ICMC:

A era da complexidade

Francisco A. Rodrigues

Instituto de Ciéncias Matematicas e de Computagao

Universidade de Sao Paulo



Francisco Rodrigues

2001: Fisica - IFSC

2004: Mestrado em Fisica Computacional - IFSC
2007: Doutorado em Fisica Computacional - IFSC
2010: Professor — ICMC

2018: Leverhulme Professor: University of Warwick
Grupo de Sistemas Complexos:

3 pos-doutores

Oa
4 a
2 a

unos de doutorado
unos de mestrado
unos de iniciacao cientifica

Editor:

* Chaos, Solitons and Fractals (Elsevier)

« Europhysics Letters (EPL)

« Journal of Physics: Complexity (IOP)

« Journal of Computational Science (Elsevier)

COMPUTA

A

V.

ERS

IOP

science

Jasrra of

NAL
CE

) 'ri aon -
\ | h
»
: -
l\




The Biggest Global Issues Facing Mankind
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Complex system

A complex system is made of many connected elements

presenting emergent properties, like collective behavior,
universality and adaptation.

The whole is
more than the
sum of its parts.




Complex system

https://www.youtube.com/watch?v=4BdixYUdJS8&ab channel=NationalGeographic



https://www.youtube.com/watch?v=4BdjxYUdJS8&ab_channel=NationalGeographic

Complex system
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https://www.youtube.com/watch?v=0dskCpuxqtl&feature=emb logo



https://www.youtube.com/watch?v=0dskCpuxqtI&feature=emb_logo

Complex system

https://www.youtube.com/watch?v=KnPiP9PkL As&ab channel=konzeptunddialog



https://www.youtube.com/watch?v=KnPiP9PkLAs&ab_channel=konzeptunddialog

Complex system



Historia...

“A book about how the wonderful diversity of the universe can arise out of a set
of fairly simple basic laws. It 1s written by an expert in both the fundamental
laws and the complex structures they can produce”—Stephen W. Hawking

MURRAY (G ELL=MANN

Winner o£ t}mQ Nobel Prize in Physics

Murray Gell-Mann
SCIENTIFIC ™
AMERICAN

The world’s strongest magnets.

Is complexity a sham?
Found: 2,000-year-old blueprint.

ADVENTURES
IN THE SEM P LAl
A N ™y

Picky wildflowers choose
which pollen to accept.

1995: A complexidade € uma farsa?



Historia...

A era das redes

Collective dynamics of
‘small-world’ networks

Duncan J. Watts* & Steven H. Strogatz

Department of Theoretical and Applied Mechanics, Kimball Hall.
Cornell University, Ithaca, New York 14853, USA

Nature, 1998

Emergence of Scaling in
Random Networks

Albert-Laszlé Barabasi* and Réka Albert

Systems as diverse as genetic networks or the World Wide Web are best
described as networks with complex topology. A common property of many
large networks is that the vertex connectivities follow a scale-free power-law
distribution. This feature was found to be a consequence of two generic mech-
anisms: (i) networks expand continuously by the addition of new vertices, and
(ii) new vertices attach preferentially to sites that are already well connected.
A model based on these two ingredients reproduces the observed stationary
scale-free distributions, which indicates that the development of large networks
is governed by robust self-organizing phenomena that go beyond the particulars
of the individual systems.

Science, 1999



“Behind each system studied in complexity there is an
intricate wiring diagram, or a network, that defines the
interactions between the component.”

Complex networks

twork Science, A. L. Barabasi.



Networks represent the structure of complex systems.



What is a network?
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Complex networks
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Complex networks

Metabolic networks
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Complex networks

news and views feature

Surfing the p53 network

Bert Vogelstein, David Lane and Arnold J. Levine

cell life and death. As when a highly connected node in the Internet breaks
down, the disruption of p53 has severe consequences.

Oncogenes

DNA-
ATM

dependent
Kinase " yinase

ATR Casein
kinase ; kinase ||

KILLER/ORS | Pssaip1 oS
8 6 —

< > Reactive oxygen <«
species Prevention of
- new blood vessel
Growth arrest Apoptosis formation

Bert Vogelstein, David Lane & Arnold J. Levine, Nature 408, 2000



Complex networks
nature

International journal of science

Brief Communication | Published: 03 May 2001

Lethality and centrality in protein
networks

H. Jeong, S. P. Mason, A.-L. Barabasi ™ & Z. N. Oltvai

Nature 411, 41-42 (2001) Download Citation

The most highly connected proteins in the cell are the most

important for its survival.
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Stephen Hawking

"l think the next century will be
the century of complexity.”

