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Biosurveillance provides information that improves decisions about mitigating the effects of disease outbreaks
and bioterrorism. The success of biosurveillance depends on the effectiveness of at least four key processes:

data collection, data analysis and interpretation, data integration from across organizations, and action (includ-
ing public responses) based upon results of the analysis. Questions typically arise about whether information
from biosurveillance systems represents a threat that justifies a response. To begin answering these questions,
the Institute of Medicine Standing Committee on Health Threats Resilience has been undertaking discussions of
strategies that the Department of Homeland Security National Biosurveillance Integration Center could use to
strengthen its decision support and decision analysis functions. As part of these discussions, this paper applies
two standard decision analysis tools to biosurveillance–decision trees and value-of-information analysis—to assess
the implications of strategies to enhance biosurveillance and to improve decisions about whether and how to
act after detection of a biosurveillance signal. This application demonstrates how decision analysis tools can
be used to improve public health preparedness decision making by developing a road map for how best to
enhance biosurveillance through better analytic tools and methods.
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1. Biosurveillance: A Critical
Component of Public Health
Preparedness

“Biosurveillance” is a term that has evolved in
national security and public health policy in the
United States in the decade-plus since the September
2001 terrorist attacks (Figure 1). In this paper we use
the term to refer to monitoring biological threats to
human or animal health, whether arising from natu-
ral, accidental, or intentional causes.

“Biosurveillance” appears to emerge from both
public health surveillance and national security
surveillance and analysis at the still-evolving nexus of
public health emergency preparedness, where these
two sectors meet. Figure 2 depicts this nexus and also
indicates the alignment of capabilities planning across
federal programs, from the Department of Health and
Human Services’ (HHS) 10 essential public health
services, to state and local preparedness capabilities
supported by both the HHS and the Department
of Homeland Security (DHS), to the DHS National

Preparedness Guidelines and capabilities defined in
the National Preparedness Goal (NPG).

The National Security Strategy of 2006 explicitly
links naturally occurring public health challenges like
HIV/AIDS and pandemic influenza to the national
security agenda:

The risks to social order [of such challenges] are
so great that traditional public health approaches
may be inadequate, necessitating new strategies and
responses 0 0 0 0 If left unaddressed, [nontraditional secu-
rity challenges including infectious diseases] can
threaten national security. (White House 2006, p. 47)

What are the traditional approaches that no longer
suffice? From one side, public health surveillance is
considered the cornerstone of public health—it has
been defined as the ongoing systematic collection,
analysis, interpretation, and dissemination of data
regarding a health-related event for use in public
health action to reduce morbidity and mortality and
to improve health (Thacker 2000), or more simply, sys-
tematic information for public health action (Moore
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Figure 1 Evolution of Biosurveillance in National Security and Public Health Policy
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Figure 2 “Surveillance” and “Biosurveillance” in Public Health and National Security
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et al. 2008). From the other side, surveillance and anal-
ysis within the national security community (e.g., mil-
itary, intelligence, homeland security, and diplomatic)
has typically involved active data collection from dif-
ferent human and technology-oriented sources for
purposes of assessing potential threats to security
and, based on those threats, taking action to deter or
mitigate them.

What new approaches are needed to address
health-related threats to national security, and where
does biosurveillance fit in? As can be seen in Figure 1,
biosurveillance has evolved from a narrow focus on
detecting intentional terrorism threats to health or
security to a broader focus addressing all-hazard
(intentional, accidental, or naturally occurring) threats
to human or animal health. Biosurveillance has also
become distinctly multisector and multidisciplinary in
nature and explicitly oriented toward timely action.
Therefore, new biosurveillance approaches must build
upon traditional approaches, effectively encompass a
broader range of sources and stakeholders, and har-
ness technologies for data integration and near-real-
time detection and tracking.

A key question in the public health community
has been whether “public health emergency prepared-
ness” is distinctly separate from or inherently part of
routine public health practice. The term was initially
defined in early 2007 as:

the capability of the public health and healthcare sys-
tems, communities, and individuals, to prevent, pro-
tect against, quickly respond to, and recover from
health emergencies, particularly those whose scale,
timing, or unpredictability threatens to overwhelm
routine capabilities. (Nelson et al. 2007, p. S9)

Nelson et al. (2007) also indicated that,

as much as possible, [public health emergency pre-
paredness] should be integrated with and expand
upon day-to-day public health practices and build
upon existing systems, not developed de novo. (p. S10)

The current U.S. Assistant Secretary for Prepared-
ness and Response emphasizes that public health
system preparedness is the foundation for public
health emergency preparedness (Lurie 2011). Most
agencies now refer to, and consider, “public health
preparedness” as encompassing the routine public
health systems and practices that are also essential
in responding to an emergency affecting human or

animal health. As such, both effective systems and pre-
paredness planning are essential, and they are linked.

Central to preparedness planning are the infor-
mation systems to detect and monitor threats and
track resources over the course of disaster emergence,
response, and recovery. Situational awareness, includ-
ing biosurveillance, is a critical element of public
health preparedness and one of 10 objectives in the
HHS’s National Health Security Strategy (NHSS; U.S.
Department of Health and Human Services 2009).
As noted in the NHSS, information contributing to
situational awareness comes from all sectors and all
levels of government, as well as from international
and community-based sources. Stemming from the
NHSS, the Centers for Disease Control and Preven-
tion within the HHS subsequently issued the National
Biosurveillance Strategy for Human Health (originally
in 2008, updated in 2010; Centers for Disease Control
and Prevention 2010) and guidance regarding public
health preparedness capabilities (Centers for Disease
Control and Prevention 2011). Later during 2011, the
DHS issued the National Preparedness Goal, which
principally defined a refined set of core capabilities
that superseded their 2007 Target Capabilities List.
One NPG capability explicitly includes biosurveillance
(screening, search, and detection), and two others
inherently do so (public information and warning, and
situational assessment). Both HHS and DHS have sup-
ported state and local preparedness grants over the
past several years, including surveillance activities, to
enhance public health, health security, and national
security. In July 2012, the White House issued the
National Strategy for Biosurveillance (White House
2012); it focuses on “essential information for better
decision making at all levels of government” (p. 1) and
ties together several important threads: data collec-
tion, integration, dissemination/alert, and forecasting
related to all biological threats—naturally occurring,
accidental, or intentional disease events in humans,
animals, or plants.

