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Abstract

This article describes the implementation of a computer program to calculate nonlinear normal modes of structural

systems. The procedure follows the invariant manifold approach, adapted to handle equations of motion of systems

discretised by ®nite element techniques. In its current version, it generates individual modes of planar framed structures

exhibiting geometrically nonlinear behaviour.

The program was tested in simple examples available in the literature, and showed very good results. Because ®nite

element discretisations are not restrictive to the geometry of the structural system, it was also possible to generate, for

the ®rst time, nonlinear modes of framed structures. Ó 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Nonlinear modes; Normal modes; Invariant manifolds; Reduction techniques; Finite elements; Nonlinear oscillations

1. Introduction

The concept of nonlinear normal modes was ®rst

introduced by Rosenberg [1], in an attempt to extend, as

much as possible, the particular properties of modal

solutions to nonlinear systems. In the context of con-

servative mass-spring systems with many degrees of

freedom, Rosenberg de®ned normal modes as synchro-

nous motions in which there are ®xed relations, possibly

nonlinear, between the generalised coordinates. Fol-

lowing this de®nition, many authors developed the

original idea to the point of discussing mode bifurca-

tions in strongly nonlinear two-degree-of-freedom os-

cillators [2,3].

In 1991, Shaw and Pierre [4] proposed a rede®nition

of normal modes based on geometrical properties of the

trajectory of a modal solution in a linear system's phase

space. This so-called invariant manifold approach is

equally suited to nonconservative problems, and was

applied to some simple structural systems with elastic ±

and sometimes inertial ± nonlinearities even in condi-

tions of internal resonance, where modal coupling had

to be consistently considered [5±8]. A derived method-

ology, restricted to conservative systems, was developed

by King and Vakakis [9,10].

Parallel to these, many studies [11,12] regarding

nonlinear oscillations in elastic bars were conducted,

detecting by theory and experiment the essential features

of this kind of motion, such as dependence of natural

frequencies and mode shapes on the amplitudes, without

explicitly connecting them to nonlinear modes.

Theoretical methods already used to construct non-

linear modes or to study large amplitude oscillations

in structural systems have been restricted to very

simple problems, mainly single bars, because their

Galerkin type discretisation scheme makes use of shape

functions ± the linear mode shapes, in general ± whose

de®nition may be di�cult in more complicated cases.

In that sense, ®nite element strategies are clearly pref-

erable, widening the range of applicability of such

methods.
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In this article, we describe a procedure to auto-

matically calculate nonlinear normal modes of planar

frames with geometric nonlinearities discretised by the

®nite element method. This procedure is based on the

invariant manifold approach and follows very closely

the steps suggested by Shaw and Pierre [13], adapted to

handle a relatively large number of equations of motion

more e�ciently. The computer program thus im-

plemented was tested in single bar problems. A very

good agreement between its results and those available

in the literature was observed. It was also used to gen-

erate, for the ®rst time, nonlinear modes of some simple

framed structures.

2. The invariant manifold approach

Normal modes are traditionally de®ned as particular

vibratory motions of linear conservative systems, during

which all points oscillate with the same frequency in

such a way that a displacement pattern is preserved,

except for the amplitude. The concept can be easily ex-

tended to nonconservative systems, provided the equa-

tions of motion are set in their ®rst order form.

Exploring geometric properties of these modal solutions,

we arrive at a new de®nition of normal modes, which in

its turn admits an almost natural second extension to

nonlinear systems.

Consider a linear oscillatory system with n degrees of

freedom, governed by the ®rst order matrix equation

_z � Tz; �1�

where z � �x1; . . . ; xn; y1; . . . ; yn� is the vector formed by

grouping the generalised coordinates xj and velocities

yj � _xj; j � 1; . . . ; n, and T is an operator supposed to

have n distinct pairs of complex conjugate eigenvalues

kj � aj � ibj; j � 1; . . . ; n �2�

associated to the eigenvectors

zj � z
j
R � izj

I; j � 1; . . . ; n: �3�
It can be shown [14] that z

j
R; z

j
I; j � 1; . . . ; n are linearly

independent, and may constitute a new basis in the

phase space, in which Eq. (1) takes the block-diagonal

form

_f2jÿ1

_f2j

( )
� aj bj

ÿbj aj

� �
f2jÿ1

f2j

� �
; j � 1; . . . ; n �4�

having as solutions

f2jÿ1�t� � eajt�aj cos bjt � bj sin bjt�;
f2j�t� � eajt�ÿaj sin bjt � bj cos bjt�; j � 1; . . . ; n; �5�

where f � �f1; . . . ; f2n� is the new state variable and

aj; bj; j � 1; . . . ; n are real constants.

