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Introduction

‘And so it was .. borne in upon me that very often, when the most
elaborate statistical refinements possible could increase the precision
by only a few percent, yet a different design involving little or no additional
experimental  labour might increase the precision two-fold, or
five-fold or even more”

R.A. Fisher (1962)
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Introduction

= Suppose you want to make inferences about a given set of treatments

= The levels of the treatment factor can be randomly sampled from a larger
population or can be chosen based on specific interest in each particular level:
Condition that will be tested!



Introduction

» You carry out an experiment to compare the effects of t different treatments

» For doing so, you design a simple experiment with r independent replicates
of each treatment level to measure these effects

= There are tr experimental units, in total!



Introduction
Completely Randomized Design (CRD)

Main Features

* In the Completely Randomized Design (CRD), randomization is absolutely
necessary throughout the treatments

= Treatments are distributed to experimental units completely at random
= Every experimental unit has the same probability of receiving any treatment

= Experimental units are randomized throughout the experiment

» Consequently, there is no correlation between any two observations



Design Characterization

» The simplest form of experimental scheme
= There is no restriction on the number of treatments examined

» Treatments can have different numbers of replicates, but balance is preferable

CRD uses only the basic principles of repetition and randomization



Design Characterization

Example of Randomization

» Given you have 4 treatments (A, B, C, and D) and 5 replicates, how many
experimental units would you have?

1 2 4 5 6 7 3 9] 10

D | D C | D | C D
11 12 FINNE 6| 17| 18] 19| 20

C B | C | B A | A

Every experimental unit has the same probability of receiving any treatment!




» 4 treatments (A, B, C, and D) and 3 replicates




» 4 treatments (A, B, C, and D) and 3 replicates

= A different layout for the CRD:




» Because there is no local control (error), the CRD is appropriate when
experimental units are uniform



Design Characterization

Advantages of a CRD

= Very flexible design (i.e. number of treatments and replicates is only limited by
the available number of experimental units)

= Statistical analysis is simple compared to other designs

= |oss of information due to missing data is small compared to other designs due
to the larger number of degrees of freedom for the error source of variation




Design Characterization

Disadvantages of a CRD

» The experimental units must be homogeneous

» High estimate of variance due to error can be obtained because all variations
(except treatments) are considered as random variation



Design Characterization

Statistical model

= Let y;; represent the observed response of the jth replicate (j = 1, ...,r) of
the ith treatment (i = 1, ..., t)

Model

= Data from the CRD can be described with the following model:

Vij = U+ T+ &;j

where p is the intercept (an overall mean), 7; is the treatment effect and g;; is the
associated random error term



Statistical model

We assume that:

- EijNN(O,O'Z), fori = 1,..,t aﬂdj =1,..,r

= Ccov (eij,ei'j') =0

Errors are independent and identically distributed (i.i.d)



Statistical model

= Consequently, for the observed values:

Vij~N(u+1t;,0%),fori=1,..,tandj=1,..,r



Design Characterization
Model Fitting

= Unknown parameters u, 7; and o% can be estimated via least squares, as

previously discussed for standard linear models



Model Diagnostics

= After fitting the model and before making inferences, it is important to check
whether the model assumptions are met

. . Rome
Main assumptions of errors: e”e"’éé’r.’
= Errors ¢;; are independent L

= Errors ¢;; are homoscedastic (have the same variance) —

= Errors are normally distributed



Model Diagnostics

= Errors g;; are unknown, so we use the estimated residual errors, or residuals



Checking Model Assumptions
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Checking Model Assumptions

= Remember that:

= c~N(0,0%])

- yNN(X:B' 0-21)



Checking Model Assumptions

= We will study the distribution of the residuals to verify validity of the assumptions



Design Characterization

Residual Diagnostics

= \We can use the raw residuals, which are deviations between the observed and
fitted values:

€ij = Yij — Vij

Eij =Vij —HT T



Residual Diagnostics

= Raw residuals vs fitted values
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Design Characterization

Residual Diagnostics

= Raw residuals vs treatment levels

—
'.nll ——— 1
= —_— T
= I —_— o :
— 1 ! ]
| i
— —
E o _
z °
]
: ! R E—
= T X .
7F] 1 T : i
E'-II'-II i —_— : :
T - : —
: !
——— :
1
—_—