1.1. The Challenge of Biosurveillance in
Preparedness

Biosurveillance involves a number of steps, including
relevant inputs and outputs (Figure 3). The ultimate
goal of biosurveillance is to provide information that
improves decisions intended to mitigate the effects
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Figure 3 The Biosurveillance Process
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of disease outbreaks and bioterrorism. Thus, success
of biosurveillance depends on the effectiveness of
at least four key processes: data collection and pro-
cessing, data analysis, data interpretation, and action
based upon results of the analysis. Data integration
from across organizations contributes to each of these
processes and is arguably the most difficult chal-
lenge to biosurveillance, given the constraints posed
by limitations and incentives distinct to the perspec-
tive of each organization within the response com-
munity (National Research Council 2011). This paper,
however, focuses on how analysis can support bio-
surveillance when integration and collaboration are
successfully addressed. Ultimately, a suitable ana-
lytic framework, such as that described in this paper,
might be helpful in developing better integration and
collaboration.

Collecting information is at the root of all bio-
surveillance activity. The quality of incoming data,
and knowledge of that quality, is a sine qua non for

high-quality biosurveillance. Biosurveillance informa-
tion can be collected passively (i.e., reports are initi-
ated by the data source, such as routine reporting of
diagnosed cases of specified diseases seen at selected
health-care facilities or of test results from public
health laboratories) and/or actively (i.e., reports are
initiated through outreach to data sources, with exam-
ples including environmental monitoring for poten-
tial bioterrorism pathogens and data mining from
media sources). Surveillance data are processed either
periodically (e.g., routine weekly disease surveil-
lance) or continuously (e.g., environmental monitor-
ing, data mining) and analyzed to determine whether
an unusual health-related event has occurred. Trans-
lating a signal of an event into guidance for action
requires interpreting the data analysis to understand
the significance of the event and implications for
action; ideally, this takes into account potential risks
from the event, responses to the event, and conse-
quences of the responses.
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Analytic methods also play an essential role for
collection and processing. Examples of approaches
that are encompassed in this area include methods
of encoding data in clinical settings (e.g., signs and
symptoms versus coded diagnoses), algorithms for
recognizing patterns of disease in syndromic surveil-
lance or from unstructured data, and algorithms for
identifying signals of pathogen release from dis-
tributed sensors. The effectiveness of these analytic
methods, the disease prevalence, and the underlying
signal-to-noise ratio of the disease event in the envi-
ronment within which it occurs determine the likeli-
hood that a signal actually reflects an event of interest,
i.e., its positive predictive value. These challenges sur-
rounding detecting a signal of a disease event remain
important analytic issues and have been identified
in previous studies by the NRC (National Research
Council 2011).

Although data collection and processing are the
foundation for biosurveillance and contribute directly
to the quality and timeliness of data analysis and
interpretation, the main focus of this paper is on how
data analysis and interpretation improve responses
to disease events. Questions typically arise about
whether information from biosurveillance systems
represents a threat that justifies a response. What
biosurveillance signals rise to the level of requiring
action? Are there circumstances in which action is
not warranted? What actions should be taken? What
is the value of improved biosurveillance in terms of
the cost of new data and analysis, and the effect that
information has on decisions? These are the critical
questions addressed in this paper.

Answering these questions requires addressing sev-
eral data and analytic challenges fundamental to
public health security. First, communities must pre-
pare for many types of naturally occurring biologi-
cal threats, from food-borne outbreaks to pandemics,
and terrorism-related events from any of a number
of biological agents or toxins. Each of these events
has a different—and for some, very low—likelihood
of occurring, but together they represent a large num-
ber of scenarios to be considered. Second, these events
affect communities in many ways (e.g., at a minimum
through public health and financial consequences),
and those consequences may affect some groups or
places more than others. Third, for any given scenario,

combinations of responses may be appropriate and
will need to be compared. Fourth, decision making for
disease events is dynamic. As a disease event unfolds,
decision makers must seek and incorporate new infor-
mation that unveils the characteristics of the disease
(such as its virulence and infectiveness) and the effec-
tiveness of the ongoing response. Finally and fortu-
nately, history does not provide a body of evidence
from which to evaluate the effectiveness of response
to pandemics and bioterrorism because such events
have been infrequent.

As a result, planning for response to these events
is an exercise in balancing priorities and resources
for disease prevention, surveillance, and response.
Choices must be made about the appropriate balance
between prevention and response capabilities. Simi-
larly, choices must be made about whether planning
addresses events that are more commonly observed
(such as seasonal flu outbreaks), events that are more
catastrophic though less likely to occur (such as
bioterrorism attacks), or both to an equal extent.

1.2. Analysis and the “Value-of-Information” in
Biosurveillance

Improved biosurveillance will not eliminate the com-
plexity decision makers must confront because of the
uncertainty and low likelihood of catastrophic disease
events or the multiplicity of response options and
event consequences. However, the process of devel-
oping an analytic framework that structures choices
inherent in disease surveillance and response and
clarifies understanding of the factors that influence
these choices could be useful for identifying ways to
improve biosurveillance.

To begin this process, the IOM Standing Commit-
tee on Health Threats Resilience has been undertak-
ing discussions of strategies that the DHS National
Biosurveillance Integration Center could use to
strengthen its decision support and decision analysis
functions. This paper contributes to these discussions
by applying two standard decision analysis tools to
biosurveillance—decision trees and value-of-information
analysis1—to assess the implications of strategies to

1 For those not familiar with decision trees or value-of-information
analysis, each tool is explained when it is introduced in subsequent
sections of this paper.
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enhance biosurveillance and to improve decisions
about whether and how to act after detection of a bio-
surveillance signal.

Section 2 frames the interpretation of biosurveil-
lance signals using a decision tree. This framing high-
lights three types of information that are needed to
better inform response to disease events. Several ana-
lytic approaches are applicable to each type of infor-
mation. Section 3 describes each category of analytic
methods that could support biosurveillance decision
making and also the role of decision support tools
that could be used to interpret the results obtained
from them.

Within decision analysis, the standard approach
for evaluating whether to invest in acquiring new
information is to consider how that information will
improve the expected outcomes of decisions; i.e., the
value of information. Section 4 describes how this
framing can be applied to setting a research agenda
for improving biosurveillance. This paper concludes
with observations and recommendations on initial
steps that could be taken to develop the analytic capa-
bilities presented.

