PEF 5737 - Nonlinear dynamics and stability Averaging method

Prof. Carlos Eduardo Nigro Mazzilli Associate Professor Guilherme Rosa Franzini

Escola Politécnica, University of São Paulo, Brazil
cenmazzi@usp.br
gfranzini@usp.br
10/11/2023

PEF 5737 - Nonlinear dynamics and stability Averaging method

Prof. Carlos Eduardo Nigro Mazzilli Associate Professor Guilherme Rosa Franzini

Escola Politécnica, University of São Paulo, Brazil
cenmazzi@usp.br
gfranzini@usp.br

10/11/2023

Outline

(1) Objective
(2) Background on nonlinear differential equations (practical aspects)
(3) Averaging method

Outline

(1) Objective
(2) Background on nonlinear differential equations (practical aspects)
(3) Averaging method

Objective

- To discuss the averaging method, commonly adopted in the analysis of nonlinear equations;

Outline

(1) Objective

(2) Background on nonlinear differential equations (practical aspects)

(3) Averaging method

Bernoulli's equation

- Bernoulli's equation is a first-order differential equation with the form:

$$
\begin{equation*}
\dot{u}+p(t) u=q(t) u^{n} \tag{1}
\end{equation*}
$$

with $n>1$. If $n=0$ or $n=1$, Eq. 1 is linear and the solution is known.

- Multiplying both sides of Eq. 1 by $u^{-n}(1-n)$:

$$
\begin{equation*}
(1-n) u^{-n} \dot{u}+(1-n) p(t) u^{1-n}=(1-n) q(t) \tag{2}
\end{equation*}
$$

- Change of variables: $z=u^{1-n}$. Hence, we use the chain rule to obtain $\dot{z}=(1-n) u^{-n} \dot{u}$.
- Using the above results on Eq. 1, we obtain the following linear equation:

$$
\begin{equation*}
\dot{z}+f(t) z=g(t) \tag{3}
\end{equation*}
$$

where $f(t)=(1-n) p(t)$ and $g(t)=(1-n) q(t)$

- We solve Eq. 3 using an integrating factor μ. For this, we define

$$
\begin{equation*}
\mu=\mu(t)=\exp \left\{\int f(t) d t\right\} \tag{4}
\end{equation*}
$$

- Notice that

$$
\begin{equation*}
\frac{d}{d t}(z \mu)=\dot{z} \mu+z \dot{\mu}=\dot{z} \mu+z \mu f(t) \tag{5}
\end{equation*}
$$

Bernoulli's equation

- Multiplying both sides of Eq. 3 by μ leads to:

$$
\begin{equation*}
\mu \dot{z}+f(t) z \mu=\mu g(t) \leftrightarrow \frac{d}{d t}(z \mu)=\mu g(t) \tag{6}
\end{equation*}
$$

- The integration of Eq. 6 is easily made:

$$
\begin{equation*}
z \mu=\int \mu g(t) d t+c \leftrightarrow z=\frac{1}{\mu} \int \mu g(t) d t+\frac{c}{\mu} \tag{7}
\end{equation*}
$$

- Once z is obtained, $u(t)$ can be obtained recalling that $z=u^{1-n}$.

Outline

(1) Objective

(2) Background on nonlinear differential equations (practical aspects)
(3) Averaging method

General aspects

- We investigate analytical approximated solutions for the nonlinear equation with the form

$$
\begin{equation*}
\ddot{u}+u=\epsilon F(u, \dot{u}, t) \tag{8}
\end{equation*}
$$

General aspects

- We investigate analytical approximated solutions for the nonlinear equation with the form

$$
\begin{equation*}
\ddot{u}+u=\epsilon F(u, \dot{u}, t) \tag{8}
\end{equation*}
$$

- If $\epsilon=0, u=a \cos (t+\psi)$ and $\dot{u}=-a \sin (t+\psi), a$ and ψ constants that depend on the initial conditions;

General aspects

- We investigate analytical approximated solutions for the nonlinear equation with the form

$$
\begin{equation*}
\ddot{u}+u=\epsilon F(u, \dot{u}, t) \tag{8}
\end{equation*}
$$

