
A general FEU formulation of nonlinear dynamics 
applied to accessing the statical loading effect 
upon the dynamic response of planar frames 

Reyolando M L R F Brasil and Carlos E N Mazzilli 
Department of Structural and Foundation Engineering, Escola Politecnica 
Universidade de Sao Paulo, CP 61548, 05424-970 Sao Paulo, SP, Brazil 

This paper initially discusses the dynamics of discrete structural systems of geometricaly 
nonlinear behaviour costituted by linear elastic materials. Two formulations are derived, 
namely global and incremental. They are both suitable to general FE modelling, as the 
matrix equations of motion are written in explicit form. Matrices and vectors involved are 
characterized in terms of constraint equations defined within the continuum discretization. 
In principle, such formulations are applicable to any structural theory, as the theories of 
beams, plates and shells. As an example, the Bernoulli-Euler beam element is studied 
herewith. Both global and incremental formulations capture the effect geometrical 
nonlinearities have upon inertial and elastic forces alike. The ANDROS FEM program, 
developed by the authors, which is based upon the global formulation, has been successfully 
used in several nonlinear analyses. From this general background, the paper proceeds to 
consider the effect statical loading may have upon the free undamped vibration frequencies 
of a structure. It is shown that the tangent stiffness matrix of the incremental formulation 
should be used in the resultant eingenvalue problem. In some cases, axial forces are seen to 
have a strong influence on the internal resonance tuning. It is shown, in a sample structure 
thus tuned and subjected to dynamical loading, that a nonlinear regime may appear in the 
response. 

A G E N E R A L F E M F O R M U L A T I O N 

Discrete structural systems of geometrically nonlinear be­
haviour constituted by linear elastic material are initially 
considered. The equations of motion in explicit form are 
investigated, retaining nonlinearities both in the elastic 
and in the inertial forces. The foregoing formulation is 
based on Mazzilli (1988) and is already in adequate form 
for application to the finite-element method, thus allow­
ing the analysis of large engineering systems. The secant 
matrices of mass, equivalent damping - there included the 
inertial damping - and stiffness, as well as the equivalent 
load vector, are characterized within the global equations 
of motion. Alternatively, the tangent matrices of mass, 
damping and stiffness, and the incremental equivalent 
load vector are deduced within the incremental equations 
of motion. These latter may be eventually used for con­
sideration of elastoplastic behaviour, interpreting it as 
hypoelasticity in each time increment. The formulation 
is able to tackle conservative and non-conservative ap­
plied loads, as well as translation and rotation support 
excitations. 

As the starting point, the generalized Lagrange's equa­
tions are recast. For a system with n degrees of freedom 
Qi,Q2,---,Qn, they are: 

' dC 

.dQrl 
-

' dC ' 

dQr. 

the Lagrangian function C being given by the difference 
between the kinetic energy T and the total potential en­
ergy V. The generalized forces Nr retain the effects of 
the nonconservative forces. One can also define C as the 
difference between the kinetic energy and the strain en­
ergy U, so that Nr would then also include the effects 
of applied conservative forces. Holonomic constraints are 
assumed, so that the position vector of a generic volume 
element cffi of the deformable system is supposed to be 
a known function of the generalized coordinates and the 
time: 

R = R(Ql,Q2,.~,Qn,t) 

If these functions are all linear in the generalized coor­
dinates, geometrical nonlinearities will be lost. Therefore, 
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extreme caution should be taken when the finite-element 
technique is introduced into the formulation. The usual 
hypothesis tha t the displacement field within a finite 
element is given by a linear combination of nodal dis­
placements may be inadequate for the nonlinear analysis. 
Hence, at the Solid Mechanics level it is necessary that 
the underlying structural theory be consistently nonlinear 
and further tha t at the s t ructural discretization level, via 
the finite-element technique, nonlinearities are not subtly 
lost within the matr ix equations of motion. 

