k_b} = 1,192 \left(\frac{F\sqrt{Y}}{P}\right)$$

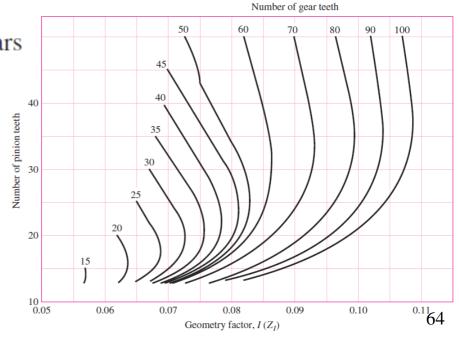
Equação AGMA de tensão de contato

$$\sigma_{c} = Z_{E} \sqrt{K_{v} \ K_{A} \ Y_{X} K_{H\beta}} \left(\frac{W_{t}}{d_{w} b}\right) \left(\frac{Z_{r}}{Z_{I}}\right)}$$
Fator de distribuição de carga

Equação AGMA de tensão de contato

$$\sigma_{c} = Z_{E} \sqrt{K_{v} K_{A} Y_{X} K_{H\beta} \left(\frac{W_{t}}{d_{w} b}\right) \left(\frac{Z_{r}}{Z_{I}}\right)}$$

$$Z_{\rm I} = I = \begin{cases} \frac{\cos \phi_t \sin \phi_t}{2m_N} & \frac{m_G}{m_G + 1} \\ \frac{\cos \phi_t \sin \phi_t}{2m_N} & \frac{m_G}{m_G - 1} \end{cases}$$
 internal gears


Fator resistência para pitting

Diâmetro *pitch* da engrenagem

$$m_G = \frac{N_G}{N_P} = \frac{d_G}{d_P} \qquad m_N = \frac{P_N}{0.95 \, Z}$$

$$m_N = \frac{P_N}{0.95 \, Z}$$

Diâmetro pitch do pinhão

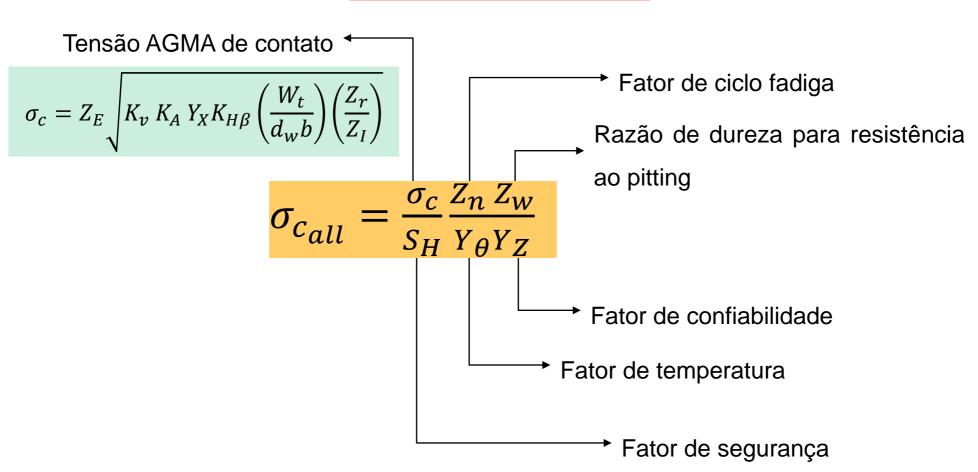
Equação AGMA de tensão de contato

$$\sigma_c = Z_E \sqrt{K_v K_A Y_X K_{H\beta} \left(\frac{W_t}{d_w b}\right) \left(\frac{Z_r}{Z_I}\right)}$$
 Fator de superfície

Fator de condicionamento de superfície Cf (Zr)

- ▶ O Fator de condicionamento de superfície Cf (ou Zr) é utilizado somente na equação de durabilidade superficial.
- A validade destas equações depende:
 - do acabamento superficial, não somente as características topográficas do (ex. shaving, retificado, lapidado)
 - Tensão residual
 - Deformação plástica (endurecimento) devido ao uso
- Ainda não existem recomendações de norma para o acabamento superficial de dentes de engrenagens

