NOTE ON THE TRANSFINITE CASE OF HALL’S
THEOREM ON REPRESENTATIVES

R. RADO

1. P. Hall [1] proved the following theorem. Let N be a finite set and
let, for ve N, A, be an arbitrary set. Suppose that (Hall's condition),
for every subset M of N,

| (ve M)A,|>| M|,

where | 4| denotes the cardinal number of a set A. Then it is possible to
find, for every ve N, an element w, of 4, such that z,#x, for p#v. We
express the conclusion by saying that (z,: ve N) is a representation of the
system (4,: veN). A system of sets is representable or not representable
according to whether it does or does not have such a representation.
Several proofs have been given of Hall’s theorem. It is well-known that
the proposition no longer holds if both V and at least one A, are allowed to
be infinite. Hall’s theorem has, however, been extended [2]} to the case
when N is arbitrary but every 4, is finite. In Hall’s condition the set M
is always taken to be finite. The known proofs of this extension use the
case of finite N and, in addition, Tychonoff’s theorem or arguments
amounting in effect to a proof of the relevant case of Tychonoff’s theorem.

In this note we give (i) a simpler proof of Hall’s theorem for general N
(Theorem 1) which does not assume the case of finite NV (ii) an even more
straightforward proof for the case of at most denumerable N, (iii) a further
extension (Theorem 2) which covers the case of an arbitrary N when at
most one 4, is infinite, (iv) a description (Theorem 3) of a class on non-
representable systems of sets which makes it unlikely that (iii) can be
extended trivially.

The final version of (iii) is due to H. A. Jung and replaces an earlier,
more complicated, version. It is published here by kind permission of
Dr. Jung.

2. Capital letters denote sets. Throughout this note we consider a
fixed system
(4,:veN) (1)

of sets and put, for M <N,
S(M)y=yv (ve M) A,.
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The symbol (4,:veN)+ (B) denotes the system of sets consisting of
the sets 4,, for ve N, and the set B. More generally, the obvious meaning
attaches to the symbol
(4,:veN)+(By:2eL).
Trivially, every representable system satisfies Hall’s condition.
Lemma. Let the system (4,:ve M)+ (B) satisfy Hall’s condition.

(i) If | B|> 2, then thereis x€ B such that (A,:ve M)+ (B — {}) satisfies
Hall’s condition.

(i) If | B| <R, then there is é€ B such that (A,:ve M)+ ({£}) satisfies
Hall’s condition.

Proof. To prove (i), choose distinct elements z,, z, of B. Assume
that neither z, nor z, can be taken as z. Then, for Ae{0, 1}, there is M, M
such that | P,|<|M,| < R,, where P,=8(M,)v (B— {x,}). Then

| Mo|+| M| 2| Poy|+| Py|=| Pyw Py|+| Py Py |
2| S(My M)V B|+|S(MonM,)|
S| My M|+ 14| MynM,|
=|Mo|+| M, [+1

which is a contradiction. Hence either z, or «; can be taken as z, and
(i) is established. Now (ii) follows by applying (i) | B| -1 times. We shall
only use (ii).

3. TreorEM 1 (M. Hall). Let |A4,|<R, for veN, and suppose that
the system (1) satisfies Hall’s condition. Then (1)is representable.

Proof. Let Q be the set of all systems (B,:veN) such that B,c 4,
for ve N, and (B,:veN) satisfies Hall’s condition. The assertion means
that there is (B,:veN)e Q such that | B,|=1 for ve N. Define a partial
order on Q by putting

(B, :veN)< (B, :veN)

if and only if B, B," for ve N. The finiteness of 4, and of the sets M
in Hall’s condition implies that Zorn’s lemma applies to (Q, <) and yields
a minimal element (B,:veN) of Q. Let voje N. Then, by our lemma,
there is (e B, such that the system (B,:veN—{v})+ ({£}) satisfies
Hall’s condition. Put B; ={¢} and B,’=B, for ve N—{y}. Then
(B,’:veN)eQ and, by the minimality of (B,:veN), we conclude that
| B,,|=1. Hence|B,|=1for ve N, and Theorem 1 follows.

