
• Como podemos obter um sistema com inversão de população?

Para um sistema com 3 níveis energéticos: sob determinadas condições $N_3 > N_2$ $h v_{32} = E_3 - E_2$

1.
$$N_1(0) = N_{total}$$

- 2. Sistema exposto a radiação ρ_v com $h v_{31} = E_3 E_1$ (fonte de bombeamento)
- 3. Decaimentos
- Se tivermos luz com hv₃₂=E₃-E₂; absorção e emissão estimulada pode ocorrer entre 3 e 2 (pode ser gerada por emissão espontânea entre estes 2 níveis)

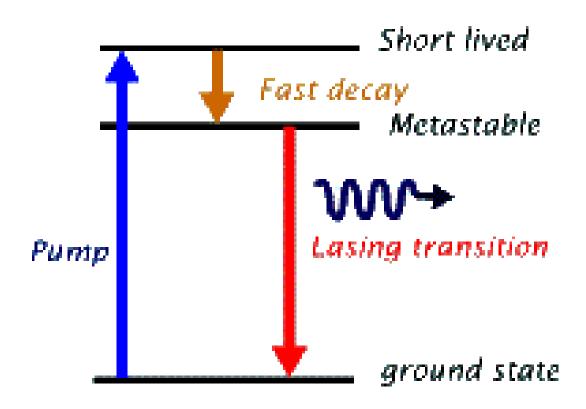
$$N_{total} = N_1 + N_2 + N_3$$

• No equilíbrio, a população de cada nível se mantem constante

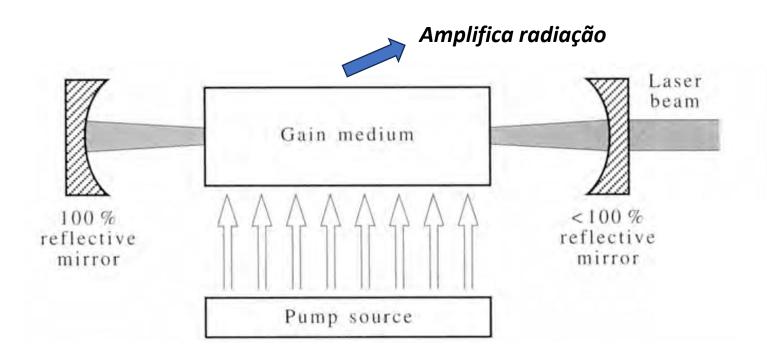
$$\frac{dN_1}{dt} = \frac{dN_2}{dt} = \frac{dN_3}{dt} = 0$$

• A população do estado 2 (N_2) é um balanço entre emissão espontânea do estado 3 ao 2 ($A_{32}N_3$), emissão espontânea do estado 2 ao estado 1 ($A_{21}N_2$), emissão estimulada do estado 3 ao estado 2 ($\rho B_{32}N_3$) e absorção do estado 2 ao 3 ($\rho B_{32}N_2$)

$$\frac{dN_2}{dt} = 0 = A_{32}N_3 - A_{21}N_2 + \rho_v B_{32}N_3 - \rho_v B_{32}N_2$$


$$N_3[A_{32} + \rho_v B_{32}] = N_2[A_{21} + \rho_v B_{32}]$$

$$\frac{N_3}{N_2} = \frac{A_{21} + \rho_v B_{32}}{A_{32} + \rho_v B_{32}}$$


N₃ pode ser maior do que N₂ se A₂₁>A₃₂→ inversão de população atingida se os átomos excitados ao estado 3 decaem mais lentamente ao estado 2 e os átomos no estado 2 decaem rapidamente ao estado fundamental

a) Normal Population (Thermal Equillibrium) b) Population Inversion (Thermal Equillibrium) $E_3 = E_3 = E_3 = E_3 = E_2 = E_2 = E_1 = E_1$

