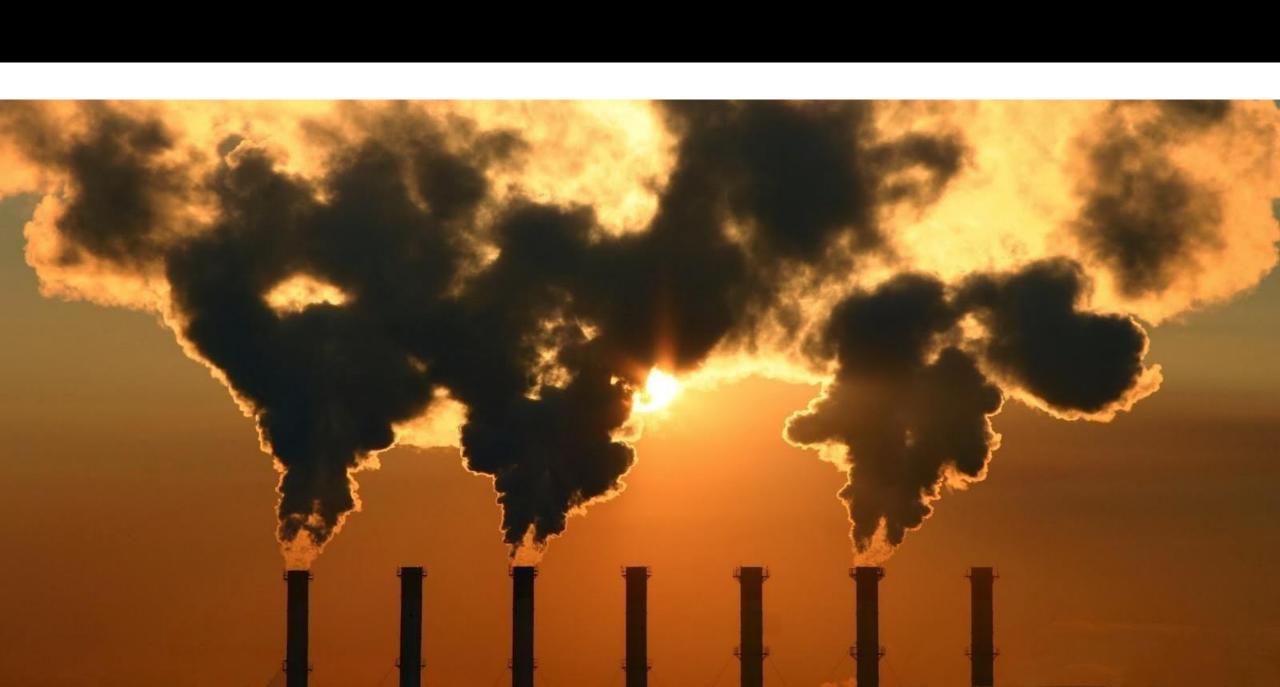
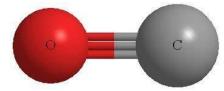
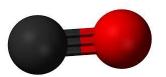
UNIVERSIDADE DE SÃO PAULO



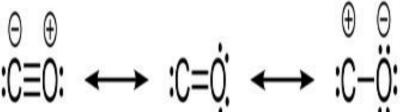
Poluentes Gasosos na Atmosfera


LOB1046 - Engenharia do Meio Ambiente Profa. Débora Alvim

DEPARTAMENTO DE CIÊNCIAS BÁSICAS E AMBIENTAIS



Monóxido de Carbono (co)


Origens e Consequências

Produto intermediário de combustão de carbono para dióxido de carbono (CO₂).

Originam-se de processos de combustão industrial ou veículos automotores, sendo estes os maiores geradores.

Origens e Consequências

Em ambientes fechados, o CO em altas concentrações é um dos mais perigosos agentes tóxicos respiratórios devido à sua afinidade com a hemoglobina do sangue, formando a carboxihemoglobina, dificultando o transporte do oxigênio, podendo causar a morte por asfixia.

- Não possui cheiro, nem odor

- Produto da combustão incompleta de combustíveis
- Fontes em espaços exteriores, veículos em baixa velocidade e indústrias
- Fontes em espaços interiores garagens, fogões a lenha, lareiras e cigarro

Reações

CO and CH_4 are the main sinks (sumidoro) for the OH radical in most of the troposphere

$$CO + OH \rightarrow CO_2 + H$$

$$H + O_2 + M \rightarrow HO_2 + M$$

$$HO_2$$
• + $NO \rightarrow NO_2$ + OH •

Tal como indicado por Crutzen e Zimmerman (1991), em um ambiente rico em NOx (NOx = NO + NO₂) como na atmosfera da Região Metropolitana de São Paulo (RMSP) onde a razão de mistura de NO >=10 pptv, reações seguintes R2 e R3 produzem ozônio. Caso contrário, as reações de ozônio com radical hidroperoxila (HO₂) destroem o ozônio

Chemistry

Carbon monoxide oxidation in a clean environment:

(1)
$$O_3 + hv \rightarrow O_2 + O(^1D)$$

(2) $O(^1D) + H_2O \rightarrow 2OH$
(3) $OH + O_3 \rightarrow HO_2 + O_2$
(4) $HO_2 + O_3 \rightarrow 2O_2 + OH$
(3+4) $2O_3 \rightarrow 3O_2$ NET

Chemistry, continued

Carbon monoxide oxidation in a dirty (polluted) environment:

(3') OH + CO
$$\rightarrow$$
 H + CO₂

(4')
$$H + O_2 + M \rightarrow HO_2 + M$$

(5')
$$HO_2 + NO \rightarrow NO_2 + OH$$

(6')
$$NO_2 + hv \rightarrow NO + O$$

$$(7')$$
 O + O₂ + M \rightarrow O₃ + M

$$(3'-7')$$
 CO + 2O₂ \rightarrow CO₂ + O₃ NET

Formation CO from methane

1.
$$CH_4 + \bullet OH \rightarrow \bullet CH_3 + H_2O$$

2.
$${}^{\bullet}CH_3 + O_2 + M \rightarrow {}^{\bullet}CH_3O_2 + M *$$

3.
$$\cdot CH_3O_2 + NO \rightarrow \cdot CH_3O + NO_2$$

4.
$$\cdot CH_3O + O_2 \rightarrow HCHO + \cdot HO_2$$

5.
$$HCHO < 338n$$
 •H + •HCO

6.
$$\cdot HCO \stackrel{m}{+} O_2 \rightarrow CO + \cdot HO_2$$

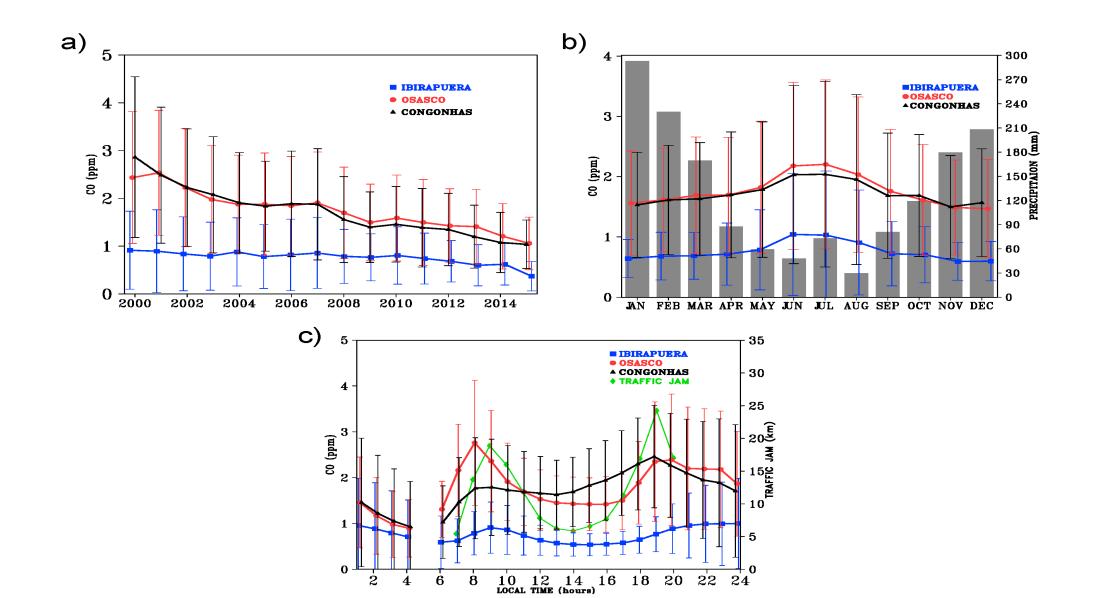
7. HCHO + •OH
$$\rightarrow$$
 CO + •HO₂ + H₂O

Reactions of the other formed radicals

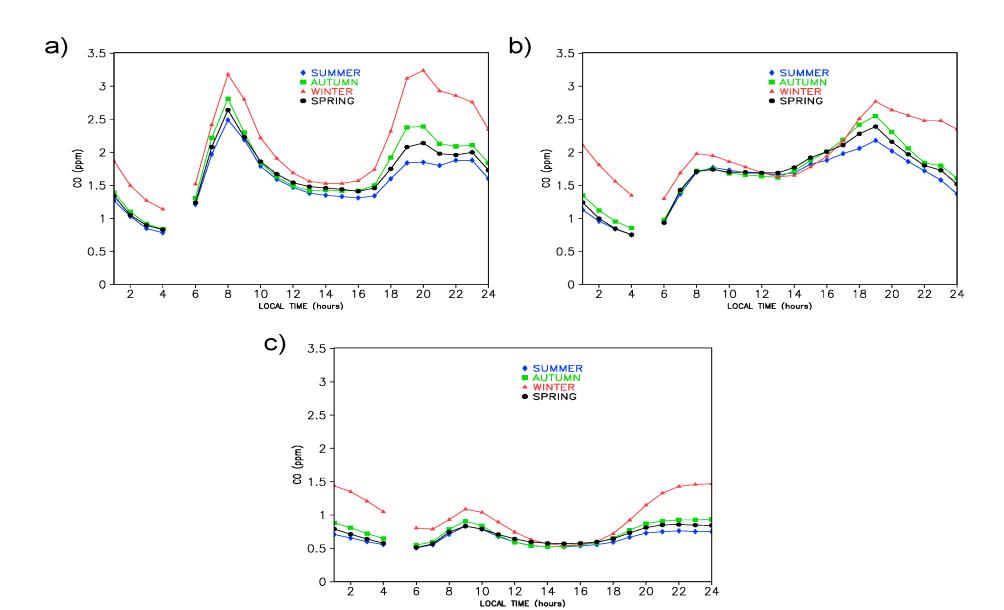
A diminuição da concentração global de CO poderia ocasionar um aumento no radical OH, o que aceleraria a taxa de remoção de CH₄, portanto, alteraria a capacidade oxidante da atmosfera (BRASSEUR et al., 1999; SZE, 1971; THOMPSON; CICERONE, 1986; CRUTZEN; ZIMMERMAN, 1991; WANG).

Kanakidou e Crutzen (1999) estimou que uma redução de 50% nas emissões de CO levaria a um aumento de 3,5% na concentração de OH na troposfera e uma diminuição no metano.

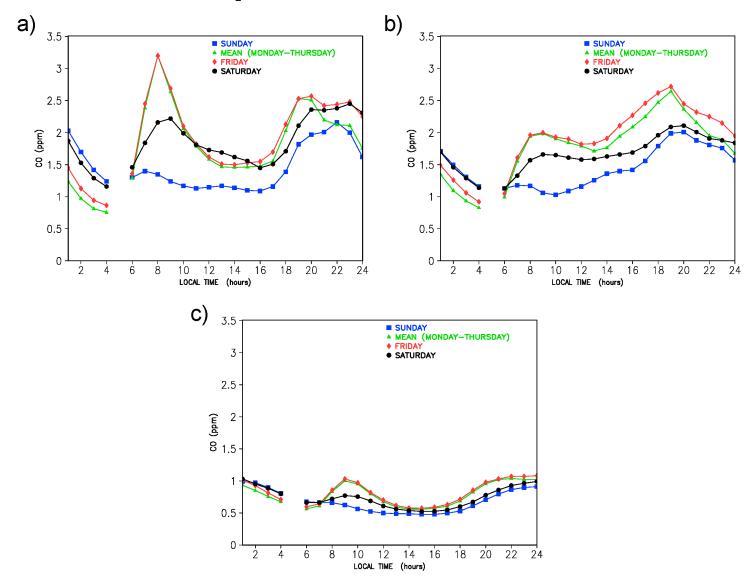
O principal sumidouro (sink) de CO é a oxidação por OH, o que resulta em uma vida útil média de 2 meses.

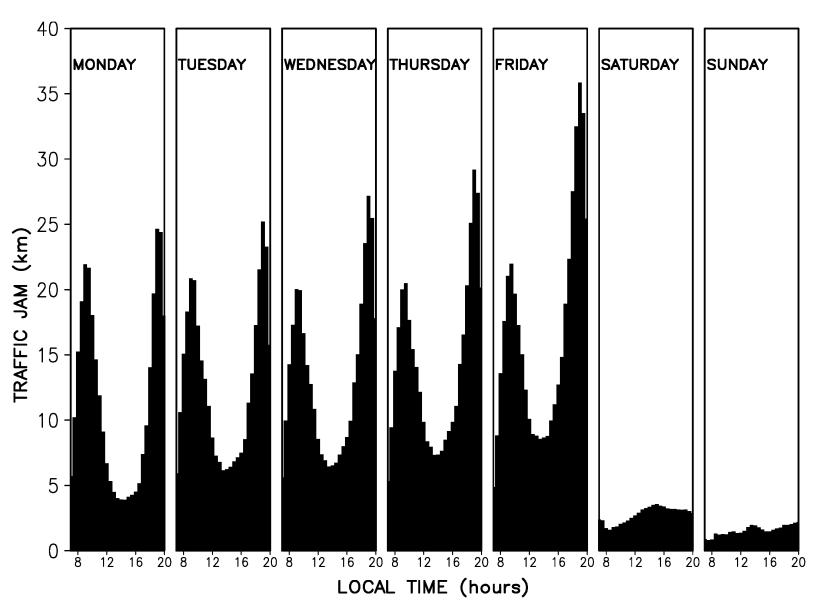

Devido a este tempo de vida relativamente curto, o CO não é bem misturado na troposfera.

As concentrações variam de 0,05-0,15 ppm em partes remotas do mundo, 0,1-0,3 ppm nas regiões rurais dos Estados Unidos e até vários ppm nas áreas urbanas, onde o CO é considerado um perigo para a saúde humana.


Faixa de estimativa

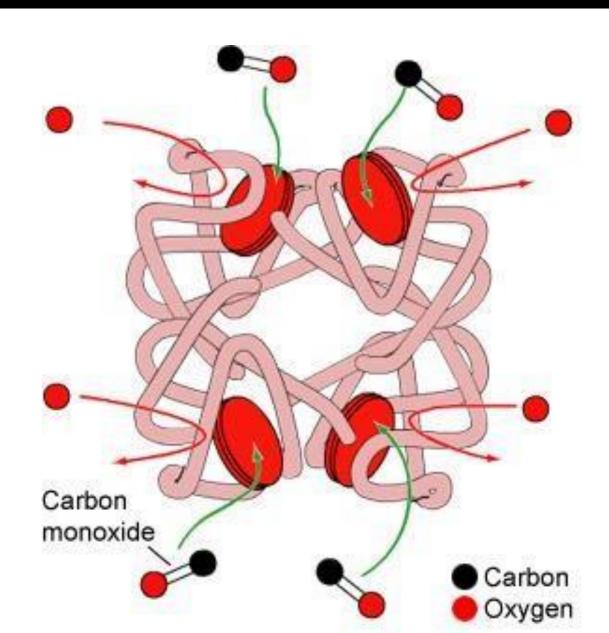
	(Tg CO yr ⁻¹)
SOURCES	1800-2700
Fossil fuel combustion/ industry	300-550
Biomass Burning	300-700
Vegetation	60-160
Oceans	20-200
Oxidation of methane	400-1000
Oxidation of other hydrocarbons	200-600
SINKS	2100-3000
Tropospheric oxidation by OH	1400-2600
Stratosphere	~100
Soil uptake	250-640


Variações das concentrações de CO na atmosfera da Região Metropolitana de São Paulo (RMSP) no período de 2000 a 2015


Variações das concentrações de CO na atmosfera da RMSP no período de 2000 a 2015

Variações das concentrações de CO na atmosfera da RMSP no período de 2000 a 2015

Tráfego (km) na RMSP (CET)



Efeitos do CO nas plantas

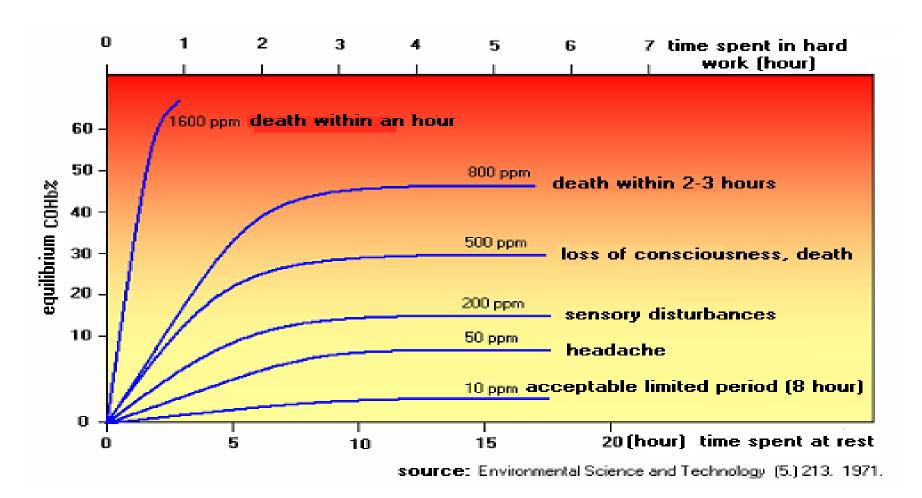
- Nenhum efeito prejudicial foi detectado.
- Ar urbano: 50-60 ppm → nenhum problema

Consequências

- Se liga à hemoglobina no sangue no lugar do oxigênio
- Em altas concentrações, prejudica a oxigenação do organismo, causando diminuição dos reflexos e da visão

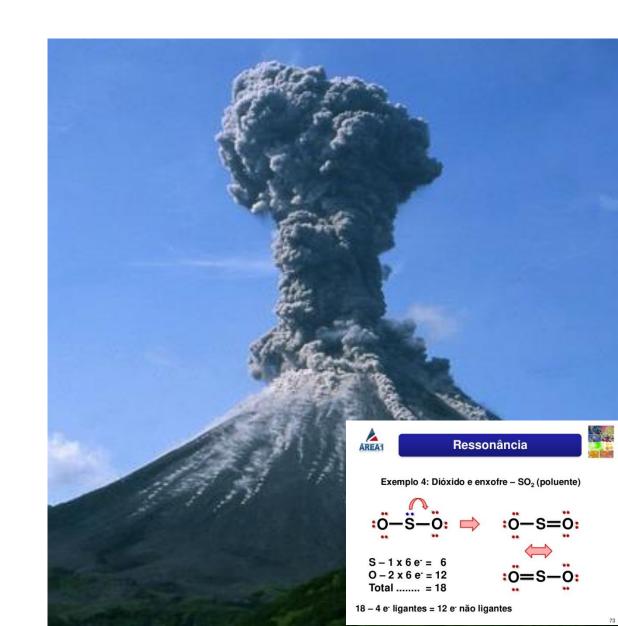
Efeitos do CO em humanos

A captação de oxigênio é restrita


- Hemoglobina (Hb): transporte de O₂ e CO₂.
- CO₂Hb no pulmão, CO₂ é trocado por O₂,
- O₂Hb no tecido, O₂ é trocado por CO₂

$$CO_2Hb + O_2 = O_2Hb + CO_2$$

In COHb the bond is 250 times stronger


Efeitos do CO em humanos

 O conteúdo de COHb no sangue depende da concentração de CO no ar, da atividade física e do tempo de residência na área poluída.

