PCS3888 — 2023 ASPECTOS GERENCIAIS E ESTRATÉGICOS EM IOT

WIFI 6 & WIFI 7 p/IoT SERGIO TAKEO KOFUJI KOFUJI@USP.BR

CONTEXTO

As demandas do mercado e as novas tecnologias impulsionam a inovação IEEE 802.11

> Demanda por throughput

- ✓ Demanda exponencial contínua por taxa de transferência (802.11ax e 802.11ay, 802.11be)
- ✓ A maior parte (50-80%, dependendo do país) dos dados móveis do mundo é transportada em dispositivos 802.11 (WiFi)

➤ Novos modelos/recursos de uso

- ➤ Implantações densas (802.11ax), localização interna (802.11az),
- > Automotivo (IEEE Std 802.11p, V2X Próxima Geração), Internet das Coisas (802.11ah)
- ➤ Aplicações de baixo consumo de energia (802.11ba)

> Technical capabilities

- ✓ MIMO (IEEE Std 802.11n, 802.11ac, 802.11ay) e OFDMA (802.11ax)
- ✓ Rádios 60 GHz (802.11ay)

> Mudanças na regulação

- > TV whitespaces (IEEE Std 802.11af), detecção de radar (IEEE Std 802.11h), 6GHz (802.11ax, 802.11be)
- ✓ Regras de coexistência e desempenho de rádio (e.g., ETSI BRAN, ITU-R)

Fonte: D. Stanley. IEEE 802.11 Standards: Wi-Fi 6 and beyond.

BUSCA DE MAIOR DESEMPENHO

- 1. MAIOR THROUGHPUT DE PICO
- 2. MENOR LATÊNCIA
- 3. MAIOR NÚMERO DE CLIENTES

NOVOS OBJETIVOS NO WIFI6

"EFICIÊNCIA NO USO DO AR"

- A tecnologia Wi-Fi 6 (802.11ax) visa um uso melhor e mais eficiente do meio de radiofrequência existente.
 - Taxas de dados mais altas não são o objetivo principal do Wi-Fi 6.
 - O objetivo é um gerenciamento de tráfego 802.11 melhor e mais eficiente.

MERCADO Wi-Fi

https://iotbusinessnews.com/2022/08/09/48205-new-wifi-6e-and-wifi-7-standards-market-and-applications/

MERCADO Wi-Fi 6 & 7

Table 1-1 802.11 standards comparison

Standard Version	Frequen cy Band (GHz)	PHY Technology	Modula tion	Spat ial Stre ams	Channel Bandwidth (MHz)	Data Rate (Mbit/s)
802.11	2.4	IR, FHSS, and DSSS	-	-	20	1 and 2
802.11b	2.4	DSSS/CCK	-	-	20	5.5 and 11
802.11a	5	OFDM	64-QAM	-	20	6 - 54
802.11g	2.4	OFDM DSSS/CCK	64-QAM	-	20	1 - 54
802.11n	2.4 and 5	OFDM SU-MIMO	64-QAM	4	20 and 40	6 - 600
802.11ac	5	OFDM DL MU-MIMO	256- QAM	8	20, 40, 80, 160, and 80+80	6 - 6933.33
802.11ax	2.4, 5, and 6	OFDMA UL/DL MU- MIMO	1024- QAM	8	20, 40, 80, 160, and 80+80	6 - 9607.8

Wi-Fi 4 -> Wi-Fi 7

Wi-Fi 6

4X GREATER SCALABILITY

OFDMA enables managed, reliable, efficient connectivity across more devices. This means plenty of headroom for future growth or fewer APs required to support existing devices.

REDUCED INTERFERENCE

OBSS enhancements help routers and devices identify local traffic and tune out noise from other networks.

IMPROVED SECURITY

Wi-Fi 6 uses new WPA3 security features, enabling next-generation authentication and best-in-class encryption.

3X FASTER PERFORMANCE

1024 QAM and support for optional 160 MHz channels enable clients and routers to deliver best-in-class Gigabit speeds for the office or home.

~75% LOWER

Wi-Fi 6 helps slash lag times to give you the edge you need to win with OFDMA data management and OBSS interference avoidance features.