2. A Decision Analytic Perspective of
Biosurveillance

Decision analysis is the disciplined study of how peo-
ple should make important decisions, how they in fact
do make decisions, and how tools can help people
make better decisions. The theoretical basis underpin-
ning the discipline of decision analysis for how peo-
ple should make decisions is expected utility theory.
This theory states that choosing the option with the
greatest overall value is the best decision if a person
has preferences among options, and that those prefer-
ences are logically consistent when choosing among
options, depending on the probability of the option
occurring, and not influenced by the addition of
other options (von Neumann and Morgenstern 1947).
Though expected utility theory is useful for identify-
ing what decisions people should make in their best
interest, Tversky and Kahneman (1974) showed that
in practice our probability judgments are influenced
by what we experience, how information is presented
to us, and simple rules, i.e., heuristics, which we tend
to fall back on when confronted with complex deci-
sions. With the goal of helping people make smarter

choices, decision analysts have developed tools and
methods to describe choices and help people navigate
these biases and decision-making heuristics (Keeney
1992, Hammond et al. 1999, Raiffa 1997, Howard and
Matheson 1984).

2.1. What Decisions Are Inherent in
Biosurveillance?

Biosurveillance aims to inform when an unusual dis-
ease event is happening by collecting, processing,
and analyzing data, and, if it is, to help answer two
questions:

• Is action required?
• What type of intervention should be initiated?
Answering these questions requires making deci-

sions based on analysis and interpretation of bio-
surveillance data.

Figure 3 highlights these two decisions that are
fundamental to the analysis and interpretation steps
in biosurveillance. The first decision to be made is
whether to act based on a signal. If the signal is inter-
preted as being too ambiguous or of too little con-
cern, then no action may be warranted, and normal
biosurveillance activities may carry on or additional
information may be collected to verify the initial anal-
yses and try to reduce the ambiguity. However, if
the signal of an event warrants action, the second
decision required is about what type of intervention
should be implemented.

Logically, the first decision of whether to inter-
vene depends on the choices in the second of how
to intervene. If no feasible interventions exist, then
the decision-related questions are moot. The deci-
sions of whether and how to act therefore depend on
how feasible interventions will change the expected
outcomes of the suspected event. How to intervene
also depends on several factors including what type
of event is suspected, what options for intervention
exist, how effective and costly (in both monetary and
nonmonetary terms) the interventions are, and what
the consequences will be if the event does not unfold
as expected. Figure 4 captures these decisions using a
common decision analysis tool: a decision tree.2

2 A decision tree portrays the connections between decision points
(shown as squares) and the probabilistic outcomes (shown as cir-
cles) that evaluations of decisions depend upon. To use a decision
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Figure 4 A Decision Tree Perspective of Analysis and Interpretation Steps of Biosurveillance When Reacting to a Signal of an Unusual Event
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Figure 4 depicts a simplified view of biosurveillance
decisions. As depicted, the decisions do not portray
the full complexity resulting from uncertainty and
low frequency of events, the temporal dynamics of
diseases, or the full range of disparate consequences
of concern. Despite these simplifications, the decision
tree in Figure 4 highlights two unique aspects of bio-
surveillance decision making. First, the second deci-
sion is actually a complex choice among portfolios
of interventions. Figure 4 lists several examples of

tree to evaluate choices, one calculates the expected outcomes of
choices working from right to left. The expected outcome is eval-
uated as the sum of the product of probability and consequences
across all consequences at each probability node. At each decision
point, the calculation selects the branch of the tree with the most
favorable outcome. That planned decision is assumed when evalu-
ating choices to the left in the tree.

interventions that are intended to reduce the spread
of disease and/or treat those who have become ill.

Examples of such interventions include the
following:

• Communicating with the public to provide facts
and instructions, such as when a contaminated ship-
ment of food has reached a region’s grocery stores

• Treating cases at conventional health-care deliv-
ery points such as a hospital or provider’s office

• Issuing restrictions to limit the extent to which
infected people interact with susceptible populations
such as closing schools or issuing travel restrictions

In practice, the public health response to a dis-
ease outbreak will typically include a combination of
these types of interventions. Thus, analysis and inter-
pretation of biosurveillance data must consider the
expected effects of response strategies that constitute
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a portfolio of interventions, not each intervention on
its own.

Second, the signal resulting from biosurveillance
data collection and processing might be ambigu-
ous with regard to the precise nature and magni-
tude of the potential threat. The potential courses of
action will vary based on several factors—what the
pathogen/disease is, how communicable and deadly
it is, in whom and how far the outbreak has spread,
and how it might evolve. The accuracy and timeli-
ness of the signal are critical to the decisions regard-
ing whether and how to act. Accuracy of the signal
depends upon the sensitivity of the biosurveillance
methods (i.e., the probability that if a disease is occur-
ring, biosurveillance will detect it), the specificity of
biosurveillance (i.e., the probability that if a disease
isn’t occurring, biosurveillance will not indicate one),
and the prevalence of the disease. Together these fac-
tors determine the likelihood that a signal that a dis-
ease occurring is correct, i.e., the positive predictive
value of biosurveillance. Figure 4 depicts such out-
comes as dichotomous, probabilistic events in which
either the signal is correct or not, where a correct
signal means detection of a true event and an incor-
rect signal is a false positive—an indication from
biosurveillance that there is a disease event when
no underlying disease event is actually underway.
In reality, this event is a distribution of possible evolu-
tions of the disease event based on the pathogen itself,
how interventions undertaken and behaviors of the
population influence the spread of disease, and the
inherent efficacy of treatment and other interventions.

At the same time, Figure 4 misrepresents one aspect
of biosurveillance analysis and interpretation. This
figure presents decision making as two discrete deci-
sions. In reality, analysis and interpretation is a con-
tinuous process that begins with data collection and
processing indicating that a disease event may be
occurring, and continuing throughout the event until
the situation is resolved and progressing to search for
new emerging events. From this perspective, decision
making is an iterative cycle of sensing, deciding, and
responding in which the decision determines the next
response (Figure 5).

In this type of iterative process, the cumulative
cost of false alerts is an important consideration for
biosurveillance and future research into approaches
to biosurveillance. An overly sensitive screening tool

Figure 5 Biosurveillance Analysis and Interpretation as an Iterative
Decision Process

Sense Respond RespondMonitor Monitor

Decide Decide Decide Event
resolved

Evolution of event over time

producing warnings that prove frequently unwar-
ranted over time leads to accumulation of unnecessary
response costs and could erode confidence in the value
of surveillance. The simplified examples in the remain-
der of this paper, which analyze a one-time decision,
do not capture these costs. Rather, they illustrate how
the tools of decision analysis can be used to evaluate
efforts to improve biosurveillance and can be extended
to reflect decision making in a continuous process.

2.2. What Information Is Needed for
Biosurveillance Analysis and Interpretation?

The decision tree depicted in Figure 4 points to three
types of information required to analyze and interpret
the signals that result from biosurveillance data col-
lection and processing:

• Knowledge of disease severity and progression
• Knowledge of interventions available and their

effectiveness
• Knowledge of consequences, including costs
Understanding each type of information is a start-

ing point for considering what analysis can best
provide it.