January 23, 2000, San Jose Mercury News



"for groundbreaking
contributions to our
understanding of
complex systems”

This year’s Nobel Prize in Physics is awarded with one half jointly to
Syukuro Manabe, Klaus Hasselmann and the other half to Giorgio Parisi.
They have laid the foundation of our knowledge of the Earth’s climate and
how humanity influences it, as well as revolutionized the theory of
disordered materials and random processes.
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Gio geolle’
Parisi
“for the discovery of the
interplay of disorder and
fluctuations in physical

systems from atomic
to planetary scales”

Syukuro Klaus

Manabe Hasselmann

“for the physical modelling
of Earth’s climate, quantifying
variability and reliably
predicting global warming”

THE ROYAL SWEDISH ACADEMY OF SCIENCES

https://www.nobelprize.org/prizes/physics/2021/press-release



Examples of complex systems
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Node of
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Myelin sheath
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Society




Internet
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Human disease network

HUMAN DISEASE NETWORK

@ Cances
@ Corsovasculor
@ Connoactive tizsue
@ Domatological
@ Davaloprnenial
() Far, Nose, Thiost
O Endocrne
O Gastrointestnal
@ Homalolkogeal
o O Immurologcal
a @ "obolc
C @ Muscula
® @ Nourclogeal
. @ Nutrtonal
@ Octmanclogrs
® ® @ Psychismc
® iaonl
° @ Respiraicey
@ Skeltal
e @ munph
O unciasseed

i

s 0
T @a©

o®
wa® 9,
"

:;OOOOOOO

Barabasi, Networks Science, Cambridge Un. Press



Climate networks

Earth System Observatlon Sltes
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Emergence




Hierarchy




How do we study complex systems?



Complex Systems

Application
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Complex Systems

Structure Dynamics B Applications




Network structure




Adjacency matrix

if there 1s a connection between 1 and j

0 otherwise.
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Degree distribution

ke=2

. probability that a node has degree k
k=2

P (k)

P(k) 4

0.6
0.5

0.4

0.3
0.2

0.1

-free networks

Scale

Random networks

log K




Distance

Distance =3

Sociedade:

Six degrees
S. Milgram 1967

WWW:
19 degrees
Albert et al. 1999



Community structure




Centrality

Betweenness centrality

N(a,i,b)
B; = :
(g) n(a,b)

BC[8) =0 BC[5| =6 BC[3] =3

BC[] =3

9 BC) =0



Network measures

Advances in Physics, e Taylor & Francis
Vol. 56, No. 1, February 2007, 167-242

Characterization of complex networks: A survey
of measurements

L. DA F. COSTA*, F. A. RODRIGUES,
G. TRAVIESO and P. R. VILLAS BOAS

Instituto de Fisica de Sdao Carlos, Universidade de Sao Paulo,
Caixa Postal 369, 13560-970, Sao Carlos, SP, Brazil

(Received 21 August 2006; in final form 4 December 2006)

Each complex network (or class of networks) presents specific topological
features which characterize its connectivity and highly influence the dynamics
of processes executed on the network. The analysis, discrimination, and
synthesis of complex networks therefore rely on the use of measurements
capable of expressing the most relevant topological features. This article
presents a survey of such measurements. It includes general considerations
about complex network characterization, a brief review of the principal models,
and the presentation of the main existing measurements. Important related issues
covered in this work comprise the representation of the evolution of complex
networks in terms of trajectories in several measurement spaces, the analysis
of the correlations between some of the most traditional measurements,
perturbation analysis, as well as the use of multivariate statistics for feature
selection and network classification. Depending on the network and the
analysis task one has in mind, a specific set of features may be chosen. It is
hoped that the present survey will help the proper application and
interpretation of measurements.

