
9 Two-Variable Regression Models

OVERVIEW

Regression models are the workhorses of data analysts in a wide range of

fields in the social sciences. We begin this chapter with a discussion of fitting

a line to a scatter plot of data, and then we discuss the additional inferences

that can be made when we move from a correlation coefficient to a two-

variable regression model. We include discussions of measures of goodness-

of-fit and on the nature of hypothesis testing and statistical significance in

regression models. Throughout this chapter, we present important concepts

in text, mathematical formulae, and graphical illustrations. This chapter con-

cludes with a discussion of the assumptions of the regression model and

minimal mathematical requirements for estimation.

9.1 TWO-VARIABLE REGRESSION

In Chapter 8 we introduced three different bivariate hypothesis tests. In
this chapter we add a fourth, two-variable regression. This is an important
first step toward the multiple regression model – which is the topic of
Chapter 10 – in which we are able to “control for” another variable (Z) as
we measure the relationship between our independent variable of interest
(X) and our dependent variable (Y). It is crucial to develop an in-depth
understanding of two-variable regression before moving to multiple regres-
sion. In the sections that follow, we begin with an overview of the two-
variable regression model, in which a line is fit to a scatter plot of data. We
then discuss the uncertainty associated with the line and how we use vari-
ous measures of this uncertainty to make inferences about the underlying
population. This chapter concludes with a discussion of the assumptions
of the regression model and the minimal mathematical requirements for
model estimation.
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9.2 FITTING A LINE: POPULATION ⇔ SAMPLE

The basic idea of two-variable regression is that we are fitting the “best”
line through a scatter plot of data. This line, which is defined by its
slope and y-intercept, serves as a statistical model of reality. In this sense,
two-variable regression is very different from the three hypothesis-testing
techniques that we introduced in Chapter 8; although those techniques
allow hypothesis testing, they do not produce a statistical model. You may
remember from a math course the formula for a line expressed as

Y = mX + b,

where b is the y-intercept and m is the slope – often explained as the “rise-
over-run” component of the line formula. For a one-unit increase (run)
in X, m is the corresponding amount of rise in Y (or fall in Y, if m is
negative). Together these two elements (m and b) are described as the line’s
parameters.1 You may remember exercises from junior high or high school
math classes in which you were given the values of m and b and then
asked to draw the resulting line on graph paper. Once we know these two
parameters for a line, we can draw that line across any range of X values.2

In a two-variable regression model, we represent the y-intercept
parameter by the Greek letter alpha (α) and the slope parameter by the
Greek letter beta (β).3 As foreshadowed by all of our other discussions of
variables, Y is the dependent variable and X is the independent variable.
Our theory about the underlying population in which we are interested is
expressed in the population regression model:

Yi = α + βXi + ui.

Note that in this model there is one additional component, ui, which does
not correspond with what we are used to seeing in line formulae from
math classes. This term is the stochastic or “random” component of our
dependent variable. We have this term because we do not expect all of our
data points to line up perfectly on a straight line. This corresponds directly
with our discussion in earlier chapters about the probabilistic (as opposed
to deterministic) nature of causal theories about political phenomena. We
are, after all, trying to explain processes that involve human behavior.
Because human beings are complex, there is bound to be a fair amount

1 The term “parameter” is a synonym for “boundary” with a more mathematical connota-
tion. In the description of a line, the parameters (m and b in this case) are fixed whereas
the variables (X and Y in this case) vary.

2 If this is not familiar to you, or if you merely want to refresh your memory, you may want
to complete Exercise 1 at the end of this chapter before you continue reading.

3 Different textbooks on regression use slightly different notation for these parameters, so
it is important not to assume that all textbooks use the same notation when comparing
across them.
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of random noise in our measures of their behavior. Thus we think about
the values of our dependent variable Yi as having a systematic component,
α + βXi, and a stochastic component, ui.

As we have discussed, we rarely work with population data. Instead,
we use sample data to make inferences about the underlying population of
interest. In two-variable regression, we use information from the sample
regression model to make inferences about the unseen population regres-
sion model. To distinguish between these two, we place hats (ˆ) over terms
in the sample regression model that are estimates of terms from the unseen
population regression model. Because they have hats, we can describe α̂

and β̂ as being parameter estimates. These terms are our best guesses of
the unseen population parameters α and β. Thus the sample regression
model is written as

Yi = α̂ + β̂Xi + ûi.

Note that, in the sample regression model, α, β, and ui get hats,
but Yi and Xi do not. This is because Yi and Xi are values for cases
in the population that ended up in the sample. As such, Yi and Xi are
values that are measured rather than estimated. We use them to estimate
α, β, and the ui values. The values that define the line are the estimated
systematic components of Y. For each Xi value, we use α̂ and β̂ to calculate
the predicted value of Yi, which we call Ŷi, where

Ŷi = α̂ + β̂Xi.

This can also be written in terms of expectations,

E(Y|Xi) = Ŷi = α̂ + β̂Xi,

which means that the expected value of Y given Xi (or Ŷi) is equal to
our formula for the two-variable regression line. So we can now talk about
each Yi as having an estimated systematic component, Ŷi, and an estimated
stochastic component, ûi. We can thus write our model as

Yi = Ŷi + ûi,

and we can rewrite this in terms of ûi to get a better understanding of the
estimated stochastic component:

ûi = Yi − Ŷi.

From this formula, we can see that the estimated stochastic component
(ûi) is equal to the difference between the actual value of the dependent
variable (Yi) and the predicted value of the dependent variable from our
two-variable regression model. Another name for the estimated stochastic
component is the residual. “Residual” is another word for “leftover,” and
this is appropriate, because ûi is the leftover part of Yi after we have drawn
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the line defined by Ŷi = α̂ + β̂Xi. Another way to refer to ûi, which follows
from the formula ûi = Yi − Ŷi, is to call it the sample error term. Because
ûi is an estimate of ui, a corresponding way of referring to ui is to call it
the population error term.

9.3 WHICH LINE FITS BEST? ESTIMATING THE REGRESSION LINE

Consider the scatter plot of data in Figure 9.1. Our task is to draw
a straight line that describes the relationship between our independent
variable X and our dependent variable Y. By “straight line,” we mean a
line with a single slope that does not change as we move from left to right
in our figure. So, for instance, consider the line that we’ve drawn through
this plot of data in Figure 9.2. It certainly meets the criteria of having a
single slope that doesn’t change. In fact, we can see from the figure that the
formula for this line is Yi = 51 − 0.6Xi. But, if we look around Figure 9.2,
we can see that there are a lot of points that this line misses by a long
distance. In fact, we can see a pattern: the points that are furthest from the
line in Figure 9.2 are all in the lower-left and upper-right quadrants. This
is because, as we know from our work with these same data in Chapter 8,
the relationship between growth and presidential vote is positive.

So, how do we draw a better line? We clearly want to draw a line
that comes as close as possible to the cases in our scatter plot of data. And
because the data have a general pattern from lower-left to upper-right, we
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Figure 9.1 Scatter plot of change in GDP and incumbent-party vote share
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Yi= 51 – 0.6 Xi
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Figure 9.2 Scatter plot of change in GDP and incumbent-party vote share with a
negatively sloped line

A: Yi= 50.21 + 1.15Xi

B: Yi= 51.45 + 0.62Xi

C: Yi= 52.01 + 0.25Xi
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Figure 9.3 Three possible regression lines

know that our slope will be positive. In Figure 9.3, we have drawn three
lines with positive slopes – labeled A, B, and C – through the scatter plot of
growth and vote and written the corresponding parametric formula above
each line on the right-hand side of the figure. So, how do we decide which
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Table 9.1 Measures of total residuals for three different lines

Line Parametric formula
∑n

i=1 |ûi|
∑n

i=1 û2
i

A Yi = 50.21 + 1.15Xi 150.18 1085.58
B Yi = 51.45 + 0.62Xi 139.17 792.60
C Yi = 52.01 + 0.25Xi 148.22 931.68

line “best” fits the data that we see in our scatter plot of Xi and Yi values?
Because we are interested in explaining our dependent variable, we want
our residual values, ûi, which are vertical distances between each Yi and
the corresponding Ŷi, to be as small as possible. But, because these vertical
distances come in both positive and negative values, we cannot just add
them up for each line and have a good summary of the “fit” between each
line and our data.4

So we need a method of assessing the fit of each line in which the pos-
itive and negative residuals do not cancel each other out. One possibility is
to add together the absolute value of the residuals for each line:

n∑
i=1

|ûi|.

Another possibility is to add together the squared value of each of the
residuals for each line:

n∑
i=1

û2
i .

With either choice, we want to choose the line that has the smallest
total value. Table 9.1 presents these calculations for the three lines in
Figure 9.3.

From both calculations, we can see that line B does a better job of
fitting the data than lines A and C. Although the absolute-value calcula-
tion is just as valid as the squared residual calculation, statisticians have
tended to prefer the latter (both methods identify the same line as being
“best”). Thus we draw a line that minimizes the sum of the squared resid-
uals

∑n
i=1 û2

i . This technique for estimating the parameters of a regression
model is known as ordinary least-squares (OLS) regression. For a two-
variable OLS regression, the formulae for the parameter estimates of the
line that meet this criterion are5

4 Initially, we might think that we would want to minimize the sum of our residuals. But
the line that minimizes the sum of the residuals is actually a flat line parallel to the x-axis.
Such a line does not help us to explain the relationship between X and Y.

5 The formulae for OLS parameter estimates come from setting the sum of squared residuals
equal to zero and using differential calculus to solve for the values of β̂ and α̂.
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β̂ =
∑n

i=1(Xi − X̄)(Yi − Ȳ)∑n
i=1(Xi − X̄)2

,

α̂ = Ȳ − β̂X̄.

If we examine the formula for β̂, we can see that the numerator is the
same as the numerator for calculating the covariance between X and Y.
Thus the logic of how each case contributes to this formula, as displayed
in Figure 9.3, is the same. The denominator in the formula for β̂ is the sum
of squared deviations of the Xi values from the mean value of X (X̄). Thus,
for a given covariance between X and Y, the more (less) spread out X is,
the less (more) steep the estimated slope of the regression line.

One of the mathematical properties of OLS regression is that the line
produced by the parameter estimates goes through the sample mean values
of X and Y. This makes the estimation of α̂ fairly simple. If we start out at
the point defined by the mean value of X and the mean value of Y and then
use the estimated slope (β̂) to draw a line, the value of X where Y equals
zero is α̂. Figure 9.4 shows the OLS regression line through the scatter plot
of data. We can see from this figure that the OLS regression line passes
through the point where the line depicting the mean value of X meets the
line depicting the mean value of Y.

Using the data presented in Table 8.12 in the preceding formulae, we
have calculated α̂ = 51.45 and β̂ = 0.62, making our sample regression
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Figure 9.4 OLS regression line through scatter plot with mean-delimited quadrants
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line formula Y = 51.45+0.62X. If we think about what this tells us about
politics, we first need to remember that Y is the incumbent party’s share
of the major party vote, and X is the real per capita growth in GDP. So, if
our measure of growth equals zero, we would expect the incumbent party
to obtain 51.45 percent of the vote. If growth is not equal to zero, we
multiply the value of growth by 0.62 and add (or subtract, if growth is
negative) the result to 51.45 to obtain our best guess of the value of the
vote. Moving to the right or the left along our sample regression line in
Figure 9.4 means that we are increasing or decreasing the value of growth.
For each right–left movement, we see a corresponding rise or decline in the
value of the expected level of incumbent vote. If we go back to the logic of
rise-over-run, our estimated slope parameter answers the question of how
much change in Y we expect to see from a one-unit increase in X. In other
words, a one-unit increase in our independent variable, growth, is expected
to lead to a 0.62 increase in our dependent variable, incumbent vote.6

We can tell from Figure 9.4 that there are points that lie above and
below our regression line. We therefore know that our model does not
perfectly fit the real world. In the next section we discuss a series of infer-
ences that we can make about the uncertainty associated with our sample
regression model.