- Na natureza, emitido principalmente por vulcões
- Composto de enxofre encontrado no carvão e petróleo
- Combustão de carvão e fração mais pesado do petróleo gera o dióxido de enxofre
- Na atmosfera, reage com o radical, hidroxila, algumas etapas de reação e forma ácido sulfúrico

- São compostos constituídos de enxofre e moléculas de oxigênio.
- * SO₂: Dióxido de enxofre Gás incolor
- Reage com radical OH na atmosfera, formando bissulfito (HSO₃), depois SO₃ que reage com água e forma H₂SO₄.

- É formado durante a combustão de combustíveis fósseis (carvão mineral, óleo mineral).
- * SO₃: Trióxido de enxofre
- Produzido através da oxidação do SO₂.
- Pode ser rapidamente convertido a ácido sulfúrico (H₂SO₄).
- Provoca irritação nos olhos, nariz e garganta.
- Podem causar impactos adversos à vegetação, incluindo florestas e agricultura.

- Principais fontes de emissões antropogênicas
 - Veículos a diesel (77%)
 - Indústrias (15%)
 - Carros a gasolina (8%)
- Altas concentrações provocam irritação no sistema respiratório e problemas cardiovasculares

Chuva Ácida

Reações Químicas

$$HO \cdot + SO_2 \rightarrow HOSO_2$$
 $HOSO_2 + O_2 \rightarrow HO_2 \cdot + SO_3(g)$
 $SO_3 + H_2O \rightarrow H_2SO_4$
 $HO_2 \cdot + NO \rightarrow NO_2 + HO \cdot$
 $HO \cdot + NO_2 \rightarrow HNO_3$
 $\cdot NO_3 + NO_2 \rightarrow N_2O_5$
 $N_2O_5 + H_2O \rightarrow 2HNO_3$

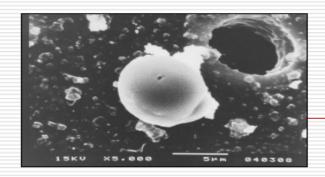
Reações Químicas

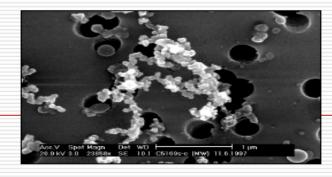
$$SO_2 + H_2O \implies SO_2 \cdot H_2O$$

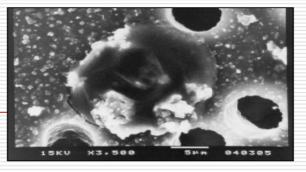
 $SO_2 \cdot H_2O \implies H+ + HSO_3^-$
 $HSO_3^- + H_2O_2 \implies H_2O + HSO_4^-$
 $HSO_3^- + O_3 \implies HSO_4^- + O_2$
 $HSO_4^- \implies H^+ + SO_4^{2-}$
 $OH + NO_2 \implies HNO_3$
 $HNO_3^- (g) \implies HNO_3^- (diss)$
 $HNO_3^- (diss) \implies H^+ + NO_3^-$

Causadores da Deposição Ácida

Aerossóis:


Ácido Sulfúrico: é formado pelas espécies de enxofre, originadas tanto de fontes naturais (vulcões) e antrópicas (usinas termoelétricas e fundições), que se oxidam em um intervalo de horas ou dias.


Ácido Nítrico: é o produto final da oxidação de gases atmosféricos nitrogenados, como NH₃, NO[,] e NO₂


Sulfato e Nitrato:

$$H_2SO_4(aq) + 2NH_3(g) \rightarrow (NH_4)_2SO_4(aq)$$

$$HNO_3(aq) + 2NH_3(g) \rightarrow (NH_4)_NO_3(aq)$$

FORMATION OF SULFATE -NITRATE-AMMONIUM AEROSOLS

Thermodynamic rules:

$$H_2SO_4(g) \xrightarrow{H_2O} SO_4^{2-} + 2H^+$$

$$NH_3(g) \xrightarrow{H_2O} NH_4^+ + OH^-$$

Sulfate always forms an aqueous aerosol

Ammonia dissolves in the sulfate aerosol totally or until titration of acidity, whichever happens first

$$HNO_3(g) \xrightarrow{H_2O} NO_3^- + H^+$$

Nitrate is taken up by aerosol if (and only if) excess NH₃ is available after sulfate titration

$$NH_3(g) + HNO_3(g) \square$$
 $NH_4NO_3(aerosol)$ HNO₃ and excess NH₃ can also form a solid ag

HNO₃ and excess NH₃ can also form a solid aerosol if RH is low

Condition	aerosol pH	Low RH	High RH
2[S(VI)] > [N(-III)]	acid	H ₂ SO ₄ •nH ₂ O, NH ₄ HSO ₄ , (NH ₄) ₂ SO ₄	(NH ₄ ⁺ , H ⁺ , SO ₄ ²⁻) solution
2[S(VI)] ≤ [N(-III)]	neutral	(NH4)2SO4, NH4NO3	(NH ₄ ⁺ , SO ₄ ²⁻ , NO ₃ ⁻) solution

Neutralização

NH₃ na atmosfera neutraliza a acidez da chuva pela formação de NH₄+.

$$NH_{3(aq)} + H^+ \Leftrightarrow NH_4^+$$

□ Mas, $NH_4^+ + 2O_2^- \rightarrow NO_3^- + 2H^+ + H_2O_3^-$

A deposição de NH₄+ e NO₃- fertiliza o ecossistema ⇔ eutrofização

Compostos Orgânicos Voláteis

Compostos Orgânicos Voláteis

Definição

Classe de compostos de carbono contendo hidrogênio, voláteis à temperatura e pressão normal.

Divididos em dois grupos: metano e hidrocarbonetos com exceção do metano (NMHCs).

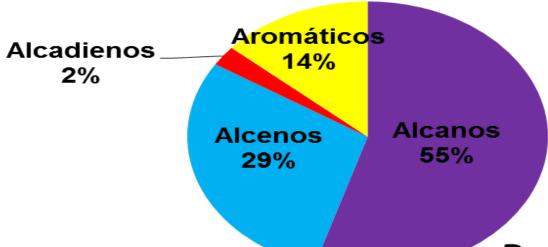
Exceto: CO, CO₂, H₂CO₃

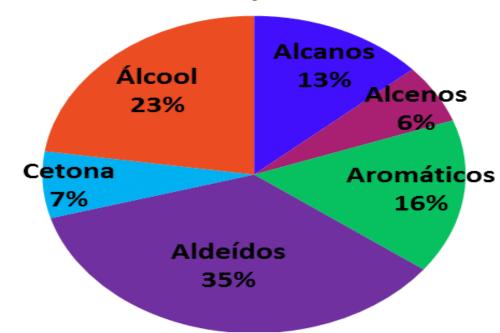
Inclui: compostos oxigenados (aldeídos, cetonas, ácidos carboxílicos), halogenados e enxofre contendo hidrogênio e carbono

Compostos Orgânicos Voláteis

- Produtos químicos orgânicos que facilmente evaporam à temperatura ambiente
- Exemplos: metano, benzeno, xileno, propano e butano
- Na presença do sol, sofrem reações fotoquímicas que podem originar ozônio e smog.

COMPOSTOS ORGÂNICOS VOLÁTEIS


- 4 Principais fontes de emissões externa
 - Carros a gasolina (53%),
 - Veículos a diesel (21%),
 - Carros a etanol (19%)
- Principais fontes de emissões interna
 - Tintas e vernizes
 - Produtos de limpeza
 - Inseticidas
 - Cigarro

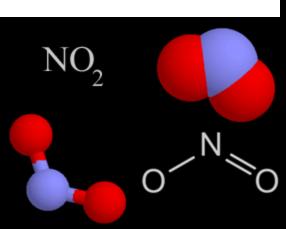

Concentração dos 15 COV mais abundantes medidos na estação CETESB Cerqueira César, referente às médias das 36 amostragens realizadas em 2006 e das 43 em 2008.

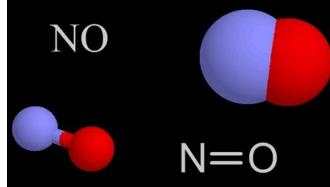
Compostos (2006)	Conc. (ppbv)	Compostos (2008)	Conc. (ppbv)
isopentano	6,55±0,10	eteno	12,22±0,65
eteno	6,48±0,34	propano	$8,83\pm0,11$
formaldeído	5,58±0,01	etano	5,76±0,15
etano	$5,29\pm0,14$	formaldeído	$5,70\pm0,01$
acetaldeído	5,04±0,01	acetaldeído	$5,64\pm0,01$
butano	$3,90\pm0,01$	butano	$4,71\pm0,02$
propano	$3,40\pm0,04$	tolueno	$4,40\pm0,18$
tolueno	$3,38\pm0,14$	isopentano	$4,19\pm0,06$
but-1-eno	$2,99 \pm 0,07$	pentano	$2,90\pm0,06$
pentano	$2,60\pm0,05$	propeno	$2,77 \pm 0,02$
propeno	$2,00\pm0,01$	isobutano	$2,26\pm0,01$
isobutano	$1,87 \pm 0,01$	but-1-eno	$1,55\pm0,04$
2-metilpentano	1,77±0,04	hexano	$1,54\pm0,04$
p-xileno	$1,59\pm0,14$	1-metilciclopenteno	$1,49\pm0,04$
1,1-dimetilciclopropano	$1,49\pm0,03$	2-metilpentano	$1,49\pm0,04$

Percentual de Hidrocarbonetos - Estação CETESB IPEN/USP - 2006

Percentual de COV - Estação IPEN/USP - 2011/2012

ÓXIDOS DENITROGÊNIO (NOx)

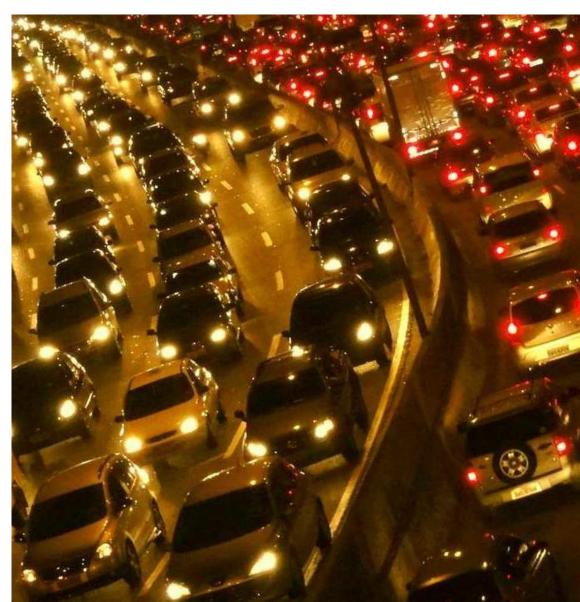

ÓXIDOS DE NITROGÊNIO (NOx)


Origens e Consequências

Formados durante o processo de combustão a altas temperaturas, através da oxidação do N₂

$$N_{2(g)} + 2 O_{2(g)} + calor \rightarrow 2NO_{(g)} + NO_{2(g)}$$

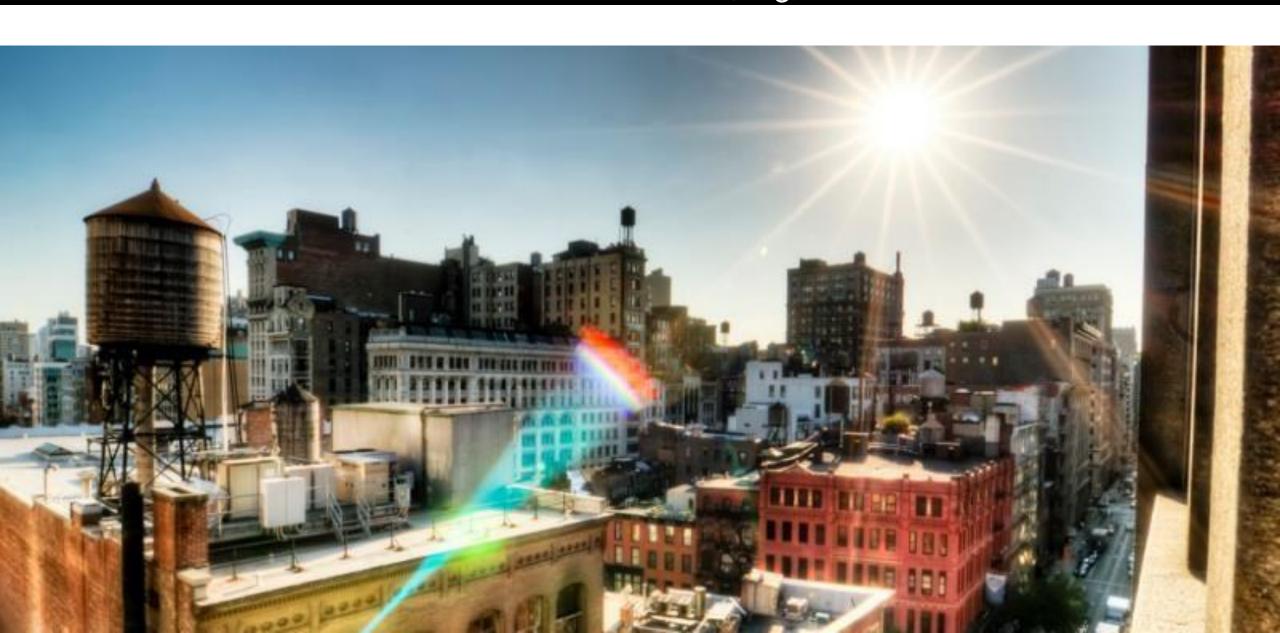
- Pode estar principalmente na forma de:
- * NO: Óxido de nitrogênio
- Gás incolor e insípido
- Formado predominantemente em fontes antropogênicas
- * NO₂: Dióxido de nitrogênio ou Azoto
- Gás amarelo-alaranjado, odor irritante.

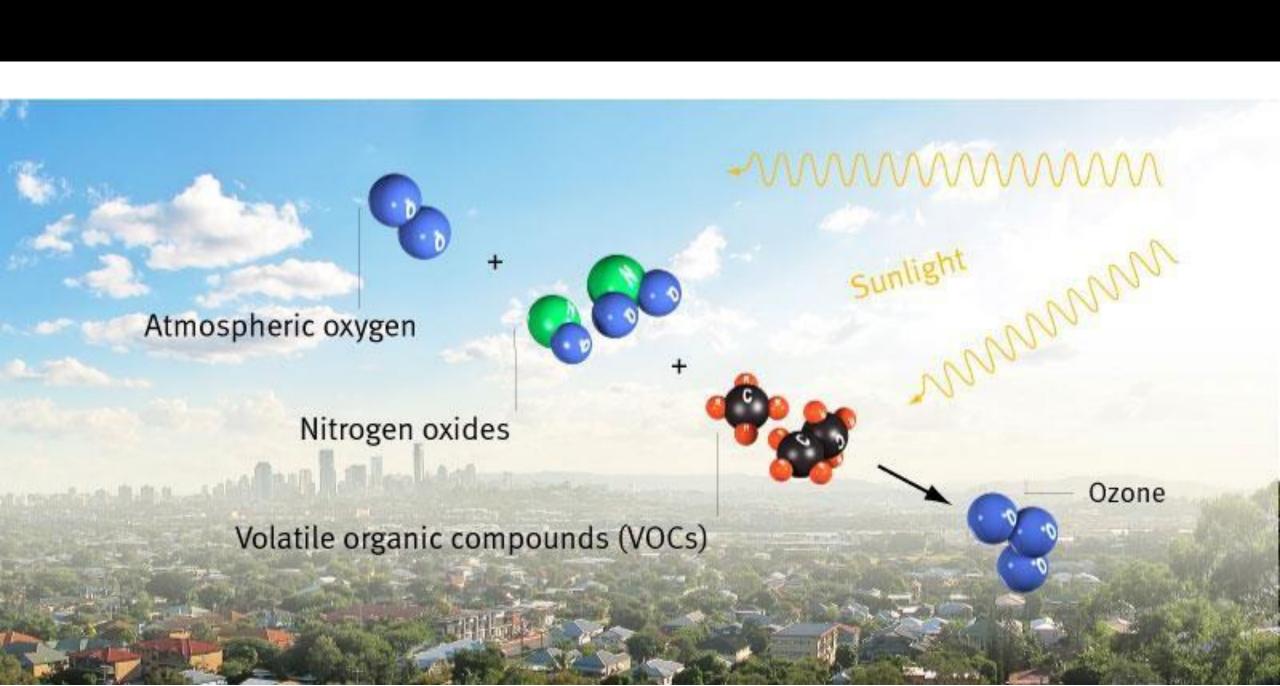


ÓXIDOS DENITROGÊNIO (NOx)

Origens e Consequências

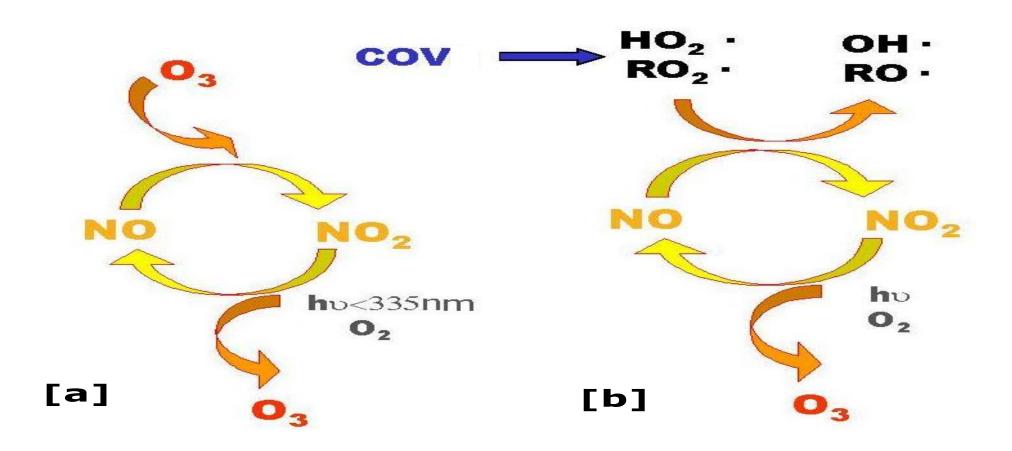
- Emitidos a partir de combustão a altas temperaturas de combustíveis veiculares
- Estão relacionados com o tráfego de veículos, assim as emissões são geralmente mais elevadas nas zonas urbanas
- Altas concentrações em duas vezes por dia como nas horas de pico no tráfego


ÓXIDOS DENITROGÊNIO (NOx)


Origens e Consequências

- Principais fontes de emissões externa
 - Veículos a diesel (81%)
 - Carros a gasolina (10%)
 - Carros a álcool (5%)
- Penetra profundamente no sistema respiratório, podendo dar origem a substâncias mutagênicas e carcinogênica

$OZÔNIO(O_3)$


OZÔNIO (O₃)