I I I I | | I
A-1191  A-79 A-818 C-10 M-5 M-76 M-S0

strain



Residual Diagnostics

= Normal quantile-quantile (Q-Q) plots

Normal Q-Q Plot
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Design Characterization

Data Transformation

» |f (some of) the assumptions are not met, we can transform the observed data
so that it is normally distributed and the variance is stabilized



Design Characterization

Data Transformation : Box Cox

v — 1

Yij(A) = A
log(yi;) if A =0

if A0,

y represents the original data
y(A) is the transformed data
A is a parameter that determines the type of transformation to be applied

The idea is to find the value of A that makes the transformed data
come closest to a normal distribution



Data Transformation : Box Cox

log-Likelihood

The value that maximizes the likelihood, i.e., results in the best approximation to a normal
distribution, is used to transform the data



Design Characterization

Data table

Consider an experiment installed at the CRD with i treatments and j replicates

Treatments
Replicates 1 2 |
1 Y1 1 Y21 s Yn
2 Y, Y Y2
J Yy Yo, Yy
Total T1 T2 TI




Design Characterization

Data table

= Number of experimental units: N = 1x]

j
Total for treatment i: T = ZY” =Y
=1

Treatments
Replicates 1 2 |
1 Y1 1 Y21 YI1
2 Y2 Y Y2
J Yy Yo, Yy
Total T1 T2 TI

. Ty
= Mean for treatment i: m, = 7

l

G
» General mean of the experiment: M = 1]




Design Characterization

Analysis of Variance

= Allows you to decompose the total variation in the data into different variation
components, a (effects of treatments and residuals)

Source of Degrees of Sum of Mean

Variation Freedom Squares Square

Treatments t—1 SSt MSt.: = Sfff
Within - SSyyichi

treatments  t" — 1) SSwithin - MSwithin = F727F

Remember the error sum of squares (SSE) from past classes



Design Characterization

Analysis of Variance

Source of Degrees of Sum of Mean Expected
Variation Freedom Squares  Square Mean Square

Treatments t—1 SSTr MSTt o’ + mf
Within f-[:?‘ - 1) SSwithin ~ MSwithin o2
Total tr —1 SSotal

Variance Components

It we consider the treatment effects to be random, we can estimate the variance
component using the method of moments, by setting the mean squares (MS)
equal to the expected mean squares (EMS)



Design Characterization

Variance Components

= The residual variance is simply estimated by 6% = MSyiin

MStrat—MSwithin
T

= We can then estimate of by 67 =



Hypothesis Testing

= We want to test the null hypothesis of no treatment effects, i.e.,
Hy=1; =0foralli



Hypothesis Testing
Source of  Degrees of Mean Expected F-Statistic
Variation Freedom Square Mean Square
Treatments ¢ —1 MST. ol + rzti—:f
Within t(T’ - 1) MSWithin J2

Total tr —1




Hypothesis Testing

Source of  Degrees of Mean Expected F-Statistic
Variation Freedom Square Mean Square

2 D i Ti _ Ms
Treatments t—1 MSTFI: a® + rs_1 F = Mﬁfw-.l;nhi“
Within t(r - 1) MSWithin a?
Total tr—1

The F-Statistic follows an F distribution with t -1 and t(r - 1) degrees of freedom



Design Characterization

Multiple Comparions

» The null hypothesis (Hy, = t; = 0 for all i) is tested against the alternative that
7; # 0 for at least one of the treatments

= |f Hy is rejected, we need to determine which of the treatments differ

= This can be accomplished via pairwise comparisons between all possible
combinations of treatments



Design Characterization

Multiple Comparions

= We thus perform multiple comparisons between the treatment means

» Tukey, Bonferroni, Scheffe, Dunnett's Test



Let’s Practice 01!
To

= We will work with yield data of 17 rice genotypes, measured in three
replications each

= This data set can be found in the R package agridat and is a subset of the data

from Gomez & Gomez (1984) Statistical Procedures for Agricultural Research.
Wiley-Interscience