9.4 MEASURING OUR UNCERTAINTY ABOUT THE OLS
REGRESSION LINE

As we have seen in Chapters 7 and 8, inferences about the underlying
population of interest from sample data are made with varying degrees of
uncertainty. In Chapter 8 we discussed the role of p-values in expressing
this uncertainty. With an OLS regression model, we have several different
ways in which to quantify our uncertainty. We discuss these measures
in terms of the overall fit between X and Y first and then discuss the
uncertainty about individual parameters. Our uncertainty about individual
parameters is used in the testing of our hypotheses. Throughout this
discussion, we refer to our example of fitting a regression line to our data
on US presidential elections in order to test the theory of economic voting.
Numerical results from Stata for this model are displayed in Figure 9.5.
These numerical results can be partitioned into three separate areas. The

6 Be sure not to invert the independent and dependent variables in describing results. It is
not correct to interpret these results to say “for every 0.62-point change in growth rate in
the US economy, we should expect to see, on average, an extra 1 percent in vote percentage
for the incumbent party in presidential elections.” Be sure that you can see the difference
between those descriptions.
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Source SS

378.957648

792.580681
1 378.957648
34 23.3111965

35 33.47252371171.53833

Coef. Std. Err. t P>|t| [95% Conf. Interval]

df MS Number of obs   =
F(1, 34)        =

Prob > F        =
R-squared       =
Adj R-squared   =
Root MSE        =

16.26

0.0003
0.3235
0.3036
4.8282

36

. reg inc_vote g

Model

Residual

Total

inc_vote

g
_cons

.624814
51.44865

.1549664

.8133462
4.03

63.26
0.000
0.000

.3098843
49.79573

.9397437
53.10157

Figure 9.5 Stata results for two-variable regression model between “vote” (inc vote)
and “growth” (g): inc vote = α + β × g

table in the upper-left corner of Figure 9.5 gives us measures of the
variation in our model. The set of statistics listed in the upper-right corner
of Figure 9.5 gives us a set of summary statistics about the entire model.
Across the bottom of Figure 9.5 we get a table of statistics on the model’s
parameter estimates. The name of the dependent variable, “inc vote,” is
displayed at the top of this table. Underneath we see the name of our inde-
pendent variable, “g,” which is short for “growth,” and “ cons,” which
is short for “constant” (another name for the y-intercept term), which we
also know as α̂. Moving to the right in the table at the bottom of Figure 9.5,
we see that the next column heading here is “Coef.,” which is short
for “coefficient,” which is another name for parameter estimate. In this
column we see the values of β̂ and α̂, which are 0.62 and 51.45 when we
round these results to the second decimal place.7

9.4.1 Goodness-of-Fit: Root Mean-Squared Error

Measures of the overall fit between a regression model and the dependent
variable are called goodness-of-fit measures. One of the most intuitive of
these measures (despite its name) is root mean-squared error (root MSE).
This statistic is sometimes referred to as the standard error of the regression
model. It provides a measure of the average accuracy of the model in the
metric of the dependent variable. This statistic (“Root MSE” in Figure 9.5)
is calculated as

root MSE =
√∑n

i=1 û2
i

n
.

7 The choice of how many decimal places to report should be decided based on the value of
the dependent variable. In this case, because our dependent variable is a vote percentage,
we have chosen the second decimal place. Political scientists usually do not report election
results beyond the first two decimal places.
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The squaring and then taking the square root of the quantities in this
formula are done to adjust for the fact that some of our residuals will be
positive (points for which Yi is above the regression line) and some will be
negative (points for which Yi is below the regression line). Once we realize
this, we can see that this statistic is basically the average distance between
the data points and the regression line.

From the numeric results depicted in Figure 9.5, we can see that the
root MSE for our two-variable model of incumbent-party vote is 4.83.
This value is found on the sixth line of the column of results on the right-
hand side of Figure 9.5. It indicates that, on average, our model is off by
4.83 points in predicting the percentage of the incumbent party’s share
of the major party vote. It is worth emphasizing that the root MSE is
always expressed in terms of the metric in which the dependent variable is
measured. The only reason why this particular value corresponds to a per-
centage is because the metric of the dependent variable is vote percentage.

YOUR TURN: Evaluating a root MSE

In your opinion, is that root MSE “good”? Why or why not?

9.4.2 Goodness-of-Fit: R-Squared Statistic

Another commonly used indicator of the model’s goodness-of-fit is the
R-squared statistic (typically written as R2). The R2 statistic ranges
between zero and one, indicating the proportion of the variation in the
dependent variable that is accounted for by the model. The basic idea of
the R2 statistic is shown in Figure 9.6, which is a Venn diagram depiction

Y

X
a

b

c

Figure 9.6 Venn diagram of variance and covariance for X and Y
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of variation in X and Y as well as covariation between X and Y. The idea
behind this diagram is that we are depicting variation in each variable
with a circle. The larger the circle for a particular variable, the larger the
variation for that variable. In this figure, the variation in Y consists of
two areas, a and b, and variation in X consists of areas b and c. Area a
represents variation in Y that is not related to variation in X, and area
b represents covariation between X and Y. In a two-variable regression
model, area a is the residual or stochastic variation in Y. The R2 statistic
is equal to area b over the total variation in Y, which is equal to the sum
of areas a and b. Thus smaller values of area a and larger values of area b
lead to a larger R2 statistic. The formula for total variation in Y (areas a
and b in Figure 9.6), also known as the total sum of squares (TSS), is

TSS =
n∑

i=1

(Yi − Ȳ)2.

The formula for the residual variation in Y, area a that is not accounted
for by X, called the residual sum of squares (RSS), is

RSS =
n∑

i=1

û2
i .

Once we have these two quantities, we can calculate the R2 statistic as

R2 = 1 − RSS
TSS

.

The formula for the other part of TSS that is not the RSS, called the model
sum of squares (MSS), is

MSS =
n∑

i=1

(Ŷi − Ȳ)2.

This can also be used to calculate R2 as

R2 = MSS
TSS

.

From the numeric results depicted in Figure 9.5, we can see that the R2

statistic for our two-variable model of incumbent-party vote is 0.324. This
number appears on the fourth line of the column of results on the right-
hand side of Figure 9.5. It indicates that our model accounts for about
32 percent of the variation in the dependent variable. We can also see in
Figure 9.5 the values for the MSS, RSS, and TSS under the column labeled
“SS” in the table in the upper-left-hand corner.
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YOUR TURN: Evaluating an R-squared statistic

In your opinion, is that R-squared “good”? Why or why not?

9.4.3 Is That a “Good” Goodness-of-Fit?

A logical question to ask when we see a measure of a model’s goodness-of-
fit is “What is a good or bad value for the root MSE and/or R2?” This is not
an easy question to answer. In part, the answer depends on what you are
trying to do with the model. If you are trying to predict election outcomes,
saying that you can predict the outcome with a typical error of 4.83 may
not seem very good. After all, most presidential elections are fairly close
and, in the scheme of things, 4.83 percent is a lot of votes. In fact, we
can see that in 21 of the 36 elections that we are looking at, the winning
margin was less than 4.83 percent, making over one-half of our sample
of elections too close to call with this model. On the other hand, looking
at this another way, we can say that we are able to come this close and,
in terms of R2, explain just over 32 percent of the variation in incumbent
vote from 1876 to 2016 with just one measure of the economy. When
we start to think of all of the different campaign strategies, personalities,
scandals, wars, and everything else that is not in this simple model, this
level of accuracy is rather impressive. In fact, we would suggest that this
tells us something pretty remarkable about politics in the United States –
the economy is massively important.

9.4.4 Uncertainty about Individual Components of the Sample
Regression Model

Before we go through this section, we want to warn you that there are
a lot of formulae in it. To use a familiar metaphor, as you go through the
formulae in this section it is important to focus on the contours of the forest
and not to get caught up in the details of the many trees that we will see
along the way. Instead of memorizing each formula, concentrate on what
makes the overall values generated by these equations larger or smaller.

A crucial part of the uncertainty in OLS regression models is the
degree of uncertainty about individual estimates of population parame-
ter values from the sample regression model. We can use the same logic
that we discussed in Chapter 7 for making inferences from sample values
about population values for each of the individual parameters in a sample
regression model.

One estimate that factors into the calculations of our uncertainty
about each of the population parameters is the estimated variance of the
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population stochastic component, ui. This unseen variance, σ 2, is estimated
from the residuals (ûi) after the parameters for the sample regression model
have been estimated by the following formula:

σ̂ 2 =
∑n

i=1 û2
i

n − 2
.

Looking at this formula, we can see two components that play a role in
determining the magnitude of this estimate. The first component comes
from the individual residual values (ûi). Remember that these values (cal-
culated as ûi = Yi − Ŷi) are the vertical distance between each observed
Yi value and the regression line. The larger these values are, the further
the individual cases are from the regression line. The second component of
this formula comes from n, the sample size. By now, you should be familiar
with the idea that the larger the sample size, the smaller the variance of the
estimate. This is the case with our formula for σ̂ 2.

Once we have estimated σ̂ 2, the variance and standard errors for
the slope parameter estimate (β̂) are then estimated from the following
formulae:

var(β̂) = σ̂ 2∑n
i=1(Xi − X̄)2

,

se(β̂) =
√

var(β̂) = σ̂√∑n
i=1(Xi − X̄)2

.

Both of these formulae can be broken into two components that deter-
mine their magnitude. In the numerator, we find σ̂ values. So the larger
these values are, the larger will be the variance and standard error of the
slope parameter estimate. This makes sense, because the farther the points
representing our data are from the regression line, the less confidence we
will have in the value of the slope. If we look at the denominator in
this equation, we see the term

∑n
i=1(Xi − X̄)2, which is a measure of the

variation of the Xi values around their mean (X̄). The greater this variation,
the smaller will be the variance and standard error of the slope parameter
estimate. This is an important property; in real-world terms it means that
the more variation we have in X, the more precisely we will be able to
estimate the relationship between X and Y.

The variance and standard errors for the intercept parameter estimate
(α̂) are then estimated from the following formulae:

var(α̂) = σ̂ 2 ∑n
i=1 X2

i

n
∑n

i=1(Xi − X̄)2
,

se(α̂) =
√

var(α̂) =
√√√√ σ̂ 2

∑n
i=1 X2

i

n
∑n

i=1(Xi − X̄)2
.
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The logic for taking apart the components of these formulae is slightly
more complicated because we can see that the sum of the squared Xi values
appears in the numerator. We can see, however, that the denominator
contains the measure of the variation of the Xi values around their mean
(X̄) multiplied by n, the number of cases. Thus the same basic logic holds
for these terms: The larger the ûi values are, the larger will be the variance
and standard error of the intercept parameter estimate; and the larger
the variation of the Xi values around their mean, the smaller will be the
variance and standard error of the intercept parameter estimate.

Less obvious – but nevertheless true – from the preceding formulae is
the fact that larger sample sizes will also produce smaller standard errors.8

So, just as we learned about the effects of sample size when calculating
the standard error of the mean in Chapter 7, there is an identical effect
here. Larger sample sizes will, other things being equal, produce smaller
standard errors of our estimated regression coefficients.

9.4.5 Confidence Intervals about Parameter Estimates

In Chapter 7 we discussed how we use the normal distribution (supported
by the central limit theorem) to estimate confidence intervals for the unseen
population mean from sample data. We go through the same logical steps
to estimate confidence intervals for the unseen parameters from the pop-
ulation regression model by using the results from the sample regression
model. The formulae for estimating confidence intervals are

β̂ ± [t × se(β̂)],

α̂ ± [t × se(α̂)],

where the value for t is determined from the t-table in Appendix B. So,
for instance, if we want to calculate a 95 percent confidence interval,
this means that we are looking down the column for 0.025.9 Once we
have determined the appropriate column, we select our row based on the
number of degrees of freedom. The number of degrees of freedom for
this t-test is equal to the number of observations (n) minus the number
of parameters estimated (k). In the case of the regression model presented
in Figure 9.5, n = 36 and k = 2, so our degrees of freedom equal 34.
Looking down the column for 0.025 and across the row for 30 in the
t-table, we can see that t = 2.042. However, because we have 34 degrees

8 It is true because the numerator of the expression contains σ̂ , which, as seen previously,
has the sample size n in its denominator.

9 To understand this, think back to Chapter 7, where we introduced confidence intervals.
A 95 percent confidence interval would mean that would leave a total of 5 percent in the
tails. Because there are two tails, we are going to use the 0.025 column.
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of freedom, the t-values that leave 0.025 in each tail is 2.032.10 Thus our
95 percent confidence intervals are

β̂ ± [t × se(β̂)] = 0.624814 ± (2.032 × 0.1549664) = 0.31 to 0.94,

α̂ ± [t × se(α̂)] = 51.44865 ± (2.032 × 0.8133462) = 49.80 to 53.10.

These values are displayed in the lower right-hand corner of the table at
the bottom of Figure 9.5.