Origens e Consequências

- Formado por reações fotoquímicas entre o NO_x e Compostos Orgânicos Voláteis (COV)
 - Provoca vários problemas de saúde como dores torácicas, tosse e irritação da garganta, irritação dos olhos e vias respiratórias, diminuição da capacidade pulmonar, envelhecimento precoce e corrosão dos tecidos

$$\begin{array}{c}
NO_2 & \xrightarrow{UV-A} & NO + O \\
 & \cdot O + O_2 & \xrightarrow{} & O_3 \\
NO + O_3 & & NO_2 + O_2
\end{array}$$

Formação de O₃ Troposférico Poluente

$$NO_2 + hv \rightarrow NO + O$$

 $O + O_2 \rightarrow O_3$
 $NO + O_3 \rightarrow NO_2 + O_2$
(Radical OH) + alcano
 $RH + OH \rightarrow H_2O + R$
Radical OH + alceno
 $CH_2CH_2 + OH \rightarrow HOCH_2CH2$
 $R + O_2 \rightarrow RO_2$
 $RO_2 + NO \rightarrow RO + NO_2$
 $NO_2 + hv \rightarrow NO + O$
 $O + O_2 + M \rightarrow O_3 + M$

POLUENTES ORGÂNICOS PERSISTENTES (POPs)

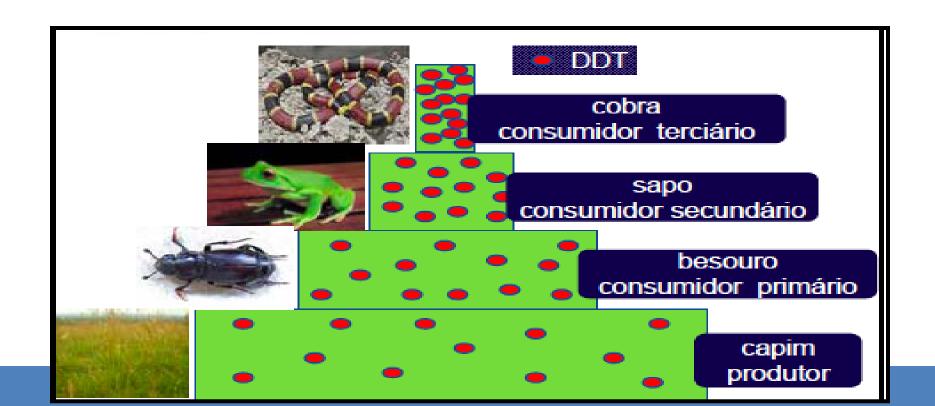
POLUENTES ORGÂNICOS PERSISTENTES (POPs)

Origens e Consequências

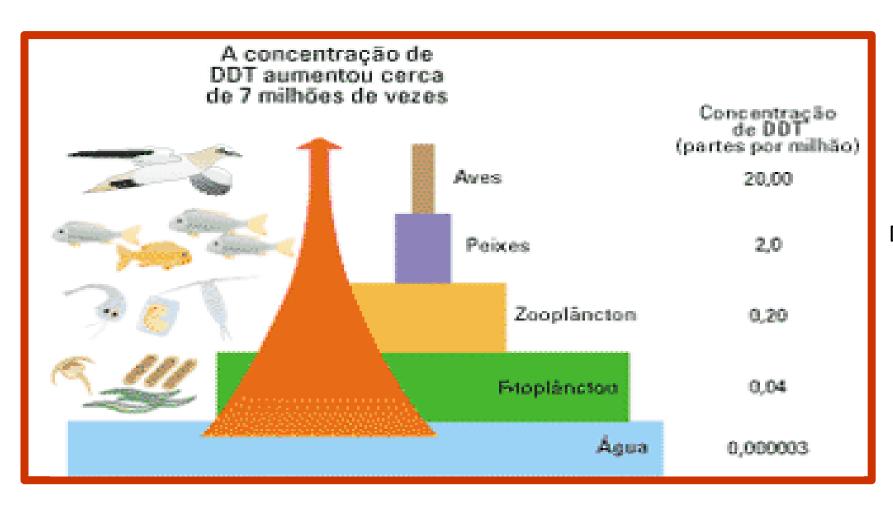
- São compostos altamente estáveis e que persistem no ambiente, resistindo à degradação química, fotolítica e biológica
- Têm a capacidade de bio-acumular em organismos vivos, sendo tóxicos para estes incluindo o homem
- São transportados a longas distâncias pela água, vento ou por animais

POPs

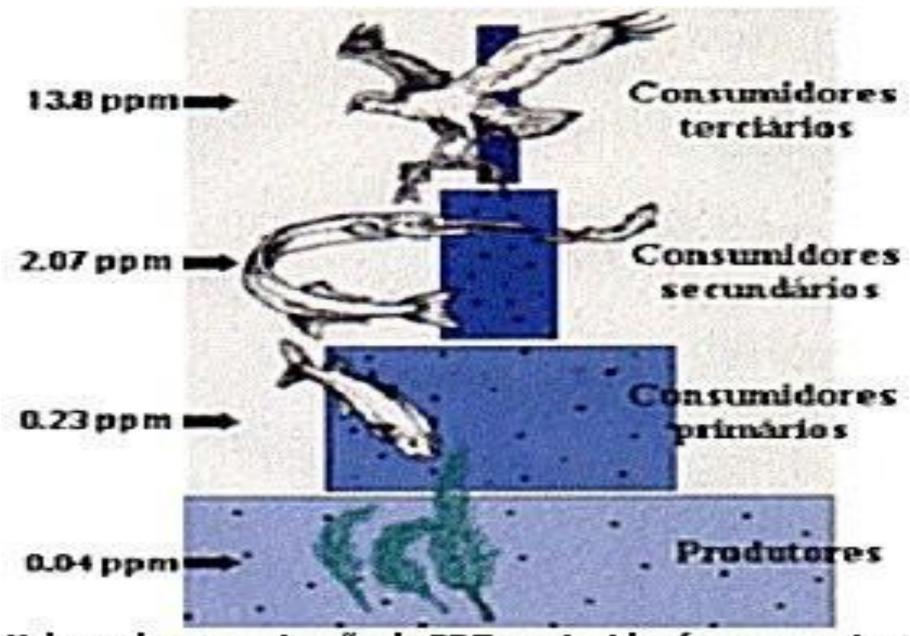
Origens e Consequências


- Exemplos de POPs
 - Pesticidas (ex. DDT, aldrina, toxafeno)
 - Policlorobifenilos (PCBs)
 - Dioxinas
 - Furanos
- Atuam negativamente sobretudo como destruidor dos sistemas reprodutivo, imunitário e endócrino, sendo também apontados como carcinogênicos

Cadeia Alimentar - Amplificação Biológica

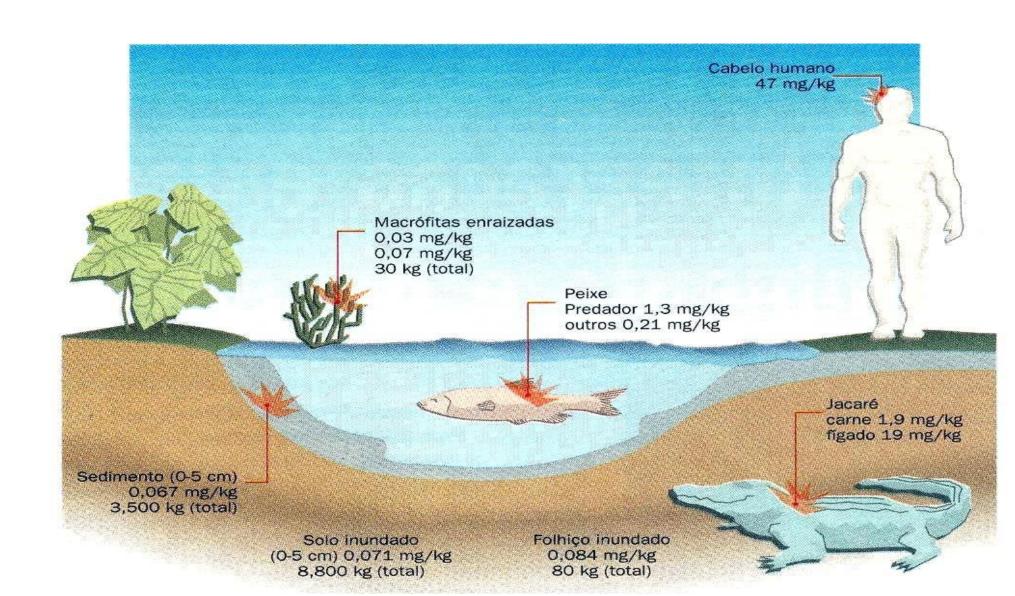

Amplificação Biológica ocorre quando há um aumento de concentração de poluentes ao longo da cadeia alimentar. Isso ocorre porque:

- é necessário um grande número de elementos do nível trófico anterior para alimentar um determinado elemento do nível trófico seguinte;
- o poluente considerado é recalcitrante ou de difícil degradação;
- o poluente é biocumulativo (Ex.: DDT Dicloro-Difenil-Tricloroetano)



CONTAMINAÇÃO DDT

Acumulação nos consumidores de último nível


DDT - Dicloro-Difenil-Tricloroetano

Valores de concentração de DDT nos tecidos (ppm = partes por milhão; se a densidade for 1 kg/L isso dá 1 mg/L)

CONTAMINAÇÃO METAIS PESADOS

- Mercúrio
- Chumbo
- Cadmio

Propostas e Soluções

PROPOSTAS E SOLUÇÕES

Mudanças de Tecnologia

- Novas formas de gerar energia mais limpa
- Novos tipos de combustíveis mais renováveis
- Tecnologia de absorção e limpeza de poluentes
- Novos tipos de transportes que usam tecnologia mais limpa

PROPOSTAS E SOLUÇÕES

Mudanças de Hábitos

- Melhorias e incentivo ao uso de transporte coletivo de qualidade
- Diminuição no uso de veículos motorizados
- Uso de plantas para a absorção de poluentes atmosféricos
- Reuso, reciclagem e reaproveitamento de materiais já usados

- The vehicle fleet in SPMA has increased dramatically since the 1950s, from 20 persons per vehicle in the 1950s to 3 persons per vehicle in 2018 (CETESB, 2019).
- In the SPMA, 86 % of daily commuter travel is done via cars or buses and only 14 % via subway and trains. In contrast, in other megacities, such as New York and Tokyo, 72 % and 61 % of trips are made by subway, respectively.

• The subway system in São Paulo is only 101 km long, much shorter than those of other megacities, such as Beijing (442 km), Shanghai (420 km), New York (418 km), Tokyo (292 km), Seoul (286 km), and even to other metropolitan areas with fewer than 10 million inhabitants, such as London (408 km), Madrid (293 km) and Paris (212 km). An efficient public transportation system, integrated with all its modes, constitutes a key strategy to reduce vehicular traffic and pollutant emissions

Anuário do Instituto de Geociências – UFRJ - ISSN 0101-9759 e-ISSN 1982-3908 - Vol. 43 - 4 / 2020 p. 263-282

URBANIZAÇÃO e INDUSTRIALIZAÇÃO

Poluentes atmosféricos:

 O_3 SO_2

CO MP (material particulado)

NO_x COV

LEGISLAÇÃO

POLUENTES REGULAMENTADOS (Res. 03 de 29/06/90)

Padrões primários e secundários da qualidade do ar

Partículas Totais em Suspensão (PTS)

Fumaça

Partículas Inaláveis (PI) (PM10 ou MP10)

Dióxido de Enxofre (SO₂)

Monóxido de Carbono (CO)

Ozônio (O₃)

Dióxido de Nitrogênio (NO₂)

MONITORES CONTÍNUOS

LEGISLAÇÃO

No Brasil os padrões de qualidade do ar são estabelecidos pela Resolução CONAMA nº 491/2018, que revogou e substituiu a Resolução CONAMA nº 3/1990.

```
partículas totais em suspensão (PTS)
Fumaça
partículas inaláveis (MP10 e MP2,5)
dióxido de enxofre (SO<sub>2</sub>)
monóxido de carbono (CO)
ozônio (O<sub>3</sub>)
dióxido de nitrogênio (NO<sub>2</sub>)
chumbo (Pb)
```

MONITORES CONTÍNUOS

LEGISLAÇÃO POLUENTES NÃO REGULAMENTADOS

- Importantes na química da atmosfera
- Efeitos importantes na saúde
- Tão ou mais importantes que os legislados

- Aldeídos
- Álcoois
- HC individuais
- HC aromáticos policíclicos
- Metais

- AMOSTRAGEM LOCAL
- TRATAMENTO
- ANÁLISE QUÍMICA

PADRÕES DE QUALIDADE DO AR

Define o limite máximo

- garantia da proteção da saúde e do bem estar das pessoas.
- baseados em estudos científicos
- fixados em níveis com margem de segurança

PADRÕES DE QUALIDADE DO AR

(Estado de São Paulo) DECRETO № 59.113, DE 23 DE ABRIL DE 2013

Estabelece novos padrões de qualidade do ar e dá providências correlatas)

Brasil

Resolução CONAMA 491/2018

Dispõe sobre padrões de qualidade do ar.

Padrões Estaduais de Qualidade do Ar (Decreto Estadual nº 59113 de 23/04/2013)

Poluente	Tempo de	MI1	M12	M13	PF	
	Amostragem	(µg/m³)	(μg/m³)	(µg/m³)	(μg/m³)	
partículas	24 horas	120	100	75	50	
ina <mark>l</mark> áveis (MP ₁₀)	MAA ¹	40	35	30	20	
partículas inaláveis finas (MP _{2,5})	24 horas MAA ¹	60 20	50 17	37 15	25 10	
dióxido de	24 horas	60	40	30	20	
enxofre (SO ₂)	MAA ¹	40	30	20		
dióxido de	1 hora	260			200	
nitrogênio (NO ₂)	MAA ¹	60			40	
Ozônio (O ₃)	8 horas	140	130	120	100	
monóxido de carbono (CO)	8 horas		-		9 ppm	
fumaça* (FMC)	24 horas	120	100	75	50	
	MAA ¹	40	35	30	20	
partículas totais em suspensão* MGA ² (PTS)		-	14 - 1	Ġ.	240 80	
Chumbo** (Pb)	MAA ¹	-	-	:-	0,5	

- As Metas Intermediárias devem ser atendidas em 3 (três) etapas, assim determinadas:
- Meta Intermediária Etapa 1 (MI1) Valores de concentração de poluentes atmosféricos que devem ser respeitados a partir de 24/04/2013;
- II. Meta Intermediária Etapa 2 (MI2) Valores de concentração de poluentes atmosféricos que devem ser respeitados subsequentemente à MI1, que entrará em vigor após avaliações realizadas na Etapa 1, reveladas por estudos técnicos apresentados pelo órgão ambiental estadual, convalidados pelo CONSEMA;
- III. Meta Intermediária Etapa 3 (MI3) Valores de concentração de poluentes atmosféricos que devem ser respeitados nos anos subsequentes à MI2, sendo que o seu prazo de duração será definido pelo CONSEMA, a partir do início da sua vigência, com base nas avaliações realizadas na Etapa 2.

RESOLUÇÃO CONAMA 491/2018

Em 19 de novembro de 2018 foi publicada a Resolução CONAMA nº 491 que dispõe sobre os padrões de qualidade do ar no Brasil. (Revogou a Resolução CONAMA n.º 03/1990)

Segundo a nova Resolução, padrão de qualidade do ar é um dos instrumentos de gestão da qualidade do ar, determinado como valor de concentração de um poluente específico na atmosfera, associado a um intervalo de tempo de exposição, para que o meio ambiente e a saúde da população sejam preservados em relação aos riscos de danos causados pela poluição atmosférica.

PADRÕES DE QUALIDADE DO AR

Os padrões de qualidade do ar segundo a Organização Mundial da Saúde (OMS), variam de acordo com a abordagem adotada para balancear riscos à saúde, viabilidade técnica, considerações econômicas e vários outros fatores políticos e sociais, que por sua vez dependem, entre outras coisas, do nível de desenvolvimento e da capacidade nacional de gerenciar a qualidade do ar (MMA, 2018).

As diretrizes recomendadas pela OMS levam em conta esta heterogeneidade e, em particular, reconhecem que, ao formularem políticas de qualidade do ar, os governos devem considerar cuidadosamente suas circunstâncias locais antes de adotarem os valores propostos como padrões nacionais (MMA,2018).

PADRÕES DE QUALIDADE DO AR CONAMA 491/2018

Os padrões nacionais de qualidade do ar são divididos em duas categorias:

- I. padrões de qualidade do ar intermediários PI: padrões estabelecidos como valores temporários a serem cumpridos em etapas; e
- I. padrão de qualidade do ar final PF: valores guia definidos pela Organização Mundial da Saúde OMS em 2005.

padrões de qualidade do ar intermediários - PI: padrões estabelecidos como valores temporários a serem cumpridos em etapas

padrão de qualidade do ar final -PF: valores guia definidos pela Organização Mundial da Saúde -OMS em 2005

PADRÕES DE QUALIDADE DO AR CONAMA 491/2018

Guías de calidad del aire de la OMS elativas al material particulado I ozono, el dióxido de nitrógeno y el dióxido de azufre

Actualización mundial 2005

Resumen de evaluación de los riesgos

PADRÕES DE QUALIDADE DO AR

RES. 03/1990				RES. 491/2018						
POLUENTE	PERÍODO	μg/m³	ppm	POLUENTE	PERÍODO	PI-1	PI-2	PI-3	PF	
						/ μg/m3 \	μg/m3	μg/m3	μg/m3	ppm
MP10	24 h	150	_	MP10	24 h	120	100	75	50	_
	Anual ¹	50	1		Anual ¹	40	35	30	20	_
MP 2.5	24 h	_	_	MP 2.5	24 h	60	50	37	25	_
	Anual ¹	_			Anual ¹	20	17	15	10	_
SO2	24 h	365		SO2	24 h	125	50	30	20	_
	Anual ¹	80	_		Anual ¹	40	30	20	_	_
NO2	1 h ²	320		NO2	1 hora ²	260	240	220	200	_
	Anual ¹	100	ı		Anual ¹	60	50	45	40	_
03	1 h ²	160		03	8 h ³	140	130	120	100	_
Fumaça	24 h	150	I	Fumaça	24 h	120	100	75	50	_
	Anual ¹	60	1		Anual ¹	40	35	30	20	_
СО	8 h	1	9	СО	8 h ³	_	_		_	9
	1 h	_	35		_	_ /	_		_	_
PTS	24 h	240	_	PTS	24 h	_ /	<u> </u>	_	240	_
	Anual ⁴	80	_		Anual ⁴		_	_	80	_
Chumbo ⁵	Anual ¹	_	_	Chumbo ⁵	Anual ¹	_	_	_	0,5	_