The kinetic energy is: 

T=\ I R- RpdQ 

where Q is the region occupied by the undeformed system 
and p the specific mass. The velocity vector is: 

planar problem, the matr ix [aj] can be writ ten in terms 
of the support rotation <f>(t): 

[aj] = cos<p 

s in <j> 

— sin<f> 

cos <{) 

It was already observed tha t it is a feature of nonlin­
ear structural theories to render nonlinear functions for 
the coordinates y3 in the variables Qi,Q2, ••,Qn- Ad­
ditionally, support excitations are defined by rotat ions 
through the matr ix [aj(<)] or by translat ions through 
S({t). Hence: 

R = [ a { W ( Q i , 0 2 , •••> Qn) + S'(t)]?i 

Back into expressions for Ars, BT e C, and taking these 
into Lagrange's equations, one arrives at : 

5 dR A dR 

and consequently: 

T=^Ar'QTQ,+BTQr + \c 

with: 

A" = 

B 

C 

dR dR 

n dQr dQs 

dR dR 
di 

dR dR 

n di ' di 

, = J dR 

pdQ; 

pdQ; 

pdQ. 

Recasting Lagrange's equations, one gets: 

Ar'Qs + 

\dBr 

dAr' 

[dQt 

dB* 

ldAs 

dQa dQr 
Q, 

2 8Qr 

dBr 

QsQt 

1 dC 

+ 
dAr' 

di 

dU 

dt 2 dQr dQr 
+ Nr 

A special though still rather general class of holonomic 
constraints is now considered. It is supposed tha t there 
exists a reference frame Yy1y2y3, called "relative", with 
respect to which the system constraints are scleronomic. 
Support excitat ions are defined by rigid-body motion of 
the relative frame Yy1y2y3 with respect to an inertial 
frame Xxlx2x3. Calling R the position vector in the 
inertial frame, T^the position vector in the relative frame 
and S the vector (Y-X), one writes: 

R=r + S; S = S"<f;; r = a'-y4ei 

where the mat r ix [a'A defines the relative frame rotation 
with respect, to the inertial frame. It can be explicitly 
given in terms of the Euler angles (Mazzilli, 1988). For a 

Fr,*m6jmQ, + 

Fyim _ iF>tjm\ 6jmQsQt + 

{F"^m - F'r'm)a)ak
m6ikQ. + 

Hrja)SkSik + 

Grima)akJik = ~U,r + Nr 

Notation (.)_,. indicates part ial differentiation with re­
spect to Qr, 6jm being the Kronecker's symbol and: 

F rsjm dy4 dy" 
pdQ,; 

Gr 

Hrj 

in dQr dQ, 

Jn dQr 

f dyj ^o 
JndQr 

All terms dependent of Frsjrn, Grjm e Hri in the above 
equations of motion are inertial forces, there included the 
Coriolis forces: 

(Fr'im _ F'^m)a)ak
m6ikQ, 

and the centrifugal forces: 

GTima)ak
m6ik 

Since Fr'im, Gr4m e 77° may be functions of the general­
ized coordinates, it is clear tha t geometrical nonlinearities 
can in fact generate nonlinear inertial forces. The elastic 
force vector Ur, on its turn, may also include nonlinear 
terms caused by geometrical nonlinearities, as it is well 
known even in Statics. It is supposed tha t the generalized 
force vector always include viscous damping: 

Nr = Pr ~nrsQs 

The g l o b a l n o n l i n e a r e q u a t i o n s of m o t i o n can now 
be written in the compact form: 
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MrsQs + DrsQs + U,r = Tr 

where: 

M" = Frsjm6jm 

D" = / / ' + (Fr!jm - F'rjm)a)hk
m6ik 

F = P'--Grjmaydk
m6ik-H

ria)Sk6ik 

It should be observed that the introduction of the stiffness 
matrix in the global equation of motion is, in some ways, 
arbitrary. In fact, what naturally appears there is the 
elastic force vector U<r. Obviously, one could think of the 
secant stiffness matrix A'™, as: 

U,r = Kr
s'Q. 