The traditional approach to hypothesis testing with OLS regression
is that we specify a null hypothesis and an alternative hypothesis and
then compare the two. Although we can test hypotheses about either the
slope or the intercept parameter, we are usually more concerned with tests
about the slope parameter. In particular, we are usually concerned with
testing the hypothesis that the population slope parameter is equal to zero.
The logic of this hypothesis test corresponds closely with the logic of the
bivariate hypothesis tests introduced in Chapter 8. We observe a sample
slope parameter, which is an estimate of the population slope. Then, from
the value of this parameter estimate, the confidence interval around it, and
the size of our sample, we evaluate how likely it is that we observe this
sample slope if the true but unobserved population slope is equal to zero.
If the answer is “very likely,” then we conclude that the population slope
is equal to zero.

To understand why we so often focus on a slope value of zero, think
about what this corresponds to in the formula for a line. Remember that
the slope is the change in Y from a one-unit increase in X. If that change is
equal to zero, resulting in a flat line, then there is no covariation between
X and Y, and we have failed to clear our third causal hurdle.

These types of tests are either one- or two-tailed. Most statistical
computer programs report the results from two-tailed hypothesis tests that
the parameter in question is not equal to zero. Despite this, many political
science theories are more appropriately translated into one-tailed hypothe-
sis tests, which are sometimes referred to as “directional” hypothesis tests.
We review both types of hypothesis tests with the example regression from
Figure 9.5.

9.4.6 Two-Tailed Hypothesis Tests

The most common form of statistical hypothesis tests about the parameters
from an OLS regression model is a two-tailed hypothesis test that the slope
parameter is equal to zero. It is expressed as

10 The exact value of t is calculated automatically by statistical packages. For an online tool
that gives exact values of t, go to https://www.danielsoper.com/statcalc/calculator.aspx?
id=10.
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H0: β = 0,

H1: β �= 0,

where H0 is the null hypothesis and H1 is the alternative hypothesis. Note
that these two rival hypotheses are expressed in terms of the slope param-
eter from the population regression model. To test which of these two
hypotheses is supported, we calculate a t-ratio in which β is set equal to the
value specified in the null hypothesis (in this case zero because H0: β = 0),
which we represent as β∗:

tn−k = β̂ − β∗

se(β̂)
.

For the slope parameter in the two-variable regression model pre-
sented in Figure 9.5, we can calculate this as

t34 = β̂ − β∗

se(β̂)
= 0.624814 − 0

0.1549664
= 4.03.

From what we have seen in previous chapters, we can tell that this
t-ratio is quite large. Remember that a typical standard for statistical
significance in the social sciences is when the p-value is less than 0.05. If
we look across the row for degrees of freedom equal to 30 in Appendix B,
we can see that, to have a p-value of less than 0.05, we would need a
t-ratio of 2.042 or larger (2.032 if we use the exact degrees of freedom).
We clearly have exceeded this standard.11 In fact, if we look at the far-
right-hand column in Appendix B for 30 degrees of freedom, we can see
that this t-ratio exceeds the value for t needed for p to be less than 0.002
(we get this by looking down the column labeled “0.001” and seeing a
required t-value of at least 3.385 for 30 degrees of freedom). This means
that it is extremely unlikely that H0 is the case, which in turn greatly
increases our confidence in H1. If we look at the table at the bottom
of Figure 9.5, we can see that the t-ratio and resulting p-value for this
hypothesis test are presented in the fourth and fifth columns of the growth
g row. It is worth noting that, although the reported p-value is 0.000, this
does not mean that the probability of the null hypothesis being the case is
actually equal to zero. Instead, this means that it is a very small number
that gets rounded to zero when we report it to three decimal places.

The exact same logic is used to test hypotheses about the y-intercept
parameter. The formula for this t-ratio is

11 Because this is a two-tailed hypothesis test, for the standard of p < 0.05 we need to look
down the column labeled “0.025.” This is the case because we are going to leave 0.025
in each tail.
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tn−k = α̂ − α∗

se(α̂)
.

In Figure 9.5 we see the calculation for the following null hypothesis and
alternative:

H0: α = 0,

H1: α �= 0.

The resulting t-ratio is a whopping 63.26! This makes sense when we think
about this quantity in real-world terms. Remember that the y-intercept
is the expected value of the dependent variable Y when the independent
variable X is equal to zero. In our model, this means we want to know the
expected value of incumbent-party vote when growth equals zero. Even
when the economy is shrinking, there are always going to be some diehard
partisans who will vote for the incumbent party. Thus it makes sense that
the null hypothesis H0: α = 0 would be pretty easy to reject.

Perhaps a more interesting null hypothesis is that the incumbents
would still obtain 50 percent of the vote if growth were equal to zero. In
this case,

H0: α = 50,

H1: α �= 50.

The corresponding t-ratio is calculated as

t34 = α̂ − α∗

se(α̂)
= 51.44865 − 50

0.8133462
= 1.78.

Looking at the row for degrees of freedom equal to 30 in the t-table, we can
see that this t-ratio is smaller than 2.042, which is the value for p < 0.05
(from the column labeled “0.025”) but is larger than the 1.697 value for
p < 0.10 (from the column labeled “0.05”). With a more detailed t-table
or a computer, we could calculate the exact p-value for this hypothesis test,
which is 0.08. Thus from these results, we are in a bit of a gray area. We
can be pretty confident that the intercept is not equal to 50, but we can
only reject the null hypothesis (H0: α = 50) at the 0.10 level instead of the
widely accepted standard for statistical significance of 0.05. Let’s think for
a second, however, about our interest in the value of 50 for the intercept.
While the hypothesis test for the alternative hypothesis that we just tested
(H1: α �= 50) is of interest to us, might we be more interested in whether or
not incumbents would “win” the popular vote if the growth equaled zero?
Before we approach this question, we will explain the relationship between
confidence intervals and two-tailed hypothesis tests.
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9.4.7 The Relationship between Confidence Intervals and Two-Tailed
Hypothesis Tests

In the previous three sections, we introduced confidence intervals and
hypothesis tests as two of the ways for making inferences about the
parameters of the population regression model from our sample regression
model. These two methods for making inferences are mathematically
related to each other. We can tell this because they each rely on the t-table.
The relationship between the two is such that, if the 95 percent confidence
interval does not include a particular value, then the null hypothesis
that the population parameter equals that value (a two-tailed hypothesis
test) will have a p-value smaller than 0.05. We can see this for each of
the three hypothesis tests that we discussed in the section on two-tailed
hypothesis tests:

• Because the 95 percent confidence interval for our slope parameter does
not include 0, the p-value for the hypothesis test that β = 0 is less than
0.05.

• Because the 95 percent confidence interval for our intercept parameter
does not include 0, the p-value for the hypothesis test that α = 0 is less
than 0.05.

• Because the 95 percent confidence interval for our intercept parameter
does include 50, the p-value for the hypothesis test that α = 50 is greater
than 0.05.

9.4.8 One-Tailed Hypothesis Tests

As we pointed out in previous sections, the most common form of statisti-
cal hypothesis tests about the parameters from an OLS regression model is
a two-tailed hypothesis test that the slope parameter is equal to zero. That
this is the most common test is something of a fluke. By default, most
statistical computer programs report the results of this hypothesis test.
In reality, though, most political science hypotheses are that a parameter
is either positive or negative and not just that the parameter is different
from zero. This is what we call a directional hypothesis. Consider, for
instance, the theory of economic voting and how we would translate it
into a hypothesis about the slope parameter in our current example. Our
theory is that the better the economy is performing, the higher will be
the vote percentage for the incumbent-party candidate. In other words,
we expect to see a positive relationship between economic growth and the
incumbent-party vote percentage, meaning that we expect β to be greater
than zero.
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When our theory leads to such a directional hypothesis, it is expre-
ssed as

H0: β ≤ 0,
H1: β > 0,

where H0 is the null hypothesis and H1 is the alternative hypothesis. As was
the case with the two-tailed test, these two rival hypotheses are expressed in
terms of the slope parameter from the population regression model. To test
which of these two hypotheses is supported, we calculate a t-ratio where β

is set equal to the value specified in the null hypothesis12 (in this case zero
because H0: β ≤ 0), which we represent as β∗:

tn−k = β̂ − β∗

se(β̂)
.

For the slope parameter in the two-variable regression model presented in
Figure 9.5, we can calculate this as

t34 = β̂ − β∗

se(β̂)
= 0.624814 − 0

0.1549664
= 4.03.

Do these calculations look familiar to you? They should, because this
t-ratio is calculated exactly the same way that the t-ratio for the two-sided
hypothesis about this parameter was calculated. The difference comes in
how we use the t-table in Appendix B to arrive at the appropriate p-value
for this hypothesis test. Because this is a one-tailed hypothesis test, we use
the column labeled “0.05” instead of the column labeled “0.025” to assess
whether we have achieved a t-ratio such that p < 0.05. In other words,
we would need a t-ratio of only 1.697 for 30 degrees of freedom (1.691
for 34 degrees of freedom) to achieve this level of significance for a one-
tailed hypothesis test. For a two-tailed hypothesis test, we needed a t-ratio
of 2.047 (2.032).

Now, returning to our hypothesis test about the intercept and the value
of 50, if we change from a two-tailed to a one-tailed hypothesis test,

H0: α ≤ 50,

H1: α > 50,

we still get

t34 = α̂ − α∗

se(α̂)
= 51.44865 − 50

0.8133462
= 1.78.

12 We choose 0 when the null hypothesis is H0: β ≤ 0 because this is the critical value for
the null hypothesis. Under this null hypothesis, zero is the threshold, and evidence that β

is equal to any value less than or equal to zero is supportive of this null hypothesis.
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But, with 34 degrees of freedom, this one-tailed hypothesis test yields a
p-value of 0.04. In other words, this is a case where the formulation of
our hypothesis test as one-tailed versus two-tailed makes a pretty major
difference, especially since many scholars judge 0.05 to be the standard for
statistical significance.

We can see from these examples and from the t-table that, when we
have a directional hypothesis, we can more easily reject a null hypothesis.
One of the quirks of political science research is that, even when they have
directional hypotheses, researchers often report the results of two-tailed
hypothesis tests. We’ll discuss the issue of how to present regression results
in greater detail in Chapter 10.

9.5 ASSUMPTIONS, MORE ASSUMPTIONS, AND MINIMAL
MATHEMATICAL REQUIREMENTS

If assumptions were water, you’d need an umbrella right now. Any time
that you estimate a regression model, you are implicitly making a large
set of assumptions about the unseen population model. In this section, we
break these assumptions into assumptions about the population stochas-
tic component and assumptions about our model specification. In addi-
tion, there are some minimal mathematical requirements that must be met
before a regression model can be estimated. In this final section we list
these assumptions and requirements and briefly discuss them as they apply
to our working example of a two-variable regression model of the impact
of economic growth on incumbent-party vote.

9.5.1 Assumptions about the Population Stochastic Component

The most important assumptions about the population stochastic compo-
nent ui are about its distribution. These can be summarized as

ui ∼ N(0, σ 2),

which means that we assume that ui is distributed normally (∼ N) with
the mean equal to zero and the variance equal to σ 2.13 This compact
mathematical statement contains three of the five assumptions that we
make about the population stochastic component any time we estimate
a regression model. We now go over each one separately.

13 Strictly speaking we do not need to make all of these assumptions to estimate the
parameters of an OLS model. But we do need to make all of these assumptions to interpret
the results from an OLS model in the standard fashion.
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ui Is Normally Distributed

The assumption that ui is normally distributed allows us to use the t-table
to make probabilistic inferences about the population regression model
from the sample regression model. The main justification for this assump-
tion is the central limit theorem that we discussed in Chapter 7.

E(ui)=0: No Bias

The assumption that ui has a mean or expected value equal to zero is also
known as the assumption of zero bias. Consider what it would mean if
there was a case for which E(ui) �= 0. In other words, this would be a case
for which we would expect our regression model to be off. If we have cases
like this, we would essentially be ignoring some theoretical insight that we
have about the underlying causes of Y. Remember, this term is supposed to
be random. If E(ui) �= 0, then there must be some nonrandom component
to this term. It is important to note here that we do not expect all of our
ui values to equal zero because we know that some of our cases will fall
above and below the regression line. But this assumption means that our
best guess or expected value for each individual ui value is zero.