4. If| N| <R, then the assertion of Theorem 1 follows directly, without
Zorn’s lemma, after | N| applications of our lemma. We should note here
that if (1) satisfies Hall’s condition then, on choosing 4,’< 4, such that
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|4,’|=min(N|,{4,]), we conclude that (4, :veN) satisfied Hall’s
condition. Hence we may assume, without loss of generality, that all
|4, <|N|, and then (ii) of our lemma applies if | V| < R,.

Now consider the case |N|=R,, say N={0,1,...}. We assume the
hypothesis of Theorem 1, and we shall deduce the conclusion by repeated
applications of our lemma. Let vyeN. We consider the operation T,
which turns the system (1) into the system T, (4,:veN)=(4,":veN)
and which is defined as follows. By our lemma there is {€ 4, such that the
system (4, :v#vy)+ ({£}) satisfies Hall’s condition. Fix ¢ in some way
and put 4, = {¢}; 4,'=A4, for v# v, Now let

(B, :vEN)=Ty(4,:veN),
(Bay1,,:vEN)=T,,,(B,,:veN) for AeN.

Then | B,,|=1 for all v, and (B,,:veN) satisfies Hall’s condition. This
proves Theorem 1if | N|=R,.

5. A subset M of N is called a critical index set if | S(M)|=|M|<R,.
Let N* be the union of all critical index sets.

THEOREM 2. Let (1) satisfy Hall’s condition, and let |A,|<R, for
veN. Then the system
(4,:veN)+ (B) (2)
1s representable if and only if BE S(N*).
Proof. (i) Let (2,:veN)+ (y) be a representation of (2). Then, for
every critical index set M,

(o, :ve M) <| S(M)| =| M |=|{z,: ve 1))
Hence S(M)= {x,:ve M} and therefore S(N#)= {z,: ve N*},
yeB—{x,:ve N}c B— {,:ve N¥}=B— S(N#),

so that B¢ S(NV#).

(1) Let B4 S(N*). Choose ye B—S(N*). By definition of N#,
the sytem

(4,:veN*)+(4,— {y}:ve N-N*) (3)

satisfies Hall’s condition. Hence, by Theorem 1, there is a representation
(x,:veN*)+ (v, :ve N - N*) of (3). Thenye B—S(N*)=B— {z,:ve N*},
and (z,:ve N)+ (y) is a representation of (2). This proves Theorem 2.

6. We now come to a negative result.

THEOREM 3. Let (a,:veN) be a representation of (1), and let L be a
set such that
| L|>|w (ve N)(4, - {a,})].
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Let B, < {a,:ve N} for Ae L. Then the system

(4, :veN)+ (B,:Ael) (4)
18 not representable.

Proof. Let (z,:veN)+ (y,:A€ L) be a representation of (4). Put
Ny={v:z, #a,}; Ny={v:z,=a}
Then
{#,:veN}u{y,:Ae L} = {a,:ve N} {y, : Ae L}
< {a,:veN},
and z, #y, for ve N, and Ae L. Hence {y,:Ae L} < {a,:ve N},
| L| €| Ny|<| v (veN)(4, - {a,})|<| L]

which is the desired contradiction.

7. In conclusion we disprove what might appear to be a plausible
extension of Theorem 2 to the case of more than one infinite set. Let
| 4,| <R, for ve N, and let (1) satisfy Hall’s condition. Suppose also that (4)
is representable. Then it follows by an easy extension of part (i) of the
proof of Theorem 2, that the system

(B,— S(N#): e L) (5)

isrepresentable. By Theorem 2 it is, in fact, true that, vice versa, whenever
(1) satisfies Hall’s condition and (5) is representable then (4)isrepresentable
provided, however, that | L|=1. We now show that this converse proposi-
tion is no longer valid if | L| > 2.

To this end put, in Theorem 3,

N={1,2,..}; 4,={0,v} and a,=v for veN.

Let 2<|L|< X, and B,=N for Ae L. Then N#=@, (1) satisfies Hall’s
condition, and (5) is representable. However, Theorem 3 applies and
shows, as is easily verified directly, that (4) is not representable.
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