In the original variables, the general solution to

Eq. (1) can be written as

z�t� � f1�t�z1
R � f2�t�z1

I � � � � � f2nÿ1�t�zn
R � f2n�t�zn

I ; �6�
a superposition of n di�erent harmonics. Assuming a

modal motion to contain a single harmonic, it can be

understood as the solution associated with a particular

set of initial conditions that leads to

z�t� � f2rÿ1�t�zr
R � f2r�t�zr

I; �7�
where r is the order of the corresponding mode. Eq. (7)

clari®es very important features of modal solutions.

Remembering, for example, that zr
R and zr

I are linearly

independent, and observing the phase shift between

f2rÿ1�t� and f2r�t�, it is easy to justify the nonstationary

character of modal motions of nonproportionally

damped systems. Besides that, it shows that the trajec-

tory in phase space of the rth modal solution is con®ned

to a two-dimensional subspace of R2n spanned by zr
R and

zr
I, the so-called invariant manifold associated with this

mode.

The attachment of modal solutions to invariant

manifolds suggested to Shaw and Pierre a rede®nition of

normal mode as a motion that takes place on a two-

dimensional invariant manifold in the system's phase

space. During such a motion, every generalised dis-

placement or velocity can be written as a function of two

of them, under certain nondegeneracy conditions. This

new de®nition has the advantage of being suitable to

nonconservative problems and, what is most important,

applies to weakly nonlinear oscillatory systems as well. In

this case, the invariant manifolds may be slightly curved;

as a consequence, the functions relating generalised

displacements and velocities during modal motions may

be nonlinear.

The search for these functions is the key to evaluate

nonlinear modes. Consider a nonlinear system governed

by the ®rst-order equations of motion

_xi � yi;

_yi � fi x1; . . . ; xn; y1; . . . ; yn� �; i � 1; . . . ; n; �8�

where fi; i � 1; . . . ; n are analytical functions such that

fi�0; . . . ; 0; 0; . . . ; 0� � 0; i � 1; . . . ; n: �9�
Suppose that, when linearised about the equilibrium

position z � �x; y� � 0, this system takes the form of

Eq. (1), with distinct pairs of complex conjugate eigen-

values and eigenvectors represented by Eqs. (2) and (3).

We expect to ®nd n two-dimensional invariant

manifolds in the system's phase space, each of them

associated to a particular normal mode and, conse-

quently, to a set of functions relating all generalised

coordinates and velocities to two of them. If we choose
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xk and yk as independent variables and denote them by u
and v, respectively, the modal relations we are looking

for may be expressed as

xi�t� � Xi�u�t�; v�t��;
yi�t� � Yi�u�t�; v�t��; i � 1; . . . ; n; �10�

where Xi; Yi; i � 1; . . . ; n are supposed to be analytical

functions. It is easy to see that, in particular,

Xk�u; v� � u; Yk�u; v� � v: �11�
The substitution of Eq. (10) into Eq. (8) leads to

oXi

ou
v� oXi

ov
fk�X1; . . . ;Xn; Y1; . . . ; Yn� � Yi:

oYi

ou
v� oYi

ov
fk�X1; . . . ;Xn; Y1; . . . ; Yn�

� fi X1; . . . ;Xn; Y1; . . . ; Yn� �; i � 1; . . . ; n; �12�

a nonlinear system of partial di�erential equations

having as unknowns the modal relations. Each solution

to this system describes geometrically one of the in-

variant manifolds.

