PEF 5737 - Nonlinear dynamics and stability Averaging method

Prof. Carlos Eduardo Nigro Mazzilli Associate Professor Guilherme Rosa Franzini

Escola Politécnica, University of São Paulo, Brazil

cenmazzi@usp.br gfranzini@usp.br

10/11/2023

PEF 5737 - Nonlinear dynamics and stability Averaging method

Prof. Carlos Eduardo Nigro Mazzilli Associate Professor Guilherme Rosa Franzini

Escola Politécnica, University of São Paulo, Brazil

cenmazzi@usp.br gfranzini@usp.br

10/11/2023

Outline

Objective

- 2 Background on nonlinear differential equations (practical aspects)
- 3 Averaging method

Outline

- Objective
- Background on nonlinear differential equations (practical aspects)
- 3 Averaging method

Objective

 To discuss the averaging method, commonly adopted in the analysis of nonlinear equations;

Outline

Objective

- 2 Background on nonlinear differential equations (practical aspects)
- 3 Averaging method

Bernoulli's equation

• Bernoulli's equation is a first-order differential equation with the form:

$$\dot{u} + p(t)u = q(t)u^n \tag{1}$$

with n > 1. If n = 0 or n = 1, Eq. 1 is linear and the solution is known.

• Multiplying both sides of Eq. 1 by $u^{-n}(1-n)$:

$$(1-n)u^{-n}\dot{u} + (1-n)p(t)u^{1-n} = (1-n)q(t)$$
(2)

- Change of variables: $z=u^{1-n}$. Hence, we use the chain rule to obtain $\dot{z}=(1-n)u^{-n}\dot{u}$.
- Using the above results on Eq. 1, we obtain the following linear equation:

$$\dot{z} + f(t)z = g(t) \tag{3}$$

where f(t) = (1-n)p(t) and g(t) = (1-n)q(t)

 \bullet We solve Eq. 3 using an integrating factor $\mu.$ For this, we define

$$\mu = \mu(t) = exp\left\{ \int f(t)dt \right\} \tag{4}$$

Notice that

$$\frac{d}{dt}(z\mu) = \dot{z}\mu + z\dot{\mu} = \dot{z}\mu + z\mu f(t) \tag{5}$$

Bernoulli's equation

• Multiplying both sides of Eq. 3 by μ leads to:

$$\mu \dot{z} + f(t)z\mu = \mu g(t) \leftrightarrow \frac{d}{dt}(z\mu) = \mu g(t)$$
 (6)

• The integration of Eq. 6 is easily made:

$$z\mu = \int \mu g(t)dt + c \leftrightarrow z = \frac{1}{\mu} \int \mu g(t)dt + \frac{c}{\mu}$$
 (7)

lacksquare Once z is obtained, u(t) can be obtained recalling that $z=u^{1-n}$.

Mazzilli & Franzini (EPUSP)

Outline

Objective

- 2 Background on nonlinear differential equations (practical aspects)
- 3 Averaging method

• We investigate analytical approximated solutions for the nonlinear equation with the form

$$\ddot{u} + u = \epsilon F(u, \dot{u}, t) \tag{8}$$

We investigate analytical approximated solutions for the nonlinear equation with the form

$$\ddot{u} + u = \epsilon F(u, \dot{u}, t) \tag{8}$$

• If $\epsilon=0$, $u=a\cos(t+\psi)$ and $\dot{u}=-a\sin(t+\psi)$, a and ψ constants that depend on the initial conditions;

We investigate analytical approximated solutions for the nonlinear equation with the form

$$\ddot{u} + u = \epsilon F(u, \dot{u}, t) \tag{8}$$

- If $\epsilon=0$, $u=a\cos(t+\psi)$ and $\dot{u}=-a\sin(t+\psi)$, a and ψ constants that depend on the initial conditions;
- If $0 < \epsilon \ll 1$, the following *ansatz* are proposed:

$$u = a\cos(t + \psi) \tag{9}$$

$$\dot{u} = -a\sin(t+\psi) \tag{10}$$

with a=a(t) and $\psi=\psi(t)$. Since $0<\epsilon\ll 1$ (weak nonlinearities), a(t) and $\psi(t)$ slowly vary in time.

