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Introduction

“And so it was ... borne in upon me that very often, when the most

elaborate statistical refinements possible could increase the precision

by only a few percent, yet a different design involving little or no additional

experimental labour might increase the precision two-fold, or

five-fold or even more”
R.A. Fisher (1962)



Introduction

Fisher, Ronald Aylmer. "The design of experiments." The design of experiments. 1st Ed (1935).



Introduction

 Suppose you want to make inferences about a given set of treatments

 The levels of the treatment factor can be randomly sampled from a larger 

population or can be chosen based on specific interest in each particular level: 

Condition that will be tested!



Introduction

 You carry out an experiment to compare the effects of 𝑡 different treatments

 For doing so, you design a simple experiment with 𝑟 independent replicates 

of each treatment level to measure these effects

 There are 𝑡𝑟 experimental units, in total! 



Main Features

Introduction

 In the Completely Randomized Design (CRD), randomization is absolutely

necessary throughout the treatments

 Treatments are distributed to experimental units completely at random

 Every experimental unit has the same probability of receiving any treatment

 Experimental units are randomized throughout the experiment 

 Consequently, there is no correlation between any two observations

Completely Randomized Design (CRD)



Design Characterization

 The simplest form of experimental scheme

 There is no restriction on the number of treatments examined

 Treatments can have different numbers of replicates, but balance is preferable 

CRD uses only the basic principles of repetition and randomization



Design Characterization

Example of Randomization

 Given you have 4 treatments (A, B, C, and D) and 5 replicates, how many

experimental units would you have?

Every experimental unit has the same probability of receiving any treatment!



Design Characterization

 4 treatments (A, B, C, and D) and 3 replicates



 A different layout for the CRD:

Design Characterization

 4 treatments (A, B, C, and D) and 3 replicates



Design Characterization

 Because there is no local control (error), the CRD is appropriate when

experimental units are uniform

Note



Design Characterization

Advantages of a CRD

 Very flexible design (i.e. number of treatments and replicates is only limited by

the available number of experimental units)

 Statistical analysis is simple compared to other designs

 Loss of information due to missing data is small compared to other designs due 

to the larger number of degrees of freedom for the error source of variation



Design Characterization

Disadvantages of a CRD

 The experimental units must be homogeneous

 High estimate of variance due to error can be obtained because all variations

(except treatments) are considered as random variation



Design Characterization

Statistical model

 Let 𝑦𝑖𝑗 represent the observed response of the 𝑗th replicate (𝑗 = 1, … , 𝑟) of 

the 𝑖th treatment (𝑖 = 1,… , 𝑡)

Model

 Data from the CRD can be described with the following model:

𝑦𝑖𝑗 = 𝜇 + 𝜏𝑖 + 𝜀𝑖𝑗

where 𝜇 is the intercept (an overall mean), 𝜏𝑖 is the treatment effect and 𝜀𝑖𝑗 is the 

associated random error term



Design Characterization

Statistical model

We assume that:

 𝜀𝑖𝑗~𝑁(0, 𝜎
2), for 𝑖 = 1,… , 𝑡 and 𝑗 = 1, … , 𝑟

 𝑐𝑜𝑣 𝜀𝑖𝑗 , 𝜀𝑖´𝑗´ = 0

Errors are independent and identically distributed (i.i.d) 



Design Characterization

Statistical model

 Consequently, for the observed values:

𝑦𝑖𝑗~𝑁(𝜇 + 𝜏𝑖 , 𝜎
2), for 𝑖 = 1, … , 𝑡 and 𝑗 = 1, … , 𝑟



Design Characterization

Model Fitting

 Unknown parameters 𝜇 , 𝜏𝑖 and 𝜎2 can be estimated via least squares, as

previously discussed for standard linear models



Design Characterization

Model Diagnostics

Important

 After fitting the model and before making inferences, it is important to check 

whether the model assumptions are met

Main assumptions of errors:

 Errors 𝜀𝑖𝑗 are independent

 Errors 𝜀𝑖𝑗 are homoscedastic (have the same variance)

 Errors are normally distributed



Design Characterization

Model Diagnostics

 Errors 𝜀𝑖𝑗 are unknown, so we use the estimated residual errors, or residuals



Design Characterization

Checking Model Assumptions

17 genotypes and 3 replications



Design Characterization

Checking Model Assumptions

 Remember that:

 𝜀~𝑁(0, 𝜎2𝐼)

 𝑦~𝑁(𝑋𝛽, 𝜎2𝐼)



Design Characterization

Checking Model Assumptions

 We will study the distribution of the residuals to verify validity of the assumptions 



Design Characterization

Residual Diagnostics

 We can use the raw residuals, which are deviations between the observed and 

fitted values:

Ƹ𝜀𝑖𝑗 = 𝑦𝑖𝑗 − ො𝑦𝑖𝑗

Ƹ𝜀𝑖𝑗 = 𝑦𝑖𝑗 − 𝜇 − 𝜏𝑖



Design Characterization

Residual Diagnostics

 Raw residuals vs fitted values



Design Characterization

Residual Diagnostics

 Raw residuals vs treatment levels



Design Characterization

Residual Diagnostics

 Normal quantile-quantile (Q-Q) plots



Design Characterization

Data Transformation

 If (some of) the assumptions are not met, we can transform the observed data 

so that it is normally distributed and the variance is stabilized



Design Characterization

Data Transformation : Box Cox

𝑦 represents the original data

𝑦(𝜆) is the transformed data

𝜆 is a parameter that determines the type of transformation to be applied

The idea is to find the value of λ that makes the transformed data 

come closest to a normal distribution



Design Characterization

Data Transformation : Box Cox

The value that maximizes the likelihood, i.e., results in the best approximation to a normal 

distribution, is used to transform the data



Design Characterization

Data table

Consider an experiment installed at the CRD with 𝑖 treatments and 𝑗 replicates



Design Characterization

Data table

 Number of experimental units: N = I x J

 Total for treatment 𝑖: Ti = 

j=1

j

Yij = Yi.

 Mean for treatment 𝑖: ෝ𝑚𝑖 =
𝑇𝑖
𝐽

 General mean of the experiment: ෝ𝑚 =
𝐺

𝐼𝐽



Design Characterization

Analysis of Variance

 Allows you to decompose the total variation in the data into different variation 

components, a (effects of treatments and residuals)

Within 

treatments

Remember the error sum of squares (SSE) from past classes



Design Characterization

Analysis of Variance

Variance Components

If we consider the treatment effects to be random, we can estimate the variance

component using the method of moments, by setting the mean squares (MS)

equal to the expected mean squares (EMS)



Design Characterization

Variance Components

 The residual variance is simply estimated by ො𝜎2 = MSWithin

 We can then estimate 𝜎𝑡
2 by ො𝜎𝑡

2 =
𝑀𝑆𝑡𝑟𝑎𝑡−𝑀𝑆𝑤𝑖𝑡ℎ𝑖𝑛

𝑟



Design Characterization

Hypothesis Testing

 We want to test the null hypothesis of no treatment effects, i.e., 

𝐻0 = 𝜏𝑖 = 0 for all 𝑖



Design Characterization

Hypothesis Testing



Design Characterization

Hypothesis Testing

𝐹-Statistic

The 𝐹-Statistic follows an 𝐹 distribution with t - 1 and t(r - 1) degrees of freedom
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Multiple Comparions

 The null hypothesis (𝐻0 = 𝜏𝑖 = 0 for all 𝑖) is tested against the alternative that 

𝜏𝑖 ≠ 0 for at least one of the treatments

 If 𝐻0 is rejected, we need to determine which of the treatments differ

 This can be accomplished via pairwise comparisons between all possible 

combinations of treatments



Design Characterization

Multiple Comparions

 We thus perform multiple comparisons between the treatment means

 Tukey, Bonferroni, Scheffé, Dunnett's Test



 We will work with yield data of 17 rice genotypes, measured in three

replications each

 This data set can be found in the R package agridat and is a subset of the data

from Gomez & Gomez (1984) Statistical Procedures for Agricultural Research.

Wiley-Interscience

 Let 𝑦𝑖𝑗 denote the yield of the 𝑖th rice hybrid, measured from replicate 𝑗

Let´s Practice 01!



Let´s Practice!

 Use the R function read.csv to import the data

 Fit the model with fixed effects
#Use lm(  ) function and summary(  )

 Check if model assumptions are met

#Check raw residuals vs fitted values

 Build the ANOVA table and test the null hypothesis of no difference between the 

rice genotypes

 Use multiple pairwise comparisons to assess which genotypes differ 

 Fit the model with random effects
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 Fit the model with fixed effects
#Use lm(  ) function and summary(  )

Let´s Practice!



 Fit the model with fixed effects
#Use lm(  ) function and summary(  )

Let´s Practice!



 Check if model assumptions are met

#Check raw residuals vs fitted values

Let´s Practice!



 Check if model assumptions are met

#Check raw residuals vs fitted values

Let´s Practice!



 Anova

Let´s Practice!



 Calculate the estimated means for the different levels of the variable

Let´s Practice!



 Pairwise comparisons with Tukey adjustment

Let´s Practice!



 Pairwise comparisons with Tukey adjustment

Let´s Practice!



 Fit the model with random effects

Let´s Practice!



 Chapter 7 - Analysis of Variance I: The One-Way Classification1 (for a more 

classical view)

 Chapter 2 - Completely Randomized Designs2
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