- If $\epsilon=0, u=a \cos (t+\psi)$ and $\dot{u}=-a \sin (t+\psi), a$ and ψ constants that depend on the initial conditions;
- If $0<\epsilon \ll 1$, the following ansatz are proposed:

$$
\begin{align*}
u & =a \cos (t+\psi) \tag{9}\\
\dot{u} & =-a \sin (t+\psi) \tag{10}
\end{align*}
$$

with $a=a(t)$ and $\psi=\psi(t)$. Since $0<\epsilon \ll 1$ (weak nonlinearities), $a(t)$ and $\psi(t)$ slowly vary in time.

General aspects

- We investigate analytical approximated solutions for the nonlinear equation with the form

$$
\begin{equation*}
\ddot{u}+u=\epsilon F(u, \dot{u}, t) \tag{8}
\end{equation*}
$$

- If $\epsilon=0, u=a \cos (t+\psi)$ and $\dot{u}=-a \sin (t+\psi), a$ and ψ constants that depend on the initial conditions;
- If $0<\epsilon \ll 1$, the following ansatz are proposed:

$$
\begin{align*}
u & =a \cos (t+\psi) \tag{9}\\
\dot{u} & =-a \sin (t+\psi) \tag{10}
\end{align*}
$$

with $a=a(t)$ and $\psi=\psi(t)$. Since $0<\epsilon \ll 1$ (weak nonlinearities), $a(t)$ and $\psi(t)$ slowly vary in time.

- Taking the derivative of Eq. 9 and substituting into Eq. 10

$$
\begin{equation*}
\dot{a} \cos (t+\psi)-a \sin (t+\psi)(1+\dot{\psi})=-a \sin (t+\psi) \rightarrow \dot{a} \cos (t+\psi)-a \dot{\psi} \sin (t+\psi)=0 \tag{11}
\end{equation*}
$$

General aspects

- We investigate analytical approximated solutions for the nonlinear equation with the form

$$
\begin{equation*}
\ddot{u}+u=\epsilon F(u, \dot{u}, t) \tag{8}
\end{equation*}
$$

- If $\epsilon=0, u=a \cos (t+\psi)$ and $\dot{u}=-a \sin (t+\psi), a$ and ψ constants that depend on the initial conditions;
- If $0<\epsilon \ll 1$, the following ansatz are proposed:

$$
\begin{align*}
& u=a \cos (t+\psi) \tag{9}\\
& \dot{u}=-a \sin (t+\psi) \tag{10}
\end{align*}
$$

with $a=a(t)$ and $\psi=\psi(t)$. Since $0<\epsilon \ll 1$ (weak nonlinearities), $a(t)$ and $\psi(t)$ slowly vary in time.

- Taking the derivative of Eq. 9 and substituting into Eq. 10

$$
\begin{equation*}
\dot{a} \cos (t+\psi)-a \sin (t+\psi)(1+\dot{\psi})=-a \sin (t+\psi) \rightarrow \dot{a} \cos (t+\psi)-a \dot{\psi} \sin (t+\psi)=0 \tag{11}
\end{equation*}
$$

- The derivative of Eq. 10 is:

$$
\begin{equation*}
\ddot{u}=-\dot{a} \sin (t+\psi)-a(1+\dot{\psi}) \cos (t+\psi) \tag{12}
\end{equation*}
$$

The averaging method and the slow-flow equations

- Using Eqs. 9 and 12 into the original equation (Eq. 8), one obtains:

$$
\begin{equation*}
\dot{a} \sin (t+\psi)+a \dot{\psi} \cos (t+\psi)=-F(a \cos (t+\psi),-a \sin (t+\psi), t) \tag{13}
\end{equation*}
$$

The averaging method and the slow-flow equations

- Using Eqs. 9 and 12 into the original equation (Eq. 8), one obtains:

$$
\begin{equation*}
\dot{a} \sin (t+\psi)+a \dot{\psi} \cos (t+\psi)=-F(a \cos (t+\psi),-a \sin (t+\psi), t) \tag{13}
\end{equation*}
$$