We investigate analytical approximated solutions for the nonlinear equation with the form

$$\ddot{u} + u = \epsilon F(u, \dot{u}, t) \tag{8}$$

- If $\epsilon=0$, $u=a\cos(t+\psi)$ and $\dot{u}=-a\sin(t+\psi)$, a and ψ constants that depend on the initial conditions;
- If $0 < \epsilon \ll 1$, the following *ansatz* are proposed:

$$u = a\cos(t + \psi) \tag{9}$$

$$\dot{u} = -a\sin(t+\psi) \tag{10}$$

with a=a(t) and $\psi=\psi(t)$. Since $0<\epsilon\ll 1$ (weak nonlinearities), a(t) and $\psi(t)$ slowly vary in time.

Taking the derivative of Eq. 9 and substituting into Eq. 10

$$\dot{a}\cos(t+\psi) - a\sin(t+\psi)(1+\dot{\psi}) = -a\sin(t+\psi) \rightarrow \dot{a}\cos(t+\psi) - a\dot{\psi}\sin(t+\psi) = 0$$
 (11)

We investigate analytical approximated solutions for the nonlinear equation with the form

$$\ddot{u} + u = \epsilon F(u, \dot{u}, t) \tag{8}$$

- If $\epsilon=0$, $u=a\cos(t+\psi)$ and $\dot{u}=-a\sin(t+\psi)$, a and ψ constants that depend on the initial conditions;
- If $0 < \epsilon \ll 1$, the following *ansatz* are proposed:

$$u = a\cos(t + \psi) \tag{9}$$

$$\dot{u} = -a\sin(t+\psi) \tag{10}$$

with a=a(t) and $\psi=\psi(t)$. Since $0<\epsilon\ll 1$ (weak nonlinearities), a(t) and $\psi(t)$ slowly vary in time.

Taking the derivative of Eq. 9 and substituting into Eq. 10

$$\dot{a}\cos(t+\psi) - a\sin(t+\psi)(1+\dot{\psi}) = -a\sin(t+\psi) \rightarrow \dot{a}\cos(t+\psi) - a\dot{\psi}\sin(t+\psi) = 0$$
 (11)

The derivative of Eq. 10 is:

$$\ddot{u} = -\dot{a}\sin(t+\psi) - a(1+\dot{\psi})\cos(t+\psi) \tag{12}$$

The averaging method and the slow-flow equations

• Using Eqs. 9 and 12 into the original equation (Eq. 8), one obtains:

$$\dot{a}\sin(t+\psi) + a\dot{\psi}\cos(t+\psi) = -F(a\cos(t+\psi), -a\sin(t+\psi), t) \tag{13}$$

The averaging method and the slow-flow equations

• Using Eqs. 9 and 12 into the original equation (Eq. 8), one obtains:

$$\dot{a}\sin(t+\psi) + a\dot{\psi}\cos(t+\psi) = -F(a\cos(t+\psi), -a\sin(t+\psi), t) \tag{13}$$

• Eqs. 12 and 13 define a system of ODEs in the variables \dot{a} and $\dot{\psi}$. This system can be solved for \dot{a} and $\dot{\psi}$. The result is given in Eqs. 14 and 15.

$$\dot{a} = -F(a\cos(t+\psi), -a\sin(t+\psi), t)\sin(t+\psi) \tag{14}$$

$$a\dot{\psi} = -F(a\cos(t+\psi), -a\sin(t+\psi), t)\cos(t+\psi) \tag{15}$$

The averaging method and the slow-flow equations

Using Eqs. 9 and 12 into the original equation (Eq. 8), one obtains:

$$\dot{a}\sin(t+\psi) + a\dot{\psi}\cos(t+\psi) = -F(a\cos(t+\psi), -a\sin(t+\psi), t)$$
(13)

• Eqs. 12 and 13 define a system of ODEs in the variables \dot{a} and $\dot{\psi}$. This system can be solved for \dot{a} and ψ . The result is given in Eqs. 14 and 15.

$$\dot{a} = -F(a\cos(t+\psi), -a\sin(t+\psi), t)\sin(t+\psi) \tag{14}$$

$$a\dot{\psi} = -F(a\cos(t+\psi), -a\sin(t+\psi), t)\cos(t+\psi)$$
(15)