If we think about the example in this chapter, this assumption means
that we do not have any particular cases for which we expect our model,
with economic growth as the independent variable, to overpredict or
underpredict the value of the incumbent-party vote percentage. If, on the
other hand, we had some expectation along these lines, we would not
be able to make this assumption. Say, for instance, that we expected that
during times of war the incumbent party would fare better than we would
expect them to fare based on the economy. Under these circumstances,
we would not be able to make this assumption. The solution to this
problem would be to include another independent variable in our model
that measured whether or not the nation was at war at the time of each
election. Once we control for all such potential sources of bias, we can
feel comfortable making this assumption. The inclusion of additional
independent variables is the main subject covered in Chapter 10.

ui Has Variance σ 2:Homoscedasticity

The assumption that ui has variance equal to σ 2 seems pretty straight-
forward. But, because this notation for variance does not contain an i
subscript, it means that the variance for every case in the underlying pop-
ulation is assumed to be the same. The word for describing this situ-
ation is “homoscedasticity,” which means “uniform error variance.” If
this assumption does not hold, we have a situation in which the variance
of ui is σ 2

i , known as “heteroscedasticity,” which means “unequal error
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variance.” When we have heteroscedasticity, our regression model fits some
of the cases in the population better than others. This can potentially
cause us problems when we are estimating confidence intervals and testing
hypotheses.

In our example for this chapter, this assumption would be violated if,
for some reason, some elections were harder than others for our model
to predict. In this case, our model would be heteroscedastic. It could, for
instance, be the case that elections that were held after political debates
became televised are harder to predict with our model in which the only
independent variable is economic performance. Under these circumstances,
the assumption of homoscedasticity would not be reasonable.

No Autocorrelation

We also assume that there is no autocorrelation. Autocorrelation occurs
when the stochastic terms for any two or more cases are systematically
related to each other. This clearly cuts against the grain of the idea that
these terms are stochastic or random. Formally, we express this assump-
tion as

covui,uj = 0 ∀ i �= j;

in words, this means that the covariance between the population error
terms ui and uj is equal to zero for all i not equal to j (for any two unique
cases).

The most common form of autocorrelation occurs in regression mod-
els of time-series data. As we discussed in Chapter 4, time-series data
involve measurement of the relevant variables across time for a single
spatial unit. In our example for this chapter, we are using measures of
economic growth and incumbent-party vote percentage measured every
four years for the United States. If, for some reason, the error terms for
adjacent pairs of elections were correlated, we would have autocorrelation.

X Values Are Measured without Error

At first, the assumption that X values are measured without error may
seem to be out of place in a listing of assumptions about the population
stochastic component. But this assumption is made to greatly simplify
inferences that we make about our population regression model from our
sample regression model. By assuming that X is measured without error,
we are assuming that any variability from our regression line is due to the
stochastic component ui and not to measurement problems in X. To put
it another way, if X also had a stochastic component, we would need to
model X before we could model Y, and that would substantially complicate
matters.
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With just about any regression model that we estimate with real-world
data, we will likely be pretty uncomfortable with this assumption. In the
example for this chapter, we are assuming that we have exactly correct
measures of the percentage change in real GDP per capita from 1876 to
2016. If we think a little more about this measure, we can think of all kinds
of potential errors in measurement. What about illegal economic activities
that are hard for the government to measure? Because this is per capita,
how confident are we that the denominator in this calculation, population,
is measured exactly correctly?

Despite the obvious problems with this assumption, we make it every
time that we estimate an OLS model. Unless we move to considerably more
complicated statistical techniques, this is an assumption that we have to
live with and keep in the back of our minds as we evaluate our overall
confidence in what our models tell us.

Recall from Chapter 5, when we discussed measuring our concepts
of interest, that we argued that measurement is important because if we
mismeasure our variables we may make incorrect causal inferences about
the real world. This assumption should make the important lessons of that
chapter crystal clear.

9.5.2 Assumptions about Our Model Specification

The assumptions about our model specification can be summarized as a
single assumption that we have the correct model specification. We break
this into two separate assumptions to highlight the range of ways in which
this assumption might be violated.

No Causal Variables Left Out; No Noncausal Variables Included

This assumption means that if we specify our two-variable regression
model of the relationship between X and Y there cannot be some other
variable Z that also causes Y.14 It also means that X must cause Y. In
other words, this is just another way of saying that the sample regression
model that we have specified is the true underlying population regression
model.

As we have gone through the example in this chapter, we have already
begun to come up with additional variables that we theorize to be causally
related to our dependent variable. To comfortably make this assumption,

14 One exception to this is the very special case in which there is a Z variable that is causally
related to Y but Z is uncorrelated with X and ui. In this case, we would still be able to get
a reasonable estimate of the relationship between X and Y despite leaving Z out of our
model. More on this in Chapter 10.



9.5 Assumptions, More Assumptions, and Mathematical Requirements 211

we will need to include all such variables in our model. Adding additional
independent variables to our model is the subject of Chapter 10.

Parametric Linearity

The assumption of parametric linearity is a fancy way of saying that our
population parameter β for the relationship between X and Y does not
vary. In other words, the relationship between X and Y is the same across
all values of X.

In the context of our current example, this means that we are assuming
that the impact of a one-unit increase in change in real GDP per capita is
always the same. So moving from a value of −10 to −9 has the same effect
as moving from a value of 1 to 2. In Chapter 11 we discuss some techniques
for relaxing this assumption.

9.5.3 Minimal Mathematical Requirements

For a two-variable regression model, we have two minimal requirements
that must be met by our sample data before we can estimate our param-
eters. We will add to these requirements when we expand to multiple
regression models.

X Must Vary

Think about what the scatter plot of our sample data would look like if X
did not vary. Basically, we would have a stack of Y values at the same point
on the x-axis. The only reasonable line that we could draw through this set
of points would be a straight line parallel to the y-axis. Remember that our
goal is to explain our dependent variable Y. Under these circumstances we
would have failed miserably because any Y value would be just as good as
any other given our single value of X. Thus we need some variation in X
in order to estimate an OLS regression model.

n > k

To estimate a regression model, the number of cases (n) must exceed the
number of parameters to be estimated (k). Thus, as a minimum, when we
estimate a two-variable regression model with two parameters (α and β)
we must have at least three cases.

9.5.4 How Can We Make All of These Assumptions?

The mathematical requirements to estimate a regression model aren’t
too severe, but a sensible question to ask at this point is, “How can we
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reasonably make all of the assumptions just listed every time that we
run a regression model?” To answer this question, we refer back to the
discussion in Chapter 1 of the analogy between models and maps. We
know that all of our assumptions cannot possibly be met. We also know
that we are trying to simplify complex realities. The only way that we
can do this is to make a large set of unrealistic assumptions about the
world. It is crucial, though, that we never lose sight of the fact that
we are making these assumptions. In the next chapter we relax one of
these most unrealistic assumptions made in the two-variable regression
model by controlling for a second variable, Z.

CONCEPTS INTRODUCED IN THIS CHAPTER

• alternative hypothesis – the theory-based expectation that is the opposite
of the null hypothesis

• directional hypothesis – an alternative hypothesis in which the expected
relationship is either positive or negative

• ordinary least-squares – often abbreviated to “OLS,” the most popular
method for computing sample regression models

• parameter – a synonym for “boundary” with a more mathematical con-
notation; in the context of statistics, the value of an unknown population
characteristic

• parameter estimate – a sample-based calculation of a population
characteristic

• population error term – in the population regression model, the differ-
ence between the model-based predicted value of the dependent variable
and the true value of the dependent variable

• population regression model – a theoretical formulation of the proposed
linear relationship between at least one independent variable and a
dependent variable

• residual – same as population error term

• root mean-squared error – sometimes shortened to “root MSE,” a cal-
culation of goodness-of-fit made by squaring each sample error term,
summing them up, dividing by the number of cases, and then taking the
square root; also known as the “model standard error”

• R-squared statistic – a goodness-of-fit measure that varies between
0 and 1 representing the proportion of variation in the dependent
variable that is accounted for by the model

• sample error term – in the sample regression model, the sample-based
estimate of the residual

• sample regression model – a sample-based estimate of the population
regression model
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• statistical model – a numerical representation of a relationship between
at least one independent variable and a dependent variable

• stochastic – random

• t-ratio – the ratio of an estimated parameter to its estimated standard
error

EXERCISES

1. Draw an X–Y axis through the middle of a 10 × 10 grid. The point where the
X and Y lines intersect is known as the “origin” and is defined as the point at
which both X and Y are equal to zero. Draw each of the following lines across
the values of X from −5 to 5 and write the corresponding regression equation:

(a) y-intercept = 2, slope = 2;
(b) y-intercept = –2, slope = 2;
(c) y-intercept = 0, slope = –1;
(d) y-intercept = 2, slope = –2.

2. Solve each of the following mathematical expressions to yield a single compo-
nent of the two-variable sample regression model:

(a) α̂ + β̂Xi + ûi

(b) Yi − E(Y|Xi)

(c) β̂Xi + ûi − Yi

3. Using the data set “state data.dta” (which is available on the textbook’s web
site at www.cambridge.org/fpsr), we estimated a two-variable regression model
using data from each US state and the District of Columbia with per capita
income (“pcinc” in our data set) as our dependent variable and the percent-
age of state residents with a college degree (“pctba” in our data set) as the
independent variable. The estimated equation was:

pcinci = 11519.78 + 1028.96pctbai.

Interpret the parameter estimate for the effect of a state’s level of education on
average income levels.

4. In the data set described in Exercise 3, the value of pctba for Illinois equals
29.9. What is the model’s predicted per capita income for Illinois?

5. The estimated standard error for the slope parameter in the model described in
Exercise 3 was 95.7. Construct a 95 percent confidence interval for this param-
eter estimate. Show your work. What does this tell you about the estimated
relationship?

6. Test the hypothesis that the parameter for pctba is not equal to zero. Show
your work. What does this tell you about the estimated relationship?

7. Test the hypothesis that the parameter for pctba is greater than zero. Show
your work. What does this tell you about the estimated relationship?
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8. The R-squared statistic for the model described in Exercise 3 is 0.70 and the
root MSE = 3773.8. What do these numbers tell us about our model?

9. Estimate and interpret the results from a two-variable regression model differ-
ent from the model in Exercise 3 using the data set “state data.dta.”

10. Think through the assumptions that you made when you carried out
Exercise 9. Which do you feel least and most comfortable making? Explain
your answers.

11. In Exercise 10 for Chapter 8, you calculated a correlation coefficient for the
relationship between two continuous variables. Now, estimate a two-variable
regression model for these same two variables. Produce a table of the results
and write about what this table tells you about politics in the United Kingdom
in 2005.
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OVERVIEW

Despite what we have learned in the preceding chapters on hypothesis

testing and statistical significance, we have not yet crossed all four of our

hurdles for establishing causal relationships. Recall that all of the techniques

we have learned in Chapters 8 and 9 are simply bivariate, X- and Y-type anal-

yses. But, to fully assess whether X causes Y, we need to control for other

possible causes of Y, which we have not yet done. In this chapter, we show

how multiple regression – which is an extension of the two-variable model

we covered in Chapter 9 – does exactly that. We explicitly connect the for-

mulae that we include to the key issues of research design that tie the entire

book together. We also discuss some of the problems in multiple regression

models when key causes of the dependent variable are omitted, which

ties this chapter to the fundamental principles presented in Chapters 3

and 4. Lastly, we will incorporate an example from the political science

literature that uses multiple regression to evaluate causal relationships.

10.1 MODELING MULTIVARIATE REALITY

From the very outset of this book, we have emphasized that almost all
interesting phenomena in social reality have more than one cause. And yet
most of our theories are simply bivariate in nature.

We have shown you (in Chapter 4) that there are distinct methods
for dealing with the nature of reality in our designs for social research. If
we are fortunate enough to be able to conduct an experiment, then the
process of randomly assigning our participants to treatment groups will
automatically “control for” those other possible causes that are not a part
of our theory.

But in observational research – which represents the vast majority
of political science research – there is no automatic control for the

215
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other possible causes of our dependent variable; we have to control for
them statistically. The main way that social scientists accomplish this is
through multiple regression. The math in this model is an extension of
the math involved in the two-variable regression model you just learned in
Chapter 9.

In this book, we have made quite a big deal out of the need to “con-
trol for” alternative explanations. And before we introduce the idea of
statistical control for Z – which we’ll do starting in the next section – we
want to distinguish between the statistical control that you’re about to
learn about and the experimental control that arises from controlling and
randomly assigning values of X in an experiment.1 Both terms, of course,
feature the word “control,” and therefore you might be tempted to equate
“statistical control” with “experimental control.” Experimental control
is the far stronger version of control; in fact, as we have emphasized,
it is the gold standard for scientific investigations of causality. Statistical
control is an imperfect kind of control, and considerably less strong than
its experimental counterpart. We’ll draw your attention to this again below
where it is appropriate, but we want to be sure you’re on the lookout for
those signs.