- Eqs. 12 and 13 define a system of ODEs in the variables \dot{a} and $\dot{\psi}$. This system can be solved for \dot{a} and $\dot{\psi}$. The result is given in Eqs. 14 and 15 .

$$
\begin{align*}
& \dot{a}=-F(a \cos (t+\psi),-a \sin (t+\psi), t) \sin (t+\psi) \tag{14}\\
& a \dot{\psi}=-F(a \cos (t+\psi),-a \sin (t+\psi), t) \cos (t+\psi) \tag{15}
\end{align*}
$$

The averaging method and the slow-flow equations

- Using Eqs. 9 and 12 into the original equation (Eq. 8), one obtains:

$$
\begin{equation*}
\dot{a} \sin (t+\psi)+a \dot{\psi} \cos (t+\psi)=-F(a \cos (t+\psi),-a \sin (t+\psi), t) \tag{13}
\end{equation*}
$$

- Eqs. 12 and 13 define a system of ODEs in the variables \dot{a} and $\dot{\psi}$. This system can be solved for \dot{a} and $\dot{\psi}$. The result is given in Eqs. 14 and 15 .

$$
\begin{align*}
& \dot{a}=-F(a \cos (t+\psi),-a \sin (t+\psi), t) \sin (t+\psi) \tag{14}\\
& a \dot{\psi}=-F(a \cos (t+\psi),-a \sin (t+\psi), t) \cos (t+\psi) \tag{15}
\end{align*}
$$

- Since a and ψ slowly vary (when compared to the "fast" scale given by the natural period of the linear system $T=2 \pi$), the RHS of Eqs. 14 and 15 can be replaced by their averaged values calculated considering one period of the "fast scale". This approach leads to the slow-flow equations, given by Eqs. 16 and 17.

$$
\begin{align*}
& \dot{a}=-\frac{1}{2 \pi} \int_{0}^{2 \pi} F(a \cos \phi,-a \sin \phi, t) \sin \phi d \phi \tag{16}\\
& a \dot{\psi}=-\frac{1}{2 \pi} \int_{0}^{2 \pi} F(a \cos \phi,-a \sin \phi, t) \cos \phi d \phi \tag{17}
\end{align*}
$$

where $\phi=t+\psi$.

van der Pol equation

- Consider the van der Pol equation $\ddot{u}+\epsilon\left(u^{2}-1\right) \dot{u}+u=0$. Putting it on the nomenclature herein adopted, we can notice that $F(u, \dot{u}, t)=\epsilon\left(1-u^{2}\right) \dot{u}$.

van der Pol equation

- Consider the van der Pol equation $\ddot{u}+\epsilon\left(u^{2}-1\right) \dot{u}+u=0$. Putting it on the nomenclature herein adopted, we can notice that $F(u, \dot{u}, t)=\epsilon\left(1-u^{2}\right) \dot{u}$.
- Slow-flow equations (assuming that $a \neq 0$):

$$
\begin{align*}
\dot{a} & =-\frac{\epsilon}{2 \pi} \int_{0}^{2 \pi}\left(1-a^{2} \cos ^{2} \phi\right) \sin \phi(-a \sin \phi) d \phi \tag{18}\\
\dot{\psi} & =-\frac{\epsilon}{a 2 \pi} \int_{0}^{2 \pi}\left(1-a^{2} \cos ^{2} \phi\right) \cos \phi(-a \sin \phi) d \phi \tag{19}
\end{align*}
$$

van der Pol equation

- Consider the van der Pol equation $\ddot{u}+\epsilon\left(u^{2}-1\right) \dot{u}+u=0$. Putting it on the nomenclature herein adopted, we can notice that $F(u, \dot{u}, t)=\epsilon\left(1-u^{2}\right) \dot{u}$.
- Slow-flow equations (assuming that $a \neq 0$):

$$
\begin{align*}
\dot{a} & =-\frac{\epsilon}{2 \pi} \int_{0}^{2 \pi}\left(1-a^{2} \cos ^{2} \phi\right) \sin \phi(-a \sin \phi) d \phi \tag{18}\\
\dot{\psi} & =-\frac{\epsilon}{a 2 \pi} \int_{0}^{2 \pi}\left(1-a^{2} \cos ^{2} \phi\right) \cos \phi(-a \sin \phi) d \phi \tag{19}
\end{align*}
$$

