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Data is... 
Far too complex... (many dimensions, many types)

Far too big... (`easy´ to collect)

Multiple sources...  (images, videos, documents, news feeds, sites, networks)

Never ending... (data streams)

Much redundancy...

Many relationships...

Missing pieces ...

Studying natural & artificial systems and phenomena implies in collecting & 
handling lots of high-dimensional data...
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Visualization Problem

People try to make sense of data, more difficult if very high-dimensional

`noisy´ data
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What can we tell about the data???

Are there relevant patterns?

`noisy´ data
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Data representation

dimensional embedding

(data instance as a 

vector of attributes)
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Typical scenarios

● Embeddings generated by deep neural models
and LLMs

● Large text/image/audio audio datasets
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Multidimensional Projection techniques
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Map data set onto the 2D plane,  
allowing direct exploration

Paulovich and Minghim, HiPP: a novel 
hierarchical point placement strategy and its 
application to the exploration of document
collections, IEEE Trans. Visualization & 
Computer Graphics, 2008



What is dimensionality reduction?

A typical Machine Learning problem involves datasets described by
thousands of features: very high embedding dimensionality

High dimensionality brings along many problems (dimensionality curse), 
e.g:

● Makes the training extremely slow

● Makes it difficult to find a good solution

In simple terms, Dimensionality Reduction is the process of reducing
the number of features to the most relevant ones.
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What is dimensionality reduction?

Most Dimensionality Reduction algorithms are used for:

● Data Compression
● Noise Reduction
● Data Classification
● Data Visualization: drop the dimensionality down to two or three

Make it possible to visualize the data on a 2d or 3d plot, meaning important
insights can be gained by analysing the visible patterns, e.g. clusters, outliers, 
etc.
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2D scatter plot of MNIST data after applying PCA (50 components) and then t-SNE.
https://towardsdatascience.com/dimensionality-reduction-using-t-distributed-stochastic-neighbor-embedding-t-sne-on-
the-mnist-9d36a3dd4521

https://towardsdatascience.com/dimensionality-reduction-using-t-distributed-stochastic-neighbor-embedding-t-sne-on-the-mnist-9d36a3dd4521


Ex. Projection + Parallel coordinates
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Source: Moraes et. al. Detection of

glucose and triglycerides using

information visualization methods to

process impedance spectroscopy data, 

Sensors & Actuators B, 2012
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https://towardsdatascience.com
/neural-network-embeddings-
explained-4d028e6f0526



Dimension reduction

● Feature selection

● Matrix factorization, e.g. PCA

● Distance error optimization, e.g., MDS, IDMAP

● Neighbor graphs, e.g. t-SNE, UMAP, LSP
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Multidimensional projections

… a way to `look into the data´ in scenarios of data 
described by too many features

when classical multidimensional visualization techniques
are not effective as a starting point
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Projection: concept

A mapping function f defines a spatial placement of the data in a 
visual space: 2 or 3 dimensions

How? Which properties a solution should satisfy? 

Many many approaches are possible!
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X ∈ Rm Y ∈ Rp={2,3}f



Multidimensional projection

δ: xi, xj → R, xi,xj ∈ X - a dissimilarity function (m-d)

d: yi, yj → R, yi,yj ∈ Y - a distance function (2-d, 3-d) 
(Euclidean) 

X ∈ Rm Y ∈ Rp={2,3}f
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Multidimensional projection

f: X → Y,   yi = f(xi), yj = f(xj)     

f attempts to minimize some error measure formulated as a difference between
the pairwise point distances in the original m-d space and the 2-d projected
space:              Δ = |δ(xi,xj) – d(yi, yj)|≈ 0, ∀ xi,xj ∈ X

X ∈ Rm Y ∈ Rp={2,3}f
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Data representation

Data set Xnxm

dimensional embedding
m-dimensional feature space

(embedding space)

each data instance as a vector 
of numerical attributes
(dense feature vectors)8 2 11 10 7 12 5 12 15 10 0