10.2 THE POPULATION REGRESSION FUNCTION

We can generalize the population regression model that we learned in
Chapter 9,

bivariate population regression model: Yi = α + βXi + ui,

to include more than one systematic cause of Y, which we have been calling
Z throughout this book:

multiple population regression model: Yi = α + β1Xi + β2Zi + ui.

The interpretation of the slope coefficients in the three-variable model
is similar to interpreting bivariate coefficients, with one very important
difference. In both, the coefficient in front of the variable X (β in the
two-variable model, β1 in the multiple regression model) represents the
“rise-over-run” effect of X on Y. In the multiple regression case, though,
β1 actually represents the effect of X on Y while holding constant the
effects of Z. If this distinction sounds important, it is. We show how these
differences arise in the next section.

1 You will recall, from Chapter 4, that the two components of the definition of an
experiment are that the researcher be in control of the values of X that the participants are
exposed to, and that those values are assigned to the participants randomly.
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10.3 FROM TWO-VARIABLE TO MULTIPLE REGRESSION

Recall from Chapter 9 that the formula for a two-variable regression line
(in a sample) is

Yi = α̂ + β̂Xi + ûi.

And recall that, to understand the nature of the effect that X has on Y, the
estimated coefficient β̂ tells us, on average, how many units of change in Y
we should expect given a one-unit increase in X. The formula for β̂ in the
two-variable model, as we learned in Chapter 9, is

β̂ =
∑n

i=1(Xi − X̄)(Yi − Ȳ)∑n
i=1(Xi − X̄)2

.

Given that our goal is to control for the effects of some third variable,
Z, how exactly is that accomplished in regression equations? If a scatter
plot in two dimensions (X and Y) suggests the formula for a line, then
adding a third dimension suggests the formula for a plane. And the formula
for that plane is

Yi = α + β1Xi + β2Zi.

That might seem deceptively simple. A formula representing a plane simply
adds the additional β2Zi term to the formula for a line.2

Pay attention to how the notation has changed. In the two-variable
formula for a line, there were no numeric subscripts for the β coefficient –
because, well, there was only one of them. But now we have two inde-
pendent variables, X and Z, that help to explain the variation in Y, and
therefore we have two different β coefficients, and so we subscript them
β1 and β2 to be clear that the values of these two effects are different from
one another.3

The key message from this chapter is that, in the preceding formula,
the coefficient β1 represents more than the effect of X on Y; in the multiple
regression formula, it represents the effect of X on Y while controlling for
the effect of Z. Simultaneously, the coefficient β2 represents the effect of Z
on Y while controlling for the effect of X. And in observational research,

2 All of the subsequent math about adding one more independent variable, Z, generalizes
quite easily to adding still more independent variables. We use the two-independent-
variable case for ease of illustration.

3 In many other textbooks on regression analysis, just as we distinguish between β1 and
β2, the authors choose to label their independent variables X1, X2, and so forth. We have
consistently used the notation of X, Y, and Z to emphasize the concept of controlling for
other variables while examining the relationship between an independent and a dependent
variable of theoretical interest. Therefore we will stick with this notation throughout this
chapter.
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this is the key to crossing our fourth causal hurdle that we introduced all
the way back in Chapter 3.

How is it the case that the coefficient for β1 actually controls for Z?
After all, β1 is not connected to Z in the formula; it is, quite obviously,
connected to X. The first thing to realize here is that the preceding multiple
regression formula for β1 is different from the two-variable formula for β

from Chapter 9. (We’ll get to the formula shortly.) The key consequence
of this is that the value of β derived from the two-variable formula, rep-
resenting the effect of X on Y, will almost always be different – perhaps
only trivially different, or perhaps wildly different – from the value of β1

derived from the multiple regression formula, representing the effect of X
on Y while controlling for the effects of Z.

But how does β1 control for the effects of Z? Let’s assume that X
and Z are correlated. They need not be related in a causal sense, and they
need not be related strongly. They simply have to be correlated with one
another – that is, for this example, their covariance is not exactly equal
to zero. Now, assuming that they are related somehow, we can write their
relationship just like that of a two-variable regression model:

Xi = α̂′ + β̂ ′Zi + êi.

Note some notational differences here. Instead of the parameters α̂ and β̂,
we are calling the estimated parameters α̂′ and β̂ ′ just so you are aware
that their values will be different from the α̂ and β̂ estimates in previous
equations. And note also that the residuals, which we labeled ûi in previous
equations, are now labeled êi here.

If we use Z to predict X, then the predicted value of X (or X̂) based
on Z is simply

X̂i = α̂′ + β̂ ′Zi,

which is just the preceding equation, but without the error term, because
it is expected (on average) to be zero. Now, we can just substitute the left-
hand side of the preceding equation into the previous equation, and get

Xi = X̂i + êi

or, equivalently,

êi = Xi − X̂i.

These êi, then, are the exact equivalents of the residuals from the two-
variable regression of Y on X that you learned from Chapter 9. So their
interpretation is identical, too. That being the case, the êi are the portion
of the variation in X that Z cannot explain. (The portion of X that Z can
explain is the predicted portion – the X̂i.)
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So what have we done here? We have just documented the relationship
between Z and X and partitioned the variation in X into two parts – the
portion that Z can explain (the X̂i) and the portion that Z cannot explain
(the êi). Hold this thought.

We can do the exact same thing for the relationship between Z and Y
that we just did for the relationship between Z and X. The process will look
quite similar, with a bit of different notation to distinguish the processes.
So we can model Y as a function of Z in the following way:

Yi = α̂∗ + β̂∗Zi + v̂i.

Here, the estimated slope is β̂∗ and the error term is represented by v̂i.
Just as we did with Z and X, if we use Z to predict Y, then the

predicted value of Y (or Ŷ) (which we will label Ŷ∗) based on Z is simply

Ŷi
∗ = α̂∗ + β̂∗Zi,

which, as before, is identical to the preceding equation, but without the
error term, because the residuals are expected (on average) to be zero.
And again, as before, we can substitute the left-hand side of the preceding
equation into the previous equation, and get

Yi = Ŷi
∗ + v̂i

or, equivalently,

v̂i = Yi − Ŷi
∗
.

These v̂i, then, are interpreted in an identical way to that of the preceding
êi. They represent the portion of the variation in Y that Z cannot explain.
(The portion of Y that Z can explain is the predicted portion – the Ŷi

∗
.)

Now what has this accomplished? We have just documented the rela-
tionship between Z and Y and partitioned the variation in Y into two
parts – the portion that Z can explain and the portion that Z cannot
explain.

So we have now let Z try to explain X and found the residuals (the êi

values); similarly, we have also now let Z try to explain Y, and found those
residuals as well (the v̂i values). Now back to our three-variable regression
model that we have seen before, with Y as the dependent variable, and X
and Z as the independent variables:

Yi = α̂ + β̂1Xi + β̂2Zi + ûi.

The formula for β̂1, representing the effect of X on Y while controlling
for Z, is

β̂1 =
∑n

i=1 êiv̂i∑n
i=1 ê2

i

.
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Now, we know what êi and v̂i are from the previous equations. So, substi-
tuting, we get

β̂1 =
∑n

i=1(Xi − X̂i)(Yi − Ŷ∗
i )∑n

i=1(Xi − X̂i)
2

.

Pay careful attention to this formula. The “hatted” components in
these expressions are from the two-variable regressions involving Z that
we previously learned about. The key components of the formula for the
effect of X on Y, while controlling for Z, are the êi and v̂i, which, as we just
learned, are the portions of X and Y (respectively) that Z cannot account
for. And that is how, in the multiple regression model, the parameter β1,
which represents the effects of X on Y, controls for the effects of Z. How?
Because the only components of X and Y that it uses are components that
Z cannot account for – that is, the êi and v̂i.

Comparing this formula for estimating β1 with the two-variable for-
mula for estimating β is very revealing. Instead of using the factors (Xi−X̄)

and (Yi − Ȳ) in the numerator, which were the components of the two-
variable regression of Y on X from Chapter 9, in the multiple regression
formula that controls for Z, the factors in the numerator are (Xi − X̂i) and
(Yi − Ŷi

∗
), where, again, the hatted portions represent X as predicted by Z

and Y as predicted by Z.
Note something else in the comparison of the two-variable formula

for estimating β and the multiple regression formula for estimating β1.
The result of β̂ in the two-variable regression of Y and X and β̂1 in the
three-variable regression of Y on X while controlling for Z will be different
almost all the time. In fact, it is quite rare – though mathematically possible
in theory – that those two values will be identical.4

And the formula for estimating β2, likewise, represents the effects of Z
on Y while controlling for the effects of X. These processes, in fact, happen
simultaneously.

It’s been a good number of chapters – six of them, to be precise –
between the first moment when we discussed the importance of controlling
for Z and the point, just above, when we showed you precisely how to
do it. The fourth causal hurdle has never been too far from front-and-
center since Chapter 3, and now you know the process of crossing it for
observational data.

Don’t get too optimistic too quickly, though. First, as we noted, the
three-variable setup we just mentioned can easily be generalized to more
than three variables. But the formula for estimating β1 controls only for

4 Later in this chapter, you will see that there are two situations in which the two-variable
and multiple regression parameter estimates of β will be the same.
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the effects of the Z variable that are included in the regression equation. It
does not control for other variables that are not measured and not included
in the model. And what happens when we fail to include a relevant cause
of Y in our regression model? Bad things. (Those bad things will come into
focus a bit later in this chapter.)

Second, as we foreshadowed at the beginning of this chapter, the type
of control that we have just introduced for observational studies, what
we call “statistical control,” is not as strong as the experimental control
that we described in Chapter 4. We hope that you can see that the type of
control that is present in multiple regression is more akin to an accounting
device based on the amounts of shared variance between X, Y, and Z.
“Controlling for” Z in the regression sense involves identifying the varia-
tion that is shared between Z and the other two variables, and discounting
it, and then looking at the relationship that remains between X and Y
after the shared variation with Z is removed. This does represent a type of
control, to be sure, but it is not as powerful as randomly assigning values
of X to participants in an experiment. As we described back in Chapter 4,
the reason that experimental control is so powerful is that we know exactly
the process that generates values of X. (That process is simple random-
ness, and nothing more.) With statistical control in observational studies,
by contrast, we do not know anything specific about the data-generating
process of X. In such studies without experimental control, participants
might choose or somehow acquire their own values of X, or there might be
a complex causal process that sorts cases into different values of X. And
it is possible that that very causal process is somehow polluted by some
Z that we have failed to control for, or by Y (and, if this is true, it has
even more severely negative consequences). All of this, though, is a normal
part of the scientific process. It is always possible that there is another,
uncontrolled-for Z out there. But, as a part of this process, it is best to put
the results out in the open and see how well they stand the test of time.

10.4 INTERPRETING MULTIPLE REGRESSION

For an illustration of how to interpret multiple regression coefficients,
let’s return to our example from Chapter 9, in which we showed you the
results of a regression of US presidential election results on the previous
year’s growth rate in the US economy (see Figure 9.5). The model we
estimated, you will recall, was inc vote = α + β × g, where inc vote
is “vote” and g is “growth,” and the estimated coefficients there were
α̂ = 51.45 and β̂ = 0.62. For the purposes of this example, we need to
drop the observation from the presidential election of 1876. Doing this
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Table 10.1 Three regression models of US presidential
elections

A B C

Growth 0.65∗ — 0.58∗
(0.15) — (0.15)

Good News — 0.87∗ 0.63∗
— (0.32) (0.28)

Intercept 51.61∗ 47.63∗ 48.47∗
(0.81) (1.87) (1.58)

R-squared 0.35 0.18 0.44
Number of cases 35 35 35

Notes: The dependent variable is the percentage of the two major parties’

vote for the incumbent party’s candidate.

Standard errors are in parentheses.
∗p < 0.05, two-tailed t-test.

changes our estimates slightly so that α̂ = 51.61 and β̂ = 0.65.5 Those
results are in column A of Table 10.1.

In column A, you see the parameter estimate (0.65) for the annual
growth rate in the US economy (in the row labeled “Growth”), and the
standard error of that estimated slope, 0.15. In the row labeled “Intercept,”
you see the estimated y-intercept for that regression, 51.61, and its associ-
ated standard error, 0.81. Both parameter estimates are statistically signif-
icant, as indicated by the asterisk and the note at the bottom of the table.