Equação AGMA de tensão de contato


$$\sigma_{c} = Z_{E} \sqrt{K_{v} K_{A} Y_{X} K_{H\beta} \left(\frac{W_{t}}{d_{w} b}\right) \left(\frac{Z_{r}}{Z_{I}}\right)}$$
 Fator de superfície

 $\mathbf{Z_r} = \mathbf{1}$ por recomendação da norma AGMA

Equação AGMA de tensão de contato

Equação AGMA de tensão de contato

Fator de razão de dureza - Z_w ou C_H

- Considerando que geralmente o pinhão tem menor número de dentes do que a engrenagem, este estará sujeito a ciclos maiores de tensão de contato.
- Mesmo com o endurecimento natural resultante do uso, recomenda-se que o pinhão tenha maior dureza, de forma a se obter uma resistência uniforme.
- ightharpoonup O fator de razão de dureza $\mathbf{Z_w}$ é somente empregado para o projeto da engrenagem

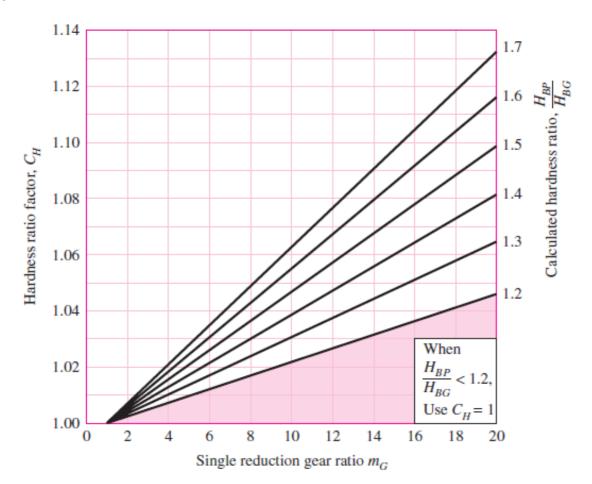
Equação AGMA de tensão de contato

Fator de razão de dureza - Z_w ou C_H

Os valores para o fator de razão de dureza ${f Z_w}$ são obtidos através da equação: $C_H=1+A'ig(m_g-1ig)$

► Onde:
$$A' = 8,98X10^{-3} \left(\frac{H_{BP}}{H_{BG}}\right) - 8,29X10^{-3}$$

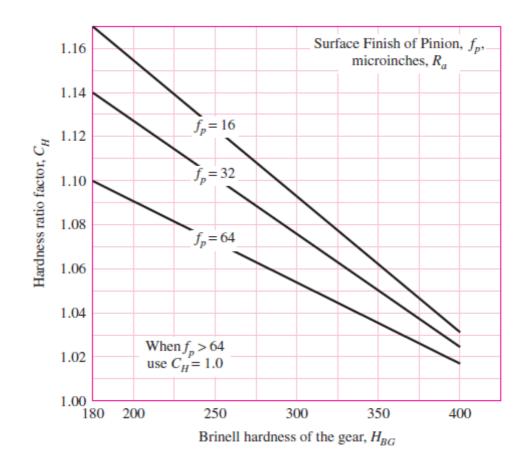
Se
$$\left(\frac{H_{BP}}{H_{BG}}\right) < 1,2 \ então A' = 0$$