Taylor & Francis Group

Measurement Symbol
Mean geodesic distance /¢
Global efficiency E
Harmonic mean distance h
Vulnerability | %
Network clustering coefficient C and C
Weighted clustering coefficient cw
Cyclic coefficient ©
Maximum degree Korrsees
Mean degree of the neighbors knn (k)
Degree-degree correlation coefficient T
Assontativity coefficient @ Q
Bipartivity degree b and S
Degree Distribution entropy H(z)
Average search information S
Access information A;
Hide information H;
Target entropy T
Road entropy R
Betweenness centrality B;
Central point dominance crp
{th moment M,
Modularity Q
Participation coefficient P
zZ-score Zi
Significance profile SP;
Subgraph centrality SC
Hierarchical clustering coefficient Chrs
Convergence ratio cvg(z)
Divergence ratio dv ()
Edge reciprocity o and p
Matching index of edge (7. 7) Jhisj

Costa, Rodrigues, Travieso, Villas Boas. Advances in Physics 2007



Complex Systems
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Dynamical processes in networks

Synchronization

Health ™Y  Disease

Epidemics Spreading
Rumor Spreading

. Cascade failures

. Cooperation

Opinion dynamics




Structure X Dynamics

Health Disease

before March 31

April 1 - April 15
e April 16 - April 30
May 1 - May 15

We can control dynamical processes by

changing the network structure.



Synchronization
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Synchronization

https://www.youtube.com/watch?v=W1TMZASCR-1&ab channel=AlirezaBahraminasab



https://www.youtube.com/watch?v=W1TMZASCR-I&ab_channel=AlirezaBahraminasab

Kuramoto model

Coupling

do;(t)
dt

Natural frequency

(

Aij =1 #C\jj

(
O

wi + A Z Aijsin [0;(t) — 0:(1)]

Phase

>\

Ichinomiya, T,. Phys. Rev. E, (2004)



Kuramoto model do; (t)
dt

=w; +A Y Aijsin[0;(t) — 0;(t)]

i=1

Continuous phase transition
Order parameter . |

. . T
,refm,b(t) . Ez

B Ez ki |

N
b (¢ Z 0,
j=1

ra~0 r>0 ral1

N T
SN

Ichinomiya, T,. Phys. Rev. E, (2004)




Kuramoto mode| 1

Tt
N
doi(t) :
dt = W; +A;Aw S11 [Gj(t) = gz(t)]
0
0.5
0.4 | 5 s
0.3 | ,___,,.f-"/
0.2 i A = 1
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Explosive synchronization

Continuous phase transition

1
N
do;(t) ;
e + A ; A;jsin [6;(t) — 0;(t)]
First-order phase transition
0 Y A
1
0.8 |
Forward —e—
06 } Backward ——
0.4 |
N 02| ’
df; (1 :
di ) = )\Z A;;sin[0;(t) — 6;(t)] I |
i=1 08 1 12 1.4 1.6 1.8

A



Explosive synchronization

db; (t . :
di ) = w; + A\ Z A;jsin [6;(t) — 60;(t)]
wl — kl T —3 |
n 2 (k)
. # A= ——

7 (k) P((K)) mg(@) (k?)
1 r/ !
of"—"—"-J_'-.‘ (@)
0.8 1 1.2 . S ’ Ac 4

Peron and Rodrigues, PRE, 2012



Second-order Kuramoto model

ijAij Sin(oj — 6,

; = D(k; — (k)

0s o T PRL 110, 218701 (2013) PHYSICAL REVIEW LETTERS 24 MAY 2013
Cluster Explosive Synchronization in Complex Networks
06} . Peng Ji,"">* Thomas K. DM. Peron,>" Peter J. Menck,'*? Francisco A. Rodrigues,** and Jiirgen Kurths'>>

' Potsdam Institute for Climate Impact Research (PIK), 14473 Potsdam, Germany

Simulati 7 with i . i 2Department of Physics, Humboldt University, 12489 Berlin, Germany

imu a ion Wf 'mcreas_mg Al —— *Instituto de Fisica de Sdo Carlos, Universidade de Sdo Paulo, Avenida Trabalhador Sdo Carlense 400, Caixa Postal 369,

Analytic  r’ with increasing A" - | CEP 13560-970 Sdo Carlos, Sdo Paulo, Brazil

Simulation r” with decreasing o = “Departamento de Matemdtica Aplicada e Estatistica, Instituto de Ciéncias Matemdticas e de Computagdo,

Analytic  rowith decreasing A0 —+— Universidade de Sdo Paulo, Caixa Postal 668,13560-970 Sdo Carlos, Sdo Paulo, Brazil

SInstitute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom
(Received 22 January 2013; revised manuscript received 29 April 2013; published 23 May 2013)

04}

0.2

The emergence of explosive synchronization has been reported as an abrupt transition in complex
networks of first-order Kuramoto oscillators. In this Letter we demonstrate that the nodes in a second-
order Kuramoto model perform a cascade of transitions toward a synchronous macroscopic state, which is
: a novel phenomenon that we call cluster explosive synchronization. We provide a rigorous analytical
0 0.8 16 24 treatment using a mean-field analysis in uncorrelated networks. Our findings are in good agreement with
AP N /\ numerical simulations and fundamentally deepen the understanding of microscopic mechanisms toward

synchronization.