2.2.1. Knowledge of Disease Severity and Pro-
gression. As described in §2.1, the severity and
progression of disease are influenced by the charac-
teristics of the pathogen and the characteristics and
behaviors of the population. The outcomes of these
factors are captured in assessments of what popula-
tions and subpopulations are infected (both geograph-
ically and demographically) and how the disease
progresses within and across these groups over time.
To decide whether and how to intervene, it is nec-
essary to know how a disease event is expected to
unfold over time.

2.2.2. Knowledge of Interventions Available and
Their Effectiveness. Interventions aim to quickly
treat infected people and reduce the number of people
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who get exposed. The coverage and effectiveness of
interventions determine the actual outcomes in terms
of the progression of a disease outbreak. Just as disease
progression can vary across populations, so can the
effectiveness of interventions. Analyzing the decision
tree for biosurveillance analysis and interpretation
requires understanding how intervention strategies
change the progression of a disease event.

2.2.3. Knowledge of Consequences, Including
Costs. The consequences of a disease outbreak arise in
many forms. Making smart decisions about whether
and how to intervene requires an understanding of the
magnitude of each type of consequence. These conse-
quences include the following.

• Consequences and costs of the disease. The first
sets of consequences are the deaths and injuries
attributable to the disease event. Placing values
on these consequences can be deeply controversial,
though doing so increases the transparency of deci-
sions. Drawing upon the economics literature related
to estimating the value of life, these consequences
can be monetized. Recent studies suggest that results
from the health-effects valuation literature for envi-
ronmental and safety hazards need to be augmented
for bioterrorism and pandemics because people are
more concerned about health effects from bioterror-
ism and pandemics than about effects of other health
and safety incidents with equivalent expected mor-
bidity and mortality effects (Viscusi 2009). Thus, esti-
mates of disease costs should account for differences
in how people perceive bioterrorism and pandemic
risks compared to other risks. Furthermore, to be
comprehensive, it is important to consider two com-
ponents of the cost of disease that are frequently
ignored. First, just as interventions can spur changes
in consumption and behavior, so can the disease itself.
If fear of disease keeps people from going to work,
this could be attributed to be a cost of the disease. Sec-
ond, fear of the disease could also have mental health
consequences, leading to increased stress and other
forms of psychological trauma. Though documented
with respect to terrorist events and disasters, mental
health trauma is often not counted among the costs
of disease because it remains relatively poorly under-
stood. Disagreement about and poor understand-
ing of how some of these consequences are valued

warrants further study of how to value the costs of
disease.

• Costs of interventions. Another set of consequences
of a decision to intervene involves the costs of
implementing the intervention. These costs include
resources required to acquire supplies and equip-
ment, to conduct associated planning and training,
and to support the personnel required to implement
the intervention. Costs of intervention must account
for all aspects of design, planning and preparation,
implementation, and sustainment of the intervention.
The costs of intervention also include economic dis-
ruptions associated with the intervention. For exam-
ple, a decision to issue travel restrictions to the United
States from a specific country could affect businesses
in several ways. Cancellation of flights because of the
travel restrictions could lead to business interruptions
attributable to the intervention. If travelers decided
to cancel travel plans to countries nearby the country
targeted by travel restrictions out of fear of the disease
outbreak, these changes in behavior and consumption
could be attributable to the intervention. Estimating
these derivative economic damages is tricky because
of poor understanding of the public responses to dis-
ease incidents and the importance of distinguishing
between true damages and transfers from one party to
another. For example, if travelers cancel a trip to the
affected country but instead travel to another part of
the world, this is a loss for one country and a gain for
another. From a societal cost perspective, this scenario
does not reflect damages unless the traveler would
have actually preferred to go to the targeted country
and is left worse off being stuck with a second-best
choice, or the transfer leads to a distribution of costs
and benefits that is perceived to be inequitable.

• Costs of surveillance and analysis. This paper
focuses mainly on how improving biosurveillance
analysis can improve decisions. However, conduct-
ing such an analysis incurs costs. When considering
whether to conduct additional activities to improve
any aspect of biosurveillance—data collection, pro-
cessing, analysis, or interpretation—it is necessary
to consider the costs of developing and implement-
ing them.

• Consequences and costs of getting it wrong. A con-
sequence of uncertainty surrounding biosurveillance
is that responses to signals of a disease event may
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retrospectively be judged to be incorrect. If a disease
event does not materialize with the severity projected,
as was the case with the H1N1 influenza pandemic
of 2009, the public can view interventions as unneces-
sary and wasteful. If the government fails to intervene
quickly or intensely enough, as was the case with the
SARS response in China in 2003, the public may view
the response to be inadequate. In both cases, the result
can be a loss of public confidence that can jeopardize
other initiatives or the effectiveness of responses to
future incidents. Thus, although these consequences
can be difficult to evaluate, they could be a pivotal
factor in some decisions, and further study of the pub-
lic responses would be valuable.

2.3. Summary
Framing analysis and interpretation tasks of bio-
surveillance using a decision tree focuses the informa-
tion needs of biosurveillance on answering two key
questions: whether to act and how to act.

In addition, this framing identifies three types of
information needed to optimally address these
two questions. When considering which analytic
approaches can most benefit biosurveillance analysis
and interpretation, we concentrate on those analyses
that provide the three types of information described
in §2.2.

3. Analytic Approaches to Supporting
Biosurveillance Decision Making

Modeling, simulation, and quantitative analysis are
being applied in many ways to the study of infec-
tious diseases and public health responses to dis-
ease. Researchers across disciplines are using many
different approaches that are capable of providing
information required for biosurveillance analysis and
interpretation. This paper does not attempt to provide
a comprehensive review of all modeling approaches
or all applications of a specific modeling approach.
Table 1 lists a few examples of selected approaches to
modeling, simulation, and analysis that can be used to
provide information needed for biosurveillance anal-
ysis and information. A brief review of these exam-
ples demonstrates the breadth of opportunities to use
analysis in the field of biosurveillance.