In most cases, it is impossible to ®nd out the exact

solutions of Eq. (12), and a power series approximation

is needed. Expanding the equations of motion up to the

third order, we arrive at

fi�x1; . . . ; xn; y1; . . . ; yn� � Bij xj � Cij yj � Eijm xjxm

� Fijm xjym � Gijm yjym

� Hijmp xjxmxp

� Lijmp xjxmyp

� Nijmp xjymyp

� Rijmp yjymyp; �13�

where Bij;Cij;Eijm; Fijm;Gijm;Hijmp; Lijmp;Nijmp and Rijmp

are known coe�cients and i; j;m; p � 1; . . . ; n. The ap-

proximate modal relations are written in the polynomial

form

Xi�u; v� � a1i u� a2i v� a3i u2 � a4i uv� a5i v2 � a6iu3

� a7i u2v� a8i uv2 � a9i v3;

Yi�u; v� � b1i u� b2i v� b3i u2 � b4i uv� b5iv2 � b6iu3

� b7i u2v� b8i uv2 � b9i v3; i � 1; . . . ; n; �14�

where aji; bji; j � 1; . . . ; 9; i � 1; . . . ; n are constants to

be determined. After substituting Eqs. (14) and (13) into

Eq. (12), and collecting terms of equal order in u and v in

the resulting polynomial equations, a large system of

nonlinear algebraic equations having the coe�cients

aji; bji; j � 1; . . . ; 9; i � 1; . . . ; n as unknowns is con-

structed. There must be n di�erent solutions to this

system, corresponding to the n distinct invariant mani-

folds. It can be shown [13] that these equations can be

ordered in such a manner that, instead of solving them

all at once, we can solve a much smaller system of

nonlinear algebraic equations having as unknowns just

the coe�cients of the linear terms in the modal relations;

after that, two linear systems are constructed and solved,

one for the coe�cients of quadratic terms and the other

for the coe�cients of cubic terms.

Once known, a particular set of modal relations in

the form of Eq. (14), the dynamics on the corresponding

invariant manifold can be generated by substituting

them in the kth pair of equations of motion in Eq. (8) ±

considering the expansion given by Eq. (13) ± and

solving the resulting modal oscillator, generally nonlin-

ear, to obtain u�t� and v�t�.

3. Equations of motion

In this article, the invariant manifold approach de-

scribed in Section 2 was adopted to generate nonlinear

modes of planar framed structures with elastic and in-

ertial nonlinearities. The ®nite element formulation used

to discretise the structural system is based on Bernoulli±

Euler theory, under the additional hypothesis of in-

variance of axial force inside the element.

Details of this formulation can be found in Ref. [15].

For our purposes, it su�ces to say that, after assembling

the entire system, the equations of motion take the form

mij�xj � dij _xj � kijxj � 0; i; j � 1; . . . ; n; �15�

where

mij � M0
ij �M1

ijkxk �M2
ijklxkxl;

dij � D0
ij � D1

ijk _xk � D2
ijkl _xkxl;

kij � K0
ij � K1

ijkxk � K2
ijklxkxl �16�

and M0
ij, M1

ijk, M2
ijkl, D0

ij, D1
ijk, D2

ijkl, K0
ij, K1

ijk e K2
ijkl,

i; j; k; l � 1; . . . ; n are constants.

This system of n second-order equations must be

transformed into a system of 2n ®rst-order equations

such as Eq. (8). In theory, this can be accomplished by

simply solving Eq. (15) in terms of the accelerations and

expanding the result in power series. However, the op-

eration involves a symbolic inversion of the nonconstant

inertia matrix, and in practice this is not feasible.

Again, we can ®nd an approximate solution to this

problem by using Taylor series. Substituting the desired

expanded form ± given by Eq. (13) ± of Eq. (8) into the

second-order equation (Eq. (15)) and equating coe�-

cients of like powers of xi and yi � _xi, we arrive at a

system of linear algebraic equations having as unknowns

the coe�cients Bij, Cij, Eijm, Fijm, Gijm, Hijmp, Lijmp, Nijmp

and Rijmp (i; j;m; p � 1; . . . ; n).
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4. Invariant manifolds and eigenspaces

Section 2 showed that, in order to determine the ex-

panded modal relations, it is necessary to solve a non-

linear system of algebraic equations for the coe�cients

of linear terms. In fact, this solution can be avoided by

observing that these coe�cients describe a two-dimen-

sional planar surface in the phase space which is tan-

gential to the corresponding curved invariant manifold

at the equilibrium point; this planar surface is coincident

with the invariant manifold of the linearised system,

shown by Eq. (7) to be related to the eigenvectors of the

mode of interest. Hence, the linear part of the modal

relations can be alternatively generated from the solu-

tion to an eigenvalue problem.

