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Objective

Objective

To discuss the averaging method, commonly adopted in the analysis of nonlinear
equations;
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Background on nonlinear differential equations (practical aspects)

Bernoulli’s equation

Bernoulli’s equation is a first-order differential equation with the form:

u̇+ p(t)u = q(t)un (1)

with n > 1. If n = 0 or n = 1, Eq. 1 is linear and the solution is known.

Multiplying both sides of Eq. 1 by u−n(1− n):

(1− n)u−nu̇+ (1− n)p(t)u1−n = (1− n)q(t) (2)

Change of variables: z = u1−n. Hence, we use the chain rule to obtain ż = (1− n)u−nu̇.

Using the above results on Eq. 1, we obtain the following linear equation:

ż + f(t)z = g(t) (3)

where f(t) = (1− n)p(t) and g(t) = (1− n)q(t)

We solve Eq. 3 using an integrating factor µ. For this, we define

µ = µ(t) = exp

{∫
f(t)dt

}
(4)

Notice that
d

dt
(zµ) = żµ+ zµ̇ = żµ+ zµf(t) (5)
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Background on nonlinear differential equations (practical aspects)

Bernoulli’s equation

Multiplying both sides of Eq. 3 by µ leads to:

µż + f(t)zµ = µg(t) ↔
d

dt
(zµ) = µg(t) (6)

The integration of Eq. 6 is easily made:

zµ =

∫
µg(t)dt+ c↔ z =

1

µ

∫
µg(t)dt+

c

µ
(7)

Once z is obtained, u(t) can be obtained recalling that z = u1−n.
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Averaging method

General aspects

We investigate analytical approximated solutions for the nonlinear equation with the form

ü+ u = ϵF (u, u̇, t) (8)

If ϵ = 0, u = a cos(t+ ψ) and u̇ = −a sin(t+ ψ), a and ψ constants that depend on the
initial conditions;

If 0 < ϵ≪ 1, the following ansatz are proposed:

u = a cos(t+ ψ) (9)

u̇ = −a sin(t+ ψ) (10)

with a = a(t) and ψ = ψ(t). Since 0 < ϵ≪ 1 (weak nonlinearities), a(t) and ψ(t) slowly
vary in time.

Taking the derivative of Eq. 9 and substituting into Eq. 10

ȧ cos(t+ψ)−a sin(t+ψ)(1+ψ̇) = −a sin(t+ψ) → ȧ cos(t+ψ)−aψ̇ sin(t+ψ) = 0 (11)

The derivative of Eq. 10 is:

ü = −ȧ sin(t+ ψ)− a(1 + ψ̇) cos(t+ ψ) (12)
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ȧ cos(t+ψ)−a sin(t+ψ)(1+ψ̇) = −a sin(t+ψ) → ȧ cos(t+ψ)−aψ̇ sin(t+ψ) = 0 (11)
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The derivative of Eq. 10 is:
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Averaging method

The averaging method and the slow-flow equations

Using Eqs. 9 and 12 into the original equation (Eq. 8), one obtains:

ȧ sin(t+ ψ) + aψ̇ cos(t+ ψ) = −F (a cos(t+ ψ),−a sin(t+ ψ), t) (13)

Eqs. 12 and 13 define a system of ODEs in the variables ȧ and ψ̇. This system can be
solved for ȧ and ψ̇. The result is given in Eqs. 14 and 15.

ȧ = −F (a cos(t+ ψ),−a sin(t+ ψ), t) sin(t+ ψ) (14)

aψ̇ = −F (a cos(t+ ψ),−a sin(t+ ψ), t) cos(t+ ψ) (15)

Since a and ψ slowly vary (when compared to the “fast” scale given by the natural period
of the linear system T = 2π), the RHS of Eqs. 14 and 15 can be replaced by their
averaged values calculated considering one period of the “fast scale”. This approach leads
to the slow-flow equations, given by Eqs. 16 and 17.