Table 1 Examples of Analytic Approaches That Can Be Used to
Provide Information Needed for Biosurveillance Analysis and
Interpretation

Information Selected analytic Examples of selected
need approaches analytic approaches

Disease severity • Dynamic epidemic Anderson and May (1991)
and progression progression models Epstein et al. (2007, 2008)

• Disease transmission Epstein et al. (2007)
models Keeling and Danon (2009)

• Exposure and behavior
modeling

Intervention • Agent-based modeling Lee et al. (2010a, b)
effectiveness • Probabilistic risk Carley et al. (2003)

analysis Jackson and Faith (2013)
• System dynamics Moore et al. (2008)

models
• Operations research and

analysis
Costs and • Economic input–output Gyrd-Hansen et al. (2007)

consequences analysis Santos et al. (2009)
• Computable general Dixon et al. (2010)

equilibrium
• Stated and revealed

preference studies

Decision support • Decision trees and cost Lee et al. (2009)
benefit analysis Davis et al. (2008)

• Policy-level models and
portfolio analysis tools

3.1. Approaches for Analyzing Disease Severity
and Progression

System dynamics models for analyzing disease sever-
ity and progression describe the state of popu-
lations that are susceptible to a disease, infected
with a disease, and recovered from a disease. So-
called susceptible-infected-recovered models describe
the dynamic progression of an epidemic within a
population (Anderson and May 1991). They can be
used to assess the total morbidity and mortality of
a disease outbreak as well as how that progression
evolves in populations of different ages, of differ-
ent demographic characteristics, with different behav-
ioral risk factors, and in different places (Keeling and
Danon 2009).

The results of these models depend on many
parameters such as the rate at which susceptible peo-
ple become infected upon exposure, the frequency
with which susceptible people are exposed, the rate at
which infected people recover, and the rate at which
infected people die. More recent advances to this form
of modeling have focused on better understanding
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some of these parameters. For example, Epstein et al.
(2007) modeled disease transmission by describing
how changes in travel can affect transmission rates
and thus disease progression, and Epstein et al.
(2008) modeled how behavioral reactions to disease,
including fear, can affect exposure and thus disease
progression.

Models and analyses like these can help decision
makers anticipate the progression of disease scenarios
based upon characteristics of the disease, the expo-
sure scenario, and the population within which the
disease outbreak occurs.

3.2. Approaches to Analyzing the Effectiveness of
Interventions

To evaluate intervention strategies to curb the conse-
quences of disease outbreaks, decision makers must
know how interventions reduce the number of peo-
ple who become exposed, become sick, or die dur-
ing a disease outbreak. Analysts have adopted many
approaches to estimating this information using mod-
els and simulations. A review of selected examples
provides a sense of the diversity of approaches that
are available and is a starting point for consider-
ing the value of each approach in terms of how it
improves decision making when responding to dis-
ease incidents.

3.2.1. System Dynamics Modeling. Just as the
susceptible-infected-recovered models of this class
can be used to assess the expected progression of a
disease outbreak, they can also be used to estimate
the efficacy of interventions. When used in this way,
analysts estimate how interventions would influence
key parameters in the model, such as how treatment
affects the rate of transition from an infected popula-
tion to a recovered population, how treatment affects
the rate of death of those in the infected population,
or how travel restrictions affect the rate at which the
susceptible population encounters the infected popu-
lation. Examples of this approach include studies of
the efficacy of school closures and employee vaccina-
tion programs following pandemic disease outbreaks
(Lee et al. 2010a, b)

3.2.2. Agent-Based Modeling. Building off of
similar methods used to estimate disease severity and
progression, agent-based models describe how the

perceptions, incentives, and decisions at an individual
level culminate in group behavior (Epstein et al.
2007, 2008). These methods have been used to under-
stand how different assumptions about travel behav-
ior, decisions to seek treatment, or adherence to
public warnings and directions affect the outcomes
associated with different interventions. For example,
one such simulation, BioWar (Carley et al. 2003), sim-
ulates the implementation of a large number of pub-
lic health interventions for infectious diseases so their
efficacy can be estimated in several U.S. cities and
under different assumptions about background levels
of other disease symptoms and behaviors that affect
disease transmission and rates of treatment.

3.2.3. Operations Research and Probabilistic
Risk Analysis. These methods describe an outbreak
and an intervention as a chain of discrete events and
reactions to those events, and have been applied to
both technical and social problems. These analyses
deliver insight by describing the causal relationships
between events and how successful completion of
each event depends upon the outcome of preceding
events. The relationships described include the likeli-
hood of each event, the dependence of each event on
outcomes of preceding events, and the time required
to complete each event. When these relationships
are characterized, operations research and probabilis-
tic risk analysis can be used to estimate the overall
expected consequences of a series of events. For exam-
ple, Jackson and Faith (2012) used a probabilistic risk
analysis method, Failure Mode and Critical Effects
Analysis, to describe the overall performance of a sys-
tem designed to dispense medical countermeasures
following a mass anthrax exposure event and esti-
mate the likelihood that the preparedness plan will
deliver the intended capability. Similarly, Moore et al.
(2008) used operations research methods such as anal-
ysis of queues to assess how the coverage, timeliness,
and accuracy of components of public health surveil-
lance and reporting lead to the overall likelihood that
a novel strain of disease is confirmed, and the time
required to achieve this result.

3.3. Approaches to Analyzing the Costs and
Consequences of Diseases and Interventions

Conventional approaches for estimating the costs and
consequences of diseases and interventions account
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for easily identified and readily tangible factors.
These include the costs to establish plans, develop
and acquire equipment, and construct facilities, and
the costs of personnel time and consumable materi-
als needed to implement plans. Equally important,
but sometimes omitted, are costs associated with
required training and ongoing maintenance or sup-
port required to ensure plan success. Many of the
costs for preparedness planning are incurred well in
advance of an event; others are incurred “just in time”
in response to an event. The costs and feasibility
of pre-event and just-in-time preparedness must be
factored into decisions regarding whether and how
to act in response to a biosurveillance signal, and
thus present a decision about how to best balance
resources for response planning.

The direct consequences of disease, of course,
include the effects of illnesses and deaths. In the
health economics literature, the consequences of ill-
ness are frequently monetized so that avoidance of
these costs can be directly compared to the costs
of avoiding life-threatening hazards. The methods in
this literature either ask people to state how much
value they place on avoiding health and safety con-
sequences or infer this value from compensation peo-
ple demand (e.g., hazard-adjusted wages). A frequent
finding of this literature has been that not all sources
of death and illness are valued equally. Though not
yet a robust finding in the literature, recent studies
suggest that individuals value preventing deaths and
injuries from pandemic diseases more than those from
more common life-threatening events (Viscusi 2009,
Gyrd-Hansen et al. 2007).

While necessary, methods of accounting for the
direct consequences of disease and interventions often
miss several categories of costs (described in §2) asso-
ciated with the cost stemming from reactions to the
event and disruptions caused by the intervention.
Though these costs are more difficult to estimate, sev-
eral approaches have been used to better understand
them.