• Since a and ψ slowly vary (when compared to the "fast" scale given by the natural period of the linear system $T=2\pi$), the RHS of Eqs. 14 and 15 can be replaced by their averaged values calculated considering one period of the "fast scale". This approach leads to the slow-flow equations, given by Eqs. 16 and 17.

$$\dot{a} = -\frac{1}{2\pi} \int_0^{2\pi} F(a\cos\phi, -a\sin\phi, t) \sin\phi d\phi \tag{16}$$

$$a\dot{\psi} = -\frac{1}{2\pi} \int_0^{2\pi} F(a\cos\phi, -a\sin\phi, t)\cos\phi d\phi \tag{17}$$

where $\phi = t + \psi$.

• Consider the van der Pol equation $\ddot{u}+\epsilon(u^2-1)\dot{u}+u=0$. Putting it on the nomenclature herein adopted, we can notice that $F(u,\dot{u},t)=\epsilon(1-u^2)\dot{u}$.

- Consider the van der Pol equation $\ddot{u} + \epsilon(u^2 1)\dot{u} + u = 0$. Putting it on the nomenclature herein adopted, we can notice that $F(u,\dot{u},t) = \epsilon(1-u^2)\dot{u}$.
- Slow-flow equations (assuming that $a \neq 0$):

$$\dot{a} = -\frac{\epsilon}{2\pi} \int_0^{2\pi} (1 - a^2 \cos^2 \phi) \sin \phi (-a \sin \phi) d\phi \tag{18}$$

$$\dot{\psi} = -\frac{\epsilon}{a2\pi} \int_0^{2\pi} (1 - a^2 \cos^2 \phi) \cos \phi (-a \sin \phi) d\phi \tag{19}$$

- Consider the van der Pol equation $\ddot{u}+\epsilon(u^2-1)\dot{u}+u=0$. Putting it on the nomenclature herein adopted, we can notice that $F(u,\dot{u},t)=\epsilon(1-u^2)\dot{u}$.
- Slow-flow equations (assuming that $a \neq 0$):

$$\dot{a} = -\frac{\epsilon}{2\pi} \int_0^{2\pi} (1 - a^2 \cos^2 \phi) \sin \phi (-a \sin \phi) d\phi \tag{18}$$

$$\dot{\psi} = -\frac{\epsilon}{a2\pi} \int_0^{2\pi} (1 - a^2 \cos^2 \phi) \cos \phi (-a \sin \phi) d\phi \tag{19}$$

■ The integral in Eq. 18 can be analytically obtained. This leads to:

$$\dot{a} = \frac{\epsilon}{8}a(4 - a^2) \leftrightarrow \dot{a} - \frac{\epsilon}{2}a = -\frac{\epsilon}{8}a^3 \tag{20}$$

- Consider the van der Pol equation $\ddot{u} + \epsilon(u^2 1)\dot{u} + u = 0$. Putting it on the nomenclature herein adopted, we can notice that $F(u,\dot{u},t) = \epsilon(1-u^2)\dot{u}$.
- Slow-flow equations (assuming that $a \neq 0$):

$$\dot{a} = -\frac{\epsilon}{2\pi} \int_0^{2\pi} (1 - a^2 \cos^2 \phi) \sin \phi (-a \sin \phi) d\phi \tag{18}$$

$$\dot{\psi} = -\frac{\epsilon}{a2\pi} \int_0^{2\pi} (1 - a^2 \cos^2 \phi) \cos \phi (-a \sin \phi) d\phi \tag{19}$$

• The integral in Eq. 18 can be analytically obtained. This leads to:

$$\dot{a} = \frac{\epsilon}{8}a(4 - a^2) \leftrightarrow \dot{a} - \frac{\epsilon}{2}a = -\frac{\epsilon}{8}a^3 \tag{20}$$

• The solution of Eq. 20 can be obtained using the presented background. For this, we recognize the Bernoulli's equation with $p(t)=-\frac{\epsilon}{2},\ q(t)=-\frac{\epsilon}{8}$ and n=3. The change of variables is $z=a^{1-3}=a^{-2}$.