0 12 1 12 12 5 1 7 11 12 12

10 0 12 12 9 12 0 10 12 12 8

1 12 05 12 12 16 2 12 9 12 0

12 10 2 12 1 12 12 11 6 0 12

6 12 05 17 12 10 12 12 9 12 8

12 12 7 12 0 12 0 12 10 12 12

2 10 05 15 12 1 12 10 9 8 2

7 12 05 0 12 12 10 17 9 12 12

5 6 8 12 12 15 12 6 9 17 0

10 12 0 11 10 2 7 12 2 16 7

12 8 05 12 12 12 8 12 9 12 12

0 12 01 12 9 0 12 10 5 5 12

0 1 05 10 15 12 8 12 9 11 5

12 5 0 12 12 12 12 12 18 12 12

5 12 15 2 7 5 0 12 9 0 8

21



Data representation

pairwise distances
between all data points



Projection strategy

δ: xi, xj → R, xi,xj ∈ X

d: yi, yj → R, yi,yj ∈ Y

f: X → Y, |δ(xi,xj) – d(f(xi), f(xj))|≈ 0, ∀ xi,xj ∈ X

X ∈ Rm Y ∈ Rp={1,2,3}f
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Visualizing high-dimensional space

https://www.youtube.com/watch?v=wvsE8jm1GzE

see also

https://colah.github.io/posts/2014-10-Visualizing-MNIST/
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https://www.youtube.com/watch?v=wvsE8jm1GzE


Some techniques

PCA  - Principal Component Analysis

MDS - Multidimensional Scaling

IDMAP - Interactive Document Map Minghim et al. VDA 2006 

t-SNE - t-stochastic Neighbor Embedding

UMAP - Uniform Manifold Approximation and Projection

LSP - Least Squares Projection – Paulovich et al. 2008, IEEE TVCG

…
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Principle Component Analysis PCA

well-known unsupervised dimensionality reduction technique

constructs relevant features/variables through linear (linear PCA) combinations
of the original variables (features)

linearly transforms correlated variables into a smaller number of uncorrelated
variables

projects the original data into the reduced PCA space

the resulting projected data are essentially linear combinations of the original
data capturing most of the variance in the data
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Principal 
Component 
Analysis (PCA)
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https://medium.com/geekculture/pc

a-clearly-explained-when-why-how-

to-use-it-and-feature-importance-a-

guide-in-python-37596289571c

PCA is an orthogonal transformation of the original data into a 
reduced PCA space…. such that the first component explains the
most variance in the data with each subsequent component
explaining less.



When/Why use PCA

useful in processing data where multi-colinearity exists between
the features/variables

when the dimensions of the input features are high (e.g. a lot of
variables)

can be also used for denoising and data compression
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PCA Steps

1. the original input variables stored in X are z-scored such each
original variable (column of X) has zero mean and unit standard 
deviation

2. construct the covariance matrix C(X)= (1/n)*XT*X (in case of z-
scored data the covariance is equal to the correlation matrix)
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PCA Steps

3. Get the eigenvalue/eigenvector decomposition of C(X).

Sort eigenvalues in decreasing order, representing
decreasing variance in the data

● the eigenvalues are equal to the variance, the
corresponding eigenvectors give the directions of
variance

30



PCA Steps

4. Multiply the originally normalized data by the PCs 
(the leading eigenvectors of the covariance matrix), to
project the original (normalized) data points onto the
reduced PCA space

Y = TT * X
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Example: 2-dimensional data

Eigenvectors and corresponding eigenvalues

32PC1 = v1 explains 96% of variance PC2 = v2 explains ~4% variance



Example: 2-dimensional data

Transformation matrix T  
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2D 1D



Scree plot
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Data set with 10 dimensions: 

10 PCs, ranked by importance

(% explained variance)

Source: https://builtin.com/data-science/step-step-explanation-

principal-component-analysis



PCA Feature importance

The importance of each feature/variable for a PC is 
reflected by the magnitude of the corresponding values
in the eigenvectors (higher magnitude — higher
importance).