Recall that the interpretation of the slope coefficient in a two-variable
regression indicates that, for every one-unit increase in the independent
variable, we expect to see β units of change in the dependent variable. In
the current context, β̂ = 0.65 means that, for every extra one percentage
point in growth rate in the US economy, we expect to see, on average,
an extra 0.65 percent in the vote percentage for the incumbent party in
presidential elections.

But recall our admonition, throughout this book, about being too
quick to interpret any bivariate analysis as evidence of a causal relation-
ship. We have not shown, in column A of Table 10.1, that higher growth
rates in the economy cause incumbent-party vote totals to be higher. To
be sure, the evidence in column A is consistent with a causal connection,

5 We had to drop 1876 because Fair’s data do not include a measure for the new variable that
we are adding in this example, “Good News,” for that year. When making comparisons
across different models of the same data, it is extremely important to have exactly the
same cases.
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but it does not prove it. Why not? Because we have not controlled for
other possible causes of election outcomes. Surely there are other causes, in
addition to how the economy has (or has not) grown in the last year, of how
well the incumbent party will fare in a presidential election. Indeed, we
can even imagine other economic causes that might bolster our statistical
explanation of presidential elections.6

Consider the fact that the growth variable accounts for economic
growth over the past year. But perhaps the public rewards or punishes
the incumbent party for sustained economic growth over the long run. In
particular, it does not necessarily make sense for the public to reelect a
party that has presided over three years of subpar growth in the economy
but a fourth year with solid growth. And yet, with our single measure of
growth, we are assuming – rather unrealistically – that the public would
pay attention to the growth rate only in the past year. Surely the public
does pay attention to recent growth, but the public might also pay heed to
growth over the long run.

In column B of Table 10.1, we estimate another two-variable regres-
sion model, this time using the number of consecutive quarters of strong
economic growth leading up to the presidential election – the variable is
labeled “Good News” – as our independent variable.7 (Incumbent-party
vote share remains our dependent variable.) In the row labeled “Good
News,” we see that the parameter estimate is 0.87, which means that, on
average, for every additional consecutive quarter of good economic news,
we expect to see a 0.87 percent increase in incumbent-party vote share.
The coefficient is statistically significant at the usual standard of 0.05.

Our separate two-variable regressions each show a relationship
between the independent variable in the particular model and incumbent-
party vote shares. But none of the parameter estimates in columns A or
B was estimated while controlling for the other independent variable. We
rectify that situation in column C, in which we estimate the effects of both
the “Growth” and “Good News” variables on vote shares simultaneously.

Compare column C with columns A and B. In the row labeled “Good
News,” we see that the estimated parameter of β̂ = 0.63 indicates that, for
every extra quarter of a year with strong growth rates, the incumbent party
should expect to see an additional 0.63 percent of the national vote share,
while controlling for the effects of Growth. Note the additional clause in
the interpretation as well as the emphasis that we place on it. Multiple

6 And, of course, we can imagine variables relating to success or failure in foreign policy, for
example, as other, noneconomic causes of election outcomes.

7 Fair’s operationalization of this variable is “the number of quarters in the first 15 quarters
of the administration in which the growth rate of real per capita GDP is greater than 3.2
percent.”
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regression coefficients always represent the effects of a one-point increase
in that particular independent variable on the dependent variable, while
controlling for the effects of all other independent variables in the model.
The higher the number of quarters of continuous strong growth in the
economy, the higher the incumbent-party vote share should be in the next
election, controlling for the previous year’s growth rate.

But, critical to this chapter’s focus on multiple regression, notice in
column C how including the “Good News” variable changes the estimated
effect of the “Growth” variable from an estimated 0.65 in column A to
0.58 in column C. The effect in column C is different because it controls
for the effects of Good News. That is, when the effects of long-running
economic expansions are controlled for, the effects of short-term growth
falls a bit. The effect is still quite strong and is still statistically significant,
but it is more modest once the effects of long-term growth are taken into
account.8 Note also that the R2 statistic rises from 0.35 in column A to
0.44 in column C, which means that adding the “Good News” variable
increased the proportion of the variance of our dependent variable that we
have explained by 9 percent.9

In this particular example, the whole emphasis on controlling for other
causes might seem like much ado about nothing. After all, comparing the
three columns in Table 10.1 did not change our interpretation of whether
short-term growth rates affect incumbent-party fortunes at the polls. But
we didn’t know this until we tested for the effects of long-term growth.
And later in this chapter, we will see an example in which controlling for
new causes of the dependent variable substantially changes our interpre-
tations about causal relationships. We should be clear about one other

8 And we can likewise compare the bivariate effect of Good News on vote shares in column
B with the multivariate results in column C, noting that the effect of Good News, in the
multivariate context, appears to have fallen by approximately one-fourth.

9 It is important to be cautious when reporting contributions to R2 statistics by individual
independent variables, and this table provides a good example of why this is the case.
If we were to estimate Model A first and C second, we might be tempted to conclude
that Growth explains 35 percent of Vote and Good News explains 9 percent. But if we
estimated Model B first and then C, we might be tempted to conclude that Growth explains
26 percent of Vote and Good News explains 18 percent. Actually, both of these sets of
conclusions are faulty. The R2 is always a measure of the overall fit of the model to the
dependent variable. So, all that we can say about the R2 for Model C is that Growth,
Good News, and the intercept term together explain 44 percent of the variation in Vote.
So, although we can talk about how the addition or subtraction of a particular variable
to a model increases or decreases the model’s R2, we should not be tempted to attribute
particular values of R2 to specific independent variables. If we examine Figure 10.1 (in
Section 10.7), we can get some intuition on why this is the case. The R2 statistic for the
model represented in this figure is (f + d + b)/(a + f + d + b). It is the presence of area
d that confounds our ability to make definitive statements about the contribution of
individual variables to R2.



10.5 Which Effect Is “Biggest”? 225

thing regarding Table 10.1: Despite controlling for another variable, we
still have a long way to go before we can say that we’ve controlled for all
other possible causes of the dependent variable. As a result, we should be
cautious about interpreting those results as proof of causality. However,
as we continue to add possibly confounding independent variables to our
regression model, we inch closer and closer to saying that we’ve controlled
for every other possible cause that comes to mind. Recall that, all the way
back in Chapter 1, we noted that one of the “rules of the road” of the
scientific enterprise is to always be willing to consider new evidence. New
evidence – in the form of controlling for other independent variables – can
change our inferences about whether any particular independent variable
is causally related to the dependent variable.

10.5 WHICH EFFECT IS “BIGGEST”?

In the preceding analysis, we might be tempted to look at the coefficients in
column C of Table 10.1 for Growth (0.58) and for Good News (0.63) and
conclude that the effect for Good News is larger than the effect for Growth.
As tempting as such a conclusion might be, it must be avoided, for one
critical reason: The two independent variables are measured in different
metrics, which makes that comparison misleading. Short-run growth rates
are measured in a different metric – ranging from negative numbers for
times during which the economy shrunk, all the way through stronger
periods during which growth exceeded 5 percent per year – than are the
number of quarters of consecutive strong growth – which ranges from
0 in the data set through 10. That makes comparing the coefficients
misleading.

Because the coefficients in Table 10.1 each exist in the native metric of
each variable, they are referred to as unstandardized coefficients. Although
they are normally not easy to compare to one another, there is a rather sim-
ple method to remove the metric of each variable to make them comparable
with one another. As you might imagine, such coefficients, because they are
on a standardized metric, are referred to as standardized coefficients. We
compute them, quite simply, by taking the unstandardized coefficients and
taking out the metrics – in the forms of the standard deviations – of both
the independent and dependent variables:

β̂Std = β̂
sX

sY
,

where β̂Std is the standardized regression coefficient, β̂ is the unstan-
dardized coefficient (as in Table 10.1), and sX and sY are the standard
deviations of X and Y, respectively. The interpretation of the standardized
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coefficients changes, not surprisingly. Whereas the unstandardized coeffi-
cients represent the expected change in Y given a one-unit increase in X,
the standardized coefficients represent the expected standard deviation
change in Y given a one-standard-deviation increase in X. Now, because all
parameter estimates are in the same units – that is, in expected standard
deviation changes of the dependent variable – they become more readily
comparable.

Implementing this formula for the unstandardized coefficients in
column C of Table 10.1 produces the following results. First, for Growth,
where standard deviations are calculated using the last equation in
Subsection 6.4.2, we have

β̂Std = 0.58
(

5.50
6.02

)
= 0.53.

Next, for Good News,

β̂Std = 0.63
(

2.95
6.02

)
= 0.31.

These coefficients would be interpreted as follows: For a one-standard-
deviation increase in Growth, on average, we expect a 0.53-standard-
deviation increase in the incumbent-party vote share, controlling for the
effect of Good News. And for a one-standard-deviation increase in Good
News, we expect to see, on average, a 0.31-standard-deviation increase
in the incumbent-party vote shares, controlling for the effect of Growth.
Note how, when looking at the unstandardized coefficients, we might have
mistakenly thought that the effect of Good News was larger than the effect
of Growth. But the standardized coefficients (correctly) tell the opposite
story: The estimated effect of Growth is 170 percent of the size of the
effect of Good News.10

YOUR TURN: Interpreting standardized coefficients

What would be the substantive interpretation for the effect of Good News if
β̂Std = −0.31?

10 Some objections have been raised about the use of standardized coefficients (King, 1986).
From a technical perspective, because standard deviations can differ across samples, this
makes the results of standardized coefficients particularly sample specific. Additionally,
and from a broader perspective, one-unit or one-standard-deviation shifts in different
independent variables have different substantive meanings regardless of the metrics in
which the variables are measured. We might therefore logically conclude that there isn’t
much use in trying to figure out which effect is biggest.
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10.6 STATISTICAL AND SUBSTANTIVE SIGNIFICANCE

Related to the admonition about which effect is “biggest,” consider the
following, seemingly simpler, question: Are the effects found in column C
of Table 10.1 “big”? A tempting answer to that question is “Well of course
they’re big. Both coefficients are statistically significant. Therefore, they’re
big.”

That logic, although perhaps appealing, is faulty. Recall the discussion
from Chapter 7 on the effects of sample size on the magnitude of the
standard error of the mean. And we noted in Chapter 9 that the same
effects of sample size are present on the magnitude of the standard error
of our regression coefficients. What this means is that, even if the strength
of the relationship (as measured by our coefficient estimates) remains con-
stant, by merely increasing our sample size we can affect the statistical
significance of those coefficients. Why? Because statistical significance is
determined by a t-test in which the standard error is in the denominator
of that quotient. What you can remember is that larger sample sizes will
shrink standard errors and therefore make finding statistically significant
relationships more likely.11 It is also apparent from Appendix B that, when
the number of degrees of freedom is greater, it is easier to achieve statistical
significance.

We hope that you can see that arbitrarily increasing the size of a
sample, and therefore finding statistically significant relationships, does not
in any way make an effect “bigger” or even “big.” Recall, such changes to
the standard errors have no bearing on the rise-over-run nature of the slope
coefficients themselves.

How, then, should you judge whether an effect of one variable on
another is “big?” One way is to use the method just described – using
standardized coefficients. By placing the variances of X and Y on the same
metric, it is possible to come to a judgment about how big an effect is.
This is particularly helpful when the independent variables X and Z, or the
dependent variable Y, or both, are measured in metrics that are unfamiliar
or artificial.

When the metrics of the variables in a regression analysis are intuitive
and well known, however, rendering a judgment about whether an effect
is large or small becomes something of a matter of interpretation. For
example, in Chapter 11, we will see an example relating the effects of
changes in the unemployment rate (X) on a president’s approval rating (Y).
It is very simple to interpret that a slope coefficient of, say, −1.51, means

11 To be certain, it’s not always possible to increase sample sizes, and, even when possible,
it is nearly always costly to do so. The research situations in which increasing sample size
is most likely, albeit still expensive, is in mass-based survey research.
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that, for every additional point of unemployment, we expect approval to
go down by 1.51 points, controlling for other factors in the model. Is that
effect large, small, or moderate? There is something of a judgment call
to be made here, but at least, in this case, the metrics of both X and Y
are quite familiar; most people with even an elementary familiarity with
politics will need no explanation as to what unemployment rates mean
or what approval polls mean. Independent of the statistical significance
of that estimate – which, you should note, we have not mentioned here –
discussions of this sort represent attempts to judge the substantive signifi-
cance of a coefficient estimate. Substantive significance is more difficult to
judge than statistical significance because there are no numeric formulae
for making such judgments. Instead, substantive significance is a judgment
call about whether or not statistically significant relationships are “large”
or “small” in terms of their real-world impact.