^{1 -} média aritmética anual

^{2 -} média horária

³⁻ máxima média móvel obtida no dia 4 - média geométrica anual

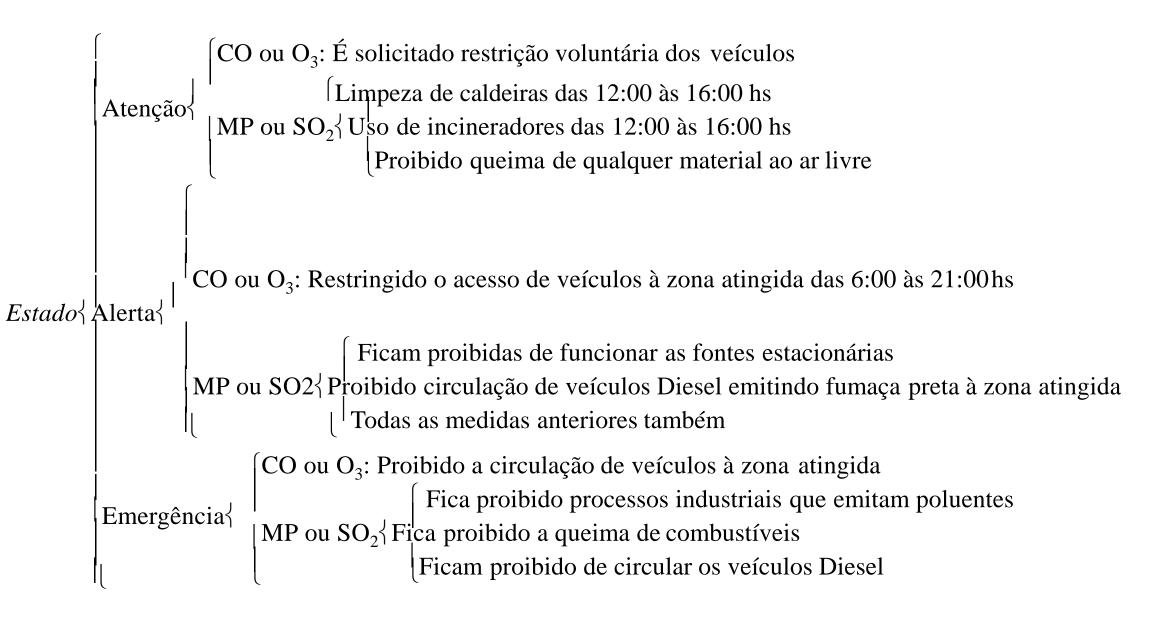
^{5 -} madido nas nartículas totais am suspanção

episódios agudos de poluição do ar

•pequena duração, de minutos a alguns dias;

 provocam graves consequências

ANEXO III NÍVEIS DE ATENÇÃO, ALERTA E EMERGÊNCIA PARA POLUENTES E SUAS CONCENTRAÇÕES


			Poluente	s e concentrações			
		Material F	articulado				
Nível	SO ₂	MP ₁₀	MP _{2,5}	СО	O ₃ μg/m ³	NO ₂ μg/m ³	
Mivei	μg/m³ (média de 24h)	μg/m³ (média de 24h)	μg/m³ (média de 24h)	(média móvel de 8h)	(média móvel de 8h)	(média de 1h)	
Atenção	800	250	125	15	200	1.130	
Alerta	1.600	420	210	30	400	2.260	
Emergência	2.100	500	250	40	600	3.000	

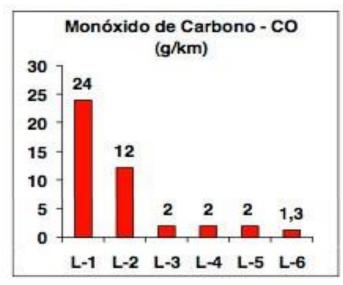
 SO_2 = dióxido de enxofre; MP10 = material particulado com diâmetro aerodinâmico equivalente de corte de 10 µm;

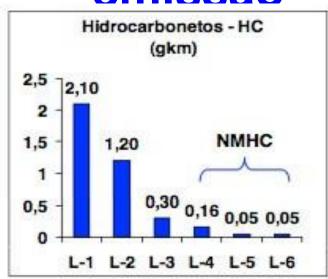
 $MP_{2,5}$ = material particulado com diâmetro aerodinâmico equivalente de corte de 2,5 μ m; CO = monóxido de carbono;

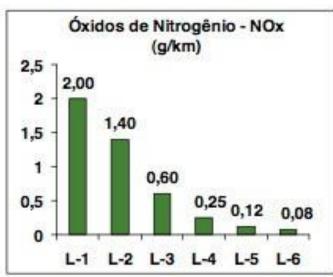
 O_3 = ozônio; NO_2 = dióxido de nitrogênio μ g/m3; ppm = partes por milhão.

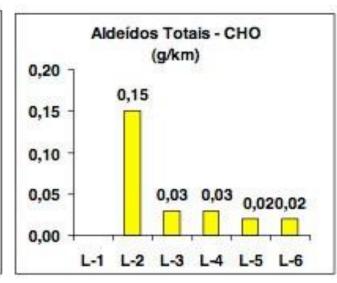
Providências tomadas conforme nível de poluição

LEGISLAÇÃO E PROGRAMAS **DE CONTROLE DE EMISSÕES DE VEÍCULOS NOVOS E EM USO -**PROCONVE, INSPEÇÃO **VEICULAR AMBIENTAL,** FISCALIZAÇÃO DE **EMISSÕES DE VEÍCULOS EM VIAS PÚBLICAS**


PROCONVE – legislação


- PROCONVE: Programa de Controle da Poluição do Ar por Veículos Automotores Resolução CONAMA 18 de 1986 (4-rodas)
- Lei Federal 8.723 de 1993
- Resoluções complementares CONAMA:
- http://www.mma.gov.br/port/conama/legiano.cfm?codlegitipo=3
- http://www.ibama.gov.br/sophia/cnia/livros/manualproconveingles.pdf


```
n° 01/1993;
n° 08/1993;
n° 15/1995;
n° 20/1996;
n°241/1998;
n°251/1999;
n°291/2001;
n°299/2001;
n°354/2004;
n°414/2009;
n° 418/2009;
```


n° 07 / 1993;
n° 14 / 1995;
n° 16 / 1995;
n° 226 / 1997;
n° 242 / 1998;
n° 282 / 2001;
n° 297 / 2002;
n° 315 / 2002;
n° 403 / 2008;
n° 415 / 2009;
n° 426 / 2010.

PROCONVE – Evolução dos limites de emissão – veículos leves

Ponto fraco: durabilidade de catalisadores no Brasil é de apenas 80.000 km, metade do requisito dos EUA e outros países. Montadoras resistem em incluir o assunto da agenda do Conama. Padrões de deterioração das emissões nos veículos em uso no Brasil são maiores do que os observados em outros países.

PROCONVE – Evolução dos limites de emissão – veículos leves

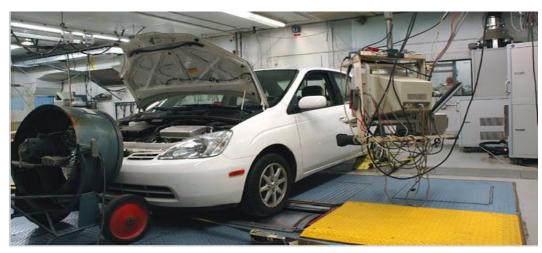
	_								Limites de	Emissões				Durab.
Categ.	Comb. (7)	Modelo	Classif.	Fase	Data Aplicação	CO (g/km)	HC (g/km)	NMHC (g/km)	NOx (g/km)	CHO ⁽²⁾ (g/km)	M.P. ⁽³⁾ (g/km)	EVAP (2) (g/teste)	CO ⁽²⁾ (%)	Emissões ⁽⁶⁾ (km)
~	ŭ	_	°					Ciclo N	BR-6601			SHED	M.Lenta	Ciclo AMA
(ĝ.		-	sia	L5	1/1/2009	2,0	0,30 (1)	0,05	0,12 ⁽²⁾ or 0,25 ⁽³⁾	0,02	0,05	2,0	0,5	80.000
M ≤ 2.720 kg)	(4) or GNV	,	Automovers	L6	- Veículos Diesel: 1/1/2013 - Veículos Otto: NM: 1/1/2014 TM: 1/1/2015	1,30	0,30 (1)	0,05	0,08	0,02	0,025	1,5 (5)	0,2	80.000
3.856 kg e MOM	io), Diesel	Off-Road	.700 kg	L5	1/1/2009	2,0	0,30 (1)	0,05	0,12 ⁽²⁾ or 0,25 ⁽³⁾	0,02	0,05	2,0	0,5	80.000
VI	?), Etanol (E100),	ంర	MVE. < 1.7	L6	- Veículos Diesel: 1/1/2013 - Veículos Otto: NM: 1/1/2014 TM: 1/1/2015	1,30	0,30 (1)	0,05	0,08	0,02	0,030	1,5 ⁽⁵⁾	0,2	80.000
Veículos Leves (PBT	Gasolina (E22),	omerciais	1.700 kg	L5	1/1/2009	2,7	0,50 (1)	0,06	0,25 ⁽²⁾ or 0,43 ⁽³⁾	0,04	0,06	2,0	0,5	80.000
Veícuk	Gas	VeículosComerciais Leves	MVE > 1.7	L6	- Veículos Diesel: 1/1/2013 - Veículos Otto: NM: 1/1/2014 TM: 1/1/2015	2,0	0,50 (1)	0,06	0,25 ⁽²⁾ or 0,35 ⁽³⁾	0,03	0,040	1,5 (5)	0,2	80.000

Legenda

- (1) Somente para veículos movidos a GNV:
- (2) Somente para veículos movidos a gasolina ou etanol;
- (3) Somente para veículos movidos a diesel;
- (4) Atualmente, automóveis diesel não são permitidos no Brasil;
- (5) A partir de 1/1/2012, estes limites são exigidos para os novos modelos (novas homologações);
- (6) Para menos de 15.000 unidades por ano é aceito a aplicação de 10% de DF para todos os poluentes;
- (7) Para veículos Flex Fuel é necessário testar com E22, E100 e 50% E22 + 50% E100;

MVE = Massa do Veículo para Ensaio (= MOM + 136 kg);

MOM = Massa em Ordem de Marcha;


PBT = Peso Bruto Total:

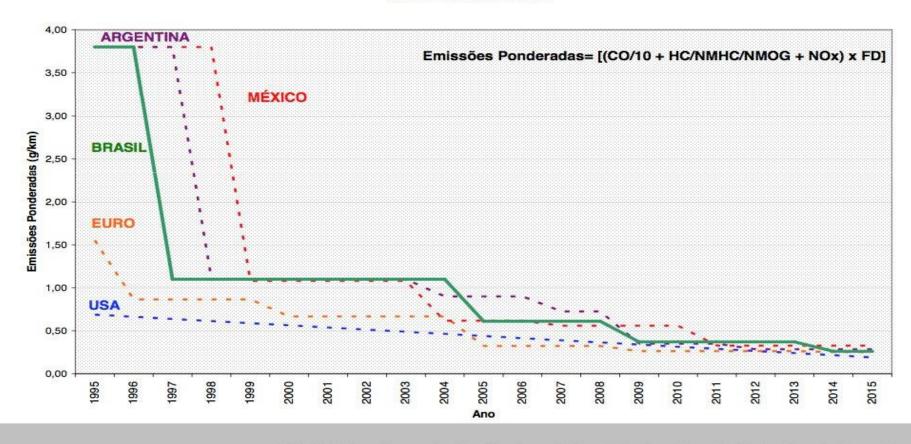
Gasolina E22 = Gasolina misturada com 22% de etanol;

Etanol E100 = 100% Etanol Hidratado;

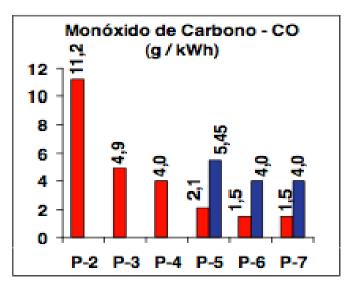
GNV = Gás Natural;

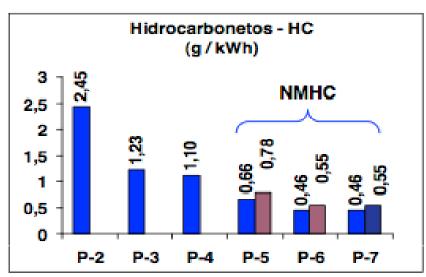
PROCONVE – testes de certificação de emissões de veículos leves, motos e motores diesel

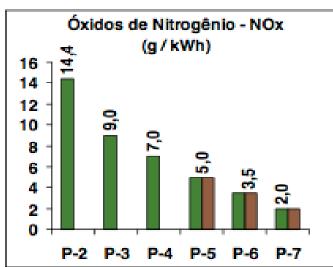
PROCONVE – câmara SHED de testes de certificação de emissões evaporativas – veículos leves

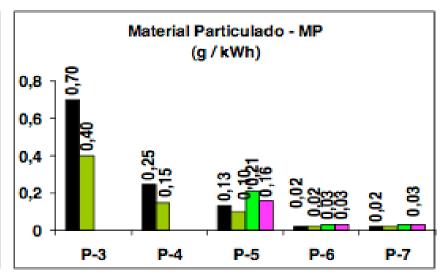


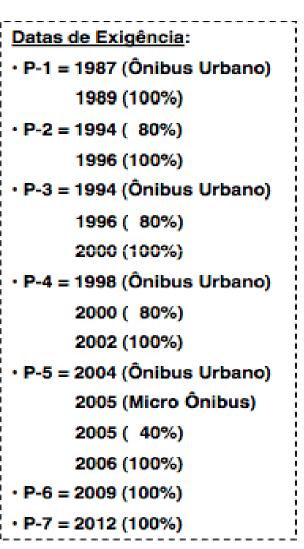
Comparação da evolução dos limites de emissão de veículos leves novos entre países


Limites de Emissões - Veículos Leves

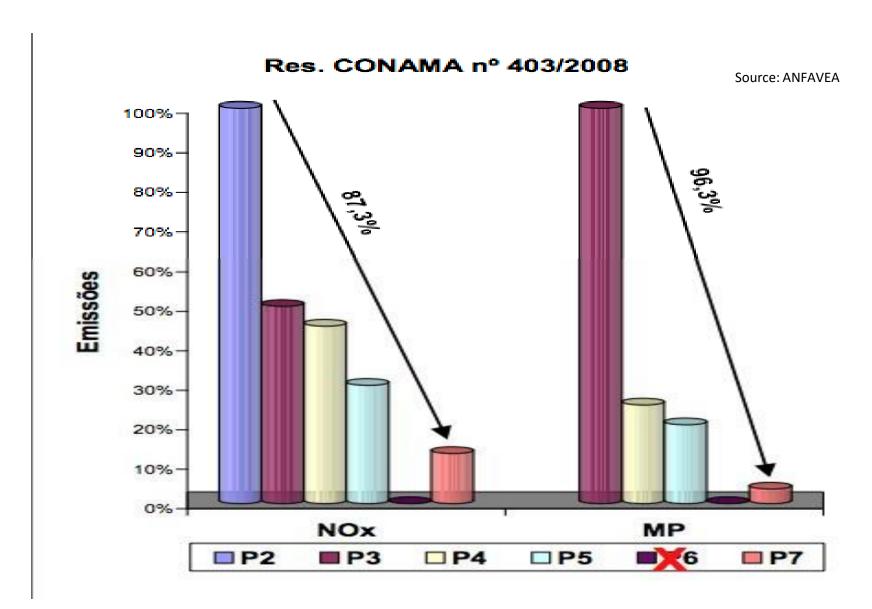



Limites Internacionais




PROCONVE – Evolução dos limites de certificação de veículos e motores a diesel novos

PROCONVE – Evolução dos limites de certificação de veículos e motores a diesel novos

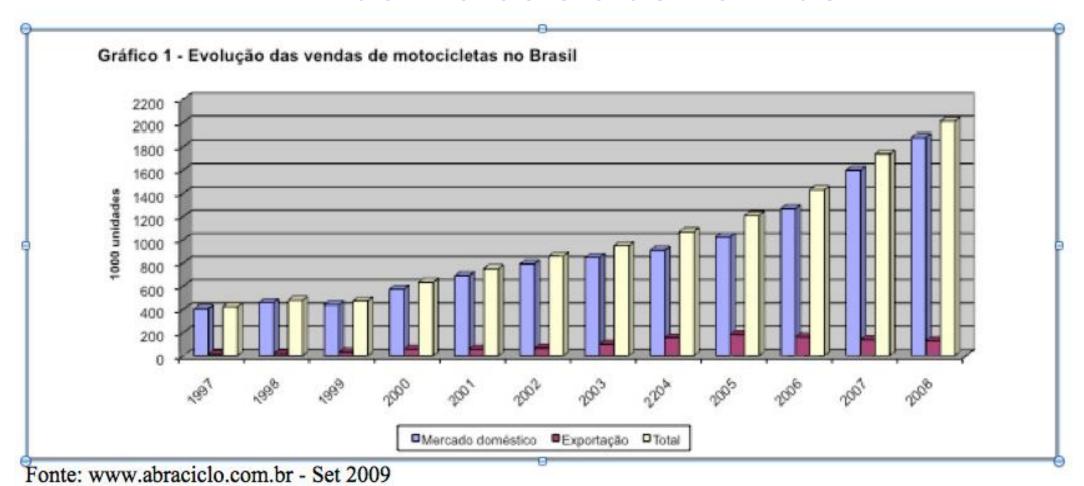

					Emission Limits											
		200000000000000000000000000000000000000			Test Cycle ESC / ELR (6)			-0.	Test Cycle ETC (6)							
Category	Fuel	PROCONVE Phase	Effective Date	CO (g/kWh)	HC (g/kWh)	NOX P.M. (3) SMOKE NH3				CO (g/kWh)	NMHC (g/kWh)	CH4 ⁽¹⁾ (g/kWh)	NOx (g/kWh)	P.M. ⁽³⁾ (g/kWh)	NH3 (ppm) (average	
er 12 passengers)	el (4) or CNG	P5	1/1/2005	2,1	0,66	5,0	0,10 or 0,13 ⁽⁷⁾	0,8	n.r.	5,45	0,78	n.r.	5,0	0,16 or 0,21 ⁽⁷⁾	n.r.	
Heavy Vehicles (G.V.W. > 3.856 kg or C.W. > 2.720 kg or Over 12 passengers)	Ethanol (E100), Diesel (4) or CNG	P6	1/1/2009	1,5	0,46	3,5	0,02	0,5	n.r.	4,00	0,55	n.r.	3,5	0,03	n.r.	
(G.V.W. > 3.856 kg o	Gasohol (E22),	P7	1/1/2012	1,5	0,46	2,00	0,02	0,5	25	4,00	0,55	1,10	2,00	0,03	25	

Remarks:

- Only for CNG fueled vehicles;
- (3) Only for diesel fueled vehicles;
- (6) According to Diretive 1999/96/EEC
- (7) For engines less than 0,75 dm3 swept volume per cylinder and rated power speed of more than 3000 m1;
- C.W. = Curb Weight;
- G.V.W. = Gross Vehicle Weight;
- CNG = Compressed Natural Gas:
- n.r. = Not required

The ESC test cycle has been introduced, together with the ETC (European Transient Cycle) and the ELR (European Load Response) tests, for emission certification of heavy-duty diesel engines in Europe starting in the year 2000 (Directive 1999/96/EC of December 13, 1999). The ESC is a 13-mode, steady- state procedure that replaces the R-49 test. The ELR engine test has been introduced by the Euro III emission regulation, effective year 2000, for the purpose of smoke opacity measurement from heavy-duty diesel engines [Directive 1999/96/EC of December 13, 1999].