= Let y;; denote the yield of the ith rice hybrid, measured from replicate j



Let’s Practice!
» Use the R function read.csv to import the data &
To Do
= Fit the model with fixed effects |

#Use Im( ) function and summary( )

» Check if model assumptions are met
#Check raw residuals vs fitted values

= Build the ANOVA table and test the null hypothesis of no difference between the
rice genotypes

= Use multiple pairwise comparisons to assess which genotypes differ

= Fit the model with random effects



# Graphic
Tibrary(lattice)
xyplot(yield ~ reorder(gen, yield), data = dados, type = c("p", "a"))

yield

1 1 T T T T T T T T T T T T T T
G16G20G28G2TG26G21G13G30G32G22G23G24G31G256G23G17G18

rearder(gen, yield)



= [it the model with fixed effects

#Use Im( ) function and summary( )

# Fit the model with fixed effects
fm <- Tm(yield ~ gen, data = dados) # fixed effects
fm

summary (fm)



Let’s Practice!

Fit the model with fixed effects

#Use Im( ) function and summary( )

> summary (fm)

Ccall:
Im{formula =

Residuals:
Min

10

Median

-0.87467 -0.28683 -0.01633

Coefficients:

Estimate Std.
L8483
L0473
.0913
.3300
.7083
.1917
.5513
.9607
.6793
.8563
.0453
.9090
. 7557
.6380
. 5007
.6943
L5370

(Intercept)
genGl7
genGl8
genGl9
genG20
genG2l
genG2?2
genG23
genG24
genG25
genG26
genG2y
genG28
genG29
genG30
genG3l
genG32

FHHERFROORRHRRRFOSRRNRNW

L e e I e I e e e e e e e e Y e Y

3Q

yvield ~ gen, data = dados)

Max

0.27500 1.09433

20.
.050
.159
.281
47
.940
.B827
.837
.143
.579
.579
.242
. 864
.041
702
.180
791

ST e R T o I = s o W S T S W I, R, |

Error t wvalue
. 2867
L4054
L4054
L4054
L4054
L4054
L4054
L4054
L4054
L4054
L4054
L4054
.4054
L4054
L4054
.4054
L4054

402

Pri=1tl)
< 2e-16
.48e-05
.07e-05
.002397

.005872
.000530
.80e-05
-000215
-99e-05
.014423
.031574
-070968
.000288
-000754
.000193
.000586

oo oW oMN OO oD O

e
R
Fdk
e

.089615 .

Fd

Fdd
A
Fd
Fdd

el ke
Tk
el ke
el ke

signif. codes: 0O “***' (0.001 ***" 0.01 **" 0.05 “." 0.1 °

Residual standard error: 0.4965 on 34 degrees of freedom
Multiple R-squared: 0.6395, Adjusted R-squared: 0.4699
F-statistic: 3.77 on 16 and 34 DF, p-value: 0.0005615

1




Let’s Practice!

» Check if model assumptions are met
#Check raw residuals vs fitted values

# Raw residuals vs fitted values:
plot(residuals(fm) ~ fitted(fm))

fitted(fm)
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Let’s Practice!

» Check if model assumptions are met
#Check raw residuals vs fitted values

# Q-Q plot:
qgnorm(stdres (fm))

Normal Q-Q Plot
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= Anova

#Anova
anova(fm)

= anoval(fm)
Analysis of Variance Table

Response: yield
Df  Sum Sq Mean Sg F wvalue Pr(>F)

gen 16 14.8680 0.92925 3.7696 0.0005615 #**=
Residuals 34 8.3814 0.24651

Signif. codes: 0 *“#***' (_001 ***' 0.01 *** 0.05 *.7 0.1 °* * 1



= Calculate the estimated means for the different levels of the variable

# Obtaining estimated marginal means:
Tibrary(emmeans)
(fm_means =- emmeans(fm, "gen"))

plot(fm_means) i
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Let’s Practice!