Nevertheless, several other matrices could be thought of, 
as the linear theory stiffness matrix, for example. Once a 
particular stiffness matrix KT* has been chosen, one can 
add to both sides of the global equation of motion the 
term Kr'Qt. Introducing now the definition: 

AF = Kr,Q, - U,r 

one finally gets for the global equations of motion: 

Mr'Q, + Dr!Qs + Kr'Qs = Tr + AF 

In other words, the arbitrary choice of the stiffness matrix 
implies in adding to the load vector TT a correcting term. 
It should be observed that, even in Statics, the global 
equilibrium equation: 

U,r = Pr 

can well be written in the form: 

KrsQ, = Pr + AF 

and, in numerical nonlinear analysis, this latter suggests 
an iterative procedure equivalent to that of the modified 
Newton-Raphson method. In fact, choosing a particu­
lar matrix Kr* and supposing in the first iteration that 
ATr = 0, one can obtain Q, from the equilibrium equa­
tion. The new value for AF would then come after its 
definition and so forth. 

In a great number of cases it may be more convenient 
to work with the incremental equat ions of motion: 

MF6Q, + Dr
T'6Q, + ICT'6QS = 8Vr 

where: 

My = M" 

Dr
T

s = / i " + ( F " ' ' m - Fsrjm)a)hk
m6ik 

+ (F?jm + F^m - F?m)6jmQt 

Kr
T> = Uirt+Grjma)ak

m6ik + Hya)Sk6ik 

+ F?m6jmQt + (V^ m - ^ m ) 6jmQuQt 

+ (F?m - F^y^ikQt + tfQt 

6Vr = 6Pr-Grjm(6ai
ja

k
m+a)6ak

m)8ik 

- Hrj(6a)Sk+a)6Sk)8ik 

A P L A N A R S T R U T F I N I T E E L E M E N T 

As an application example of the previous section general 
formulation, we consider now the 2-D strut finite element 
according to the Bernoulli-Euler theory (Mazzilli, 1990). 
From Figs la and lb the following relations can be de­
rived for the displacements u (local system y1 direction) 
and v (local system y2 direction) of the elemental mass 
dm situated in a cross section defined by the strut axis 
coordinate x and at a distance y from the cross section 
centroid: 

u = u — y sin a 

v = v + y(cos a — 1) 

where u and v are the u and v displacements of a material 
point on the strut axis and a is the cross-section rotation, 
for which rigorously: 

v' 
sin a = -=-

A 

1 + u' 
cos a = —=— 

A 
V1 

tan a — 
1 + u' 

Notation (.)' denotes differentiation with respect to x. 
The axis stretching is: 

A = y/(J+ u'f + {v'f 

Observe that the "local system" Yyly2 is defined by a 
rotation 9, independent of time, with respect to the rel­
ative frame Yy1y7. In what follows here, the elemental 
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X 

Fig la 

Fig lb 

Fig 2 

matrices and vectors will be defined for the local system. 
The constraint equations will then be: 

y = yQ+x + u~ysina 

S2 = 2/o + v + y cos a 

The following approximations will be assumed from now 
on: 

sin a ?s a ss tan a fa v1 

1 
cos a 1 / \ 2 («') 

The Bernoulli-Euler strut does not allow for shear strain 
and the longitudinal strain e can be defined as: 

ya e-yv 

1 

To formulate the finite element it is necessary to introduce 
> the discretization, that is, the displacement field within 

/ the element should be defined in terms of the nodal dis­
placements, interpreted as generalized coordinates (Qi to 
Qe) and indicated in Fig 2. 

As in the standard applications of the finite-element 
method, one can think of stating that the transversal dis­
placements v result from a linear combinat ion of the 
nodal displacements: 

v = Qi^i , sum from Ho 6, where : 

9i(x) = * 4 = 0 

9i(x) = 1 - 3 ^ + 2— 

* 3 ( * ) = 

* 5 ( * ) 

X 2 X 3 

x — 2 1 

e f2 

p p 
X2 X3 
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Nevertheless, if the longitudinal displacements u are also 
supposed to result from a l i n e a r c o m b i n a t i o n of the 
nodal displacements, impor tan t geometrical nonlineari-
ties will be lost. Instead, we shall follow here the simple 
hypothesis proposed by Souza Lima and Venancio Filho 
(1982) for Stat ics, t ha t is, the c o n s t a n c y of normal forces 
N inside the element. It is interesting to remark that an 
equivalent hypothesis was recently proposed by Salami 
and Morley (1992), still in Stat ics. 