- Consider the van der Pol equation $\ddot{u} + \epsilon(u^2 1)\dot{u} + u = 0$. Putting it on the nomenclature herein adopted, we can notice that $F(u,\dot{u},t) = \epsilon(1-u^2)\dot{u}$.
- Slow-flow equations (assuming that $a \neq 0$):

$$\dot{a} = -\frac{\epsilon}{2\pi} \int_0^{2\pi} (1 - a^2 \cos^2 \phi) \sin \phi (-a \sin \phi) d\phi \tag{18}$$

$$\dot{\psi} = -\frac{\epsilon}{a2\pi} \int_0^{2\pi} (1 - a^2 \cos^2 \phi) \cos \phi (-a \sin \phi) d\phi$$
 (19)

The integral in Eq. 18 can be analytically obtained. This leads to:

$$\dot{a} = \frac{\epsilon}{8}a(4 - a^2) \leftrightarrow \dot{a} - \frac{\epsilon}{2}a = -\frac{\epsilon}{8}a^3 \tag{20}$$

- The solution of Eq. 20 can be obtained using the presented background. For this, we recognize the Bernoulli's equation with $p(t)=-\frac{\epsilon}{2},\ q(t)=-\frac{\epsilon}{8}$ and n=3. The change of variables is $z=a^{1-3}=a^{-2}$.
- In the new variable, Eq. 20 is rewritten as:

$$\dot{z} + \epsilon z = \frac{\epsilon}{4} \tag{21}$$

 \bullet From Eq. 21, we have $f(t)=\epsilon$ and $g(t)=\frac{\epsilon}{4};$

- \bullet From Eq. 21, we have $f(t)=\epsilon$ and $g(t)=\frac{\epsilon}{4};$
- Integrating factor:

$$\mu = \exp\left\{ \int f(t)dt \right\} = e^{\epsilon t} \tag{22}$$

- From Eq. 21, we have $f(t) = \epsilon$ and $g(t) = \frac{\epsilon}{4}$;
- Integrating factor:

$$\mu = exp\left\{ \int f(t)dt \right\} = e^{\epsilon t} \tag{22}$$

• Auxiliary quantity:

$$\int \mu g(t)dt = \int e^{\epsilon t} \frac{\epsilon}{4} dt = \frac{1}{4} e^{\epsilon t}$$
 (23)

- From Eq. 21, we have $f(t) = \epsilon$ and $g(t) = \frac{\epsilon}{4}$;
- Integrating factor:

$$\mu = exp\left\{ \int f(t)dt \right\} = e^{\epsilon t} \tag{22}$$

Auxiliary quantity:

$$\int \mu g(t)dt = \int e^{\epsilon t} \frac{\epsilon}{4} dt = \frac{1}{4} e^{\epsilon t}$$
 (23)

• Using the above result, z(t) reads:

$$z = z(t) = \frac{1}{e^{\epsilon t}} \frac{1}{4} e^{\epsilon t} + \frac{c}{e^{\epsilon t}} = \frac{e^{\epsilon t} + 4c}{4e^{\epsilon t}}$$
 (24)

- From Eq. 21, we have $f(t) = \epsilon$ and $g(t) = \frac{\epsilon}{4}$;
- Integrating factor:

$$\mu = exp\left\{ \int f(t)dt \right\} = e^{\epsilon t} \tag{22}$$

Auxiliary quantity:

$$\int \mu g(t)dt = \int e^{\epsilon t} \frac{\epsilon}{4} dt = \frac{1}{4} e^{\epsilon t}$$
 (23)

• Using the above result, z(t) reads:

$$z = z(t) = \frac{1}{e^{\epsilon t}} \frac{1}{4} e^{\epsilon t} + \frac{c}{e^{\epsilon t}} = \frac{e^{\epsilon t} + 4c}{4e^{\epsilon t}}$$
 (24)

lacktriangle Returning to the amplitude a(t)

$$z = a^{-2} \leftrightarrow a = z^{-1/2} \leftrightarrow a = \frac{1}{\sqrt{\frac{e^{\epsilon t} + 4c}{4e^{\epsilon t}}}} = \frac{2e^{\epsilon \frac{t}{2}}}{\sqrt{e^{\epsilon t} + 4c}}$$
 (25)