PROCONVE – Evolução dos limites de certificação de veículos e motores a diesel novos


Proconve-Diesel fase P6 – um buraco no programa de controle da poluição

- A fase P6 6a. fase do Proconve-diesel prevista para Jan 2009 não aconteceu;
- Petrobras não disponibilizou o diesel com 50 ppm de enxofre conforme previa a lei (Resol Conama 315/2002);
- Os fabricantes não disponibilizaram os modelos atendendo P6 equipados com sistemas avançados de controle de emissões por medo que ocorressem danos nesses sistemas (500 ppm nas áreas Metropolitanas e 1800 ppm no interior);

Proconve-Diesel fase P6 – um buraco no programa de controle da poluição

- Algumas instituições processaram a ANP, Petrobras, e os fabricantes de veículos;
- Um termo de ajuste de conduta foi feito (incluindo construção de um novo laboratório para a Cetesb);
- A fase P7, mais restritiva que P6, foi antecipada de 2014 para 2012;
- Petrobras se comprometeu a distribuir o diesel 50 ppm e 10 ppm diesel conforme plano de distribuição pré-estabelecido para capitais e interior.

PROMOT – Programa de Controle da Poluição do Ar por Motociclos e Veículos Similares - Evolução das vendas de motocicletas no Brasil

PROMOT – Limites de certificação para motocicletas novas

Tabela 2 - Limites máximos de emissão do PROMOT para motocicletas novas 1

ANO	MOTOR (cm³)	CO (g/Km)	HC (g/Km)	NO _x (g/Km)	CO-ML (g/Km)
jan 03	todos	13,0	3	0,3	6,0 ² ou 4,5 ³
jan 05/06 ⁴	<150	5,5	1,2	0,3	6,0 ² ou 4,5 ³
jan 05/00	≥ 150	5,5	1,0	0,3	6,0 ² ou 4,5 ³
jan 09	<150	2,0	0,8	0,15	6,0 ² ou 4,5 ³
Jan 09	≥ 150	2,0	0,3	0,15	6,0 ² ou 4,5 ³

- 1- Conforme Resolução CONAMA N° 297/02. Medições conforme a diretiva da Comunidade Européia N° 97/24EC, anexo II.
- 2- Para deslocamento volumétrico ≤250 centímetros cúbicos.
- 3- Para deslocamento volumétrico > 250 centímetros cúbicos.
- 4- Para veículos derivados de três ou quatro rodas há limites específicos nesta fase, a saber (CO = 7,0 g/Km; HC= 1,5 g/Km e NO_X = 0,4 g/Km).

Fonte: Relatório do Ar do Estado de São Paulo 2008.

PROMOT Phase 4 – Proposal for more stringent limits and requirements - certification of new motorcycles

		2014			2016	
	< 130 km/h	>= 130 km/h	Ciclomotores	< 130 km/h	>= 130 km/h	Ciclomotores
CO	2,00	2,00	1,00	2,00	2,00	1,00
HC	0,80	0,30	0,80	0,56	0,25	0,80
NOx	0,15	0,15	0,15	0,13	0,17	0,15
Evaporativa		·		1,00	1,00	1,00

- WMTC Worldwide Motorcycle Test Cycle conforme 2006/72/EC;
- Evaporativa: Fase quente da Norma ABNT NBR 11481.
- Comprovação de durabilidade de emissões definida pelo Conama: 18.000km até 130 km/h; and 30.000 km acima de 130km/h;
- Motofrete (250 mil motos pequenas em São paulo) rodam mais de 20 mil km/ano
- requisito de durabilidade é incompatível;

PROMOT Phase 4 – Proposal for more stringent limits and requirements - certification of new motorcycles

- Comprovação de durabilidade de emissões definida pelo Conama: 18.000km até 130 km/h; and 30.000 km acima de 130km/h;
- Motofrete (250 mil motos pequenas em São paulo) rodam mais de 20 mil km/ano
- requisito de durabilidade é incompatível;
- Situação se agrava pelo não cumprimento por parte dos governos estaduais da obrigatoriedade de implementação da inspeção veicular;
- A partir de 2016 motocicletas deverão demonstrar cumprimento de requisito de emissão evaporativa de 1g/test (hot soak sem aquecimento do combustível);
- Controle estatístico de produção para as motocicletas será exigido no futuro em discussão.

Catalisador falso

Monitoramento da eficiência de catalisadores em SP – levantamento de campo - 2006

(amostra: 426 veículos ao acaso em postos de serviço de suspensão)

Ano/modelo 1992-1996 (71 % não operante)

1997-1999 (34 % não operante)

2000-2002 (29 % não operante)

2003-2006 (11 % não operante)

Inspeção veicular em São Paulo

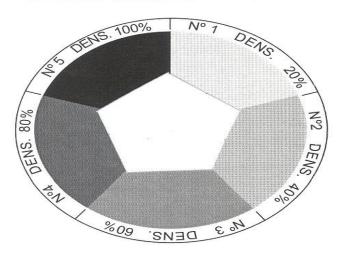
BALANÇO DO EXERCÍCIO 2010 - PREFEITURA DE SÃO PAULO - INSPEÇÃO VEICULAR AMBIENTAL							
Categoria	Frota alvo (estimada pela PMSP por critérios próprios)	Veículos inspecionados	%	% aprovados			
AUTOM.	3.896.972	2.662.482	68,3	96,4			
Motocicl.	567.443	266.205	46,9	93,4			
Diesel Leve	89.103	55.018	61,7	93,5			
Ônibus	31.073	20.961	67,4	95,4			
Caminhões	119.817	58.816	49,1	85,2			
TOTAL	4.704.407	3.063.482	65,1	96,2			

Categoria	Reprovados 1ª inspeção	Reprovados 2ª inspeção
Automóveis	21,51%	8,5%
Motocicletas	32,54%	15,31%
Diesel Leve	42,93%	19,36%
Ônibus	31,91%	15,74%
Caminhões	53.88%	30.08%

35% da frota não compareceu. Frota irregular em circulação é provavelmente a mais poluente.

- Só Estado do Rio de Janeiro e Município de São Paulo, cancelado pela Prefeitura em 2014 alegando irregularidades no contrato;
- Não há inspeção de segurança prevista em lei desde 1997 (Lei Federal 9503/1997);
- Inspeção ambiental regulamentada desde 1993 pelo CONAMA; revisada pela Resolução 418/2009;
- Inspection mode: Marcha Lenta e 2500 rpm s/ carga (automóveis) ou Opacidade (Diesel) + visual
- + ruído estacionário (se o veículo for selecionado para o teste);
- Custo: cerca de R\$ 50,00 pago antecipadamente primeira reinspeção grátis;
- Agendamento da inspeção sem filas;
- Não há iniciativas de autoridades para combater a evasão do licenciamento e da inspeção;
- Outros estados tiveram seus processos licitatórios interrompidos, muitos problemas com a justiça.

Fiscalização de fumaça preta no Estado de São Paulo Lei 997/76 - Regulamentada pelo Decreto 8468/76 - Decreto 54.487 de 2009


- Nenhum veículo automotor de uso rodoviário com motor do ciclo diesel poderá circular ou operar no território do Estado de São Paulo emitindo poluentes pelo tubo de descarga:
- I.- com densidade colorimétrica superior ao Padrão 2 da Escala de Ringelmann, ou equivalente, por mais de 5 (cinco) segundos consecutivos;
- II.- com níveis de opacidade superiores aos limites estabelecidos nas Resoluções nº 8, de 31 de agosto de 1993, nº 16, de 13 de dezembro de 1995, e nº 251, de 7 de janeiro de 1999, do Conselho Nacional do Meio Ambiente CONAMA.

ESCALA DE RINGELMANN

GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DO MEIO AMBIENTE

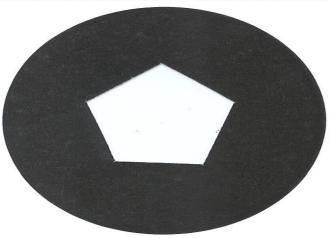
CETESB

COMPANHIA DE TECNOLOGIA DE SANEAMENTO AMBIENTAL

CARTÃO - ÍNDICE DE FUMAÇA TIPO RINGELMANN REDUZIDO

INSTRUÇÕES DE USO

- 1º Posicione-se de costas para o sol e segure o cartão com o braço totalmente estendido.
- 2º Compare a fumaça (vista pelo orificio) com o padrão colorimétrico, determinando qual a tonalidade da escala que mais se assemelha com a tonalidade (densidade) da fumaça.
- 3º Para a medição de fumaça emitida por veículos, o observador deverá estar a uma distância de 20 metros a 50 metros do tubo de escapamento a ser observado.
- 4º Para a medição de fumaça emitida por chaminés, o observador deverá estar a uma distância de 30 metros a 150 metros da mesma.



LEGISLAÇÃO, NORMAS E PADRÕES APLICÁVEIS I - FONTES ESTACIONÁRIAS:

- 1 Legislação Estadual (SP):
- 1.1 Lei nº 997 de 31.05.76
- 1.2 Decreto nº 8468 de 08.09.76, cap. II, seção II, art. 31, alterado pelo Decreto nº 15.425 de 23.07.80.
- 2 Norma CETESB L9.061 Determinação de grau de enegrecimento de fumaça emitida por fontes estacionárias utilizando a Escala de Ringelmann reduzida.

3 - Padrão: O grau de enegrecimento da fumaça de fontes estacionárias não poderá exceder o padrão nº 1, salvo nas situações previstas na legislação acima.

II - VEÍCULOS:

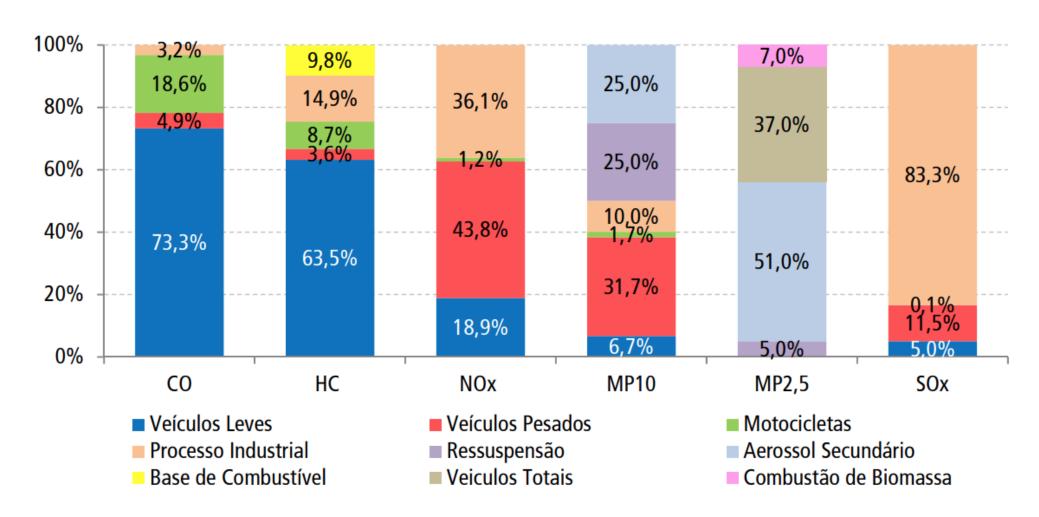
- 1 Legislação Federal:
 - 1.1 Resolução CONTRAM 510 de 15.02.77.
 - 1.2 Portaria MINTER GM/Nº 100 de 14.07.80.
 - 1.3-Instrução Normativa SEMA/SACT/CPAR Nº 01 de 12.06.81.
 - 1.4 Padrões: O grau de enegrecimento da fumaça de veículos movidos a óleo diesel, em qualquer regime de funcionamento, não poderá exceder: Nº 2: para veículos em localidades até 500 (quinhentos) metros de altitude e veículos de circulação restrita a centros urbanos, em qualquer altitude. Nº 3: para veículos em localidades acima de 500 (quinhentos) metros de altitude.
- 2 Normas Brasileiras:
 - 2.1 NBR-6016 Determinação do Grau de Enegrecimento da Fumaça emitida por Veiculos Rodoviários Automotores com Motor Diesel, utilizando a Escala de Ringelmann Reduzida.
 - 2.2 NBR-6065 Determinação do Grau de Enegrecimento do gás de escapamento emitido por veículos equipados com motor diesel pelo método da aceleração livre.
- 2.3 NBR-7027 Gás de escapamento emitido por motores diesel Determinação do teor de fuligem em regime constante.
- 3 Legislação Estadual (SP):
 - 3.1 Lei nº 997 de 31.05.76.
 - 3.2 Decreto nº 8468 de 08.09.76, cap. II, seção II, art. 32, alterado pelo Decreto nº 28313 de 04.04.88
 - 3.3 Padrão: O grau de enegrecimento da fumaça de veiculos movidos a óleo diesel não poderá exceder o padrão nº 2 por mais de 5 (cinco) segundos consecutivos, exceto para a partida a frio.

INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES CQMA – CENTRO DE QUÍMICA E MEIO AMBIENTE

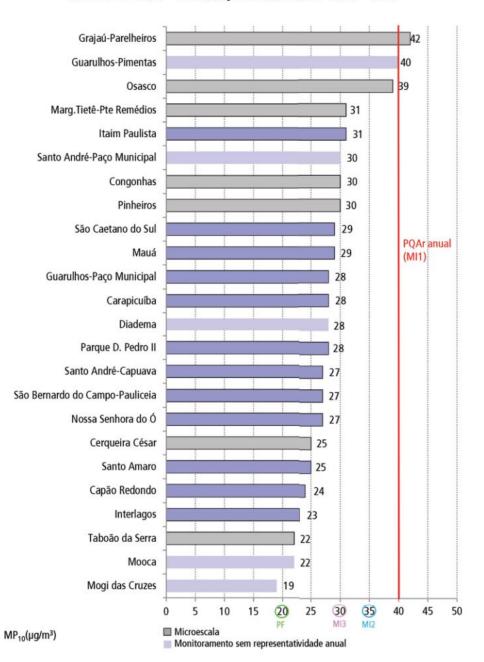
Estudo dos Principais Precursores de Ozônio na Região Metropolitana de São Paulo

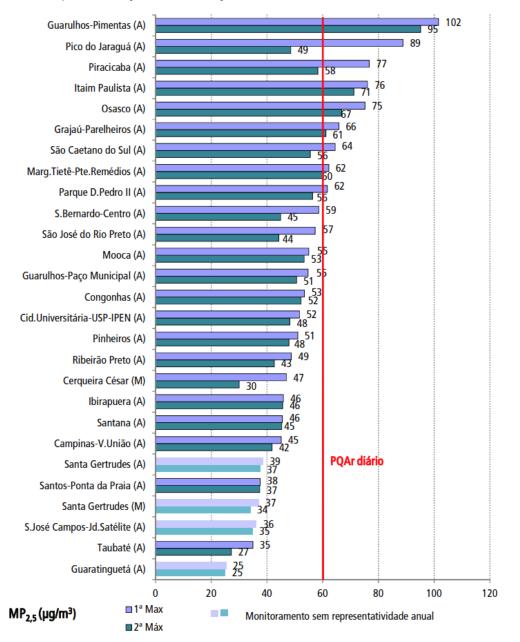

Aluna: Débora Souza Alvim

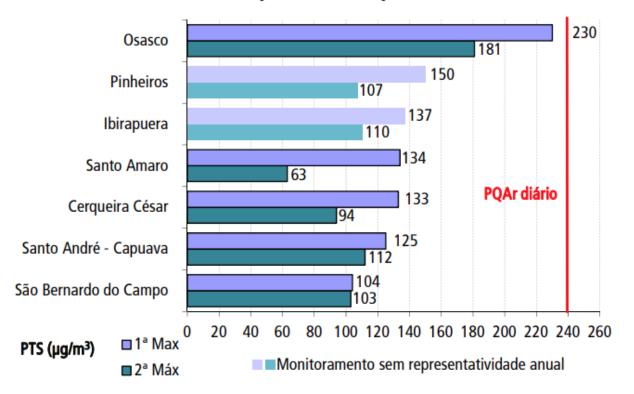
Orientadora: Dra. Luciana Vanni Gatti

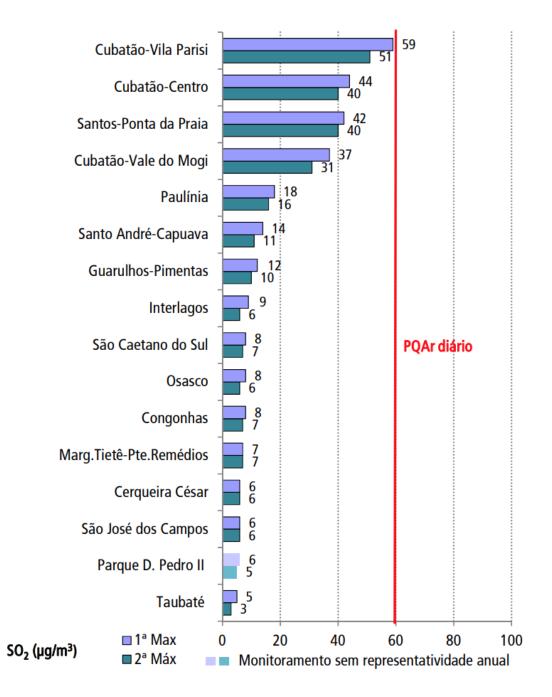

Abril - 2013

• Região Metropolitana de São Paulo: (CETESB 2019)


- 21,5 milhões de habitantes
- 7 milhões de veículos
- 1 veículo para cada 3 pessoas


Emissões relativas por tipo de fonte - RMSP


Fonte: CETESB (2019)



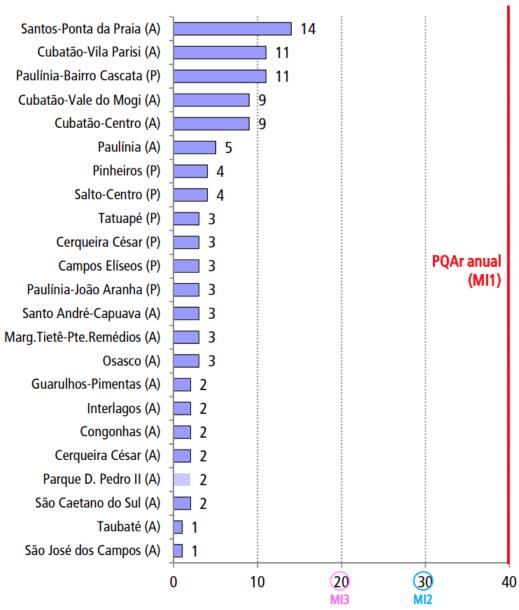

Gráfico 23 – MP_{2.5} – Classificação das concentrações máximas diárias – RMSP, Baixada Santista e Interior – 2018

Gráfico 32 – PTS – Classificação das concentrações máximas diárias – RMSP – 2018

 $SO_2(\mu g/m^3)$

■ Monitoramento sem representatividade anual

Gráfico 44 – NO₂ – Concentrações Médias Anuais – RMSP – 2018

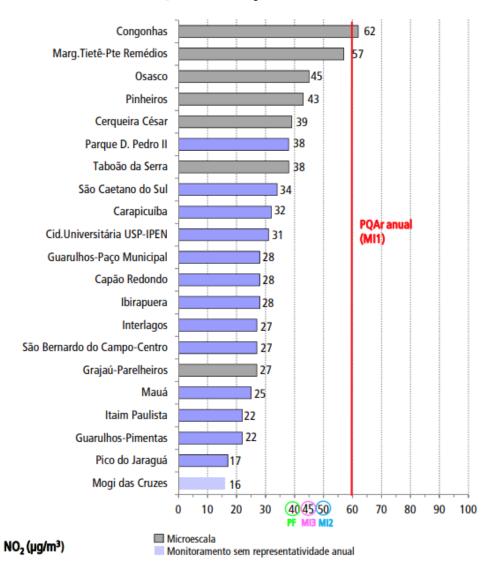


Gráfico 57 — Benzeno — Classificação das concentrações máximas diárias — RMSP, Baixada Santista e Interior - 2018