DOI: 10.1103/PhysRevLett.110.218701 PACS numbers: 89.75.Hc, 05.45.Xt, 89.75.Kd



PHYSICS REPORTS

The Kuramoto model
in complex networks

Francisco A. Rodrigues, Thomas K.DM. Peron, Peng Ji, Jurgen Kurths
The Kuramoto model in complex networks
Physics Reports, V. 610, Pages 1-98, (2016).
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Bubonic Plague

Spread of Bubonic Plague
in Europe
B 347 1350
P mid-1348 1351
I early 1349 after 1351
late1349 [ MR
e Centre of uprisings e Gty for orientation




HTN1

2009 flu pandemic

before March 31

April 1 - April 15
e April 16 - April 30
— May 1 - May 15




Spreading depends on the network structure!




How to study epidemic processes?

Theoretical:
« Mathematical models

* Agent-based models

Data Driven:
« Mathematical Models

* Time series forecasting (ML, Statistics)



Epidemic Spreading models

Susceptible
(healthy)




Epidemic Spreading models

SIR

SIS

SIRS

SEIR

Pastor-Satorras et al. Reviews of Modern Physics 2014



Epidemic Spreading models
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Epidemic spreading in heterogeneous networks

Degree-based mean field: SIS model

di, k =4 . k=2
: : 5
_=ﬁ(1_lk)k®k(t)_wk' a o o
dt O. @ O.
\'"/
2 k'p i, the fraction of

e =X — @ Infected neighbors

X (k) of a susceptible k=1 k=3

node k

Keeping only the first order terms:
di,
dt

Multiplying the equation with (k=1)pk/ <k) and summing over k

@ - <k2> — (o7 = <k> characteristic
7 —(ﬂ (&) _.U)@ ‘('*)(t)—Ce T By o .

= pkO© — 11,




Epidemic spreading in heterogeneous networks

Degree-based mean field: SIS model

(k)
ﬁ(kz > — <k >ﬂ P No epidemic Epidemic

Absorbing phase Active phase

O@)=Ce";

A global outbreak is possible it T > 0, which
yields the condition for a global outbreak as )

— ﬁ > <k> - ExponentiaI;
o 2 ‘
u k) ;

|

(k)
1 = :
o (k%)

>y

Satorras and Vespignani, PRL, 2001



Scale-free networks

ANOMALOUS
REGIME

No large network
can exist here

(k) DIVERGES

<k2> DIVERGES y=2

P(k)~k™Y

SCALE-FREE

REGIME

(k)

<k2> DIVERGES

FINITE

" InlnN

A =

C

(k
(k*)

Indistinguishable
from a random network

10

o

Frequency (C(n))

10 5 ———

10

\ X= 1.63
0 (—D
0 105

Degree (n)

10
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Epidemic spreading in heterogeneous networks

0.5
.
0.4 ’_/ -
0.3 | e
i(A) -
0.60 0.80

A. L. Barabasi, Network Science, Cambridge, 2015.



Rumor spreading

e Maki Thompson model:
A (87

A M

@ Modified model:
A (@

A
(07 17 O)z + (17 07 0)] —> (07 17 O)z + (07 17 O)]7
(0,1,0); + (0,1,0); — (0,1,0); + (0,0, 1);,
(0,1,0); + (0,0,1); — (0,0,1); + (0,0, 1);,

o
(01 07 1)1 — (17 07 0)1

3
e N=1x%x10
3
=—a N=5x10
10-1L Y
- —e N=1X 104
ek N =9% 105
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1021 )
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Fig. 2 Phase diagram for the standard MT model. Results for a =1 and
different sizes on a random regular networks with (k). =10.

Arruda et al. Nature Communications, 2022.