The most traditional approach to estimating the
broader indirect effects of diseases and interven-
tions is input–output economic analysis. The core
of this class of models are tables developed by the
U.S. Bureau of Economic Analysis describing depen-
dence among sectors of the U.S. economy. These

data, for example, describe how economic activity in
the transportation equipment sector stimulates activ-
ity in primary metals, energy, and agriculture, and
vice versa. Similarly, these models can be used to
describe how a decrease in economic activity rip-
ples throughout the economy, thus providing an esti-
mate of the overall economic impacts of an event
beyond those directly attributed to morbidity, mortal-
ity, and response. Santos et al. (2009) used a version
of this analysis to analyze the economic consequences
of recovery from a pandemic.

The principal criticism of input–output economic
models is that the method relies on a steady-state view
of the economy. In the short term, this perspective fails
to capture how decisions people make to adapt to the
disruptions affect the consequences of the event. Some
of these decisions could decrease the consequences;
for example, people choosing to eat lettuce instead
of spinach following a food contamination incident
involving only spinach. Others could increase the con-
sequences; for example, people choosing to cancel
vacation plans because of a disease outbreak. In the
long term, input–output analysis does not capture
the economic consequences associated with decisions
leading to new ways of doing business; for example,
a structural shift in the use of business travel versus
telecommuting following a terrorist event.

Another form of the economic impact model was
developed to address these issues: computable gen-
eral equilibrium (CGE) models. These models attempt
to capture the dynamic shifts in markets through
equations that represent the elasticity of sectors of
the economy to changes in demand and supply of
things such as labor, natural resources, services, and
commodities. When data are available to estimate the
parameters of these equations, CGE models provide a
more refined description of the economic impacts of a
disruption. Dixon et al. (2010) applied these models to
evaluate the economic consequences of several types
of terrorism-related and naturally occurring incidents,
including pandemic flu.

3.4. Decision Support Tools to Support
Biosurveillance Efforts

The examples of information needs and analytic
methods described in the preceding sections reveal
the complexity and importance of biosurveillance.
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To interpret and act upon these complex sources
of information, decision makers need tools to help
them structure choices and understand the implica-
tions of their decisions on expected outcomes. Like
the decision tree presented in Figure 4, decision sup-
port tools provide a type of metainformation that can
help improve public health preparedness decisions.

Decision support tools are generally found in two
varieties. The most common use of these tools is to
evaluate a decision about a single intervention. The
decision tree depicted in §2 is one example of this
type of tool. Another example of this type of analysis
is cost–benefit analysis. Cost–benefit analysis uses a
variety of the approaches described in the preceding
sections to estimate both the costs of implementing an
intervention and the benefits that are expected from
the intervention in terms of reduced adverse impact
on health and safety. Both decision trees and cost–
benefit analysis are commonly used tools in the anal-
ysis of public health policies and interventions. For
example, a study by Lee et al. (2009) on pandemic
influenza prevention in Singapore demonstrates the
utility of these tools in this context.

The practical limitation of decision trees and cost–
benefit analysis arise when decision makers must
evaluate decisions under conditions of extreme uncer-
tainty about the likelihood of events occurring, must
plan for a very large set of scenarios, have many
different types of interventions that are feasible, and
must make decisions within the context of time
and fiscal constraints. In these situations, cost–benefit
analysis may not help decision makers determine the
best course of action (Greenfield et al. 2012).

Two alternative approaches have been developed
for problems like this: policy models and portfolio anal-
ysis tools. To address many sources of uncertainty and
plan for a large number of scenarios, the use of low-
resolution policy models facilitates understanding of
the expected outcomes of different intervention strate-
gies comprised of multiple intervention approaches.
To address the breadth of uncertainties and scenar-
ios, policy models must allow for rapid evaluation
of a large number of relevant scenarios. To be valid,
the parameters of the models and results must be
consistent with more detailed studies. However, to
manage the complexity in communicating the results
of this analysis, policy-level models must be used

in conjunction with tools that enable evaluation of a
portfolio of interventions across a large number of
scenarios. Though most applications of policy-level
models and portfolio analysis methods have been
focused on national security and defense issues, they
are in principle also applicable to the problems sur-
rounding naturally occurring and terrorist-related dis-
ease outbreaks (Davis et al. 2008).

3.5. Summary
The examples described in this section demonstrate
the existence of multiple opportunities for modeling,
simulation, and analysis to improve biosurveillance
and decision making in the event of disease outbreaks
or bioterrorism. An effective strategy for improv-
ing analysis used within biosurveillance will draw
upon a portfolio of these methods to provide infor-
mation about expected disease progression, effective-
ness of interventions, and the consequences of the
diseases and interventions—including their mone-
tary and nonmonetary costs—to help decision makers
interpret this information. A starting point for build-
ing this portfolio is consideration of the added value
from incorporating these analytic methods into bio-
surveillance information collection, processing, anal-
ysis, and interpretation.

4. Assessing the Value of Information
in Biosurveillance

The analytic methods described in §3 provide many
options for improving the analysis and interpretation
of biosurveillance information. One way to choose
among these approaches and prioritize efforts to
develop analytic capabilities is to consider the value
of the information provided by analysis to decision
making. Expected value of perfect information is a formal
concept in the field of decision analysis that describes
the extent to which new information about proba-
bilistic uncertainties would cause changes in decisions
and as a result leads to better outcomes (Howard
et al. 1972).

To understand the applicability of the expected
value of perfect information framework to biosurveil-
lance, consider the following simplified example of a
public health emergency decision under uncertainty
presented in Figures 6–10. This example is designed
to illustrate how the value-of-information framework
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Figure 6 Decision Tree Depicting the Choice of Whether and How to Intervene Without Any Biosurveillance Information

Expected value =
0.2(4,000) + 0.8(0) = 
800

Expected value =
0.2(150) + 0.8(250) =
230

Expected value =
0.2(100) + 0.8(300) = 
260

True disease event

No disease event

P(Event 1) = 0.2

1–P(Event 1) = P(Event 2) = 0.8

True disease event

No disease event

P(Event 1) = 0.2

1–P(Event 1) = P(Event 2) = 0.8

True disease event

No disease event

P(Event 1) = 0.2

1–P(Event 1) = P(Event 2) = 0.8

Carry on

Cost of
intervention

Cost of
disease

Cost of
inappropriate

reaction

100 10 0

Total

110 = + +

100 0 200300 = + +

50 100 0150 = + +

50 0 200250 = + +

0 2,000 2,0004,000 = + +

0 0 00 = + +

Intervention 1

Intervention 2

provides insight into which types of new analysis
are most useful. The numbers used in the example
are purely notional and would also vary based on
the specific disease threat. They can be interpreted
as monetized consequences. However, units have not
been assigned in an effort to minimize interpreta-
tion of the actual values presented. In a real applica-
tion, the numbers would come from a combination of
sources including field data, results of analysis using
the methods described in §3, and expert judgment.
It will be impossible to monetize all consequences.
However, this need not limit the application of anal-
ysis. Experience with similar analysis for public pol-
icy analysis, such as regulatory cost–benefit analysis,
suggests that analysis that monetizes consequences
when possible and clearly identifies and describes
those consequences that cannot be monetized facili-
tates informed decision making (Obama 2011).