= Pairwise comparisons with Tukey adjustment

= # Pairwise comparisons with Tukey adjustment:
> pairs(fm_means)

FPalrwlse comparisons contrast estimate SE df t.ratio p.value
# Pairwise comparisons with Tukey adjustment: Gle - G17 -2.0473 0.405 34 -5.050 0.0015
pairs (fm_means) G16 - G18 -2.0913 0.405 34 -5.159 0.0011
Gle - G19 -1.3300 0.405 34 -3.281 0.1372
Gle - c20 -0.7083 0.405 34 -1.747 0.9312
Gle - G21 -1.1917 0.405 34 -2.940 0..2657
Gle - G22 -1.5513 0.405 34 -3.827 0.0395
Gle - G23 -1.9607 0.405 34 -4.837 0.0027
Gle - Gg24 -1.6793 0.405 34 -4.143 0.0178
Gle - G25 -1.8563 0.405 34 -4.579 0.0056
Gle - G20 -1.0453 0.405 34 -2.579 0.4693
Gle - G27 -0.9090 0.405 34 -2.242 0.6904
Gle - G28 -0.7557 0.405 34 -1.8064 0.8913
Gle - G29 -1.6380 0.405 34 -4.041 0.0232
Gle - G30 -1.5007 0.405 34 -3.702 0.0535
Gle - G31 -1.6945 0.405 34 -4.180 0.016Z
Gle - G32 -1.5370 0.405 34 -3.791 0.0431
Gl/ - G18 -0.0440 0.405 34 -0.109 1.0000
Gl/ - g19 0.7173 0.405 34 1.769 0.9245
Gl/ - G20 1.3390 0.405 34 5.305 0.1510
Gl/ - G21  0.8557 0.405 34 2.111 0./706
Gl/ - Gg22 0.4960 0.405 34 1.224 0.99/4
Gl/ - 23 0.0867 0.405 34 0.214 1.0000
Gl/ - G24  0.3680 0.405 34 0.908 0.9999
Gl7 - 25 0.1910 0.405 34  0.471 1.0000



Let’s Practice!

= Pairwise comparisons with Tukey adjustment

# Pairwise comparisons with Bonferroni correction: > pajc'g{:im—mei"js=tad3“5;E=d;bi”FE£TDm”} .

. - m TN contrast estimate .ratio p.value
pairs(fmmeans, adjust = “bonferroni™) G16 - G17 -2.0473 0.405 34 -5.050 0.0020
Gle - G18 -2.0913 0.405 34 -5.159 0.0015

Gl6 - G19 -1.3300 0.405 34 -3.281 0.3259

Gle - G20 -0.7083 0.405 34 -1.747 1.0000

Gle - GZ21 -1.1917 0.405 34 -2.940 0.7986

Gle - g22 -1.5513 0.405 34 -3.827 0.0721

Gl - GZ23 -1.9607 0.405 34 -4.837 0.0038

Gl6 - g24 -1.6793 0.405 34 -4.143 0.0292

Gl - GZ25 -1.8563 0.405 34 -4.579 0.0082

Gl - G206 -1.0453 0.405 34 -2.579 1.0000

Gle - G27 -0.9090 0.405 34 -2.242 1.0000

Gl - GZ28 -0.7557 0.405 34 -1.864 1.0000

Gl6 - G29 -1.6380 0.405 34 -4.041 0.0392

Gleé - G30 -1.5007 0.405 34 -3.702 0.1026

Glo - G31 -1.6943 0.405 34 -4.180 0.0262

Gl6 - G32 -1.5370 0.405 34 -3.791 0.0797

Gl7 - G18 -0.0440 0.405 34 -0.109 1.0000

Gl/ - G19 0.7173 0.405 34 1.769 1.0000

Gl/ - G20 1.3390 0.405 34 3.303 0.3071

Gl7 - GZ21 0.8557 0.405 34 Z2.111 1.0000

Gl/ - G2/ 0.4960 0.405 34 1.224 1.0000



= Fit the model with random effects

Tibrary(nime)
fme =- Tme(yield ~ 1, random = list(gen = ~ 1), data = dados)
fme

Linear mixed-effects model fit by REML
Data: dados
Log-restricted-likelihood: -48.51987
Fixed: yield ~ 1

(Intercept)

7.230471

Random effects:
Formula: ~1 | gen
(Intercept) Residual
StdDev: 0.4770553 0.4964977

Number of Observations: 51
Number of Groups: 1/
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