Increasingly stringent usage (e.g., industrial IoT, AR/VR, robotics, cloud gaming) requirements demand continued evolution

Wi-Fi 6E - 6 GHz

- Adopted 5925-6425 MHz
 Adopted 5925-7125 MHz
- **Ⅲ** Adopted 5925-6425 MHz, Considering 6425-7125 MHz
- Considering 5925-6425 MHz

https://www.wi-fi.org/countries-enabling-wi-fi-in-6-ghz-wi-fi-6e

Wi-Fi 7

Wi-Fi 7

User Experience Data Rate

Spectrum Efficiency

Network Energy Efficiency

Connection Density

Key Enhancements

320 MHz channels 4096-QAM 16 spatial streams Multi-link operation Multi-AP operation Deterministic low latency

Multi-RU (puncturing)

Low Latency

^{*} Accurate as of June/2020. Feature set and their specification are subject to change.

Wi-Fi 6 vs Wi-Fi 7

QAM Wi-Fi 6 vs Wi-Fi 7

IEEE 802.11

The History of Wi-Fi

1971

The Presentation

First public demonstration of ALOHAnet, a wireless packet data network operating on UHF (Ultra High Frequency) radio waves connecting 7 computers spread across four islands without phone lines.

1973

Network Standard

- Initiated by Bob Metcalfe of Xerox Palo Alto Research Center
- Memo about Ethernet network standard for connecting computers.
- · This was the beginning of a central standard for connecting computers rather than separate proprietary solutions.
- Set the stage for a similar wireless standard.

1985

Open Network Use

- · Federal Communications Commission, America's Telecom regulator, opens the ISM (Industrial, Science, and Medicine) Band of the Wireless spectrum for use in communications without a government license.
- The frequencies include 900MHz, 2.4GHz, and 5.8 GHz, which are still commonly used today.

The Father of Wi-Fi

The IEEE 802.11 Working Group for Wireless LANs is founded. It is led by Vic Hayes who is sometimes known as the "Father of Wi-Fi".

1990

Public Hotspots

The concept of a public access Local Wireless Network is introduced by Henrik Sjödin. The term hotspot wouldn't be coined until 1998.

Source: Mercku.

The Definitive

Guide

Wi-Fi:

1997

802.11 - 2 Mbps

1999

802.11b – 11 Mbps The W

2003 | Sp

802.11g - 108 Mbps

2005

802.11e - 108 Mbps

2009

802.11n - 600 Mbps

2010

2014

802.11ac - 1.7 Gbps

2015

The Wi-Fi Alliance

The Wi-Fi Alliance is founded as non-profit trade association working for universal compatibility and quality user experience.

Spectrum Increases

- The World Radio Conference allocates the 5GHz band of radio spectrum for wireless access devices.
- The Calypso Wireless C1250i phone is announced as the first phone to allow both cell phone and Wi-Fi VoIP calls.

100 Million Chipsets

Wi-Fi chipset shipments top 100 million annually

The 1 Billionth Chipset

The 1 billionth Wi-Fi chipset is sold.

1 Million Hotspots

1,000,000 Wi-Fi hotspots are estimated to be active worldwide.

802.11AC Router

D-Link releases the first portable 802.11ac router.

70,000,000 Hotspots

70,000,000 Wi-Fi hotspots are estimated to be active worldwide.

2019

Source: Mercku. Wi-Fi:

The Definitive Guide

IEEE 802

IEEE 802.11 Working Group

Iniciativas IEEE 802.11

- √802.11ax Increased throughput in 2.4, 5 (and 6) GHz bands.
 Increased efficiency.
- ✓802.11ay Support for 20 Gbps in 60 GHz band
- ✓802.11be Extremely High Throughput
- ✓802.11az 2nd generation positioning features
- ✓802.11ba Wake up radio. Low power IoT applications.
- ✓802.11bb Light Communications
- ✓802.11bc Enhanced Broadcast Service
- ✓ 802.11bd Enhancements for Next Generation V2X

Gerações WiFi - 2019

source: https://www.wi-fi.org/discover-wi-fi/wi-fi-6

802.11b was released / "Wi-Fi 1"

2003

802.11a was released / "Wi-Fi 2"

2003

802.11g was released / "Wi-Fi 3"

2009

802.11n was released / "Wi-Fi 4"

2014

802.11ac was released / "Wi-Fi 5"

2019

802.11ax was released / "Wi-Fi 6"

2020

6GHz Wi-Fi was released / "Wi-Fi 6E"

Est. 2024

802.11be estimated release/ "Wi-Fi 7"