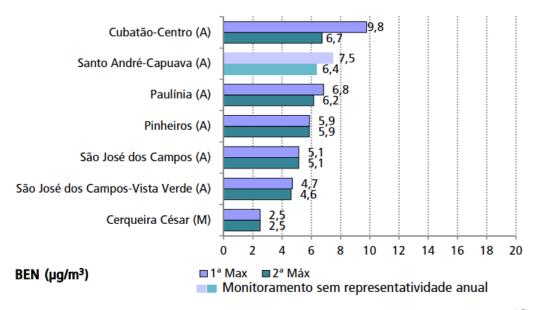


Gráfico 58 — Benzeno — Classificação das concentrações médias anuais — RMSP, Baixada Santista e Interior - 2018

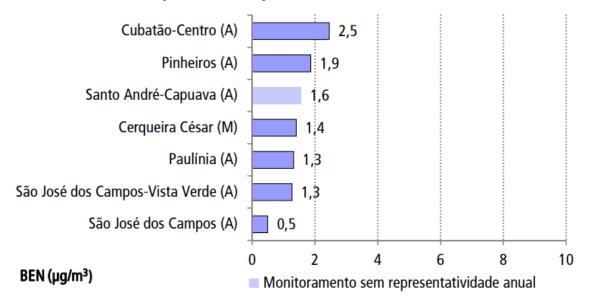


Gráfico 59 – Tolueno - Classificação das concentrações máximas diárias – RMSP, Baixada Santista e Interior - 2018

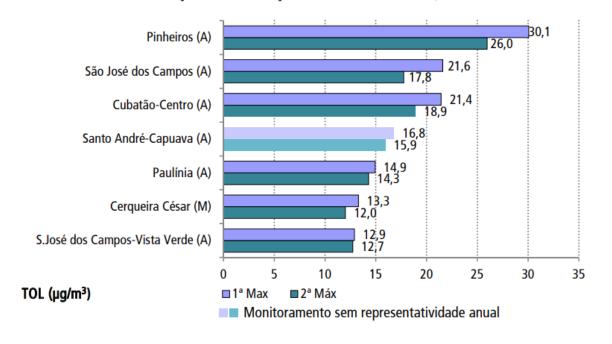
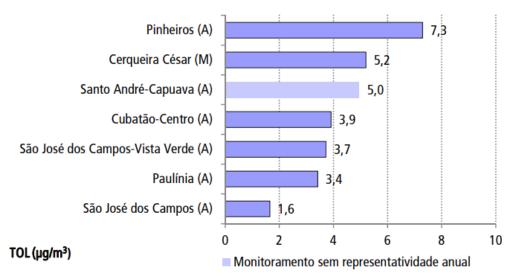
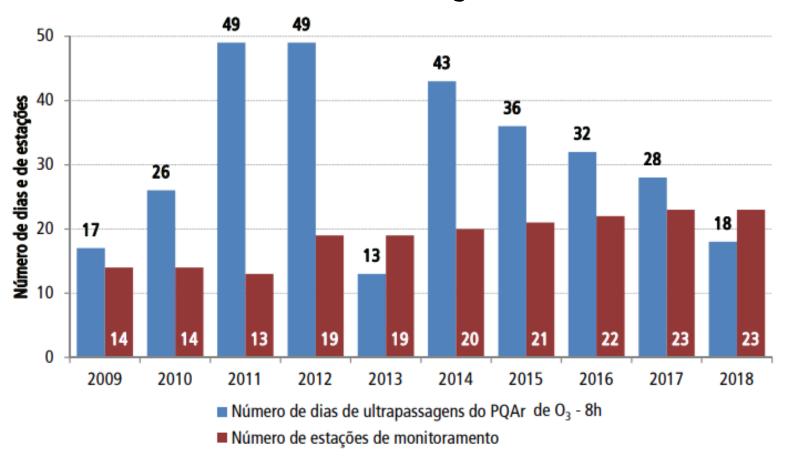



Gráfico 60 – Tolueno – Classificação das concentrações médias anuais – RMSP, Baixada Santista e Interior - 2018



Ozônio

O₃ principal problema de poluição da Região Metropolitana de São Paulo (RMSP).

É formado na atmosfera através da fotólise do NO₂.

Número de dias com ultrapassagem do padrão de 160 µg.m⁻³ de O₃ na RMSP

Gráfico 36 – O₃ – Classificação do número de dias com ultrapassagens do padrão de 8h – RMSP – 2018

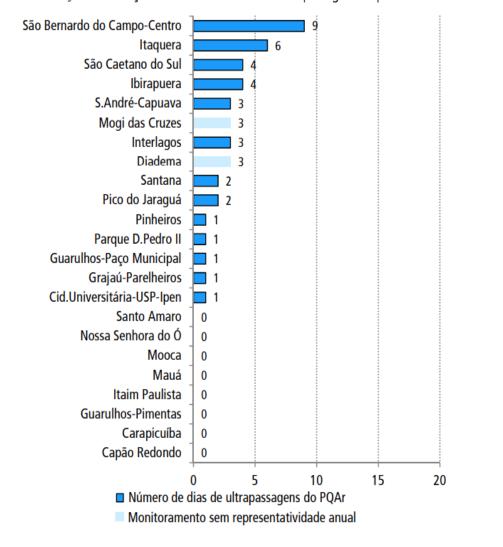
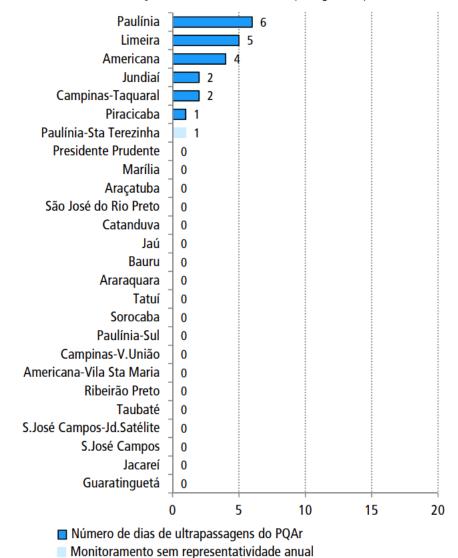
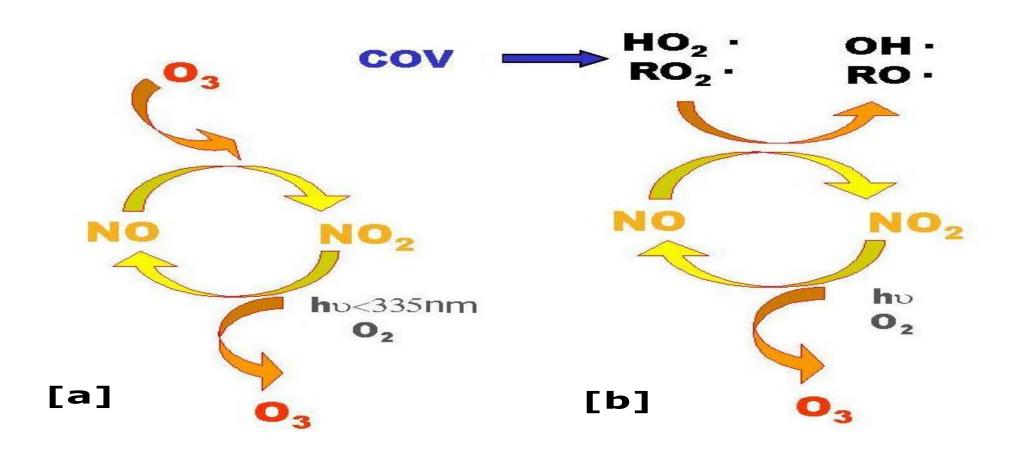



Gráfico 42 − 0₃ − Classificação do número de dias de ultrapassagens do padrão de 8h − Interior − 2018

Ozônio

Irritação passageira do sistema respiratório:


- tosse,
- irritação das mucosas,
 - respiração ofegante,
- dor no peito durante a respiração profunda.

Ataque à culturas agrícolas: diminuição da taxa de fotossíntese

Ataque a materiais diversos: oxidante poderoso

Fontes de Compostos Orgânicos Voláteis na RMSP

- ➤ Emissão veicular;
- ➤ Alguns processos industriais;
- ➤ Evaporação de solventes;
- **≻**Plantas

Objetivo

Determinar os principais COV precursores de O_3 na RMSP, utilizando o modelo de trajetórias OZIPR (*Ozone Isopleth Package for Research*) para identificar estes compostos e produzir uma escala de incremento de reatividade de O_3 para a RMSP, a fim de prover dados que auxiliem a elaboração de estratégias para a redução deste poluente.

Trabalhos Realizados

- ➤ 2006 78 coletas de **hidrocarbonetos** na estação CETESB IPEN/USP janeiro a dezembro de 2006
- ➤2011 66 amostragens de **hidrocarboneto**s, 62 de **aldeídos** e 42 de **etanol**, setembro de 2011 a agosto de 2012, das 7:00 às 9:00 h
- ➤35 coletas de hidrocarbonetos na estação CETESB Cerqueira César, localizada na Av. Dr. Arnaldo, agosto e setembro/2006 e 43 coletas em julho e agosto/2008, das 6:00 às 18:00 h, 2 horas de amostragem;

Trabalhos Realizados

➤ Testes padronizados, segundo a norma NBR 6601, 5 veículos comerciais movidos a óleo diesel, 3 veículos a etanol, 2 a gasolina e 1 motocicleta.

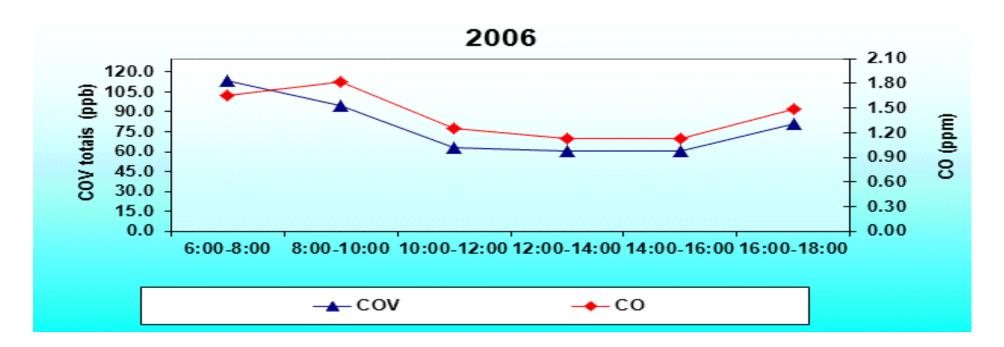
Especiação de COV

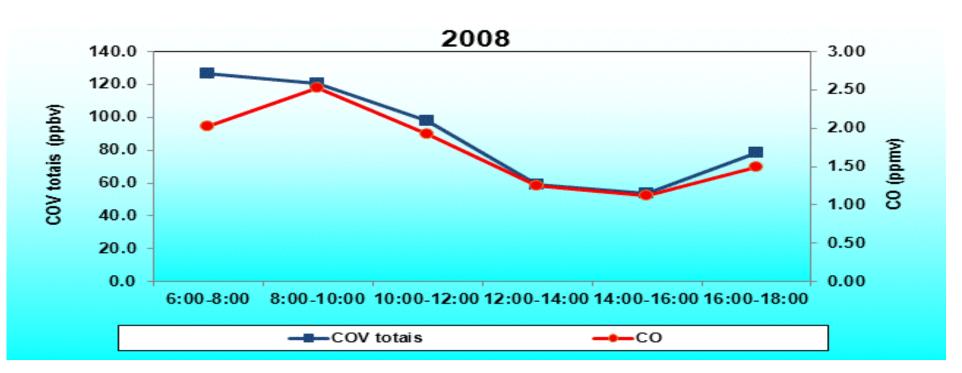
Hidrocarbonetos: CG/DIC (C2-C5), CG/MS/DIC (> 4C)

Etanol: CG/MS

Aldeídos e Cetona: CLAE/UV

Estação CETESB Cerqueira César:


localizada na Av. Dr. Arnaldo;


35 coletas entre agosto e setembro de 2006;

43 coletas entre julho e agosto de 2008;

6:00 h ás 18:00 h, a cada 2h de amostragem.

Concentração dos 15 COV mais abundantes medidos na estação CETESB Cerqueira César, referente às médias das 36 amostragens realizadas em 2006 e das 43 em 2008.

Compostos (2006)	Conc. (ppbv)	Compostos (2008)	Conc. (ppbv)
isopentano	6,55±0,10	eteno	12,22±0,65
eteno	$6,48\pm0,34$	propano	$8,83 \pm 0,11$
formaldeído	$5,58\pm0,01$	etano	5,76±0,15
etano	$5,29\pm0,14$	formaldeído	5,70±0,01
acetaldeído	$5,04\pm0,01$	acetaldeído	5,64±0,01
butano	$3,90\pm0,01$	butano	$4,71\pm0,02$
propano	$3,40\pm0,04$	tolueno	$4,40\pm0,18$
tolueno	$3,38\pm0,14$	isopentano	$4,19\pm0,06$
but-1-eno	$2,99\pm0,07$	pentano	$2,90\pm0,06$
pentano	$2,60\pm0,05$	propeno	2,77±0,02
propeno	$2,00\pm0,01$	isobutano	$2,26\pm0,01$
isobutano	$1,87\pm0,01$	but-1-eno	1,55±0,04
2-metilpentano	$1,77\pm0,04$	hexano	1,54±0,04
p-xileno	p-xileno 1,59±0,14 1-metilciclopenteno		$1,49\pm0,04$
1,1-dimetilciclopropano	$1,49\pm0,03$	2-metilpentano	$1,49\pm0,04$

Modelo de OZIPR

Dados de Entrada

Dados Meteorológicos Horários: Temperatura, Pressão, Umidade Relativa do Ar e Altura da Camada de Mistura.

Localização Geográfica e Data → índice de luz solar.

Emissões horárias de CO, NO_x e COV (kg.km⁻².h⁻¹).

Concentrações Iniciais de CO, NO_x e COV totais (ppm).

Concentrações individuais dos diferentes COV presentes na mistura.

Coeficientes de Deposição.

Modelo Químico SAPRC.

Dados de Saída

Concentrações médias horárias de CO, NO_x e O_3 .

SAPRC

- ➤ Desenvolvido por Willian Carter Universidade de Riverside em 1990.
- ➤ Versao utilizada 3.0.1 de Janeiro de 2000. Ela foi recompilada na UERJ, para 500 reações e 200 espécies

Espécies de COV agrupadas em função da semelhança da estrutura e da reatividade:

- ➤ 5 Grupos de Alcanos;
- ➤ 2 Grupos de Alcenos;
- ➤ 2 Grupos de Aromáticos;
 - ▶1 grupo de Aldeídos
- ➤ Compostos mais importantes são mantidos explícitos.

Obtenção dos dados de entrada para

$$1.557.100 \frac{ton}{ano} x \frac{1000kg}{1ton} x \frac{1}{1.747km^{2}} x \frac{1ano}{313dias} x \frac{1dia}{18h} = 158kg.km^{-2}.h^{-1}$$

Emissão de CO:

$$NO_x/CO = 0.09$$
 Emissão = 14 kg.km⁻².h⁻¹ de NO_x

$$COV/CO = 0,27$$
 Emissão = 43 kg.km⁻².h⁻¹ de COV

Estação CETESB Saúde Pública - 2008

Composto ou Grupo

COV

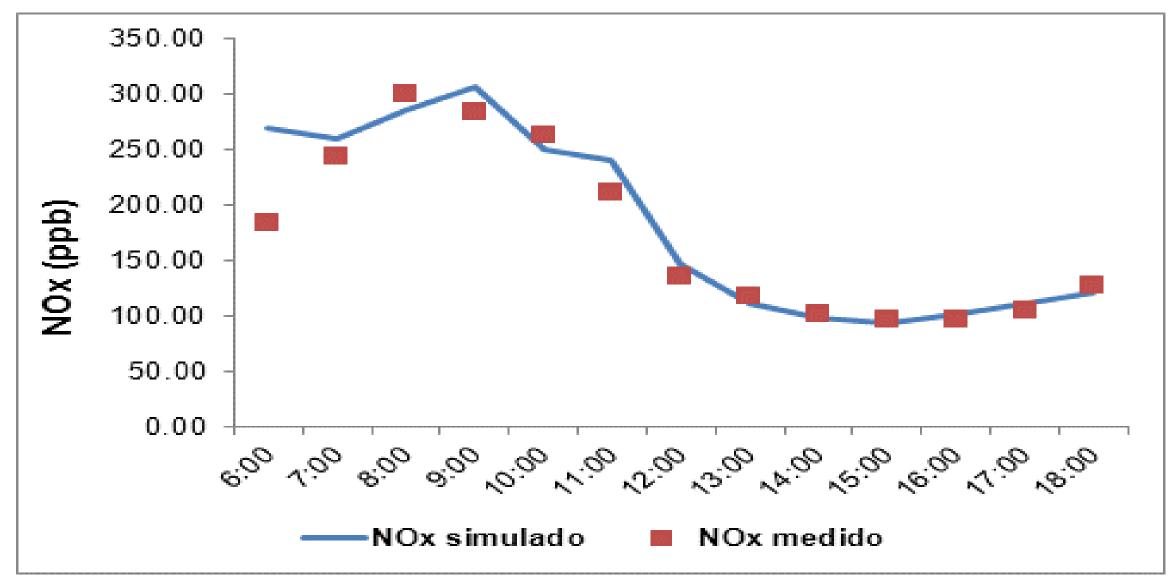
 NO_{x}

CO

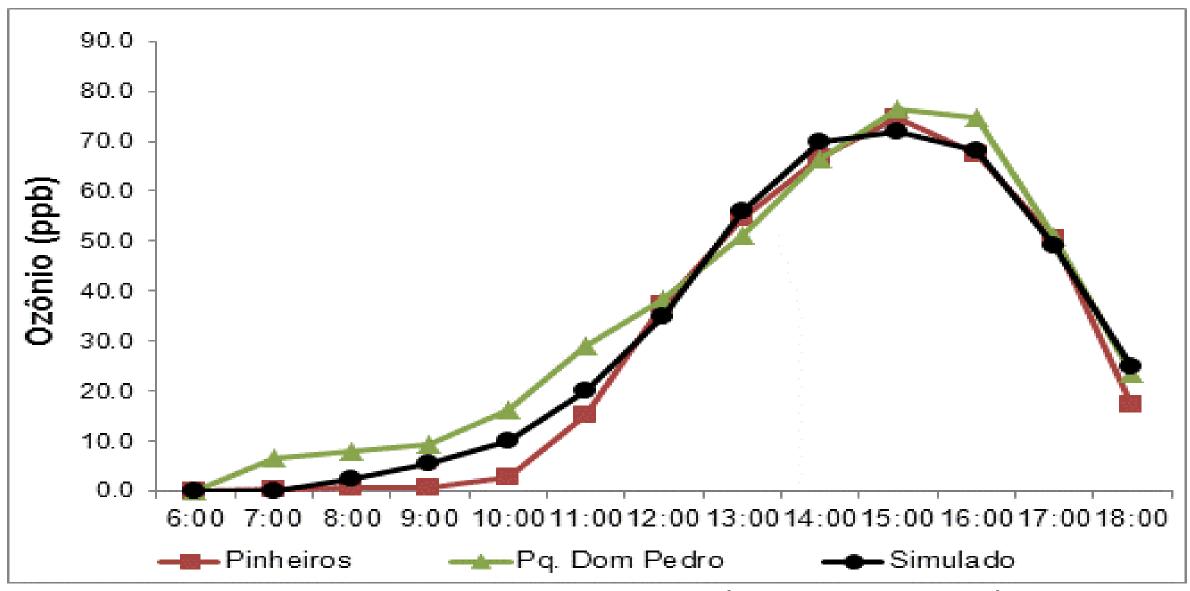
Concentração Inicial

1,55 ppmC

0,27 ppm


2,04 ppm

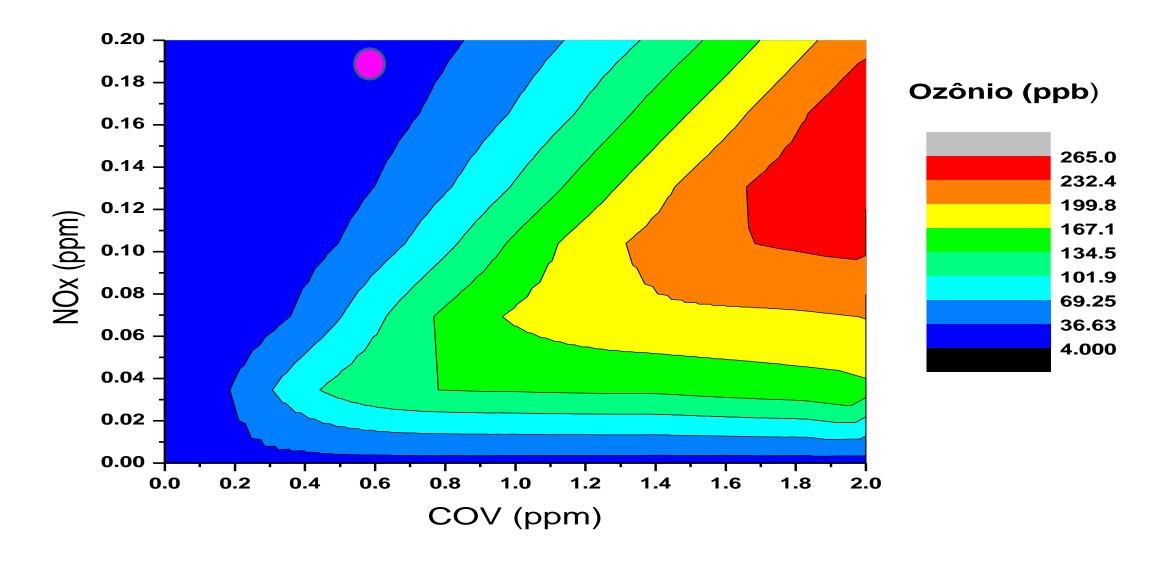
Hora	Temp. (°C)	UR (%)	Alt. Cam. Mist. (m)
6:00	12	72,4	300
7:00	12	73,1	300
8:00	12	71,8	300
9:00	14	68,2	300
10:00	17	59,4	350
11:00	20	42,8	380
12:00	22	33,5	580
13:00	24	27,8	700
14:00	25	24,8	800
15:00	26	22,8	900
16:00	26	22,0	850
17:00	25	23,3	550
18:00	23	29,8	500


Valores de Temperatura, Umidade Relativa do Ar (estação Pinheiros da CETESB) e Altura da Camada de Mistura (CLA — IPEN).

Ajuste do Simulador

	E	Emissões (kg.km- ² .h ⁻¹)		
Hora	СО	NO _x	COV	
06:00	27	7	37	
07:00	150	20	124	
08:00	290	15	107	
09:00	280	5	28	
10:00	140	11	28	
11:00	135	4	28	
12:00	83	3	17	
13:00	95	11	23	
14:00	75	19	31	
15:00	110	20	36	
16:00	150	21	37	
17:00	225	21	37	
18:00	300	26	57	
Média	158	14	43	

Comparação dos valores simulados com os valores médios obtidos para a concentração de NO_x no período de julho e agosto de 2008 na Estação Cerqueira César.



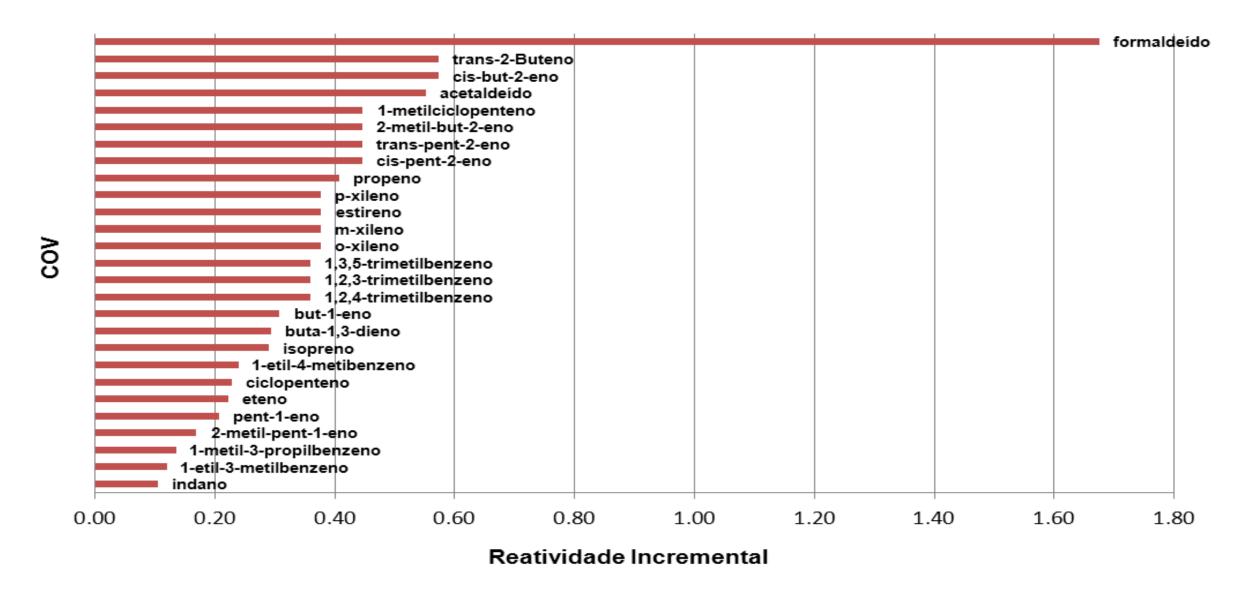
Comparação dos valores simulados na Estação Cerqueira César com os valores médios obtidos para a concentração de O_3 no período de julho e agosto de 2008 nas estações Pq. D. Pedro e Pinheiros.

Simulação de Redução nas Emissões

	Variação de O ₃ (%)		
Diminuição das emissões	COV	NO _x	COV e NO _x
5%	- 6.1	+ 4.1	- 2.8
10%	- 13.5	+ 6.1	- 7.9
20%	- 25.4	+ 14.3	- 12.5
30%	- 34.8	+ 20.4	- 19.0

Variação do O_3 em função da diminuição das emissões horárias de COV totais e NO_x , julho e agosto de 2008, Estação CETESB Cerqueira César 2008.

Isopletas de O_3 (em ppb) para diversas concentrações de COV e NO_X , para a Estação CETESB Cerqueira César.


Escala de Incremento de Reatividade para COV

Baseada no ordenamento dos COV em função de seus potenciais de produção de O_3 .

Acréscimo e um decréscimo de 0,2% dos COV totais a cada COV de interesse.

$$IR+ = \frac{[O_3+] - [O_3]_{base}}{[COV+] - [COV]_{inicial}} \qquad IR- = \frac{[O_3-] - [O_3]_{base}}{[COV-] - [COV]_{inicial}}$$

$$IR = \frac{IR + IR - 1}{2}$$

Incremento de Reatividade (ppb de O_3 /pppC de COV) para os 30 principais precursores de O_3 na atmosfera de São Paulo – Estação CETESB Cerqueira César.

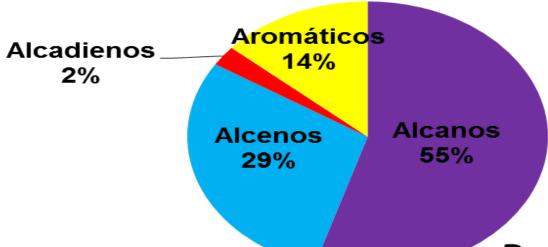
Compostos	Conc. x IR	% FO
formaldeído	9,549	42,81
acetaldeído	3,108	13,93
eteno	2,717	12,18
propeno	1,129	5,06
1-metilciclopenteno	0,663	2,97
p-xileno	0,528	2,37
but-1-eno	0,477	2,14
trans-pent-2-eno	0,422	1,89
2-metilbut-2-eno	0,388	1,74
trans-but-2-eno	0,360	1,62
tolueno	0,333	1,49
1,2,4-trimetilbenzeno	0,316	1,42
cis-but-2-eno	0,297	1,33
cis-pent-2-eno	0,266	1,19
m-xileno	0,245	1,10

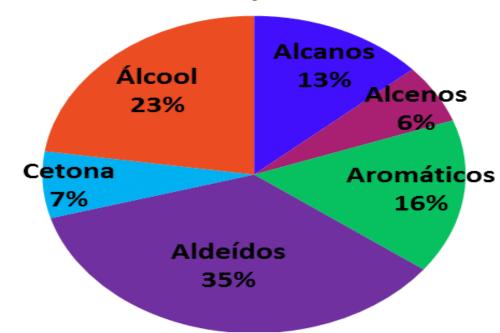
Classes	% formação de O ₃	% em massa na atmosfera de COV
Aldeídos	57%	13%
Alcenos	32%	27%
Aromáticos	10%	14%
Alcadienos	1%	1%
Alcanos	0,03%	46%

Estação CETESB IPEN/USP

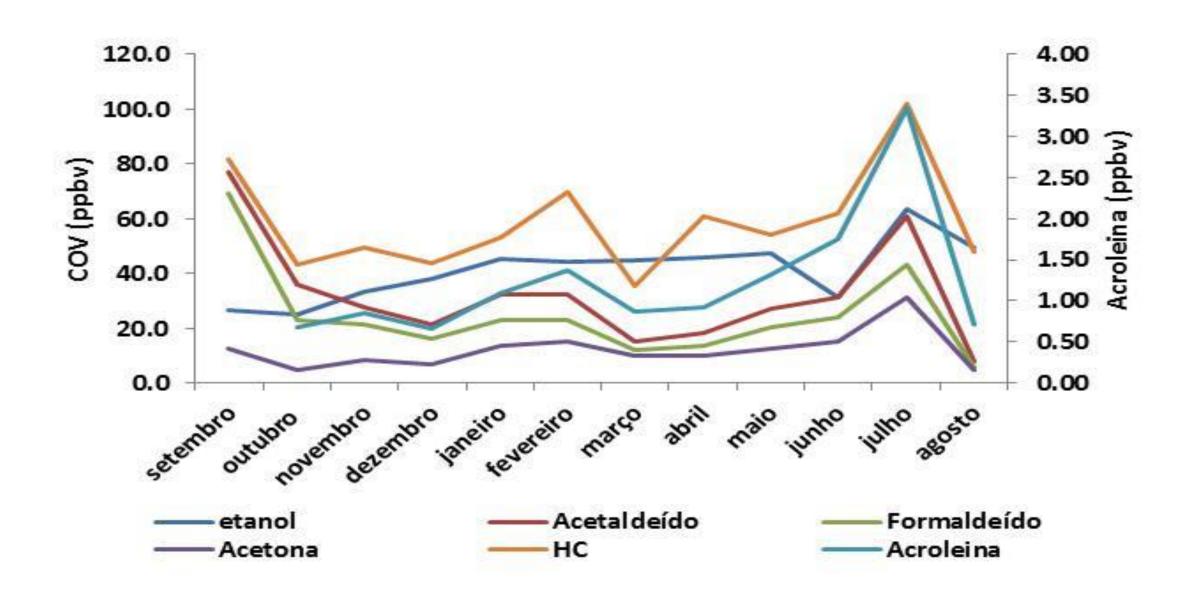
localizada na Cidade Universitária

66 amostragens de HC, 62 de aldeídos e 42 de etanol em ago a dez de 2011/2012;


78 amostragens de HC, jan a fev de 2006; horário de coleta 7:00 h às 9:00 h


Concentração dos 15 COV mais abundantes medidos na estação CETESB IPEN/USP, referente às médias das amostragens realizadas em 2006 e 2011/2012

Compostos (2006)	Conc. (ppbv)	Compostos (2011/2012)	Conc. (ppbv)
eteno	6,25	etanol	36,3
propano	5,00	Acetaldeído	27,5
butano	4,11	Formaldeído	20,3
hexano	2,71	Acetona	10,9
etano	3,79	propano	5,56
isobutano	3,51	eteno	4,84
isopentano	3,36	etano	2,98
but-1-eno	3,42	butano	2,94
propeno	3,14	1-etil-4-metilbenzeno	2,85
tolueno	3,02	1,2,4-trimetilbenzeno	2,43
pentano	2,01	Propionaldeído	2,39
2-metilpentano	1,41	1,3,5-trimetilbenzeno	2,34
3-metilpentano	1.31	1-etil-3-metilbenzeno	2,33
metilciclopentano	1,16	1,2,3-trimetilbenzeno	2,29
p-xileno	1,08	1-etil-2-metilbenzeno	2,29


Percentual de Hidrocarbonetos - Estação CETESB IPEN/USP - 2006

Percentual de COV - Estação IPEN/USP - 2011/2012

Concentração (ppbv) de COV na estação IPEN/USP da CETESB 2011/2012

Obtenção dos dados de entrada

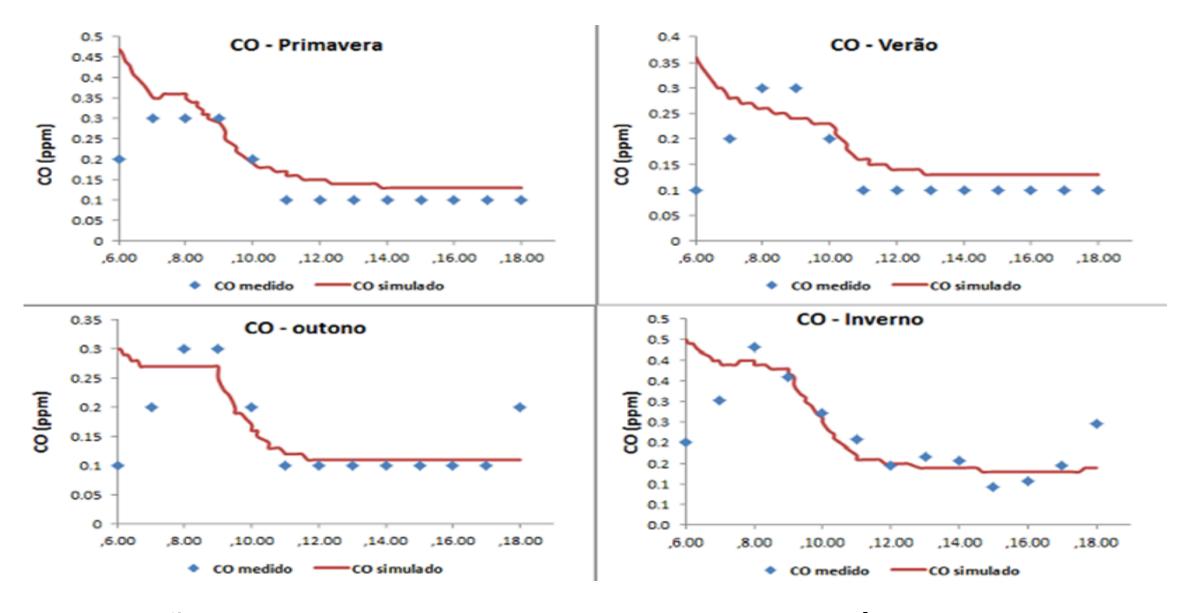
Emissão de CO: (CETESB 2012)

$$160.610 \frac{ton}{ano} \times \frac{1000 kg}{1ton} \times \frac{1}{2.209 km^2} \times \frac{1ano}{304 dias} \times \frac{1dia}{16h} = 15 kg km^{-2} h^{-1}$$

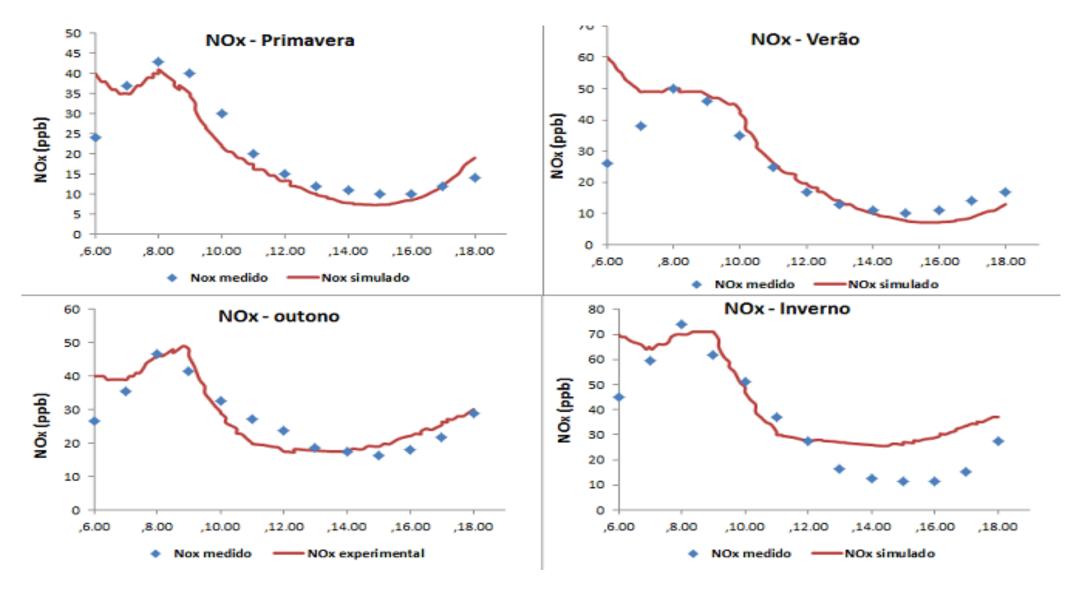
Emissão = 13 kg.km⁻².h⁻¹ de NO_x (Relatorio Gabriel Branco)