Loading factors: the coefficients of the linear 
combination of the original variables from which the 
principal components (PCs) are constructed. 35
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import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

from sklearn import decomposition

from sklearn import datasets

from sklearn.preprocessing import scale

# load iris dataset

iris = datasets.load_iris() 

x = scale(iris.data) 

y = iris.target

# apply PCA 

pca = decomposition.PCA(n_components=2) 

X = pca.fit_transform(X)
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loadings = pd.DataFrame(pca.components_.T, 

columns=['PC1', 'PC2'], index=iris.feature_names) 

loadings

PC1     PC2 

sepal length (cm) 0.521066 0.377418 

sepal width (cm) -0.269347 0.923296 

petal length (cm) 0.580413 0.024492 

petal width (cm) 0.564857 0.066942



PCA explained@StaQuest

https://www.youtube.com/watch?v=HMOI_lkzW08 ~5 min – how to
interpret

https://www.youtube.com/watch?v=FgakZw6K1QQ ~21 min – step
by step

https://www.youtube.com/watch?v=oRvgq966yZg ~8 min – practical
tips
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https://www.youtube.com/watch?v=HMOI_lkzW08
https://www.youtube.com/watch?v=FgakZw6K1QQ
https://www.youtube.com/watch?v=oRvgq966yZg


PCA explained

Gewers et al.  Principal Component Analysis: A Natural 
Approach to Data Exploration. ACM Computing Surveys
54(4)- https://dl.acm.org/doi/10.1145/3447755
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Multidimensional Scaling (MDS) 

The input to MDS are the pairwise distances between the high-dimensional 
data instances: the goal is to preserve these distances in a lower dimensional 
space without much loss of information (Cox and Cox 2000).

The “classical” (metric) multidimensional scaling algorithm seeks to minimize a 
stress function:
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https://compgenomr.github.io/book/dimensionality-reduction-techniques-visualizing-complex-data-sets-in-2d.html#ref-cox2000multidimensional


Data representation

pairwise distances
between all data points



Multidimensional projection

f: X → Y,   yi = f(xi), yj = f(xj)     

f attempts to minimize some error measure formulated as a difference between
the pairwise point distances in the original m-d space and the 2-d projected
space:              Δ = |δ(xi,xj) – d(yi, yj)|≈ 0, ∀ xi,xj ∈ X

X ∈ Rm Y ∈ Rp={2,3}f

43



Multidimensional Scaling (MDS) 

Result is equivalent to PCA if the input distances are Euclidean distances!

MDS is hard to scale to large data sets (why?)

It rarely produces meaningful/useful embeddings of large high-dimensional data 
(why?)

“Modern”  techniques adopt strategies that attempt to preserve neighborhoods, 
rather than global distances
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T-SNE, UMAP

● Compute high-dimensional probabilities p and low-dimensional 
probabilities q

○ p and q are probability distributions of neighborhoods

○ pi|j probability that a data point j would pick data point i as 
neighbor

○ If points yi are placed correctly in low-dimensional space, the
conditional probabilities p and q will be very similar

● Use a cost function to calculate the difference between
probabilities
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t-SNE

t-distributed Stochastic Neighbor Embedding. Introduced by Laurens van der 

Maaten & Geoffrey Hinton 2008: 

http://www.cs.toronto.edu/~hinton/absps/tsne.pdf

a. Stochastic → not definite but random probability (generates slightly

different results each time on the same data set)

b. Neighbor → concerned only about retaining the variance of neighbor

points (preserve original neighborhoods, or clusters)

c. Embedding → finds a representation of the data into lower dimension
55



t-SNE

attempts to find a projection of the data that preserves the data clusters 
that exist in the high-dimensional space (i.e., only the small distances are 
preserved!)

a very good explanation at StatQuest: 

https://www.youtube.com/watch?v=NEaUSP4YerM&ab_channel=Stat
QuestwithJoshStarmer
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t-SNE

Step 1: computes probability distribution of the pairwise distances in high 
dimension such that similar (closer) objects are assigned a higher probability and 
dissimilar objects are assigned lower probability.

Step 2: replicates the same probability distribution on lower dimensions 
iteratively till the Kullback-Leibler divergence is minimized.

Kullback-Leibler (KL) divergence: a measure of the difference between the 
probability distributions from Step 1 and Step 2.
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t-SNE
pij: affinity (similarity) between data samples i and j in high-dimensional space

qij: affinity (similarity) between data samples i and j in low-dimensional space

similarities p and q are defined such that they sum to 1

starts with random configuration of the points in low-dimensional space, optimizes their
positions with gradient descent in order to minimize KL
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t-SNE

Kullback-Leibler divergence as a measure of the mismatch between the
high-dimensional and the low-dimensional condition probabilities, for 
each data point