- The integral in Eq. 18 can be analytically obtained. This leads to:

$$
\begin{equation*}
\dot{a}=\frac{\epsilon}{8} a\left(4-a^{2}\right) \leftrightarrow \dot{a}-\frac{\epsilon}{2} a=-\frac{\epsilon}{8} a^{3} \tag{20}
\end{equation*}
$$

van der Pol equation

- Consider the van der Pol equation $\ddot{u}+\epsilon\left(u^{2}-1\right) \dot{u}+u=0$. Putting it on the nomenclature herein adopted, we can notice that $F(u, \dot{u}, t)=\epsilon\left(1-u^{2}\right) \dot{u}$.
- Slow-flow equations (assuming that $a \neq 0$):

$$
\begin{align*}
\dot{a} & =-\frac{\epsilon}{2 \pi} \int_{0}^{2 \pi}\left(1-a^{2} \cos ^{2} \phi\right) \sin \phi(-a \sin \phi) d \phi \tag{18}\\
\dot{\psi} & =-\frac{\epsilon}{a 2 \pi} \int_{0}^{2 \pi}\left(1-a^{2} \cos ^{2} \phi\right) \cos \phi(-a \sin \phi) d \phi \tag{19}
\end{align*}
$$

- The integral in Eq. 18 can be analytically obtained. This leads to:

$$
\begin{equation*}
\dot{a}=\frac{\epsilon}{8} a\left(4-a^{2}\right) \leftrightarrow \dot{a}-\frac{\epsilon}{2} a=-\frac{\epsilon}{8} a^{3} \tag{20}
\end{equation*}
$$

- The solution of Eq. 20 can be obtained using the presented background. For this, we recognize the Bernoulli's equation with $p(t)=-\frac{\epsilon}{2}, q(t)=-\frac{\epsilon}{8}$ and $n=3$. The change of variables is $z=a^{1-3}=a^{-2}$.

van der Pol equation

- Consider the van der Pol equation $\ddot{u}+\epsilon\left(u^{2}-1\right) \dot{u}+u=0$. Putting it on the nomenclature herein adopted, we can notice that $F(u, \dot{u}, t)=\epsilon\left(1-u^{2}\right) \dot{u}$.
- Slow-flow equations (assuming that $a \neq 0$):

$$
\begin{align*}
& \dot{a}=-\frac{\epsilon}{2 \pi} \int_{0}^{2 \pi}\left(1-a^{2} \cos ^{2} \phi\right) \sin \phi(-a \sin \phi) d \phi \tag{18}\\
& \dot{\psi}=-\frac{\epsilon}{a 2 \pi} \int_{0}^{2 \pi}\left(1-a^{2} \cos ^{2} \phi\right) \cos \phi(-a \sin \phi) d \phi \tag{19}
\end{align*}
$$

- The integral in Eq. 18 can be analytically obtained. This leads to:

$$
\begin{equation*}
\dot{a}=\frac{\epsilon}{8} a\left(4-a^{2}\right) \leftrightarrow \dot{a}-\frac{\epsilon}{2} a=-\frac{\epsilon}{8} a^{3} \tag{20}
\end{equation*}
$$

- The solution of Eq. 20 can be obtained using the presented background. For this, we recognize the Bernoulli's equation with $p(t)=-\frac{\epsilon}{2}, q(t)=-\frac{\epsilon}{8}$ and $n=3$. The change of variables is $z=a^{1-3}=a^{-2}$.
- In the new variable, Eq. 20 is rewritten as:

$$
\begin{equation*}
\dot{z}+\epsilon z=\frac{\epsilon}{4} \tag{21}
\end{equation*}
$$

van der Pol equation

- From Eq. 21, we have $f(t)=\epsilon$ and $g(t)=\frac{\epsilon}{4}$;

van der Pol equation

- From Eq. 21, we have $f(t)=\epsilon$ and $g(t)=\frac{\epsilon}{4}$;
- Integrating factor:

$$
\begin{equation*}
\mu=\exp \left\{\int f(t) d t\right\}=e^{\epsilon t} \tag{22}
\end{equation*}
$$

van der Pol equation

- From Eq. 21, we have $f(t)=\epsilon$ and $g(t)=\frac{\epsilon}{4}$;
- Integrating factor:

$$
\begin{equation*}
\mu=\exp \left\{\int f(t) d t\right\}=e^{\epsilon t} \tag{22}
\end{equation*}
$$