Emissão = $3 \text{ kg.km}^{-2}.h^{-1} \text{ de COV (CETESB 2012)}$

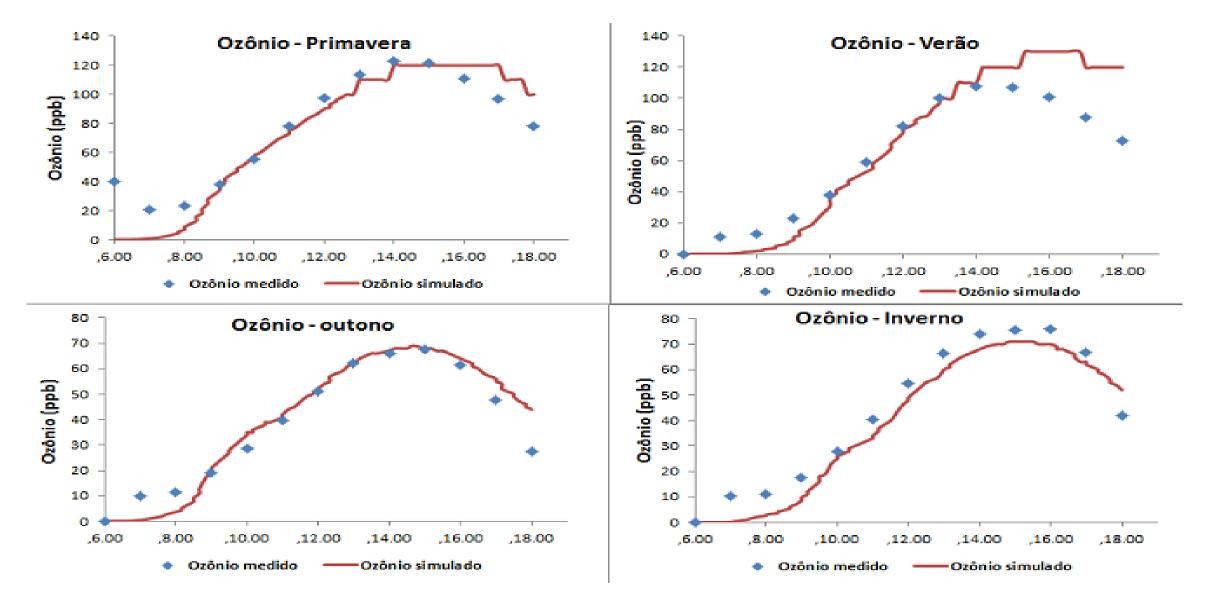
Concentrações Iniciais - Estação CETESB IPEN/USP - 2011/2012


Composto	Primavera	Verão	Outono	Inverno
COV	0,74 ppmC	0,74 ppmC	0,67 ppmC	0,79 ppmC
NO _x	0,04 ppm	0,06 ppm	0,04 ppm	0,07 ppm
CO	0,47 ppm	0,36 ppm	0,30 ppm	0,45 ppm

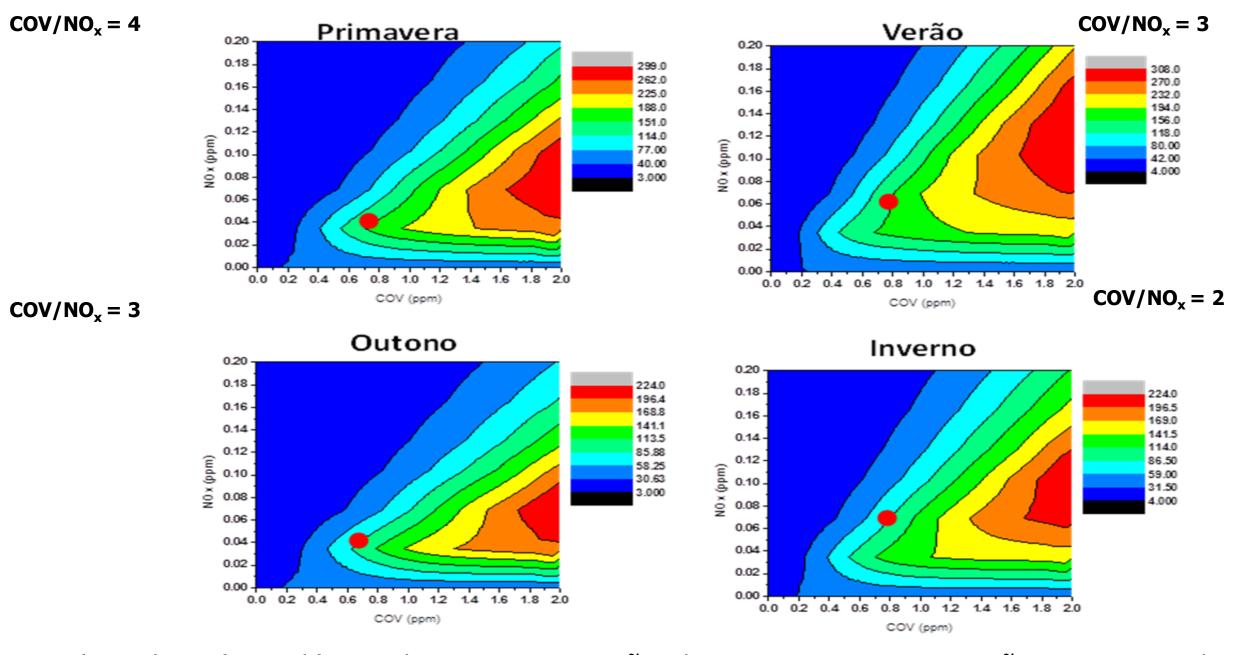
Hora	Temperatura (°C)				
	Primavera	Verão	Outono	Inverno	
6:00	17,2	19,6	16,9	14,4	
7:00	18,1	20,3	17,1	14,3	
8:00	19,3	21,5	18,0	15,5	
9:00	20,7	22,7	19,1	16,8	
10:00	22,1	24,1	20,4	18,4	
11:00	23,2	25,3	21,6	19,9	
12:00	24,1	26,1	22,5	21,3	
13:00	24,6	26,7	23,2	22,1	
14:00	24,6	26,6	23,5	22,6	
15:00	23,7	26,0	23,5	22,6	
16:00	22,7	24,8	22,6	22,2	
17:00	21,7	23,8	21,1	21,1	
18:00	20,6	22,8	19,7	19,5	


Hora	Umidade Relativa (%)				
	Primavera	Verão	Outono	Inverno	
6:00	90	92	96	92	
7:00	87	90	92	92	
8:00	82	85	95	87	
9:00	76	78	87	81	
10:00	70	72	81	75	
11:00	66	67	76	68	
12:00	62	64	72	62	
13:00	76	62	68	58	
14:00	62	63	67	55	
15:00	66	66	68	56	
16:00	70	72	72	59	
17:00	74	78	79	64	
18:00	78	81	85	71	

Hora	Camada de Mistura (m)				
	Primavera	Verão	Outono	Inverno	
6:00	300	425	350	350	
7:00	400	550	400	400	
8:00	400	600	400	400	
9:00	550	700	450	450	
10:00	1000	850	900	750	
11:00	1350	1450	1500	1350	
12:00	1600	1700	1750	1500	
13:00	1700	1900	1800	1600	
14:00	1750	1950	1850	1650	
15:00	1650	1950	1850	1700	
16:00	1550	1800	1650	1450	
17:00	1150	1600	1350	1150	
18:00	750	1400	950	800	


Hora	km de congestionamento	СО	NO _x	COV
6:00	2,0	3	4	1,0
7:00	4,3	5	7	1,5
8:00	10,1	14	11	2,8
9:00	17,6	25	15	4,0
10:00	20,1	23	16	4,5
11:00	15,7	15	14	3,7
12:00	12,4	12	13	2,8
13:00	8,5	12	12	1,8
14:00	7,2	12	12	1,6
15:00	8,0	13	13	1,6
16:00	9,3	15	14	1,9
17:00	12,4	18	15	2,4
18:00	16,1	23	17	3,2
	Média	15	13	3,0

Comparação dos valores simulados com os valores médios obtidos para a concentração de CO na Estação CETESB IPEN/USP


Comparação dos valores simulados com os valores médios obtidos para a concentração de NO_x na Estação CETESB IPEN/USP

Comparação dos valores simulados 2011/2012 com os valores médios obtidos para a concentração de O₃ na Estação IPEN/USP

Diminuição das		Va	riação de O			
Emissões	СО	COV	NO _x	CO e COV	CO e NO _x	COV e NO _x
5%	0,2	0,8	2,9	0,4	3,1	3,1
10%	-3,9	0,1	3,9	-0,4	3,7	2,8
20%	-0,3	-3,2	6,8	-3,5	6,6	4,1
30%	-0,7	-3,0	7,3	-3,6	6,9	5,1

Variação do O_3 em função da diminuição das emissões horárias de CO, COV totais e NO_x , Estação CETESB IPEN/USP 2011.

Isopletas de O₃ (em ppb) para diversas concentrações de COV e NO_X, para a Estação CETESB IPEN/USP

Incremento de Reatividade (ppb de O_3 /ppbC de COV) para os 20 principais precursores de O_3 – Estação CETESB IPEN/USP

Compostos	Primavera	Verão	Outono	Inverno
but-1-eno	0.4218	0.0883	0.4359	0.1135
Butanal	0.4184	0.1970	0.3539	0.0567
Propionaldeído	0.4252	0.2208	0.2683	0.1072
Acetaldeído	-0.0748	0.3906	0.2347	0.2018
Propeno	0.2313	0.2615	-0.0484	0.2301
n-heptano	0.5714	0.0374	0.1080	-0.2837
3-metilexano	0.5714	0.0374	0.1080	-0.2837
metilcicloexano	0.5714	0.0374	0.1080	-0.2837
benzeno	0.3129	0.1800	-0.2273	0.0883
1,2,4-trimetilbenzeno	0.3163	-0.0679	0.0484	0.0536
1,2,3-trimetilbenzeno	0.3163	-0.0679	0.0484	0.0536
1,3,5-trimetilbenzeno	0.3163	-0.0679	0.0484	0.0536
c9 benzeno dissubstituido	0.3163	-0.0679	0.0484	0.0536
n-propilbenzeno	0.1905	-0.1834	0.1714	0.0378
2-metilexano	0.3367	0.0374	0.1080	-0.2837
eteno	0.3095	0.1698	-0.2198	-0.0631
isopreno	0.0816	0.0476	0.0931	-0.0599
tolueno	0.0238	-0.0136	0.1118	0.0315
etilbenzeno	0.0000	0.0272	-0.0522	0.0788
cicloexano	-0.0272	0.0102	0.1006	-0.1198

Compostos	Conc. x IR	% Formação de O ₃
Acetaldeído	5,40	61,2
Propionaldeído	0,61	6,92
Butanal	0,52	5,85
1-buteno	0,42	4,74
C9 benzeno dissubstituido	0,40	4,59
Propeno	0,24	2,75
Eteno	0,24	2,70
1,2,4-trimetilbenzeno	0,21	2,41
1,3,5-trimetilbenzeno	0,20	2,32
1,2,3-trimetilbenzeno	0,20	2,27
n-propilbenzeno	0.12	1.37
tolueno	0.08	0.86
benzeno	0.04	0.45
n-heptano	0.04	0.43

Classes	% formação de O ₃	% em massa na atmosfera de COV
Aldeídos	74%	35,3%
Aromáticos	14,5%	15,7%
Alcenos	10,2	6,0%
Alcanos	1,3%	13,5%
Alcadienos	0,03%	0,04%

Ensaio Veicular conforme a norma NBR 6601

• 1.º Fase ou Fase Fria:

 Inclui a partida com motor frio, tem duração de 505s e um percurso de 5,7 km, velocidade média (Vm) de 41 km.h⁻¹.

2.º Fase ou Fase estabilizada:

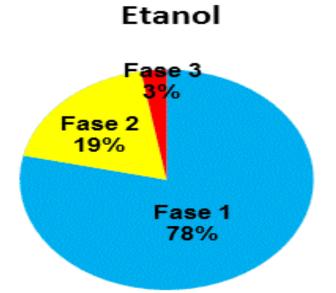
– Duração de 866 segundos e um percurso de 6,2 km, Vm 26 km.h⁻¹.

Entre a segunda e a terceira fases há um tempo de 10 minutos, quando o veículo em teste fica parado com o motor desligado. Não há amostragem de gás nesse período.

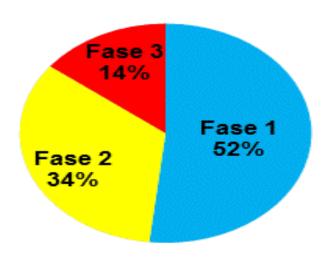
• 3.º Fase ou Fase quente:

- Inclui uma partida com motor aquecido e é igual à primeira fase.

Fator de Emissão (FE) mg.km⁻¹

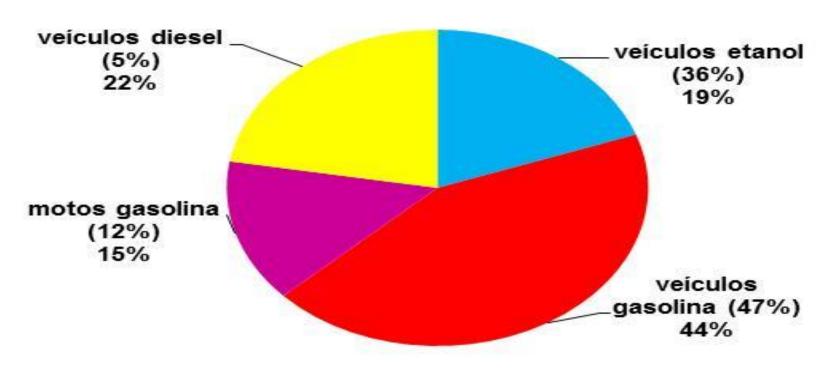

Compostos	Etanol FE	Gasolina FE	Diesel FE	Moto FE
NO _x (g.km ⁻¹)	0,08	0,64	0,78	0,07
CO (g.km ⁻¹)	0,46	2,65	0,45	0,72
COVNM (mg.km ⁻¹)	80,7	219	96,0	180
CH ₄ (mg.km ⁻¹)	37,0	32,0	5,2	16,0
Aldeídos (mg.km ⁻¹)	12,6	6,2	58,6ª	-
HCNM - IPEN (mg.km ⁻¹)	5,65	108	7,24	75,0

^aPara veículos a diesel foram considerados os fatores de emissão de aldeídos (mg.km⁻¹) do trabalho de Abrantes et. al. 2005.

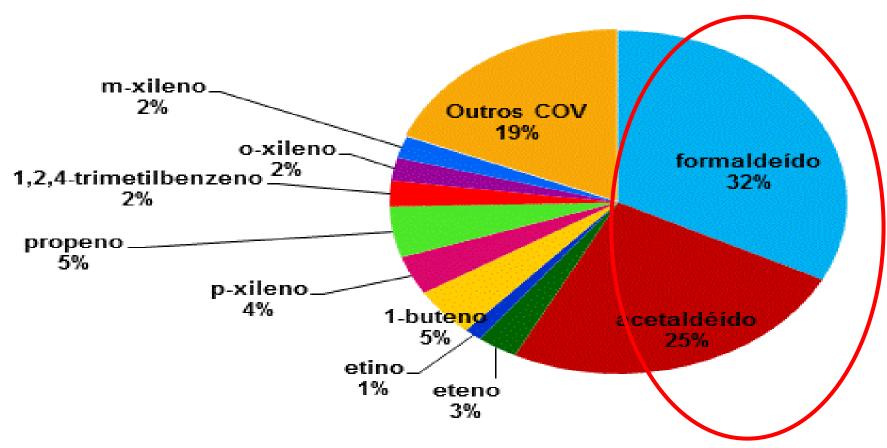

- Foram identificados e quantificados:
 - 64 COV nos veículos a etanol;
 - 89 COV nos veículos a gasolina;
 - 54 COV nos veículos a diesel;
 - 83 COV na motocicleta;

Fator de Emissão (FE) mg.km⁻¹

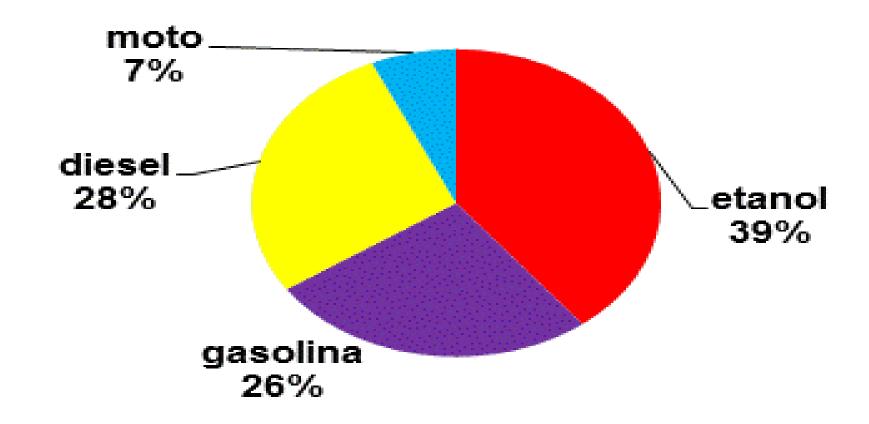
Compostos	Etanol FE	Gasolina FE	Diesel FE	Moto FE
formaldeído	1,97	1,55	43,1ª	-
acetaldeído	10,7	4,85	15,5ª	-
isopentano	0,80	10,33	0,15	4,56
pentano	0,38	7,37	0,01	4,16
tolueno	0,16	6,08	0,44	7,39
hexano	0,29	5,49	-	2,25
benzeno	0,15	5,31	1.74	4,12
2-metil-pentano	0,35	5,00	-	2,24
1-buteno	0,10	3,43	0,78	2,93
metilciclopentano	0,24	3,31	-	0,82
p-xileno	0,19	3,15	0,16	1,56
heptano	0,13	2,92	0,02	0,97
3-metil-pentano	0,19	2,90	-	1,45
1,2,4-trimetilbenzeno	0,16	2,41	-	2,30
butano	0,09	2,40	-	0,62


Gasolina

Diesel



Contribuição de Cada Classe de Veículos para Formação de O₃



Total de veículos: 6,5 milhões

Principais Precursores de O₃ considerando a contribuição de cada classe de veículos

Emissão de aldeídos por classe de veículos

Conclusões

➤10 COV mais abundantes encontrados na estação CETESB IPEN/USP: etanol, acetaldeído, formaldeído, acetona, propano, eteno, etano, butano, 1-etil-4-metilbenzeno e 1,2,4-trimetilbenzeno.

 \triangleright Razões de COV/NO_x: Primavera: 4, verão (3), outono (3) e inverno (2).

- \triangleright Classes formadores de O_3 : 74% aldeídos, os aromáticos 14,5%, os alcenos 10,2%, os alcanos 1,3% e alcadienos (isopreno) 0,03%. Resultados para apontar quais medidas seriam eficientes no controle da formação de O_3 .
- ightharpoonup Reduzindo todos os aldeídos quantificados neste estudo a uma concentração desprezível na atmosfera ocorre uma redução nas concentrações de O_3 em torno de 27%.
- ➤ Os aldeídos representam 69% dos COV emitidos em veículos a etanol em termos de massa (mg.km⁻¹) e 88% nos veículos a diesel (dados utilizados de Abrantes et al, .

- ➤ Os alcanos representaram 59% dos compostos emitidos em carros a gasolina e 34% da emissão em motocicletas.
- \succ Os aldeídos são a principal classe de compostos na formação de O_3 para emissão veicular, representando mais da metade da formação deste poluente.
- É necessário que seja estabelecido limite de emissão para aldeídos em veículos a diesel, pois estes emitem seis vezes a mais aldeídos do que veículos a etanol e gasolina, além de redução nos limites permitidos nos veículos a etanol e gasolina.

Sugestões para Trabalhos Futuros

> Realizar mais estudos testando outros cenários de emissão e verificar o quanto isto altera os resultados obtidos pelo modelo OZIPR.

➤ Realizar mais campanhas de amostragens de COV em outros pontos da cidade de São Paulo e outras localidades da RMSP como: Guarulhos, São Bernardo do Campo, Santo André, Osasco e Mauá.

Sugestões para Trabalhos Futuros

➤ Utilizar o modelo de trajetórias OZIPR (Ozone Isopleth Package for Research) para identificar os principais compostos precursores de O₃ em outras regiões da região metropolitana de São Paulo.

➤ Realizar um número maior de ensaios veiculares para investigar quais são os tipos combustíveis que mais contribuem na emissão dos principais COV precursores de ozônio