Multilayer networks
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Mean-field

PHYSICS REPORTS

Markov chain

Quenched-MF (QMF)

Fundamentals of Spreading Processes
in Single and Multilayer Complex Networks

Pair approximation
Individual based MF

Message passing

N oS R W Dd S

Guilherme F. de Arruda, Francisco A. Rodrigues, and Yamir Moreno
Fundamentals of spreading processes in single and multilayer complex networks
Physics Reports, Volume 756, Pages 1-60 (2018).
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Applications

* Physics

* Biology

* Medicine

* Engineering

* Ecology

* Climate

* Financial Market

» Sociology

» Computer Science

* Neuroscience

http://www.visualcomplexity.com



Brain networks




Diagnosis of mental disorders

Machine Learning



Child-onset schizophrenia

Child-onset schizophrenia
(or pediatric schizophrenia) is a type of mental disorder
characterized by degeneration of thinking, motor, and
emotional processes in children and adolescents under
the age of 18.

Challenge: Early diagnosis.




Child-onset schizophrenia

Data: Healthy subjects (n = 20, mean age 19.7 years; 11 male)
adolescent participants with childhood-onset schizophrenia
(n =19, mean age 18.7 years; 9 male).
The subjects were scanned using a General Electric Signa MRI scanner
operating at 1.5 Tesla.
Only the right hemisphere (140 regions).

Arruda et al. Clinical Neurophysiology, 2013



Child-onset schizophrenia

Vi = [MI, M2, M3, ..., M54]

54 measures calculated for each node.

Arruda et al. Clinical Neurophysiology, 2013



Child-onset schizophrenia

Table 1: Feature ranking of network measures calculated by using symmetrical uncertainty

(U) and chi-squared test (X?). The features are ordered according to the symmetrical

uncertainty.

U(C,A) | A2
0.326 | 15.55
0.289 | 10.13
0.263 | 12.88
0.258 | 12.74

Feature
Variance of the closeness centrality

First moment of K-core

Modularity

‘ Variance of the accessibility

Table 2: Percentage of correct classification of networks obtained from healthy and

schizophrenic subjects considering 4 or 54 measures. PC is the positive class, H. indi-

cates the healthy class and S., schizophrenic subjects.

Naive Bayes Bayesian network | (C4.5 Decision tree

54 meas. | 4 meas. | 54 meas. | 4 meas. | 54 meas. | 4 meas.
Accuracy 0.74 0.76 0.71 0.78 0.45 0.71
Precision (PC: H.) 0.68 0.73 0.70 0.76 0.46 0.68
Specificity: Recall (PC: H.) 0.90 ‘ 0.84 0.74 0.84 0.58 0.79
F-Measure (PC: H.) 0.77 0.78 0.72 0.80 0.51 0.73
Precision (PC: S.) 0.85 0.81 0.72 0.82 0.43 0.75
Sensitivity: Recall (PC:S) | 058 | 068 | 0.68 032 | 0.63
F-Measure (PC: S.) 0.69 0.74 0.70 0.78 0.36 0.69

Arruda et al. Clinical Neurophysiology, 2013




Alzheimer’s disease and schizophrenia

Electroencephalogram (EEG)

EEG time series Matrix of connections Convolutional neural network
! i 0 ) A Healthy
= Convolution Pooling
: oa > —_—
» - o2 Brain
i 00 disorder

Figure 1. Illustration of the method for automatic diagnosis of mental disorders based on EEG time series. Time series are
collected and the correlation between electrodes are calculated yielding the matrices of connections, which encompass the
functional connectivity between brain regions. Finally, the CNN is adjusted to enable the automatic classification of individuals.
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Figure4. ROC curve obtained from the CNN,ne.q model. The matrices of connections are constructed by (a) Pearson’s
correlation for AD disease and (b) Granger causality for individuals diagnosed with SZ.

Alves et al., Journal of Physics: Complexity, (2022).



Diagnosis of mental disorder

Attention Deficit Hyperactivity Disorder

Classifier
Knn

Naive Bayes

Decision

Trees
Neural

Networks

0.58
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0.63

0.65

|

Accuracy

-

AUC
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0.51

0.50

Disorders

Autism spectrum disorders

Classifier

Knn

Naive Bayes

Decision
Trees
Neural

Networks

Accuracy

0.57

0.58

0.67

0.63

AUC

0.44

0.54
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Epidemic outbreaks




Correlation versus Causation

140 drownings

120 drownings

100 drownings

Swimming pool drownings

#0 drownings

Number of people who drowned by falling into a pool

correlates with
Films Nicolas Cage appeared in

Correlation: 66.6% (r=0.666004)
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Causal inference

The Real Gause of Polio!