Three-level Laser

Componentes do Laser

1° laser- 1960- Cristal de Rubi

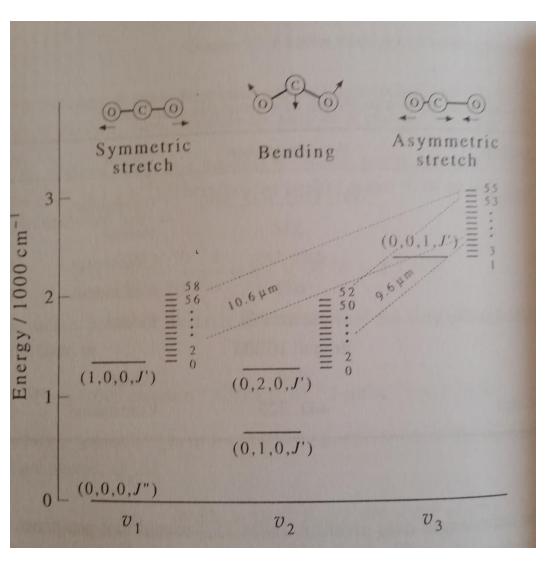
1. Laser medium (gain medium ou meio ativo): sólido, líquido ou gasoso

Rubi sintetico \rightarrow Al $_2$ O $_3$ (substituição dos cátions por (0,05%) Cr $^{3+}$) \rightarrow causa inversão de população

Rubi natural → distorções na rede impedem seu uso como laser.

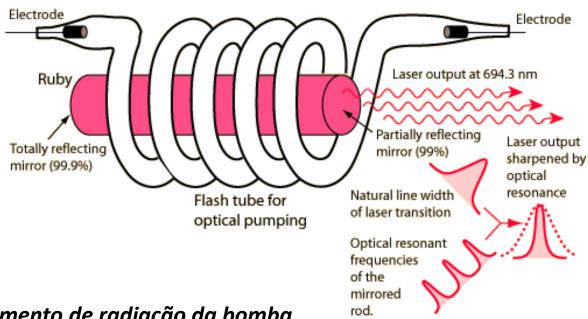
Active ion	Host	Wavelength/nm	Output ^a	Duration
Cr3+	Al_2O_3	694.3	Pulsed	10 ps
Nd ³⁺	$Y_3Al_5O_{15}$ (YAG)	1064.1	Both	10-150 ps
Nd ³⁺	$Y_3 Li_x F_y$ (YLF)	1054.3	Both	10–100 ps
Nd ³⁺	Glass	1059	Pulsed	1 ps
Ti ³⁺	Al ₂ O ₃ (sapphire)	780	Both	10 fs-5 p

TABLE 15.5


The gain medium and laser wavelength of various gas-phase lasers.

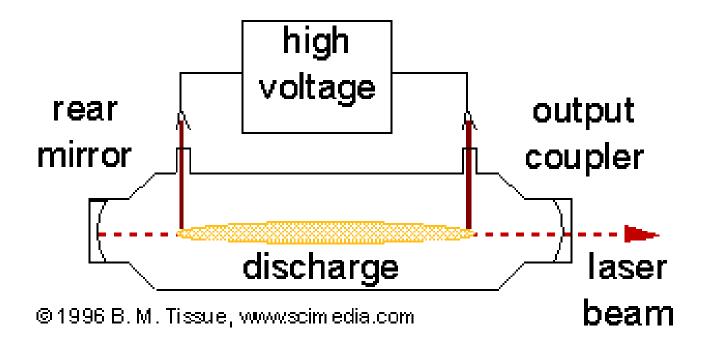
Gain medium	Wavelength/nm	Output	Pulse duration
He(g), Ne(g) $N_{2}(g)$ $Ar^{+}(g)$ $K^{+}(g)$ $CO_{2}(g), He(g), N_{2}(g)$	3391, 1152, 632, 544 337 488, 515 647 - Line tunable	Continuous Pulsed Continuous Continuous Pulsed	Continuous 1 ns Continuous Continuous ≥ 100 ns
Cu(g) $He(g), Cd(g)$	around 10 000 510 441, 325	Pulsed Continuous	30 ns Continuous