The algorithm starts by placing all the yi in random locations, and then is
trained to minimize the cost function using gradient descent, i.e.,  
optimizes their positions with gradient descent in order to minimize the
KL divergence
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Kullback-Leibler divergence
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SourceVisualizing Your Embeddings. An evolutionary 

guide from SNE to t-SNE… | by Francisco Castillo 

Carrasco | Towards Data Science

Close points (similar instances, high p): 

strongly penalizes mapping them far apart 

(low q)

good preservation of close neighborhoods

global structure is not well preserved

https://towardsdatascience.com/visualizing-your-embeddings-4c79332581a9


t-SNE

two main parameters

1. n_iter: the number of iterations

2. perplexity: can be interpreted as a guess on the number of close 

neighbors each point has (default is 30) (neighborhood density)

v. https://distill.pub/2016/misread-tsne/
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t-SNE

t-SNE plots may vary a lot depending on the choice of parameters: 
recommendation is to run with different settings and analyze which works best

as the technique is stochastic, each run may produces slightly different results. 
sklearn allows avoiding this by fixing parameter random_state

the initial configuration can have a large effect on the result (the loss function 
may have many local minima) (use informative initialization)

t-SNE’s priority is to preserve neighborhoods (small distances, or local 
structures): it often does not preserve global structures, e.g., the relative 
positions of the clusters, or the cluster’s distances
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UMAP 

Uniform Manifold Approximation and Projection

(at the core) very similar to t-SNE in how it works, but it is more efficient (increased
speed) and preserves the data's global structure better (better balance between
local/global)

Scales well relative to data set size and dimensionality

Strong theoretical foundation (manifold theory and topological data analysis)

Key step: construct a neighborhood graph from the data in the high-dimensional space
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UMAP 

very good explanation here: https://pair-code.github.io/understanding-umap/

and here (StatQuest): https://www.youtube.com/watch?v=eN0wFzBA4Sc
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https://pair-code.github.io/understanding-umap/


UMAP 

Parameters

number of neighbors: the number of approximate nearest neighbors used to construct the
initial high-dimensional graph. Controls how UMAP balances local versus global structure
- low values will push UMAP to focus more on local structure, while high values will push
UMAP towards representing the big-picture structure while losing fine detail.

minimum distance: the minimum distance between points in low-dimensional space. This
parameter controls how tightly UMAP clumps points together, with low values leading to
more tightly packed embeddings, whereas larger values will make UMAP pack points 
together more loosely, focusing instead on the preservation of the broad topological
structure.
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UMAP 

Uses cross-entropy as loss function

CE loss function has both attractive and repulsive forces

UMAP uses stochastic gradient descent to minimize the cost function, instead 
of the slower gradient descent

“With this new choice of loss function, placing objects that are far away in high-
dimensional space nearby in the low-dimensional space is penalized. Thanks to the better 
choice of loss function, UMAP can capture more of the global structure than its 
predecessors.” 

Visualizing Your Embeddings. An evolutionary guide from SNE to t-
SNE… | by Francisco Castillo Carrasco | Towards Data Science
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https://towardsdatascience.com/visualizing-your-embeddings-4c79332581a9


Cross entropy loss function
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KL loss used by t-SNE                                                        CE loss used by UMAP
Source: Visualizing Your Embeddings. An evolutionary guide from SNE to t-SNE… | by Francisco 

Castillo Carrasco | Towards Data Science

https://towardsdatascience.com/visualizing-your-embeddings-4c79332581a9


UMAP 

Uses spectral initialization, not random initialization of the low-dimensional 
points (Laplacian Eigenmaps initialization)

Quick to compute, good starting point for stochastic gradient descent, in theory
deterministic (but computational results approximate, thus determinism not
guaranteed)

But good stability: initialization provides faster convergence as well as greater 
consistency, i.e., multiple runs of UMAP will yield similar results.

Visualizing Your Embeddings. An evolutionary guide from SNE to t-
SNE… | by Francisco Castillo Carrasco | Towards Data Science
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https://towardsdatascience.com/visualizing-your-embeddings-4c79332581a9


PCA/UMAP/t-SNE in action 

See

https://projector.tensorflow.org/
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https://projector.tensorflow.org/


Discussion...

projections: preserve distances vs neighborhoods

|δ(xi,xj) – d(f(xi), f(xj))|≈ 0, ∀ xi,xj ∈ X

preserving all distances equally is not feasible (why?), and the
neighborhood of points is a relative concept
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Discussion: projections vs PCA

PCA is simple and easy to use, quick to compute

captures the global variance in the data, linear correlation

does not capture local variance, non linear correlations

scatterplot 2D: axes x and y associated with the first and second highest PCs, 
possible to relate the original attributes with the PCs. 