• c can be determined using the initial condition a(0). For this, consider t=0 in Eq. 25 and the following equation holds:

$$a(0) = \frac{2}{\sqrt{1+4c}} \leftrightarrow c = \frac{1}{4} \left(\frac{4}{(a(0))^2} - 1 \right)$$
 (26)

• c can be determined using the initial condition a(0). For this, consider t=0 in Eq. 25 and the following equation holds:

$$a(0) = \frac{2}{\sqrt{1+4c}} \leftrightarrow c = \frac{1}{4} \left(\frac{4}{(a(0))^2} - 1 \right)$$
 (26)

By substituting Eq. 26 into Eq. 25 one obtains:

$$a(t) = \frac{2e^{\epsilon \frac{t}{2}}}{\sqrt{e^{\epsilon t} - 1 + \frac{4}{(a(0))^2}}}$$
 (27)

• The numerical solution of the van der Pol equation for $\epsilon=0.3,\ u(0)=0$ and $\dot{u}(0)=0.1$ are shown in the figure below. The analytical solution for the instantaneous oscillation amplitude a(t) given by Eq. 27 is also shown.

• Another type of study. The equilibrium point of Eq. 20 is $a_0=2$ (assuming a>0). We study the stability of this equilibrium point considering $a=a_0+\delta a$ (δa is a small disturbance superimposed to the equilibrium point).

• Another type of study. The equilibrium point of Eq. 20 is $a_0=2$ (assuming a>0). We study the stability of this equilibrium point considering $a=a_0+\delta a$ (δa is a small disturbance superimposed to the equilibrium point).

0

$$\dot{a} = \dot{a}_0 + \delta \dot{a} = \frac{\epsilon}{8} (a_0 + \delta a)(4 - (a_0 + \delta a)^2) = \frac{\epsilon}{8} (4a_0 - a_0^3 + (-3a_0^2 + 4)\delta a) + \mathcal{O}(\delta a)^2$$
 (28)

• Another type of study. The equilibrium point of Eq. 20 is $a_0=2$ (assuming a>0). We study the stability of this equilibrium point considering $a=a_0+\delta a$ (δa is a small disturbance superimposed to the equilibrium point).

•

$$\dot{a} = \dot{a}_0 + \delta \dot{a} = \frac{\epsilon}{8} (a_0 + \delta a)(4 - (a_0 + \delta a)^2) = \frac{\epsilon}{8} (4a_0 - a_0^3 + (-3a_0^2 + 4)\delta a) + \mathcal{O}(\delta a)^2$$
 (28)

• Since by definition $\dot{a}_0=0$, the linearized version of the above equation is $\delta \dot{a}=-\epsilon \delta a$. Therefore, δa (the disturbance) goes to zero provided $\epsilon>0$. If we are not interested in the temporal evolution of the amplitude, this stability study suffices and the exact solution a(t) does not need to be obtained.

• Another type of study. The equilibrium point of Eq. 20 is $a_0=2$ (assuming a>0). We study the stability of this equilibrium point considering $a=a_0+\delta a$ (δa is a small disturbance superimposed to the equilibrium point).

$$\dot{a} = \dot{a}_0 + \delta \dot{a} = \frac{\epsilon}{8}(a_0 + \delta a)(4 - (a_0 + \delta a)^2) = \frac{\epsilon}{8}(4a_0 - a_0^3 + (-3a_0^2 + 4)\delta a) + \mathcal{O}(\delta a)^2 \tag{28}$$

- Since by definition $\dot{a}_0=0$, the linearized version of the above equation is $\delta \dot{a}=-\epsilon \delta a$. Therefore, δa (the disturbance) goes to zero provided $\epsilon>0$. If we are not interested in the temporal evolution of the amplitude, this stability study suffices and the exact solution a(t) does not need to be obtained.
- Phase equation:

•

$$\dot{\psi} = -\frac{\epsilon}{a2\pi} \int_0^{2\pi} (1 - a^2 \cos^2 \phi) \cos \phi (-a \sin \phi) d\phi = 0$$
 (29)

Hence, the phase ψ does not vary in time. This means that the oscillation frequency is constant and equal to 1.

Bibliography

- Nayfef, A.H. Perturbation methods. John Wiley & Sons, 1973.
- Rand, R.H. Lecture Notes on Nonlinear Vibrations, 2005.