Lasers em todas as regiões de interesse do espectro eletromagnético

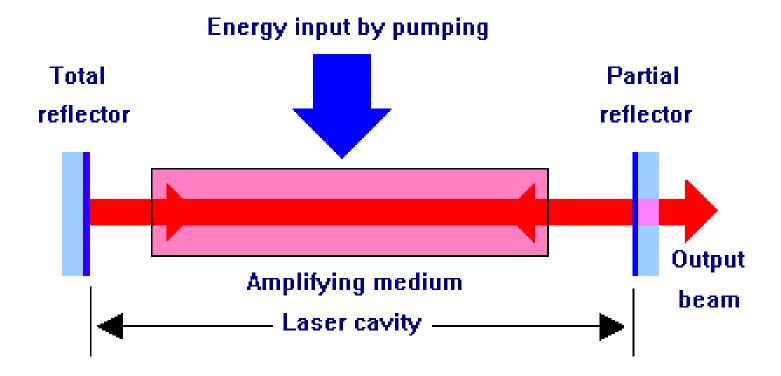

Níveis de energia roto-vibracional do CO₂ utilizados para emissão laser

Transições roto-vibracionais do estado eletrônico fundamental

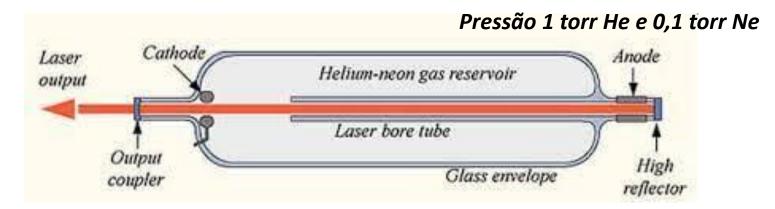
2. Fontes de Bombeamento (Pump Source)


- 2.1 Excitação optica: luz de alta intensidade ou elétrica
- lampadas, flash-lâmpadas, lasers

O aproveitamento de radiação da bomba é baixo nos lasers, sólidos são mais eficientes do que gases.

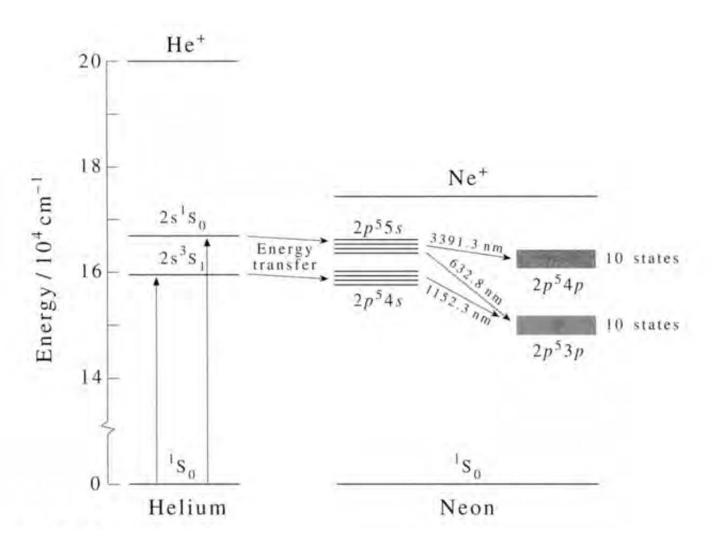

https://www.youtube.com/watch?v=KzI3vaIb0aI

2.2 Excitação elétrica: geralmente em Lasers gasosos



2. Cavidade ressonante

espelhos


HeNe laser

- -Colisoes com elétrons do catodo ao anodo geram gas no estado excitado
- probabilidade maior de colisão com He

Estados excitado de He com maior tempo de vida (~10-6s)

$$\operatorname{He}^*(2s^3S_1) + \operatorname{Ne}(g) \longrightarrow \operatorname{He}(g) + \operatorname{Ne}^*(2p^54s)$$

$$\text{He}^*(2s^1S_0) + \text{Ne}(g) \longrightarrow \text{He}(g) + \text{Ne}^*(2p^55s)$$