and 

*2(*) = *3(*) = *6(« ) = * 6 ( l ) = 0 

0i](x) - [jtijiZ) - aij(x) 

N 
EA r 

( Jo 
EA 

£ 

tdx 

U(£)-u(Q) + - (v'fdz 

EA 

£ Q4-Qi + ^Qij(t)QiQj 

where EA is the axial stiffness and: 

Jo 

Therefore: 

« ' = ~(Q4 - Qi) + -Q.Qja.jW - ^QiQjWj 

and, after integrat ion in x: 

1 
u = Q1 + j{Q*-Qi) + YeQiQJaii(e) x~-QiQjaij{x) 

u = Qi(l-j)+Q, (j) + ~QtQ3 [±aii(e) - aij(x) 
' x\ 1 

j ) + 2 

It should be noted tha t the field of longitudinal displace­
ments u has not resulted a linear function of the general­
ized coordinates! 

The constraint equat ions can now be written in compact 
form as: 

V* = Ti(x,QuQ2,...,Q6) + y6j(x,Qi,Q2,...,Q6) 

where: 

7 1 = yl + x + Qi$i(x) + -QiQjPij{x) 

61 = -QM 

&2 = i-\QiQj%% 

In the above equat ions , <l?,-(x), i = 1,2, . . . ,6 , are the stan­
dard interpolat ion functions of the linear analysis: 

*i(s) = 1 - f 

*4(*) = J 

One is now ready to write in explicit form the elemental 
matrices and vectors used in the g l o b a l e q u a t i o n s of 
m o t i o n . In the local system, they are writ ten as: 

Mr'=pA [ (7 . r7 . 1 .+7 , r7 1
2 . )^ + p / / (W, + 6*r6*,)dx 

Jo Jo 

Dr' = /i" - 2<j> pA J (7,1r7,2, - 7 , 1 . 7 , r ) ^ 
0 

+ Qipl [ 6%6*ri 
Jo 

'dx 

V,r = 

+ 

EA 
tQi*'i + 2Qn(e)QiQj [m'r + Qkakr(£)} 

EIQi I * ' / ( i )* ' r ' (a :)da 
Jo 

P = KrsQ3 - U<r + Pr 

+ 4>2pA / {-yW + l\t2)dx 
Jo 

+ 4>2
P1 j (6\6l + b\82)dx 

Jo 

+ 4>pA / ( 7 |
1

r 7 2 - 7 , r 7 1 ) ^ 
Jo 

+ 4>pl [ {6\62 - S^S^dx 
Jo 

pAS1 

pAS2 

3s<^ / i]rdx + sin<f) I j2
rd 

Jo Jo 

s i n ^ / j\dx + cos <f> / j2
rdx 

Jo Jo 

In the above equations (j>(t) s tands for the support ro­
tat ion characterized by the imposed angle between the 
relative Yyx axis and the inertial Xxl axis. 

The matrices and vectors of the i n c r e m e n t a l f o r m u ­
l a t i o n are now explicitly written for the local system: 

Mr
T'=PA I (j^+J^Jdx + pI / i^A+^l)dx 

Jo Jo 

D\ 24> PA / (7 rls ~ l\lr)d 

+ 2 PA I llrllidx + pl / 62
r6%dx 

Jo Jo 
Qi 
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EA 
U,„ = — [ * * : + a . - . ( * ) Q * ] [ « ' r + Qia ;>(f)] 