Consider again the linearised system governed by

Eq. (1), in which the operator has distinct pairs of

complex conjugate eigenvalues. It was already men-

tioned that, in a basis constructed taking the real and

imaginary parts of the eigenvalues, the equations take

the block-diagonal form of Eq. (4). It is easy to ®nd an

additional coordinate transformation, for example

w � Sf;

where S � blockdiag
1=b1 0

a1=b1 1

� �
; . . . ;

1=bn 0

an=bn 1

� �� �
�17�

that leads to

_w2jÿ1

_w2j

� �
� 0 1
ÿa2

j ÿ b2
j 2aj

� �
w2jÿ1

w2j

� �
; j � 1; . . . ; n:

�18�
Each pair of Eq. (18) represents a harmonic oscillator with

a damped frequency bj and a damping ratio ÿaj=
�a2

j � b2
j �1=2

, which are shown by Eq. (5) to be dynamic

properties associated to the jth mode. As a consequence,

w2jÿ1�t� � uj�t�; w2j�t� � vj�t�; �19�

where uj�t� and vj�t� represent, respectively, the modal

displacement and the modal velocity of the jth mode.

Starting from the original state variables �xi; yi� and

performing two coordinate transformations, we arrived

at the modal variables �ui; vi�; i � 1; . . . ; n. Supposing

we are interested in a single mode, for example, the mth

mode, the complete transformation takes the form

z1�t�
..
.

z2n�t�

8><>:
9>=>; �

zm
R;1 zm

I;1

..

. ..
.

zm
R;2n zm

I;2n

264
375 bm 0
ÿam 1

� �
um�t�
vm�t�

� �
; �20�

which is precisely the linear part of the modal relations,

we were searching. It must be observed that Eq. (20) de-

pends on the way eigenvectors are normalised. The cor-

rect normalization produces a transformation that takes

into account the correspondence between modal vari-

ables and actual displacements expressed by Eqs. (11).

5. Examples

Considering the alternative procedure of Section 4,

the invariant manifold approach described in Section 2

was implemented in a computer program to evaluate

nonlinear modes of systems governed by equations of

motion generated as shown in Section 3. After reading a

standard ®nite element input ®le, the program performs

an eigenanalysis and asks the user for the de®nition of

the mode of interest and the generalised coordinate to be

considered as a modal variable. The output is generated

as a table containing coe�cients of the modal relations

and the equation of the associated modal oscillator.

5.1. Simply supported beam

As a ®rst example, a simply supported slender beam

of dimensions 2� 20� 610 mm, mass density q � 2770

kg/m3 and Young's modulus E � 7:33� 1010 N/m2 was

chosen, inspired by [11]. A ®nite element model was

constructed, describing half the beam with 29 degrees of

freedom, and the ®rst mode was chosen for the analysis.

Fig. 1 shows the nonlinear mode shapes calculated at

three di�erent values of the modal displacement, as well

as the corresponding linear ones (w�x� stands for dis-

placement at position x along the axis). It can be seen

that, up to a cubic approximation, there is no di�erence

between nonlinear and linear shapes, a result that is in

complete agreement with those available in the literature

[11,12,16].

As regards the dynamics on the invariant manifold,

there is a nonlinear e�ect to be considered. Solving the

modal oscillator equation

�u� c1u� c2v� c3u2 � c4uv� c5v2 � c6u3

� c7u2v� c8uv2 � c9v3 � 0; �21�

whose coe�cients are listed in Table 1, we note that the

free-vibration frequency depends on the amplitude. As

depicted in Fig. 2, there is an increase in the frequency x
at higher values of the amplitude umax, a hardening e�ect

that should be attributed to tensile stresses introduced

by the supports.

5.2. Clamped±clamped beam

After changing the boundary conditions, the same

model was used to generate the ®rst nonlinear mode of a

clamped±clamped beam, a case for which experimental

results are available [11].

Fig. 3 shows a comparison between the nonlinear

mode shape obtained here, calculated at a particular
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amplitude, and experimental results. As a reference, the

linear mode shape is also plotted. Both nonlinear results

exhibit the same tendency: as the amplitude grows, the

mode shape approaches that of a simply supported

beam, increasing the curvature near the clamps.

In Fig. 4, the frequency±amplitude relation for

this case is plotted, considering the coe�cients listed in

Table 1. Again, there is a hardening e�ect due to tension

introduced by the clamps. As with the mode shape, a

very good agreement between theoretical and experi-

mental results is observed.

5.3. Framed structure

Fig. 5 shows a portal frame having three bars with

the same cross-sectional and material properties as the

preceding examples. In this case, evaluation of nonlinear

modes by traditional techniques may be extremely

Fig. 2. Comparison between frequency±amplitude relations obtained by di�erent models, for the ®rst mode of a simply supported

beam.

