us denote by $\epsilon'(\mu, \delta) > 0$ the minimum of the continuous nondecreasing function $\gamma(||x||)$ on the compact set $\nu(\mu) \le ||x|| \le \epsilon(\delta)$. Let us define

$$T(\mu, \delta) = \frac{\beta(\delta)}{\epsilon'(\mu, \delta)} > 0$$

Suppose that $\|\phi(t; \mathbf{x}_0, t_0)\| > \nu$ over the time interval $t_0 \le t \le t_1 = t_0 + T$. Then we have

$$0 < \alpha(\nu) \le V(\phi(t_1; \mathbf{x}_0, t_0), t_1) \le V(\mathbf{x}_0, t_0) - (t_1 - t_0)\epsilon' \le \beta(\delta) - T\epsilon' = 0$$

which is a contradiction Hence, for some t in the interval $t_0 \le t \le t_1$, such as an arbitrary t_2 , we have

$$\|\mathbf{x}_2\| = \|\mathbf{\phi}(t_2; \mathbf{x}_0, t_0)\| = \nu$$

Therefore.

$$\alpha(\|\phi(t; \mathbf{x}_2, t_2)\|) < V(\phi(t; \mathbf{x}_2, t_2), t) \le V(\mathbf{x}_2, t_2) \le \beta(\nu) < \alpha(\mu)$$

for all $t \ge t_2$. Hence,

$$\|\phi(t;\mathbf{x}_0,t_0)\|<\mu$$

for all $t \ge t_0 + \Gamma(\mu, \delta) \ge t_2$, which proves uniform asymptotic stability Since $\alpha(\|\mathbf{x}\|) \to \infty$ as $\|\mathbf{x}\| \to \infty$, there exists for arbitrarily large δ a constant $\epsilon(\delta)$ such that $\beta(\delta) < \alpha(\epsilon)$. Moreover, since $\epsilon(\delta)$ does not depend on t_0 , the solution $\phi(t; \mathbf{x}_0, t_0)$ is uniformly bounded. We thus have proved uniform asymptotic stability in the large

Problem A-5-19

In z plane analysis, an $n \times n$ matrix G whose n eigenvalues are less than unity in magnitude is called a stable matrix. Consider an $n \times n$ Hermitian (or real symmetric) matrix P that satisfies the following matrix equation:

$$G*PG - P = -Q (5-137)$$

where Q is a positive definite $n \times n$ Hermitian (or real symmetric) matrix. Prove that if matrix G is a stable matrix then a matrix P that satisfies Equation (5-137) is unique and is positive definite. Prove that matrix P can be given by

$$\mathbf{P} = \sum_{k=0}^{\infty} (\mathbf{G}^*)^k \mathbf{Q} \mathbf{G}^k$$

Prove also that although the right-hand side of this last equation is an infinite series the matrix is finite. Finally, prove that if Equation (5-137) is satisfied by positive definite matrices P and Q, then matrix G is a stable matrix. Assume that all eigenvalues of G are distinct and all eigenvectors of G are linearly independent.

Solution Let us assume that there exist two matrices P_1 and P_2 that satisfy Equation (5-137) Then

$$G*P_1G - P_1 = -Q (5-138)$$

and

$$G*P_2G - P_2 = -Q (5-139)$$

By subtracting Equation (5-139) from Equation (5-138), we obtain

$$G*\hat{P}G - \hat{P} = 0 \tag{5-140}$$