EA 
eQ&'i + 2QnQiQi 

+ EI [ V';(xW(x)dx 
Jo 

Kr
T' = Os.+flQi 

+ 

- <f>2
PA / ( 7 1 „ 7 1 + l\l)s + J2

r7
2
5)dx 

Jo 

+ 4>2PI f (8^s + 6%62 + 62
r6

2
3)dx 

Jo 

- 4>pA / (T.MT' + T.V?,2, -~fW,Mx 

Jo 

+ 4>P1 ( {6}r6l-6l,6l-6*T6],)dx 
Jo 

+ pAS1 cos 4> I t)Tadx + sin<j> I y2
rsdx 

Jo Jo 

+ pAS2 - s i n <j> / y*ri)dx + cos<f> / J2
r,dx 

Jo Jo 

+ QipA / (T.V.T. i +l!rl!,t)dx 
Jo 

+ Qipl f (82
r,6

2
t + 62

r6%)dx 
Jo 

1 . ,1 ,/„. , „T / JC2 c2 pA y^y'jjdx + pi ^rs^ijdx QiQ} 

- 2<p f>A / ( T „ T , 1 - 7 , , - , 7 . r ) ^ Qi 

Sf = 6Pr 

+ 2<j>pA (jW + j2j2)dx 

+ 2p,4 

+ 2p 

+ pA 

+ />/ 

- pAS1 

f (S1^1 +82
r6

2)dx 
Jo 

(iW;s - 7,1
J7

2
r)^' 

I [\6W-6W)d; 
Jo 

I iiW - iW)dx 

Jo 

f {6\6- - 8\6l)dx 
Jo 

8<t> 

6(f> 

— sin 0 / j\dx + cos(p / j2
rdx 

o ' Jo 
8<f> 

- pAS2 

- PA 

- pA 

- cos<t> I y*rdx - sin ^ / y2
r 

Jo Jo 

• s i n ^ / y\dx + cos <f> / j2
rdx 

Jo Jo 

•cos(/> / y\dx — smcj> I J2
rdx 

Jo Jo 

64> 

6S2 

6S1 

Note tha t all matrices and vectors of both the global 
and the incremental equations of motion can be explicitly 
given in terms of the generalized coordinates, by consid­
ering the expressions for 7 1 , j 2 , 6l and 62 previously 
written and the derivatives: 

7J. = $ r + Qi0ir 

l2r = * r 

*,v = -*; 
62

r = - Q i * ; . * ; 

t]r, = P" 

7,rs = 0 

?r. = 0 

6% = -KK 
The authors implemented at the Computat ional Me­

chanics Laboratory of Escola Politecnica da Universidade 
de Sao Paulo, the ANDROS system of FEM programs to 
perform nonlinear dynamical analysis of s t ructures, based 
upon the global formulation (Mazzilli and Brasil, 1992). 
It has been successfully used in several nonlinear analy­
ses reported in a number of papers (Brasil and Mazzilli, 
1991), (Brasil and Mazzilli, 1992). 

I N F L U E N C E O F A X I A L F O R C E S O N U N ­
D A M P E D V I B R A T I O N F R E Q U E N C I E S O F 
P L A N A R F R A M E D S T R U C T U R E S 

If a considerable level of stat ic load is applied to pla­
nar framed structures, resulting in high axial forces in 
some members, their natural frequencies of undamped 
free vibration may change considerably. The undamped 
equation of motion for those (small) vibrations about the 
deformed configuration is: 

mr* ^9« + krr &<!> - 0 

where kj? s tands for the coefficients of the tangent stiff­
ness matr ix for tha t level of static loading. The coeffi­
cients of the tangent mass matriz i n " are those of rrf' 
and can usually be made equal to those of the linear the­
ory mass matr ix . These are the two matrices one should 
use in the eigenvalue problem solution to find the natural 
frequencies of free undamped vibrations for the statically 
loaded deformed s t ructure . 

One of the programs included in the ANDROS sys­
tem performs a static nonlinear analysis of planar framed 
structures, via the Modified Newton-Raphson algorithm, 
to obtain the tangent stiffness matr ix at a certain level 
of loading. The system also features a s tandard eigenval­
ues routine, based on Holseholder-QL algorithm, to give 
the frequencies of undamped free vibrations about the 
statically loaded deformed configuration of the s t ructure . 
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L/2 XJ IL 

p 92 U p 
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Vertical Compressive Load P (kN) 

Freq. w1 Freq. w2 

Fig 3 Fig 4 

The simple portal frame of Fig 3 was analysed. It is 
constituted by a four-element horizontal beam and two 
three-element columns clamped in their bases. Two com­
pressive vertical loads P are applied to the top of the 
columns. These forces could, as an example, be given by 
prestressing of the columns. The geometrical and mate­
rial properties of the analysed model are: 