Projections in general do not assume linearly correlated attributes 

“scatterplot” 2D (t-SNE, IDMAP) is not actually a scatterplot, but a “similarity 
map” of the data instances: position of points along x and y axes do not have an 
interpretable meaning 
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Discussion: projections vs PCA

PCA is a parametric mapping: a function is computed that is applied 
to project the data

Most projections techniques are non parametric, in that no explicit 
mapping function is computed
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Discussion: projections vs PCA

PCA and the projections we discussed are non-supervised, in the
sense that they do not use the class structure to compute the low
dimensional embeddings
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Additional material

PCA 

https://towardsdatascience.com/pca-clearly-explained-how-when-why-to-use-it-and-feature-
importance-a-guide-in-python-7c274582c37e
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https://towardsdatascience.com/pca-clearly-explained-how-when-why-to-use-it-and-feature-importance-a-guide-in-python-7c274582c37e


Additional material

t-SNE

https://www.youtube.com/watch?v=NEaUSP4YerM&ab_channel=StatQuestwithJoshStarmer

https://towardsdatascience.com/what-why-and-how-of-t-sne-1f78d13e224d

https://colah.github.io/posts/2014-10-Visualizing-MNIST/

Visualizing Your Embeddings. An evolutionary guide from SNE to t-SNE… | by Francisco Castillo 
Carrasco | Towards Data Science
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https://www.youtube.com/watch?v=NEaUSP4YerM&ab_channel=StatQuestwithJoshStarmer
https://towardsdatascience.com/what-why-and-how-of-t-sne-1f78d13e224d
https://colah.github.io/posts/2014-10-Visualizing-MNIST/
https://towardsdatascience.com/visualizing-your-embeddings-4c79332581a9


Additional material

UMAP @ StatQuest

https://www.youtube.com/watch?v=eN0wFzBA4Sc&t=942s (main ideas)

https://www.youtube.com/watch?v=jth4kEvJ3P8 (mathematical details)

https://pair-code.github.io/understanding-umap/
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https://www.youtube.com/watch?v=eN0wFzBA4Sc&t=942s
https://www.youtube.com/watch?v=jth4kEvJ3P8


How to assess/compare?

compute stress (error function) – cannot compare across techniques , as 
different techniques optimize different functions

The goodness of fit criteria are measured on different scales and use 
different methodologies

Ideally , should have a method independent measure of solution fit
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How to assess/compare?

verify preservation of neighborhoods relative to original space

verify group/class segregation (on data with known groups/classes)

compare distributions of pairwise distances in the original space vs in the
projected space
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How to assess/compare?

verify preservation of neighborhoods

given a data point xi in the original space, who are the k-nearest
neighbors of xi? (k = 1, k = 2, k = 3, ...)

given the corresponding data point in the projected space yi, who
are the are the k-nearest neighbors of yi?
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How to assess/compare?

Neighborhood Hit - F. V. Paulovich Mapeamento de dados multi-
dimensionais - integrando mineração e visualização. Tese de doutorado 
ICMC-USP, 2008 
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Fonte: F. V. Paulovich Mapeamento de dados multi-dimensionais - integrando mineração e visualização. Tese de 
doutorado ICMC-USP, 2008



Nieghborhood preservation

Curves give information on average preservation for varying
neighborhood sizes, but not in a point by point basis

Alternatives?
show in the projection itself v. Martins et al. 2015. Explaining 

Neighborhood Preservation for Multidimensional Projections
show as a heatmap of item vs neighborhood preservation

(requires ordering the items according to some criteria...)
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How to assess/compare?

Groups/classes known: Silhouette Coefficient (originally used to validate
results of clustering algorithms). 

https://en.wikipedia.org/wiki/Silhouette_(clustering) SC in [-1,+1] 

Compare SC in original and (e.g., different) projected spaces
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https://en.wikipedia.org/wiki/Silhouette_(clustering)


Additional material

F. V. Paulovich Mapeamento de dados multi-dimensionais - integrando mineração e 
visualização. Tese de doutorado ICMC-USP, 2008 
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