From time to time we will see a “large” parameter estimate that is not
statistically significant. Although it is tempting to describe such a result
as substantively significant, it is not. We can understand this by thinking
about what it means for a particular result to be statistically significant. As
we discussed in Chapter 9, in most cases we are testing the null hypothesis
that the population parameter is equal to zero. In such cases, even when we
have a large parameter estimate, if it is statistically insignificant this means
that it is not statistically distinguishable from zero. Therefore a parameter
estimate can be substantively significant only when it is also statistically
significant.

10.7 WHAT HAPPENS WHEN WE FAIL TO CONTROL FOR Z?

Controlling for the effects of other possible causes of our dependent
variable Y, we have maintained, is critical to making the correct causal
inferences. Some of you might be wondering something like the following:
“How does omitting Z from a regression model affect my inference of
whether X causes Y? Z isn’t X, and Z isn’t Y, so why should omitting
Z matter?”

Consider the following three-variable regression model involving our
now-familiar trio of X, Y, and Z:

Yi = α + β1Xi + β2Zi + ui.

And assume, for the moment, that this is the correct model of reality. That
is, the only systematic causes of Y are X and Z; and, to some degree, Y is
also influenced by some random error component, u.

Now let’s assume that, instead of estimating this correct model, we fail
to estimate the effects of Z. That is, we estimate
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Yi = α + β∗
1Xi + u∗

i .

As we previously hinted, the value of β1 in the correct, three-variable
equation and the value of β∗

1 will not be identical under most circum-
stances. (We’ll see the exceptions in a moment.) And that, right there,
should be enough to raise red flags. For, if we know that the three-variable
model is the correct model – and what that means, of course, is that the
estimated value of β1 that we obtain from the data will be equal to the
true population value – and if we know that β1 will not be equal to β∗

1,
then there is a problem with the estimated value of β∗

1. That problem is a
statistical problem called bias, which means that the expected value of the
parameter estimate that we obtain from a sample will not be equal to
the true population parameter. The specific type of bias that results from
the failure to include a variable that belongs in our regression model is
called omitted-variables bias.

Let’s get specific about the nature of omitted-variables bias. If, instead
of estimating the true three-variable model, we estimate the incorrect two-
variable model, the formula for the slope β∗

1 will be

β̂∗
1 =

∑n
i=1(Xi − X̄)(Yi − Ȳ)∑n

i=1(Xi − X̄)2
.

Notice that this is simply the two-variable formula for the effect of X on
Y. (Of course, the model we just estimated is a two-variable model, in spite
of the fact that we know that Z, as well as X, affects Y.) But because we
know that Z should be in the model, and we know from Chapter 9 that
regression lines travel through the mean values of each variable, we can
figure out that the following is true:

(Yi − Ȳ) = β1(Xi − X̄) + β2(Zi − Z̄) + (ui − ū).

We can do this because we know that the plane will travel through each
variable’s mean.

Now notice that the left-hand side of the preceding equation, the
(Yi − Ȳ), is identical to one portion of the numerator of the slope for β̂∗

1.
Therefore we can substitute the right-hand side of the preceding equation –
yes, that entire mess – into the numerator of the formula for β̂∗

1.
The resulting math isn’t anything that is beyond your skills in algebra,

but it is cumbersome, so we won’t derive it here. After a few lines of
multiplying and reducing, though, the formula for β̂∗

1 will reduce to

E(β̂∗
1) = β1 + β2

∑n
i=1(Xi − X̄)(Zi − Z̄)∑n

i=1(Xi − X̄)2
.
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This might seem like a mouthful – a fact that’s rather hard to deny – but
there is a very important message in it. What the equation says is that the
estimated effect of X on Y, β̂∗

1, in which we do not include the effects of
Z on Y (but should have), will be equal to the true β1 – that is, the effect
with Z taken into account – plus a bundle of other stuff. That other stuff,
strictly speaking, is bias. And because this bias came about as a result of
omitting a variable (Z) that should have been in the model, this type of
bias is known as omitted-variables bias.

Obviously, we’d like the expected value of our β̂∗
1 (estimated without

Z) to equal the true β1 (as if we had estimated the equation with Z). And if
the product on the right-hand side of the “+” sign in the preceding equa-
tion equals zero, it will. When will that happen?12 In two circumstances,
neither of which is particularly likely. First, β̂∗

1 = β1 if β2 = 0. Second,
β̂∗

1 = β1 if the large quotient at the end of the equation, the∑n
i=1(Xi − X̄)(Zi − Z̄)∑n

i=1(Xi − X̄)2
,

is equal to zero. What is that quotient? It should look familiar; in fact, it is
the bivariate slope parameter of a regression of Z on X.

In the first of these two special circumstances, the bias term will equal
zero if and only if the effect of Z on Y – that is, the parameter β2 – is
zero. Okay, so it’s safe to omit an independent variable from a regression
equation if it has no effect on the dependent variable. (If that seems obvious
to you, good.) The second circumstance is a bit more interesting: It’s safe to
omit an independent variable Z from an equation if it is entirely unrelated
to the other independent variable X. Of course, if we omit Z in such
circumstances, we’ll still be deprived of understanding how Z affects Y;
but at least, so long as Z and X are absolutely unrelated, omitting Z will
not adversely affect our estimate of the effect of X on Y.13

We emphasize that this second condition is unlikely to occur in prac-
tice. Therefore, if Z affects Y, and Z and X are related, then if we omit Z
from our model, our bias term will not equal zero. In the end, omitting Z
will cause us to misestimate the effect of X on Y.

This result has many practical implications. Foremost among them is
the fact that, even if you aren’t interested theoretically in the connection
between Z and Y, you need to control for it, statistically, in order to get an
unbiased estimate of the impact of X, which is the focus of the theoretical
investigation.

12 To be very clear, for a mathematical product to equal zero, either one or both of the
components must be zero.

13 Omitting Z from our regression model also drives down the R2 statistic.
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Figure 10.1 Venn diagram in which X, Y,
and Z are correlated

That might seem unfair, but
it’s true. If we estimate a regres-
sion model that omits an indepen-
dent variable (Z) that belongs in
the model, then the effects of that
Z will somehow work their way
into the parameter estimates for
the independent variable that we
do estimate (X) and pollute our
estimate of the effect of X on Y.

The preceding equation also
suggests when the magnitude of
the bias is likely to be large and

when it is likely to be small. If either or both of the components of the
bias term

β2 and
∑n

i=1(Xi − X̄)(Zi − Z̄)∑n
i=1(Xi − X̄)2

are close to zero, then the bias is likely to be small (because the bias term
is the product of both components); but if both are likely to be large, then
the bias is likely to be quite large.

Moreover, the equation also suggests the likely direction of the bias.
All we have said thus far is that the coefficient β̂∗

1 will be biased – that
is, it will not equal its true value. But will it be too large or too small? If
we have good guesses about the values of β2 and the correlation between
X and Z – that is, whether or not they are positive or negative – then we
can suspect the direction of the bias. For example, suppose that β1, β2,
and the correlation between X and Z are all positive. That means that our
estimated coefficient β̂∗

1 will be larger than it is supposed to be, because a
positive number plus the product of two positive numbers will be a still-
larger positive number. And so on.14

To better understand the importance of controlling for other possible
causes of the dependent variable and the importance of the relationship
(or the lack of one) between X and Z, consider the following graphical
illustrations. In Figure 10.1, we represent the total variation of Y, X, and Z
each with a circle.15 The covariation between any of these two variables –
or among all three – is represented by the places where the circles overlap.

14 With more than two independent variables, it becomes more complex to figure out the
direction of the bias.

15 Recall from Chapter 9 how we introduced Venn diagrams to represent variation (the
circles) and covariation (the overlapping portion of the circles).
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Figure 10.2 Venn diagram in which X and Z
are correlated with Y, but not with each other

Thus, in the figure, the total vari-
ation in Y is represented as the
sum of the area a+b+d+ f . The
covariation between Y and X is
represented by the area b + d.

Note in Figure 10.1, though,
that the variable Z is related to
both Y and X (because the circle
for Z overlaps with both Y and
X). In particular, the relationship
between Y and Z is accounted
for by the area f + d, and the
relationship between Z and X is

accounted for by the area d+e. As we have already seen, d is also a portion
of the relationship between Y and X. If, hypothetically, we erased the circle
for Z from the figure, we would (incorrectly) attribute all of the area b + d
to X, when in fact the d portion of the variation in Y is shared by both X
and Z. This is why, when Z is related to both X and Y, if we fail to control
for Z, we will end up with a biased estimate of X’s effect on Y.

Consider the alternative scenario, in which both X and Z affect Y,
but X and Z are completely unrelated to one another. That scenario is
portrayed graphically in Figure 10.2. There, the circles for both X and
Z overlap with the circle for Y, but they do not overlap at all with
one another. In that case – which, we have noted, is unlikely in applied
research – we can safely omit consideration of Z when considering the
effects of X on Y. In that figure, the relationship between X and Y, the
area b, is unaffected by the presence (or absence) of Z in the model.16

10.7.1 An Additional Minimal Mathematical Requirement in
Multiple Regression

We outlined a set of assumptions and minimal mathematical requirements
for the two-variable regression model in Chapter 9. In multiple regression,
all of these assumptions are made and all of the same minimal mathemat-
ical requirements remain in place. In addition to those, however, we need
to add one more minimal mathematical requirement to be able to estimate
our multiple regression models: It must be the case that there is no exact
linear relationship between any two or more of our independent variables
(which we have called X and Z). This is also called the assumption of

16 For identical reasons, we could safely estimate the effect of Z on Y, the area f , without
considering the effect of X.
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no perfect multicollinearity (by which we mean that X and Z cannot be
perfectly collinear, with a correlation coefficient of r = 1.0).

What does it mean to say that X and Z cannot exist in an exact
linear relationship? Refer back to Figure 10.1. If X and Z had an
exact linear relationship, instead of having some degree of overlap –
that is, some imperfect degree of correlation – the circles would be exactly
on top of one another. In such cases, it is literally impossible to estimate
the regression model, as separating out the effects of X on Y from the
effects of Z on Y is impossible.

This is not to say that we must assume that X and Z are entirely
uncorrelated with one another (as in Figure 10.2). In fact, in almost all
applications, X and Z will have some degree of correlation between them.
Things become complicated only as that correlation approaches 1.0; and
when it hits 1.0, the regression model will fail to be estimable with both X
and Z as independent variables. In Chapter 11 we will discuss these issues
further.

10.8 AN EXAMPLE FROM THE LITERATURE: COMPETING THEORIES OF
HOW POLITICS AFFECTS INTERNATIONAL TRADE

What are the forces that affect international trade? Economists have long
noted that there are economic forces that shape the extent to which two
nations trade with one another.17 The size of each nation’s economy, the
physical distance between them, and the overall level of development have
all been investigated as economic causes of trade.18 But in addition to
economic forces, does politics help to shape international trade?

Morrow, Siverson, and Tabares (1998) investigate three competing
(and perhaps complementary) political explanations for the extent to
which two nations engage in international trade. The first theory is that
states with friendly relations are more likely to trade with one another than
are states engaged in conflict. Conflict, in this sense, need not be militarized
disputes (though it may be).19 Conflict, they argue, can dampen trade in
several ways. First, interstate conflict can sometimes produce embargoes

17 Theories of trade and, indeed, many theories about other aspects of international trade
are usually developed with pairs of nations in mind. Thus all of the relevant variables, like
trade, are measured in terms of pairs of nations, which are often referred to as “dyads”
by international relations scholars. The resulting dyadic data sets are often quite large
because they encompass each relevant pair of nations.

18 Such models are charmingly referred to as “gravity models,” because, according to
these theories, the forces driving trade resemble the forces that determine gravitational
attraction between two physical objects.

19 See Pollins (1989) for an extended discussion of this theory.
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(or prohibitions on trade). Second, conflict can reduce trade by raising the
risks for firms that wish to engage in cross-border trading.

The second theory is that trade will be higher when both nations are
democracies and lower when one (or both) is an autocracy.20 Because
democracies have more open political and judicial systems, trade should
be higher between democracies because firms in one country will have
greater assurance that any trade disputes will be resolved openly and fairly
in courts to which they have access. In contrast, firms in a democratic state
may be more reluctant to trade with nondemocratic countries, because it is
less certain how any disagreements will be resolved. In addition, firms may
be wary of trading with nondemocracies for fear of having their assets
seized by the foreign government. In short, trading with an autocratic
government should raise the perceived risks of international trade.