For this simple example, only two interventions
exist (see Figure 6). Intervention 1 is twice as costly
as Intervention 2 (see the second column of cost data
in Figure 6), but it also leads to one-tenth the con-
sequences of the disease if it occurs (see the third
column of cost data in Figure 6). If the health depart-
ment decides to intervene, but there is no disease
event, the community faces serious consequences of
an unnecessary intervention, perhaps due to busi-
ness disruptions and loss of confidence in the county

health department. On the other hand, if the health
department chooses not to intervene and there is a
disease event, the community faces disastrous conse-
quences from deaths and illness (see the third col-
umn). The consequences of failing to act also result
in severe loss of confidence in the health department
(Figure 6, column 4). With this information, the deci-
sion tree allows calculation of the expected conse-
quences of each set of decisions. For example, the
expected outcome of choosing to act with no informa-
tion and implementing Intervention 2 is calculated as
being 6002 × 1507+ 6008 × 2507, or 230.

Now consider a case in which routine collection and
processing of biosurveillance data costs the same for
all pathways and that cost is assumed to be 10. Sup-
pose the biosurveillance system detects a signal of a
possible disease outbreak. However, the signal is not
perfectly accurate, and the likelihood that it reflects
a true positive event is relatively low. Figure 7 indi-
cates that the probability of a true positive given that
the system gave a positive signal of a disease event is
P4E1/I15= 18/34. The county public health department
must decide how to act based on this information.

With this system in place, officials have several
choices (see Figure 8). They could choose to use the
biosurveillance system, pay the costs to operate it,
and make the best choice available when signals of
an unusual event are indicated. Instead, they could
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Figure 7 Estimated Performance of the Notional Biosurveillance
System Depicted in the Example Analysis

Actual situation
Total

True disease True no disease number
event (E1) event (E2) of events

Biosurveillance system
indication

Positive signal says True False 34
there is a disease positive positive
event (I1) 18 16

Negative signal says False True 66
there is no disease negative negative
event (I2) 2 64

Total number of events 20 80 100

forgo the costs of operating the biosurveillance system
and make the best choice among interventions, pre-
sumably later and after the occurrence of the event
is obvious. For simplicity, we assume that this delay
in action does not lead to worse disease outcomes.
Under these conditions, the optimal decision is to use
the biosurveillance system. The expected value of this
choice is 157 (i.e., 0034 × 197 + 0066 × 121 + 10). This
is better (lower) than the expected value of any of
the other three interventions without use of the bio-
surveillance systems (see Figure 8).

Suppose now that the county health department
has the opportunity to develop better sources and/or
methods for data collection and processing, for exam-
ple by integrating existing sources of data, adding
new data sources, or adding new approaches for iden-
tifying a signal in the data collected. These methods
would improve the surveillance efforts dramatically,
so much so that any signal detected could be perfectly
accurate (see Figure 9). Note that the probability P4E15

of a disease event occurring remains at 0.2. Should the
county health department invest in this new analytic
capability and what would it be worth?

To answer this question, consider the revised deci-
sion tree presented in Figure 10, which assesses the
value with perfect prediction. For the initial assump-
tion that the probability that a disease event will occur
is 0.2, it is logical to assume that with perfect predic-
tion the probability is 0.2 that a perfect biosurveillance
system will indicate that an event is occurring. Under
these conditions, using the biosurveillance system is,
not surprisingly, still preferred, and the expected value

is lower (i.e., 22). In turn, the expected value of per-
fect information for biosurveillance is the difference
of the expected value with perfect prediction (see Fig-
ure 10) and the expected value under uncertainty with
no information (see Figure 6), in this case, 230 − 22,
or 208. This calculated value of the expected value of
perfect information provides an upper bound on how
much should be invested in improving the quality of
information produced by biosurveillance efforts.

Value-of-information analysis of analytic capabil-
ities cannot in practice achieve the comprehensive,
quantitative precision presented in these examples.
This does not, however, invalidate the value-of-infor-
mation framework as an approach for prioritizing
opportunities to improve analysis. Careful accounting
of how decisions to develop new analytic capability
improve both monetized and nonmonetized conse-
quences can form the basis of a reasoned justification
of an analytic agenda, even if estimated improve-
ments are coarse, ordinal assessments.

5. Recommendations
The preceding sections of this paper describe several
ways that analytic methods can be used to improve
the analysis and interpretation capabilities of bio-
surveillance and thereby the ability of biosurveillance
to inform appropriate decisions regarding whether
and how to intervene. Opportunities exist to improve
knowledge related to disease severity and progres-
sion, effectiveness of interventions, and consequences
and costs of disease and interventions. Opportunities
also exist to use decision analysis tools to interpret
the information resulting from biosurveillance and act
upon it. The goal of efforts to improve analytic capa-
bility is the same as the goal of biosurveillance—to
improve decisions of whether and how to respond to
disease incidents.

Accordingly, the value of improved biosurveillance
capabilities rests in the value of information that im-
proved analysis brings. More specifically, improving
disease surveillance and response involves balancing
resources to address a number of fundamental ana-
lytic challenges inherent in disease surveillance and
response, as described in §1.1. The demonstrations of
decision trees and value-of-information analysis pre-
sented in this paper illustrate how a decision analytic
framework can increase transparency and clarity of
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Figure 8 Decision Tree Depicting the Choice of Whether and How to Intervene Based on an Imperfect Biosurveillance System

System gives
positive signal

P(I1) = 0.34

True positive

False positive 

P(E1| I1) = 18/34

P(E2| I1) = 16/34

Expected value = 800

Intervention 2

Expected value = 230

Expected value = 260

Intervention 1

Carry on

Use current
Biosurveillance program

Cost (10)

300

110
Intervention 1

True positive

False positive

P(E1| I1) = 18/34

P(E2| I1) = 16/34
250

150
Intervention 2

True positive

False positive

P(E1| I1) = 18/34

P(E2| I1) = 16/34
0

4,000
Carry on

False negative

True negative

P(E1| I2) = 2/66

P(E2| I2) = 64/66
300

110

Intervention 1

False negative

True negative

P(E1| I2) = 2/66

P(E2| I2) = 64/66
250

150

Intervention 2

False negative

True negative

P(E1| I2) = 2/66

P(E2| I2) = 64/66
0

4,000
Carry on

System gives
negative signal

P(I2) = 0.66

Expected
value = 199

Expected
value = 197

Expected
value = 2,118

Expected value =
0.34(197) + 0.66(121) + 10 =
157

Expected
value = 294

Expected
value = 247

Expected
value = 121

efforts to improve the National Biosurveillance Infor-
mation Center’s analytic capabilities as a contribu-
tion to the whole-of-government approach to disease
surveillance.