Wi-Fi 4 -> Wi-Fi 6

Wi-Fi 6

WIFI6

	802.11n (Wi-Fi 4)	802.11ac (Wi-Fi 5)	802.11ax (Wi-Fi 6)
Frequency bands	2.4 GHz and 5 GHz	5 GHz only	2.4 GHZ, 5 GHz, 6 GHz
Channel size (MHz)	20, 40	20, 40, 80, 80 + 80, and 160	20, 40, 80, 80 + 80, and 160
Frequency multiplexing	OFDM	OFDM	OFDM and OFDMA
Subcarrier spacing (KHz)	312.5	312.5	78.125
OFDM symbol time (µs)	3.2	3.2	12.8
Guard interval (µs)	.04 or .08	.04 or .08	.08, 1.6, or 3.2

	802.11n (Wi-Fi 4)	802.11ac (Wi-Fi 5)	802.11ax (Wi-Fi 6)
Total symbol time (µs)	3.6 or 4.0	3.6 or 4.0	13.6, 14.4, or 16.0
Modulation	BPSK, QPSK, 16-QAM, 64-QAM	BPSK, QPSK, 16-QAM, 64-QAM, 256-QAM	BPSK, QPSK, 16-QAM, 64-QAM, 256-QAM, 1024-QAM
ми-мімо	N/A	DL	DL and UL
OFDMA	N/A	N/A	DL and UL

OFDM VS FDM

Wireless transmissions compared

How orthogonal frequency-division multiplexing (OFDM), standard frequency-division multiplexing (FDM) and single-channel wireless transmission compare.

OFDM Subchannels overlap

FDM Subchannels do not overlap

Single-channel
One channel/band uses
all available bandwidth

802.11n/ac 20 MHz channel – OFDM subcarriers

TRANSMISSÃO OFDM

ESPAÇAMENTO ENTRE SUBPORTADORAS

802.11ax subcarriers

TRANSMISSÃO OFDMA

Block diagram of OFDMA downlink transmission

Source: Orthogonal Frequency Division Multiple Access Fundamentals and Applications (Wireless Networks and Mobile Communications) 1st Edition.

Block diagram of OFDMA uplink transmission

Source: Orthogonal Frequency Division Multiple Access Fundamentals and Applications (Wireless Networks and Mobile Communications) 1st Edition.

Transmitter and receiver block diagram for the OFDM PHY in IEEE 802.11a system

Source: Orthogonal Frequency Division Multiple Access Fundamentals and Applications (Wireless Networks and Mobile Communications) 1st Edition.

OFDM VS OFDMA

Source: CISCO. The Road to Wi-Fi 6/6E

OFDM VS OFDMA

Multi-user OFDMA compared with single-user OFDM

3x higher throughput for short packets or multiple clients

Wi-Fi 6E - 6GHz

GRUPOS DE RECURSO (RESOURCE GROUPS)

Resource Units and Wide Channels

Resource Units (RUs)	20 MHz Channel	40 MHz Channel	80 MHz Channel	160 MHz Channel	80 + 80 MHz Channel
996 (2x) subcarriers	n/a	n/a	n/a	1 client	1 client
996 subcarriers	n/a	n/a	1 client	2 clients	2 clients
484 subcarriers	n/a	1 client	2 clients	4 clients	4 clients
242 subcarriers	1 client	2 clients	4 clients	8 clients	8 clients
106 subcarriers	2 clients	4 clients	8 clients	16 clients	16 clients
52 subcarriers	4 clients	8 clients	16 clients	32 clients	32 clients
26 subcarriers	9 clients	18 clients	37 clients	74 clients	74 clients

TRÊS TIPOS DE SUBPORTADORAS

- **Data subcarriers**: These subcarriers will use the same modulation and coding schemes (MCSs) as 802.11ac as well as two new MCSs with the addition of 1024 quadrature amplitude modulation (1024-QAM).
- Pilot subcarriers: The pilot subcarriers do not carry any modulated data; however, they are used for synchronization purposes between the transmitter and receiver.
- **Unused subcarriers**: The remaining unused subcarriers are mainly used as guard carriers or null subcarriers against interference from adjacent channels or subchannels.

MU-MIMO

Downlink MU-MIMO $-4 \times 4:4:4:2$.

OFDMA VS MU-MIMO

OFDMA	MU-MIMO
Increased efficiency	Increased capacity
Reduced latency	Higher data rates per user
Best for low-bandwidth	Best for high-bandwidth
applications	applications
Best with small packets	Best with large packets

OBSS – Overlapping basic service set

OBSS interference caused by client

BSS COLOR

INTER-BSS

TARGET WAKE TIME

OUTROS

Segurança

DÚVIDAS?

SERGIO TAKEO KOFUJI KOFUJI@USP.BR