- Auxiliary quantity:

$$
\begin{equation*}
\int \mu g(t) d t=\int e^{\epsilon t} \frac{\epsilon}{4} d t=\frac{1}{4} e^{\epsilon t} \tag{23}
\end{equation*}
$$

van der Pol equation

- From Eq. 21, we have $f(t)=\epsilon$ and $g(t)=\frac{\epsilon}{4}$;
- Integrating factor:

$$
\begin{equation*}
\mu=\exp \left\{\int f(t) d t\right\}=e^{\epsilon t} \tag{22}
\end{equation*}
$$

- Auxiliary quantity:

$$
\begin{equation*}
\int \mu g(t) d t=\int e^{\epsilon t} \frac{\epsilon}{4} d t=\frac{1}{4} e^{\epsilon t} \tag{23}
\end{equation*}
$$

- Using the above result, $z(t)$ reads:

$$
\begin{equation*}
z=z(t)=\frac{1}{e^{\epsilon t}} \frac{1}{4} e^{\epsilon t}+\frac{c}{e^{\epsilon t}}=\frac{e^{\epsilon t}+4 c}{4 e^{\epsilon t}} \tag{24}
\end{equation*}
$$

van der Pol equation

- From Eq. 21, we have $f(t)=\epsilon$ and $g(t)=\frac{\epsilon}{4}$;
- Integrating factor:

$$
\begin{equation*}
\mu=\exp \left\{\int f(t) d t\right\}=e^{\epsilon t} \tag{22}
\end{equation*}
$$

- Auxiliary quantity:

$$
\begin{equation*}
\int \mu g(t) d t=\int e^{\epsilon t} \frac{\epsilon}{4} d t=\frac{1}{4} e^{\epsilon t} \tag{23}
\end{equation*}
$$

- Using the above result, $z(t)$ reads:

$$
\begin{equation*}
z=z(t)=\frac{1}{e^{\epsilon t}} \frac{1}{4} e^{\epsilon t}+\frac{c}{e^{\epsilon t}}=\frac{e^{\epsilon t}+4 c}{4 e^{\epsilon t}} \tag{24}
\end{equation*}
$$

- Returning to the amplitude $a(t)$

$$
\begin{equation*}
z=a^{-2} \leftrightarrow a=z^{-1 / 2} \leftrightarrow a=\frac{1}{\sqrt{\frac{e^{\epsilon t}+4 c}{4 e^{\epsilon t}}}}=\frac{2 e^{\epsilon \frac{t}{2}}}{\sqrt{e^{\epsilon t}+4 c}} \tag{25}
\end{equation*}
$$

van der Pol equation

- c can be determined using the initial condition $a(0)$. For this, consider $t=0$ in Eq. 25 and the following equation holds:

$$
\begin{equation*}
a(0)=\frac{2}{\sqrt{1+4 c}} \leftrightarrow c=\frac{1}{4}\left(\frac{4}{(a(0))^{2}}-1\right) \tag{26}
\end{equation*}
$$

van der Pol equation

- can be determined using the initial condition $a(0)$. For this, consider $t=0$ in Eq. 25 and the following equation holds:

$$
\begin{equation*}
a(0)=\frac{2}{\sqrt{1+4 c}} \leftrightarrow c=\frac{1}{4}\left(\frac{4}{(a(0))^{2}}-1\right) \tag{26}
\end{equation*}
$$

- By substituting Eq. 26 into Eq. 25 one obtains:

$$
\begin{equation*}
a(t)=\frac{2 e^{\epsilon \frac{t}{2}}}{\sqrt{e^{\epsilon t}-1+\frac{4}{(a(0))^{2}}}} \tag{27}
\end{equation*}
$$

van der Pol Equation

- The numerical solution of the van der Pol equation for $\epsilon=0.3, u(0)=0$ and $\dot{u}(0)=0.1$ are shown in the figure below. The analytical solution for the instantaneous oscillation amplitude $a(t)$ given by Eq. 27 is also shown.

