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Objective

@ To discuss the averaging method, commonly adopted in the analysis of nonlinear
equations;
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Background on nonlinear differential equations (practical aspects)

Bernoulli's equation

@ Bernoulli's equation is a first-order differential equation with the form:

a+ p(t)u = q(t)u™ (1)
withn > 1. If n=0o0orn =1, Eq. 1 is linear and the solution is known.
@ Multiplying both sides of Eq. 1 by v~ (1 — n):

(1 —n)u™"a+ (1 = n)p(t)u' =" = (1 - n)q(t) 2
@ Change of variables: z = u!~"™. Hence, we use the chain rule to obtain z = (1 — n)u™".
@ Using the above results on Eq. 1, we obtain the following linear equation:
24 f(1)z = g(t) ®3)
where £(t) = (1 — n)p(t) and g(t) = (1 - n)q(t)
@ We solve Eq. 3 using an integrating factor p. For this, we define
o= tt) = eap { [ syanf (4)
@ Notice that d
—(2p) = 2p+ 2o = Zp + 2pf (1) (5)

dt
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Background on nonlinear differential equations (practical aspects)

Bernoulli's equation

@ Multiplying both sides of Eq. 3 by p leads to:

. d
i+ fWzp = pg(t) & - (21) = ug(t) (6)
@ The integration of Eq. 6 is easily made:

Zu = / pug(t)dt 4+ c < z = i /,ug(t)dt + i (7)

@ Once z is obtained, u(t) can be obtained recalling that z = u!~".
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Averaging method

General aspects

@ We investigate analytical approximated solutions for the nonlinear equation with the form

U+ u=eF(u,u,t) (8)
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General aspects
@ We investigate analytical approximated solutions for the nonlinear equation with the form
i+ u = eF(u,u,t) (8)

@ Ife=0,u=acos(t+1) and & = —asin(t + ¥), a and ¢ constants that depend on the
initial conditions;
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Averaging method

General aspects

@ We investigate analytical approximated solutions for the nonlinear equation with the form

i+ u = eF(u,u,t) (8)

@ Ife=0,u=acos(t+1) and & = —asin(t + ¥), a and ¢ constants that depend on the
initial conditions;

@ If 0 < € K 1, the following ansatz are proposed:
u = acos(t + ) 9)
U= —asin(t + ) (10)

with a = a(t) and ¢ = ¥(¢). Since 0 < € < 1 (weak nonlinearities), a(t) and 1 (t) slowly
vary in time.
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General aspects

@ We investigate analytical approximated solutions for the nonlinear equation with the form
i+ u = eF(u,u,t) (8)
@ Ife=0,u=acos(t+1) and & = —asin(t + ¥), a and ¢ constants that depend on the

initial conditions;

@ If 0 < € K 1, the following ansatz are proposed:

u = acos(t + ) 9)

U= —asin(t + ) (10)
with a = a(t) and ¢ = ¥(¢). Since 0 < € < 1 (weak nonlinearities), a(t) and 1 (t) slowly
vary in time.

@ Taking the derivative of Eq. 9 and substituting into Eq. 10

acos(t+1h) —asin(t+1)(141) = —asin(t+v) — acos(t+1) —arpsin(t+1) =0 (11)
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General aspects

We investigate analytical approximated solutions for the nonlinear equation with the form
i+ u = eF(u,u,t) (8)

If e=0, u=acos(t+ ) and & = —asin(t + ¢), a and v constants that depend on the
initial conditions;

If 0 < e K 1, the following ansatz are proposed:

u = acos(t + ) 9)
U= —asin(t + ) (10)

with a = a(t) and ¢ = ¥(¢). Since 0 < € < 1 (weak nonlinearities), a(t) and 1 (t) slowly
vary in time.

Taking the derivative of Eq. 9 and substituting into Eq. 10
acos(t+1h) —asin(t+1)(141) = —asin(t+v) — acos(t+1) —arpsin(t+1) =0 (11)

The derivative of Eq. 10 is:

i = —asin(t + ) — a(l + ) cos(t + ¥) (12)
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The averaging method and the slow-flow equations

@ Using Egs. 9 and 12 into the original equation (Eq. 8), one obtains:

asin(t 4 ) + ath cos(t + ) = —F(acos(t + ¥), —asin(t + ), t)
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The averaging method and the slow-flow equations

@ Using Egs. 9 and 12 into the original equation (Eq. 8), one obtains:
asin(t 4 ) + ath cos(t + ) = —F(acos(t + ¥), —asin(t + ), t) (13)

@ Egs. 12 and 13 define a system of ODEs in the variables @ and 1/} This system can be
solved for @ and 1. The result is given in Eqs. 14 and 15.