Figure 9 Estimated Performance of a Perfect Biosurveillance System

Actual situation
Total

True disease True no disease number
event (E1) event (E2) of events

Perfect biosurveillance
system

Positive signal says True False 20
there is a disease positive positive
event (I1) 20 0

Negative signal says False True 80
there is no disease negative negative
event (I2) 0 80

Total number of events 20 80 100

In many cases, application of these new ana-
lytic capabilities may be possible without a drawn-
out development effort. For example, existing data
sources and tools from across agencies and pro-
grams potentially can be integrated into a more robust
national biosurveillance system. Also, given uncer-
tainties inherent in the biosurveillance area, simple
approaches may provide adequate insight into choices
and may be preferred to more complex, less transpar-
ent models that are more difficult to develop.

Developing a detailed road map for improving bio-
surveillance requires analysis beyond that included
in this paper. It requires clearly understanding the
objectives and goals of the biosurveillance program;
understanding what opportunities exist to leverage
existing data and methods and what the demands are
from decision makers for biosurveillance information;
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Figure 10 Decision Tree Depicting the Choice of Whether and How to Intervene Based on Perfect Biosurveillance (Assuming No Cost for the
Surveillance System)

System gives
positive signal
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True positive

False positive
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Expected value = 260

Intervention 1

Carry on
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110
Intervention 1
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P(E1| I1) = 1
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True positive

False positive

P(E1| I1) = 1

P(E2| I1) = 0
0

4,000
Carry on

False negative

True negative

P(E1| I2) = 0

P(E2| I2) = 1
300

110
Intervention 1

False negative

True negative

P(E1| I2) = 0

P(E2| I2) = 1
250

150
Intervention 2

False negative

True negative

P(E1| I2) = 0

P(E2| I2) = 1
0

4,000
Carry on

System gives
negative signal

P(I2) = 0.8

Expected
value = 110

Expected
value = 150

Expected
value = 4,000

Expected value =
0.2(110) + 0.8(0) =
22

Expected
value = 300

Expected
value = 250

Expected
value = 0

and discussing with decision makers how biosurveil-
lance information can improve how they manage
disease outbreaks. To develop a five-year plan to
improve specific analytic capabilities for biosurveil-
lance, we recommend completing the following three
foundational elements of a strategic plan.

5.1. Clarify Objectives for the
Biosurveillance Efforts

The first step in establishing a strategy to improve
the analytic capabilities for biosurveillance analysis
and interpretation is to clarify the guiding objec-
tives for biosurveillance. For example, the informa-
tion required to detect and respond to bioterrorism
is different than that required for naturally occur-
ring disease outbreaks like seasonal influenza. Because
federal, state, and local organizations have distinct

capabilities, roles, and responsibilities during response
to a disease incident, the information they each require
is different. Approaches to surveillance intended to
monitor trends in existing diseases are different from
those aimed at detecting rare events (Moore et al.
2008). A clear set of objectives will connect a bio-
surveillance effort to the national strategies it is meant
to support, position it with respect to other comple-
mentary biosurveillance efforts, and define the capa-
bilities it must provide.

5.2. Identify Available Analytic Capabilities
Table 1 lists several analytic approaches and examples
of specific methods associated with each approach.
However, this review is not comprehensive. Anal-
ysis of these types occurs across the Department
of Homeland Security, Department of Defense, and
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Department of Health and Human Services. It occurs
in universities and nongovernmental organizations.
Before any new efforts are made to develop ana-
lytic methods to support biosurveillance analysis and
interpretation, the body of existing analytic methods
should be reviewed as well as the body of existing
surveillance data sources and systems that could be
“stitched together” to enhance biosurveillance and
situational awareness across sectors and levels of gov-
ernment from local to national. A survey of these
existing biosurveillance capabilities can be compared
to defined biosurveillance objectives and capabilities
to identify potential gaps in supporting biosurveil-
lance analysis and interpretation.

5.3. Use Value of Information to Inform
Improvements in Biosurveillance Analysis

Clear objectives and awareness of ongoing biosurveil-
lance activities provide a foundation for develop-
ing strategies for improving biosurveillance analysis
and interpretation. Each of these strategies can pro-
vide an approach for integrating new analytic tools
with existing tools to achieve clearly stated objectives.
The strategies should reflect portfolios of methods
to provide insight into the four types of informa-
tion described in §3 and at the beginning of this
section. The value-of-information approach described
in §4 provides insight into which strategy will most
improve biosurveillance efforts across a range of bio-
threat scenarios. The selected strategy will provide a
road map and priorities for an agenda to improve bio-
surveillance analysis and interpretation.

5.4. Summary
The steps outlined in this section provide the basis
for an analytic agenda and recommend a value-
of-information approach to improve biosurveillance
analysis and interpretation in response to signals of
potential disease events. This agenda will describe
strategies for improving biosurveillance analysis and
interpretation and the rationale for implementing one
or more of these strategies. Ideally, each strategy will
include recommendations for developing near-term
(one- to two-year) and midterm (three- to five-year)
analytic capabilities. Completing these elements will
require time and funding. However, a modest invest-
ment over approximately six months can clarify what

information would be most useful and what gaps
in analytic methods currently exist. With this infor-
mation, efforts to enhance biosurveillance can avoid
wasting effort on the development of low-value or
redundant analytic methods.

An analytic strategy grounded in the value-of-
information approach provides an overarching frame-
work to guide improvements in biosurveillance data
collection, processing, and analysis. Although adopt-
ing this approach is desirable, it is not sufficient to
ensure effective biosurveillance capabilities. As men-
tioned in §1, effective biosurveillance requires coordi-
nation among agencies and organizations responsible
for collecting and processing biosurveillance data,
detecting signals, making decisions about whether
and how to act based on such signals, and implement-
ing appropriate interventions. Thus, as the biosurveil-
lance community considers ways to improve analytic
methods at its disposal, continued attention is war-
ranted to coordination and integration of components
of the biosurveillance community.
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