A = 3.48 x lfr -3 2 
in 

L — 7.577?.; 

I - 1.55 x l(T3m4 ; 

3.0m; 

E = 2.05 x I0nPa; p = 7.85 x I03kg/m3 

This structure was analysed for several levels of the 
P load. The values of its two lowest natural frequen­
cies, namely: wj (the sway mode frequency) and w2 (the 
first symmetrical mode frequency), are plotted in Fig 4 
against the variation of P. One can see that wj decreases 
according to a curve, reaching a zero value for the buck­
ling load predicted by Timoshenko (1961), whereas w2 is 
nearly constant. 

ANALYSIS OF A F R A M E U N D E R N E A R 
E X T E R N A L A N D I N T E R N A L R E S O N A N C E 
C O N D I T I O N S 

As another example of the capabilities of the ANDROS 
FEM system, a full nonlinear dynamical analysis of a por­
tal frame, with the same geometrical and material prop­
erties of the structure shown in Fig 3, is presented. When 
the load P is set to the value of 110 kN, one can see, in Fig 
4, that the near internal resonance condition (2wi « w2) 
is reached between the sway mode and the first symmet­
rical mode. It was considered a Rayleigh type viscous 
(linear) damping matrix to yield 0.5% damping rates for 
these first two modes. 

In a forced motion analysis at this level of load, har­
monic vertical support excitation was applied, of the form 

S — S0 sin ftt 

at near resonance with the symmetrical mode (ft sa u;2). 
For a better understanding of the effects of the geo­

metrical nonlinearities, one should analyse Fig 5 where qi 
stationary amplitude is plotted. The ground acceleration 
amplitude S0 is kept constant (equal to 0.25 g) while its 
frequency ft varies around w2. These conditions of near 
internal and external resonances lead to the "saturation" 
of the symmetrical mode, through which the energy is 
pumped into the system, with consequent rapid growing 
of the lateral vibrations (which otherwise would be near 
null), due to transference of the surplus energy. Although 
these postcritical vibrations are found to be theoretically 
stable, the considerable amplitude of the sway movement 
may lead to structural damage or even to failure. 

C O N C L U D I N G R E M A R K S 

This paper fits into a research line which starts with 
consistent and general formulations of analytical dynam­
ics, having in mind a robust modelling. The next step 
would be its application to the finite-element method 
which would put at reach the analysis of complex engi­
neering problems. Stationary basic solutions could then 
be surveyed, in special basic statical equilibrium config­
urations. It would follow a modal analysis considering 
small perturbations around the chosen basic state, which 
would give evidences of the relevant modes to be kept in 
a low-dimension version of the large-size problem. Here, 
intuitive engineering reasoning - such as the considera­
tion of the energy imparted to the selected modes and 
the possibility of internal and external resonances - , to­
gether with computational techniques for location of in-
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variant manifolds and their tangencies are required. Non­
linear parametric studies for the associated few-degree-of-
freedom system would follow, supplying a valuable quali­
tative knowledge of alternative competing regimes. These 
studies would them be used to define the quantitative 
analysis to be performed in the original large-size sys­
tem via the finite-element method. An effort in this way 
was made by Mazzilli and Brasil (1993). As a matter 
of fact, such a research line is already being pursued at 
LMC - Computational Mechanics Laboratory - of Escola 
Politecnica, University of Sao Paulo. At this moment, a 
general consistent formulation of analytical dynamics -
which is part of the subject of this paper - is already avail­
able. Based upon it the ANDROS finite-element program 
was developed (Mazzilli and Brasil, 1992). ANDROS was 
capable of capturing in large systems the expected non­
linear phenomena after the study of associated simple 
systems. 

Initial work is already under way on the condensation 
of multiple into few-degree-of-freedom systems, to which 
perturbation analyses can be applied in automatic fash­
ion with the help of symbolic computation. So far this 
has been done following very much the intuitive engineer­
ing reasoning and considerable help is expected from the 
applied mathematicians in the more rigorous search of 
the invariant manifolds. 
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