a = —F(acos(t+ ), —asin(t + 1), t)sin(t + ) (14)

ap = —F(acos(t + ), —asin(t + ), t) cos(t + ¢) (15)
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Averaging method

The averaging method and the slow-flow equations

@ Using Egs. 9 and 12 into the original equation (Eq. 8), one obtains:
asin(t 4 ) + ath cos(t + ) = —F(acos(t + ¥), —asin(t + ), t) (13)

@ Egs. 12 and 13 define a system of ODEs in the variables @ and 1/} This system can be
solved for @ and 1. The result is given in Eqs. 14 and 15.

a = —F(acos(t+ ), —asin(t + 1), t)sin(t + ) (14)

ap = —F(acos(t + ), —asin(t + ), t) cos(t + ¢) (15)

@ Since a and 1 slowly vary (when compared to the “fast” scale given by the natural period
of the linear system T' = 27), the RHS of Egs. 14 and 15 can be replaced by their
averaged values calculated considering one period of the “fast scale”. This approach leads
to the slow-flow equations, given by Egs. 16 and 17.

2w
a= _L F(acos ¢, —asin ¢, t) sin pded (16)
21 0
27
ah = 1 F(acos ¢, —asin ¢, t) cos pdp (17)
2w 0

where ¢ =t + 1.
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van der Pol equation

@ Consider the van der Pol equation ii + e(u? — 1)% + u = 0. Putting it on the
nomenclature herein adopted, we can notice that F'(u,,t) = e(1 — u2)a.
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van der Pol equation
@ Consider the van der Pol equation ii + e(u? — 1)% + u = 0. Putting it on the
nomenclature herein adopted, we can notice that F'(u,,t) = e(1 — u2)a.

@ Slow-flow equations (assuming that a # 0):

€ 27

a=—-— (1 — a? cos? ¢) sin ¢p(—asin ¢)do (18)
2 0
27
)= S (1 — a? cos? ¢) cos ¢(—asin ¢)de (19)
a2m Jo
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van der Pol equation
@ Consider the van der Pol equation ii + e(u? — 1)% + u = 0. Putting it on the

nomenclature herein adopted, we can notice that F'(u,,t) = e(1 — u2)a.
@ Slow-flow equations (assuming that a # 0):

€ 27

a=—-— (1 — a? cos? ¢) sin ¢p(—asin ¢)do (18)
2 0
27
)= S (1 — a? cos? ¢) cos ¢(—asin ¢)de (19)
a2m Jo

@ The integral in Eq. 18 can be analytically obtained. This leads to:

€ € €
p=-a(d—a?) o a— —a=——a° 20
a 8a( a®) <> a 2a 8a (20)
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van der Pol equation
@ Consider the van der Pol equation ii + e(u? — 1)% + u = 0. Putting it on the
nomenclature herein adopted, we can notice that F'(u,,t) = e(1 — u2)a.

@ Slow-flow equations (assuming that a # 0):

€ 27

a=—-— (1 — a? cos? ¢) sin ¢p(—asin ¢)do (18)
2 0
27
)= S (1 — a? cos? ¢) cos ¢(—asin ¢)de (19)
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@ The integral in Eq. 18 can be analytically obtained. This leads to:
€ € €
i =-a(4—ad?®) o a——a=—-a® 20
a 8a( a‘) < a 20 g (20)
@ The solution of Eq. 20 can be obtained using the presented background. For this, we

recognize the Bernoulli's equation with p(t) = —5, q(t) = —5 and n = 3. The change of

variables is z = a! 73 = a~2.
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Averaging method

van der Pol equation

Consider the van der Pol equation @ + €(u? — 1)@ + u = 0. Putting it on the
nomenclature herein adopted, we can notice that F'(u,,t) = e(1 — u2)a.

Slow-flow equations (assuming that a # 0):

€ 27

a=—-— (1 — a? cos? ¢) sin ¢p(—asin ¢)do (18)
2 0
27
)= S (1 — a? cos? ¢) cos ¢(—asin ¢)de (19)
a2m Jo

The integral in Eq. 18 can be analytically obtained. This leads to:
€ € €
i =-a(4—ad?®) o a——a=—-a® 20
a 8a( a‘) < a 20 g (20)

The solution of Eq. 20 can be obtained using the presented background. For this, we
recognize the Bernoulli's equation with p(t) = —5, q(t) = —5 and n = 3. The change of
variables is z = a' =2 = a 2.