ȧ = −
1

2π

∫ 2π

0
F (a cosϕ,−a sinϕ, t) sinϕdϕ (16)

aψ̇ = −
1

2π

∫ 2π

0
F (a cosϕ,−a sinϕ, t) cosϕdϕ (17)

where ϕ = t+ ψ.
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ȧ sin(t+ ψ) + aψ̇ cos(t+ ψ) = −F (a cos(t+ ψ),−a sin(t+ ψ), t) (13)

Eqs. 12 and 13 define a system of ODEs in the variables ȧ and ψ̇. This system can be
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Averaging method

van der Pol equation

Consider the van der Pol equation ü+ ϵ(u2 − 1)u̇+ u = 0. Putting it on the
nomenclature herein adopted, we can notice that F (u, u̇, t) = ϵ(1− u2)u̇.

Slow-flow equations (assuming that a ̸= 0):

ȧ = −
ϵ

2π

∫ 2π

0
(1− a2 cos2 ϕ) sinϕ(−a sinϕ)dϕ (18)

ψ̇ = −
ϵ

a2π

∫ 2π

0
(1− a2 cos2 ϕ) cosϕ(−a sinϕ)dϕ (19)

The integral in Eq. 18 can be analytically obtained. This leads to:

ȧ =
ϵ

8
a(4− a2) ↔ ȧ−

ϵ

2
a = −

ϵ

8
a3 (20)

The solution of Eq. 20 can be obtained using the presented background. For this, we
recognize the Bernoulli’s equation with p(t) = − ϵ

2
, q(t) = − ϵ

8
and n = 3. The change of

variables is z = a1−3 = a−2.

In the new variable, Eq. 20 is rewritten as:

ż + ϵz =
ϵ

4
(21)
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Averaging method

van der Pol equation

From Eq. 21, we have f(t) = ϵ and g(t) = ϵ
4
;

Integrating factor:

µ = exp

{∫
f(t)dt

}
= eϵt (22)

Auxiliary quantity: ∫
µg(t)dt =

∫
eϵt

ϵ

4
dt =

1

4
eϵt (23)

Using the above result, z(t) reads:

z = z(t) =
1

eϵt
1

4
eϵt +

c

eϵt
=
eϵt + 4c

4eϵt
(24)

Returning to the amplitude a(t)

z = a−2 ↔ a = z−1/2 ↔ a =
1√

eϵt+4c
4eϵt

=
2eϵ

t
2

√
eϵt + 4c

(25)
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Averaging method

van der Pol equation

c can be determined using the initial condition a(0). For this, consider t = 0 in Eq. 25
and the following equation holds:

a(0) =
2

√
1 + 4c

↔ c =
1

4

(
4

(a(0))2
− 1

)
(26)

By substituting Eq. 26 into Eq. 25 one obtains:

a(t) =
2eϵ

t
2√

eϵt − 1 + 4
(a(0))2

(27)
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Averaging method

van der Pol Equation

The numerical solution of the van der Pol equation for ϵ = 0.3, u(0) = 0 and u̇(0) = 0.1
are shown in the figure below. The analytical solution for the instantaneous oscillation
amplitude a(t) given by Eq. 27 is also shown.
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Averaging method

van der Pol equation

Another type of study. The equilibrium point of Eq. 20 is a0 = 2 (assuming a > 0). We
study the stability of this equilibrium point considering a = a0 + δa (δa is a small
disturbance superimposed to the equilibrium point).

ȧ = ȧ0+ δȧ =
ϵ

8
(a0+ δa)(4− (a0+ δa)

2) =
ϵ

8
(4a0−a30+(−3a20+4)δa)+O(δa)2 (28)

Since by definition ȧ0 = 0, the linearized version of the above equation is δȧ = −ϵδa.
Therefore, δa (the disturbance) goes to zero provided ϵ > 0. If we are not interested in
the temporal evolution of the amplitude, this stability study suffices and the exact solution
a(t) does not need to be obtained.

Phase equation:

ψ̇ = −
ϵ

a2π

∫ 2π

0
(1− a2 cos2 ϕ) cosϕ(−a sinϕ)dϕ = 0 (29)

Hence, the phase ψ does not vary in time. This means that the oscillation frequency is
constant and equal to 1.
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