van der Pol equation

- Another type of study. The equilibrium point of Eq. 20 is $a_{0}=2$ (assuming $a>0$). We study the stability of this equilibrium point considering $a=a_{0}+\delta a$ (δa is a small disturbance superimposed to the equilibrium point).

van der Pol equation

- Another type of study. The equilibrium point of Eq. 20 is $a_{0}=2$ (assuming $a>0$). We study the stability of this equilibrium point considering $a=a_{0}+\delta a$ (δa is a small disturbance superimposed to the equilibrium point).

$$
\begin{equation*}
\dot{a}=\dot{a}_{0}+\delta \dot{a}=\frac{\epsilon}{8}\left(a_{0}+\delta a\right)\left(4-\left(a_{0}+\delta a\right)^{2}\right)=\frac{\epsilon}{8}\left(4 a_{0}-a_{0}^{3}+\left(-3 a_{0}^{2}+4\right) \delta a\right)+\mathcal{O}(\delta a)^{2} \tag{28}
\end{equation*}
$$

van der Pol equation

- Another type of study. The equilibrium point of Eq. 20 is $a_{0}=2$ (assuming $a>0$). We study the stability of this equilibrium point considering $a=a_{0}+\delta a$ (δa is a small disturbance superimposed to the equilibrium point).

$$
\begin{equation*}
\dot{a}=\dot{a}_{0}+\delta \dot{a}=\frac{\epsilon}{8}\left(a_{0}+\delta a\right)\left(4-\left(a_{0}+\delta a\right)^{2}\right)=\frac{\epsilon}{8}\left(4 a_{0}-a_{0}^{3}+\left(-3 a_{0}^{2}+4\right) \delta a\right)+\mathcal{O}(\delta a)^{2} \tag{28}
\end{equation*}
$$

- Since by definition $\dot{a}_{0}=0$, the linearized version of the above equation is $\delta \dot{a}=-\epsilon \delta a$.

Therefore, δa (the disturbance) goes to zero provided $\epsilon>0$. If we are not interested in the temporal evolution of the amplitude, this stability study suffices and the exact solution $a(t)$ does not need to be obtained.

van der Pol equation

- Another type of study. The equilibrium point of Eq. 20 is $a_{0}=2$ (assuming $a>0$). We study the stability of this equilibrium point considering $a=a_{0}+\delta a$ (δa is a small disturbance superimposed to the equilibrium point).

$$
\begin{equation*}
\dot{a}=\dot{a}_{0}+\delta \dot{a}=\frac{\epsilon}{8}\left(a_{0}+\delta a\right)\left(4-\left(a_{0}+\delta a\right)^{2}\right)=\frac{\epsilon}{8}\left(4 a_{0}-a_{0}^{3}+\left(-3 a_{0}^{2}+4\right) \delta a\right)+\mathcal{O}(\delta a)^{2} \tag{28}
\end{equation*}
$$

- Since by definition $\dot{a}_{0}=0$, the linearized version of the above equation is $\delta \dot{a}=-\epsilon \delta a$.

Therefore, δa (the disturbance) goes to zero provided $\epsilon>0$. If we are not interested in the temporal evolution of the amplitude, this stability study suffices and the exact solution $a(t)$ does not need to be obtained.

- Phase equation:

$$
\begin{equation*}
\dot{\psi}=-\frac{\epsilon}{a 2 \pi} \int_{0}^{2 \pi}\left(1-a^{2} \cos ^{2} \phi\right) \cos \phi(-a \sin \phi) d \phi=0 \tag{29}
\end{equation*}
$$

Hence, the phase ψ does not vary in time. This means that the oscillation frequency is constant and equal to 1 .

Bibliography

- Nayfef, A.H. Perturbation methods. John Wiley \& Sons, 1973.
- Rand, R.H. Lecture Notes on Nonlinear Vibrations, 2005.