In the new variable, Eq. 20 is rewritten as:

€
S fez= S 21
itez= (21)

Mazzilli & Franzini (EPUSP) PEF5737 10/11/2023 12/17



Averaging method

van der Pol equation

@ From Eq. 21, we have f(t) = e and g(t) = §;
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Averaging method

van der Pol equation

@ From Eq. 21, we have f(t) =€ and g(t) =
@ Integrating factor:

€.
1

W= exp {/ f(t)dt} = et (22)
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Averaging method

van der Pol equation

@ From Eq. 21, we have f(t) = e and g(t) = §;
@ Integrating factor:
W= exrp {/ f(t)dt} = et (22)
@ Auxiliary quantity:
1
t)dt = [ etSdt = —et 23
[ ooy = [ et Sar— 1 (23)
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Averaging method

van der Pol equation

@ From Eq. 21, we have f(t) = e and g(t) = §;
@ Integrating factor:
W= exrp {/ f(t)dt} = et (22)
@ Auxiliary quantity:
1
tydt = [ et Sdt = —et 23
[ ooy = [ et Sar— 1 (23)
@ Using the above result, z(t) reads:
11, c et +4c
z:z(t)ZE?Zee +§=? (24)
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Averaging method

van der Pol equation

@ From Eq. 21, we have f(t) =€ and g(t) =
@ Integrating factor:

€.
1

= exp {/f(t)dt} = et
/,ug(t)dt = /eétidt = ie“

@ Using the above result, z(t) reads:

@ Auxiliary quantity:

11, c et +4c
== A T e
@ Returning to the amplitude a(t)
t
1 2e€2
z=a2wa=2""2"a= = c
\/e“+4c Vet + 4c
4ect
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Averaging method

van der Pol equation

@ c can be determined using the initial condition a(0). For this, consider t = 0 in Eq. 25
and the following equation holds:

2

1 4
““’Wﬁ“:ﬂm*) (26)
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Averaging method

van der Pol equation

@ c can be determined using the initial condition a(0). For this, consider t = 0 in Eq. 25
and the following equation holds:

2 1 4
Virk 7T ((a<0>>2 - 1) (26)

@ By substituting Eq. 26 into Eq. 25 one obtains:

a(0) =

t
2e2

et 4
Ve 1 Gope

a(t) = (27)
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Averaging method

van der Pol Equation
@ The numerical solution of the van der Pol equation for e = 0.3, u(0) = 0 and u(0) = 0.1
are shown in the figure below. The analytical solution for the instantaneous oscillation

amplitude a(t) given by Eq. 27 is also shown.
2t S R S
1 //
= oR
S
_1 [
-2 r
0 20 40 60 80 100 120
t
10/11/2023

PEF5737
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Averaging method

van der Pol equation

@ Another type of study. The equilibrium point of Eq. 20 is ap = 2 (assuming a > 0). We

study the stability of this equilibrium point considering a = ag + da (da is a small
disturbance superimposed to the equilibrium point).
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van der Pol equation

@ Another type of study. The equilibrium point of Eq. 20 is ap = 2 (assuming a > 0). We
study the stability of this equilibrium point considering a = ag + da (da is a small
disturbance superimposed to the equilibrium point).
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Averaging method

van der Pol equation

@ Another type of study. The equilibrium point of Eq. 20 is ap = 2 (assuming a > 0). We
study the stability of this equilibrium point considering a = ag + da (da is a small
disturbance superimposed to the equilibrium point).

4= ao+da = g(ao +8a)(4— (ap +0a)?) = §(4a0 —ad + (~3a2 +4)6a) + O(da)? (28)

@ Since by definition ag = 0, the linearized version of the above equation is da = —eda.
Therefore, da (the disturbance) goes to zero provided € > 0. If we are not interested in
the temporal evolution of the amplitude, this stability study suffices and the exact solution
a(t) does not need to be obtained.
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Averaging method

van der Pol equation

@ Another type of study. The equilibrium point of Eq. 20 is ap = 2 (assuming a > 0). We
study the stability of this equilibrium point considering a = ag + da (da is a small
disturbance superimposed to the equilibrium point).

4= ao+da = g(ao +8a)(4— (ap +0a)?) = §(4a0 —ad + (~3a2 +4)6a) + O(da)? (28)

@ Since by definition ag = 0, the linearized version of the above equation is da = —eda.
Therefore, da (the disturbance) goes to zero provided € > 0. If we are not interested in
the temporal evolution of the amplitude, this stability study suffices and the exact solution
a(t) does not need to be obtained.

@ Phase equation:

27
)= - (1 — a2 cos? ¢) cos p(—asin ¢)de = 0 (29)
a2rm Jo

Hence, the phase 1 does not vary in time. This means that the oscillation frequency is
constant and equal to 1.
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