Se $\left(\frac{H_{BP}}{H_{BG}}\right) > 1.7 \ então A' = 0.00698$

Equação AGMA de tensão de contato

Fator de razão de dureza - Z_w ou C_H

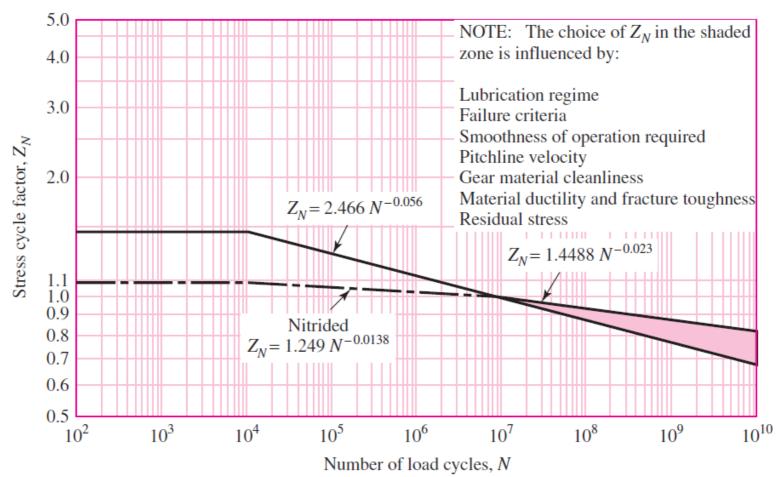
Para aço endurecido



Equação AGMA de tensão de contato

Fator de razão de dureza - Z_w ou C_H

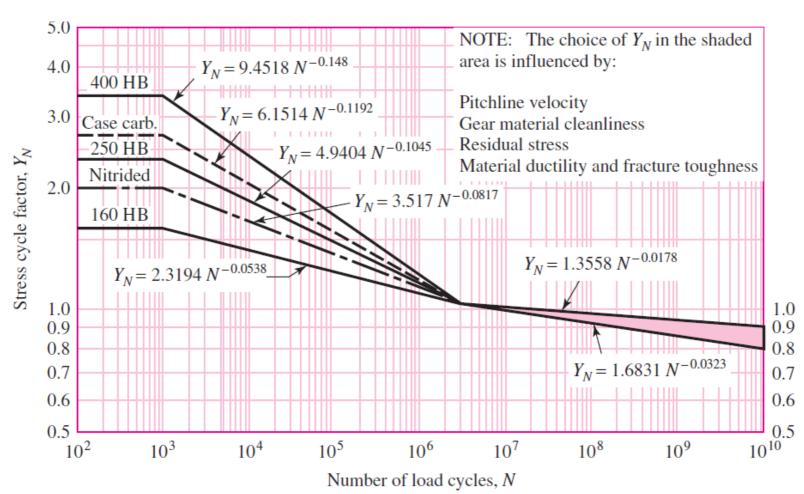
Para aço endurecido - pinhão



Equação AGMA de tensão de contato

Fator de fadiga (tensão cíclica) - Z_N ou Y_N

Fator de tensão cíclica para tensão - Z_N



Equação AGMA de tensão de contato

Fator de fadiga (tensão cíclica) - Z_N ou Y_N

Fator de tensão cíclica para flexão - Y_N

Equação AGMA de tensão de contato

Fator de confiabilidade - Yz ou KR

- Fator de confiabilidade contabiliza o efeito da probabilidade estatística de falha do material na fadiga
- As tensões St e Sc estão baseadas em uma confiabilidade de 99%

Reliability	$K_R(Y_Z)$
0.9999	1.50
0.999	1.25
0.99	1.00
0.90	0.85
0.50	0.70

Equação AGMA de tensão de contato

Fator de temperatura – K_T ou Y_θ

▶ Para óleo ou temperatura de contato de até 120°C,

$$ightharpoonup K_{T} = Y_{\theta} = 1.$$

▶ Para temperaturas superiores $K_T = Y_\theta >> 1$ e deve-se providenciar alguma solução que permita troca de calor.

Equação AGMA

> As equações de Lewis/Barth são a base do sistema AGMA

$$\sigma = K_v \frac{W_t}{F \ m \ Y}$$

A metodologia AGMA utiliza duas equações

tensões de deformação

$$\sigma = W_t K_o K_v K_s \frac{1}{b m_t} \frac{K_H K_B}{Y_i}$$

$\sigma < \sigma_{total}$

$$\sigma_{total} = \frac{S_{t\sigma}}{S_F} \frac{Y_N}{(K_T K_R)}$$

tensões de contato

$$\sigma_c = Z_E \sqrt{W_t K_o K_v K_s \frac{K_H}{d_{w_1} b} \frac{Z_R}{Z_l}}$$

$$\sigma < \sigma_{c_{total}}$$

$$\sigma_{c_{total}} = \frac{S_c}{S_H} \frac{Z_N C_H}{(K_T K_R)}$$

FIM DA AULA