Solution To prove uniform asymptotic stability in the large, we need to prove the following:

- 1. The origin is uniformly stable.
- 2. Every solution is uniformly bounded.
- 3. Every solution converges to the origin when  $t \to \infty$  uniformly in  $t_0$  and  $||x_0|| \le \delta$ , where  $\delta$  is fixed but arbitrarily large. That is, given two real numbers  $\delta > 0$  and  $\mu > 0$ , there is a real number  $T(\mu, \delta)$  such that

$$\|\mathbf{x}_0\| \leq \delta$$

implies

$$\|\phi(t; \mathbf{x}_0, t_0)\| \le \mu$$
, for all  $t \ge t_0 + T(\mu, \delta)$ 

where  $\phi(t; x_0, t_0)$  is the solution to the given differential equation

Since  $\beta$  is continuous and  $\beta(0) = 0$ , we can take a  $\delta(\epsilon) > 0$  such that  $\beta(\delta) < \alpha(\epsilon)$  for any  $\epsilon > 0$ . Figure 5-10 shows the curves  $\alpha(||x||)$ ,  $\beta(||x||)$ , and V(x, t). Noting that

$$V(\phi(t; \mathbf{x}_0, t_0), t) - V(\mathbf{x}_0, t_0) = \int_{t_0}^{t} \dot{V}(\phi(\tau; \mathbf{x}_0, t_0), \tau) d\tau < 0, \qquad t > t_0$$

if  $||\mathbf{x}_0|| \leq \delta$ ,  $t_0$  being arbitrary, we have

$$\alpha(\epsilon) > \beta(\delta) \ge V(\mathbf{x}_0, t_0) \ge V(\phi(t; \mathbf{x}_0, t_0), t) \ge \alpha(\|\phi(t; \mathbf{x}_0, t_0)\|)$$

for all  $t \ge t_0$ . Since  $\alpha$  is nondecreasing and positive, this implies that

$$\|\phi(t; \mathbf{x}_0, t_0)\| < \epsilon$$
, for  $t \ge t_0$ ,  $\|\mathbf{x}_0\| \le \delta$ 

Hence, we have shown that for each real number  $\epsilon > 0$  there is a real number  $\delta > 0$  such that  $\|\mathbf{x}_0\| \le \delta$  implies  $\|\phi(t; \mathbf{x}_0, t_0)\| \le \epsilon$  for all  $t \ge t_0$  Thus, we have proved uniform stability.

Next, we shall prove that  $\|\phi(t; \mathbf{x}_0, t_0)\| \to 0$  when  $t \to \infty$  uniformly in  $t_0$  and  $\|\mathbf{x}_0\| \le \delta$  Let us take any  $0 < \mu < \|\mathbf{x}_0\|$  and find a  $\nu(\mu) > 0$  such that  $\beta(\nu) < \alpha(\mu)$ . Let



Figure 5-10 Curves  $\alpha(||x||)$ ,  $\beta(||x||)$ , and V(x,t)