Polio Cases ! lce Cream Sales x100*
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Causal inference and epidemiology

Epidemiology Causal machine learning

® Epidemiology: study of how and e Machine learning: fit function
why diseases (& health) spread. from patterns in data without
explicit encoding of rules.

® Two public health goals: * High predictive accuracy,
especially in modern big data

, . world.
® forecasting disease

prevalence to anticipate
outbreaks and allocate
resources

* But: criticized for lack of
generalizability, transparency, and
fairness.

* Can causal machine learning
help?

® understanding disease * Encodes causal assumptions
drivers to develop effective about the world

preventative interventions. e Robust to domain shifts



Dengue is a serious public health concern

® Half of the world’s population is at Disability-adjusted life years for dengue
risk of dengue infection fever per million inhabitants in 2012.

® Brazil's economic burden of dengue
in 2013 was 300 million USD

® Climate change is expected to * i‘&
increase incidence of dengue and 4 \v’h e
other vector-borne diseases around T
the worla

. . .

Given the lack of vaccine and Droea  [ortan

. [ . [ Jo-o [ 143-330

specific treatments, primary R Yo

preventative measures are vector ] 145 I a67-440
[]47-87 [ 496-37,325

control and disease surveillance

Source: WHO Disease Burden Estimates,



Forecasting dengue in Brazilian cities

Compare machine learning algorithms & feature selection methods

Seasonal Naive Baseline Decision Tree Ensembles .
= 1: Dengue only 3: Causal Feature Selection
Y =y-s, e Random Forests
where s is the seasonal period e GCradient Boosting Dengue cases (11 lags) PCMQI - ParCorr
Regression Qg (7 variables selected)
Artificial Neural Networks e 05 &7 lage)
e Feed-forward neural network - MLP o 0 & 0@ I\ o Qg
e Recurrent neural network - LSTM ; :
< N o . 2: with Climate 4: Correlated Feature Selection
, =t Dengue cases (11 lags) 7 variables

eeeeeeeeeee

e Support L Climate variables (11 lags)
Vector /
3 3 Regression Qg Q

Which model is optimal for individual cities vs for all cities in Brazil?
Does causal feature selection improve predictions? Or is there a
predictive cost of more causally informed models?

Roster, Connaughton and Rodrigues, American Journal of Epidemiology, (2022).



Forecasting dengue in Brazilian cities
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Roster, Connaughton and Rodrigues, American Journal of Epidemiology, (2022).
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Worldwide trade multi-layer network

A) B) The Worldwide Trade Network

Cross-layer structure Within-layer structure
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iscovering causal factors of drought in Ethiopia
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Complex systems
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Analyzing and modeling real-world phenomena with complex networks:
a survey of applications
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The success of new scientific areas can be assessed by their potential in contributing to new
theoretical approaches and in applications toreal-world problems. Complex networks have fared
extremely well in both of these aspects. with their sound theoretical basis being developed over
the years and with a variety of applications. In this survey, we analyze the applications of
complex networks to real-world problems and data, with emphasis in representation, analysis
and modeling. A diversity of phenomena are surveyed. which may be classified into no less
than 11 areas. providing a clear indication of the impact of the field of complex networks.

PACS: 89.75.Fb Structures and organization in complex systems; 02.10.0x Combinatorics;

graph theory; 89.75. He Networks and genealogical trees; 89.75.Da Systems obeying scaling
laws; 89.75.Kd Patterns



Challenges

Future Directions of Network Science
A Workshop Report on the Emerging Science of Networks

September 29-30, 2016

“With roots in physical, information, and social sciences,
network science provides a formal set of methods, tools, and
theories to describe, prescribe, and predict dynamics and
behavior of complex systems.”

https://basicresearch.defense.gov/Portals/61/Documents/future-directions/Network Sciences.pdf
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Challenges

* Temporal networks

* Multilayer networks

* Networks with noise

* Heterogeneous dynamics

* Interaction between dynamical
processes

* Hierarchical structure

* Applications: genetics, biology,
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Multilayer networks
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