Fig. 1. First mode shape of a simply supported beam, calculated at three di�erent amplitudes.

Table 1

Nonzero coe�cients of the modal oscillator equations

c1 c6 c8

Simply sup-

ported

6:206� 103 4:654� 109 2.485

Clamped±

clamped

3:189� 104 5:368� 109 3:448� 104

M.E.S. Soares, C.E.N. Mazzilli / Computers and Structures 77 (2000) 485±493 489



di�cult, because even a linear mode shape cannot be

easily described as a function of position along the axis.

A ®nite element model was constructed, having four

elements along each vertical bar and six elements along

the horizontal bar, adding up to 39 degrees of freedom.

This model was analysed by the computer program de-

scribed in this article, and the ®rst two nonlinear modes

were determined.

Fig. 6 depicts the ®rst mode shape, calculated at

u � 0:04 and v � _u � 0, where the modal coordinate u
was chosen to represent the horizontal displacement

at mid-section. It can be seen that, at this level of

amplitude, the linear and nonlinear mode shapes are very

close, except for the horizontal bar, shown in detail in

Fig. 7. By itself, the e�ect of longitudinal displacements

in the vertical bars should produce a simple vertical

Fig. 3. First mode shape of a clamped±clamped beam.

Fig. 4. Frequency±amplitude relation for the ®rst mode of a clamped±clamped beam.

Fig. 5. Portal frame dimensions and boundary conditions.

490 M.E.S. Soares, C.E.N. Mazzilli / Computers and Structures 77 (2000) 485±493



translation of the horizontal bar mode shape; however,

Fig. 7 shows that the nonlinear mode shape seems to

result from a superposition of this translated mode and a

half-sine (symmetrical) displacement pattern.

Fig. 8 shows the second mode shape, calculated at

u � 0:06 and v � _u � 0, where u stands for the vertical

displacement at the beam mid-section. In this case, the

di�erences between nonlinear and linear mode shapes

can be attributed to longitudinal displacements of the

horizontal bar.

In terms of frequency correction, there is a hardening

e�ect in the ®rst mode and softening in the second one.

However, at this level of amplitude the di�erence be-

tween nonlinear and linear frequencies does not exceed

1%.

6. Conclusions and future directions

In this article, a procedure for the automatic gener-

ation of nonlinear modes of ®nite element systems was

implemented, based on the invariant manifold approach

and following very closely the solution steps proposed

by Shaw and Pierre [13].

The procedure was tested in a number of cases, and

showed very good results as compared to theoretical and

experimental solutions available in the literature. In

these tests, some distinguishing characteristics of non-

linear modal motions could be easily observed, as for

example the dependence of deformed con®guration and

vibration frequency upon the amplitude. Besides, it was

very useful for structural applications to con®rm that, as

shown in Fig. 7, the deformed con®guration in a non-

linear mode cannot always be arti®cially constructed by

simply superposing on the linear mode the ®eld of lon-

gitudinal displacements, despite this being a good

approximation in many cases. Simpli®cations like this

have been successfully used in some analytical models,

but care should be taken.

As regards performance, simulations in a Sun En-

terprise 3000 Server revealed strong limitations to the

use of the implemented procedure in systems with more

Fig. 6. First mode of the portal frame.

Fig. 7. Deformed horizontal bar in the ®rst mode of the portal frame.
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than 50 degrees of freedom. Paradoxically, most of the

computational time required is dedicated to converting

the original system of second order di�erential equa-

tions into the ®rst-order equations, which corresponds

to the starting point of the invariant manifold ap-

proach. Additional studies should be devoted to opti-

mise data storage and manipulation at this step, but a

signi®cant improvement in performance seems to be

much more related to the use of lower order approxi-

mations of inertial forces at the element formulation

level, a subject demanding careful attention in this re-

search.

Other topics to be covered in future developments

of this research include the adaptation of the proce-

dure to construction of multimode manifolds, thus

allowing an adequate treatment of systems exhibiting

internal resonances, the implementation of di�erent

®nite elements (provided an explicit formulation of the

element is available) and the use of the invariant

manifolds of the corresponding autonomous system to

the reduction of a forced system. Some of these sub-

jects have already been treated in the literature, but

their application to ®nite element problems is entirely

new.
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