The third theory is that states that are in an alliance with one another
are more likely to trade with one another than are states that are not in
such an alliance.21 For states that are not in an alliance, one nation may
be reluctant to trade with another nation if the first thinks that the gains
from trade may be used to arm itself for future conflict. In contrast, states
in an alliance stand to gain from each other’s increased wealth as a result
of trade.

To test these theories, Morrow, Siverson, and Tabares (1998) look
at trade among all of the major powers in the international system – the
United States, Britain, France, Germany, Russia, and Italy – during most of
the twentieth century. They consider each pair of states – called dyads –
separately and examine exports to each country on an annual basis.22

Their dependent variable is the amount of exports in every dyadic rela-
tionship in each year.

Table 10.2 shows excerpts from the analysis of Morrow, Siverson,
and Tabares.23 In column A, they show that, as the first theory predicts,
increases in interstate peace are associated with higher amounts of trade
between countries, controlling for economic factors. In addition, the larger
the economy in general, the more trade there is. (This finding is consistent
across all estimation equations.) The results in column B indicate that pairs
of democracies trade at higher rates than do pairs involving at least one
nondemocracy. Finally, the results in column C show that trade is higher

20 See Dixon and Moon (1993) for an elaboration of this theory.
21 See Gowa (1989) and Gowa and Mansfield (1993) for an extended discussion, including

distinctions between bipolar and multipolar organizations of the international system.
22 This research design is often referred to as a time-series cross-section design, because it

contains both variation between units and variation across time. In this sense, it is a hybrid
of the two types of quasi-experiments discussed in Chapter 3.

23 Interpreting the precise magnitudes of the parameter estimates is a bit tricky in this case,
because the independent variables were all transformed by use of natural logarithms.
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Table 10.2 Excerpts from Morrow, Siverson, and Tabares’s
table on the political causes of international trade

A B C D

Peaceful relations 1.12∗ — — 1.45∗
(0.22) — — (0.37)

Democratic partners — 1.18∗ — 1.22∗
— (0.12) — (0.13)

Alliance partners — — 0.29∗ −0.50∗
— — (0.03) (0.16)

GNP of exporter 0.67∗ 0.57∗ 0.68∗ 0.56∗
(0.07) (0.07) (0.07) (0.08)

R2 0.77 0.78 0.77 0.78
N 2631 2631 2631 2631

Notes: Other variables were estimated as a part of the regression model but

were excluded from this table for ease of presentation.

Standard errors are in parentheses.

*p < 0.05.

between alliance partners than between states that are not in an alliance
with one another. All of these effects are statistically significant.

So far, each of the theories received at least some support. But, as you
can tell from looking at the table, the results in columns A through C do
not control for the other explanations. That is, we have yet to see results
of a full multiple regression model, in which the theories can compete for
explanatory power. That situation is rectified in column D, in which all
three political variables are entered in the same regression model. There, we
see that the effects of reduced hostility between states is actually enhanced
in the multiple regression context – compare the coefficient of 1.12 with
the multiple regression 1.45. Similarly, the effects of democratic trading
partners remains almost unchanged in the fully multivariate framework.
However, the effect of alliances changes. Before controlling for conflict and
democracy, the effect of alliances was (as expected) positive and statisti-
cally significant. However, in column D, in which we control for conflict
and democracy, the effect flips signs and is now negative (and statistically
significant), which means that, when we control for these factors, states in
an alliance are less (not more) likely to trade with one another.

The article by Morrow, Siverson, and Tabares (1998) represents a
case in which synthesizing several competing explanations for the same
phenomenon – international trade – produces surprising findings. By using
a data set that allowed them to test all three theories simultaneously,
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Morrow, Siverson, and Tabares were able to sort out which theories
received support and which did not.

10.9 MAKING EFFECTIVE USE OF TABLES AND FIGURES

At this point in your class, it’s likely that you’ve spent time in a computer
lab learning how to conduct your own analyses. We understand – because
we experienced it ourselves when we were your age – that it can feel like a
pretty big leap to go from understanding how a statistical formula works
algebraically from a book or a class presentation, to understanding how
to critique how these methods are applied in work like that by Morrow,
Siverson, and Tabares (1998) that we just described in the previous sec-
tion, to understanding how things work when you’re looking at statistical
software output on your own computer.

We realize, too, that many of you have interests in conducting your
own analyses to investigate problems that you find to be interesting. Good!
Perhaps you have an independent study or an honors thesis to work on,
or some other project that you want to include as a writing sample for
applications to graduate school. And you want to learn to communicate
your ideas and findings clearly for your intended audience. That’s what
this section is about.

We strongly recommend that you spend a lot of time constructing
the tables and figures that you include in your projects. When readers
first encounter your written work, many of them will take a quick look
at the title and introduction and then go directly to your tables and fig-
ures. This is certainly a reasonable thing to do when someone is trying
to evaluate whether or not they should invest further time reviewing your
work. Thus, although they may appear at the back of your project, tables
and figures often determine the first impression that potential readers have
of your project. As such, we recommend that you construct your tables
and figures so they stand on their own and draw readers in. With these
two considerations in mind, we have a set of recommendations for what
you should and should not do as you put your tables and figures together.
We also recommend that you tell readers in the text of your project what
they should see in your tables and figures. Some of this can be learned
by reading other scholars’ work on similar subjects: Take time, when you
read, to think about what works and what doesn’t work in terms of other
scholars’ use of tables and figures.

10.9.1 Constructing Regression Tables

As we have made clear, multiple regression analyses are the main tool
that researchers in political science use to test their causal claims in
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observational research. Consumers of political science research are well-
trained to read regression tables and make assessments based on what they
see in them. In addition to making assessments about the specific results
presented in a table, readers will also use what they see – and don’t see –
in regression tables to make assessments about the technical competence
of the person who has constructed the table. Since this will have a major
impact on the overall assessment of your project, you will want to be
careful and thorough in your construction of regression tables.

The construction of regression tables involves moving back and forth
between results in a statistics program and the table-making facilities in
whatever word-processing program you are using. The easiest and worst
way to do this is to simply copy and paste your statistical output into your
word-processing program. This is a bad way to proceed for at least six
reasons. First of all, it just doesn’t look good, and (if you do this) makes
you look transparently lazy. Second, statistical programs tend to give you
an overabundance of information when you estimate a regression model.
This information is often way more than what you will need to report
in your regression table. Third, the default reporting of results that the
statistical program reports may be different from what is appropriate for
your purposes. For instance, as we discussed in Chapter 9, almost all sta-
tistical programs report the results from two-tailed hypothesis tests when
most of our hypotheses in political science are directional (and thus should
be assessed with one-tailed tests). Fourth, statistical programs report the
names of your variables as they appear in your data sets. While the abbre-
viations that you have chosen for your variables probably make sense to
you, they will almost surely be confusing to your readers. Fifth, computer
programs usually report statistics with a number of digits past the decimal
point that go way beyond what you need to report. We recommend round-
ing to two decimal places. And sixth, computer programs report model
results with variables in a particular order, but that order may not be the
best for emphasizing the important aspects of your results.

Having established what you should not do in constructing your
tables, let’s now talk about what you should do. Remember that your
goals are to make your table of results stand on its own and draw potential
readers in. As such, you want your tables to transmit to other researchers
what you have done. Your regression table should include:

• a title that communicates the purpose of the model and/or the most
important implications,

• names for the independent variables that are as clear as possible,

• a listing of your independent variables in an order that suits your
purposes (usually with your main theoretical variable(s) at the top and
control variables listed below),
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• the estimated effect of each independent variable (usually the estimated
parameter),

• some indication of the uncertainty/statistical significance of each esti-
mated effect (standard errors or t-statistics in parentheses underneath a
parameter estimate),

• some indication of which results have been found to be statistically sig-
nificant according to a particular standard (e.g., putting stars next to
results for which p < 0.05),

• some indication of what is the dependent variable,

• some overall diagnostics to communicate the model’s fit and the number
of cases on which the model was estimated,

• a set of notes to help readers decode anything they need to decode (e.g.,
that “**” means “p < 0.01),” and

• any other information that needs to be communicated in order to convey
the importance of the findings.

As an example of a table of regression results, consider Table 10.3.24

If we go through the list of what a table should contain, we can evaluate
how well this table does with each item. The title is fairly informative
about what is going on in the model depicted in the table, but certainly
conveys the most important implications. The names of the independent
variables could certainly be more clear. For instance, we don’t know exactly
what “Growth” or “Unemployment” represent, though we could proba-
bly make a good guess. We also don’t know from the table alone what
“Government Change” is, and it would be hard to make a good guess. The
table clearly contains parameter estimates and an indication (in the form
of standard errors) of the uncertainty about them. In addition, we can tell
from the note beneath the table that the stars in the table convey different
levels of statistical significance. The notes beneath the table also make it
fairly clear what the dependent variable is, though we would have to figure
out on our own that these data are from monthly surveys. So, overall, while
this table is fairly clear, it could certainly be improved upon.

As we have seen in this chapter, it is often the case that we will want
to report the results from several regression models in the same table.
When we do this, it is important to make sure that we are setting up
our comparisons across models in a fashion that conveys exactly what we
want. There are two types of comparisons that we typically make when we
are presenting multiple regression models in the same table: comparisons of
different model specifications with the same sample of data or comparisons
of the same model specification across different samples of data. In tables

24 Tables 10.3 and 10.5 are based on tables contained in Palmer, Whitten, and
Williams (2013).



10.9 Making Effective Use of Tables and Figures 239

Table 10.3 Economic models of monthly UK government
support, 2004–2011 objective economic measures only

Independent Parameter estimate
variable (standard error)

Growth 0.25∗∗
(0.11)

Unemployment 0.07
(0.20)

� Inflation −2.72∗∗∗
(0.75)

Government Change 12.46∗∗∗
(2.27)

Supportt−1 0.78∗∗∗
(0.06)

Constant 6.37∗∗∗
(2.13)

R2 0.81
N 89

Notes: The dependent variable is the percentage of each sample that

reported that they would vote for the government if an election was

held at the time of the survey.

***p < 0.01, **p < 0.05, *p < 0.1 (two-tailed tests, despite directional

hypotheses).

that show the results from multiple models, it is important to only make
one of these two types of changes at a time.

Consider, for instance, Tables 10.1 and 10.2. In these tables we pre-
sented different model specifications across the same sample. What we can
see very well as we move across the columns in these tables is the changes
in the estimated effects of our variables as we change our model. But, it is
important to note that, if the sample in Table 10.1 or 10.2 was not exactly
the same across the columns, we would not know why the estimated effects
were changing. In such a case, changes could be due to a change in the
sample or a change in the model.

As an example of the second type of comparison, where we look at the
same model specification but across different samples, consider Tables 10.4
and 10.5. Both of these tables are examples of the type of research strat-
egy discussed in Chapter 2 where we are interested in differences across
subpopulations of cases in terms of the relationship between X and Y.
The key variable of interest in the first table is how coolly or warmly
(on a 0-to-100 scale) survey respondents report feeling about a particular
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Table 10.4 Alternative presentation of the effects of gender and feelings
toward the women’s movement on Hillary Clinton Thermometer scores

Sample

Independent variable All Male Female

Women’s Movement Thermometer 0.70∗∗∗ 0.75∗∗∗ 0.62∗∗∗
(0.03) (0.05) (0.04)

Intercept 8.52 1.56 16.77∗∗∗
(2.10) (3.03) (2.89)

n 1466 656 810

R2 0.25 0.27 0.21

Notes: The dependent variable in both models is the respondent’s thermometer score for Hillary

Clinton.

Standard errors in parentheses.

Two-sided t-tests: ***p < 0.01, **p < 0.05, *p < 0.10.

person or group – in this case feelings about Hillary Clinton. Table 10.4
shows such a comparison looking at the relationship between Women’s
Movement Thermometer scores across men and women.25 We can see
from this table that, although the sample changes across the columns, the
model specification is the same. And we can tell from this comparison
that there are differences across the columns in terms of the estimated
relationships. The key variable in Table 10.5 is the percentage of a sample
in the UK that reported that, were an election held that day, they would
vote for the party that currently controls the government. The table shows
that when we estimate the model for three different subpopulations defined
by their income levels, we also see substantial differences in the ways in
which the economic variables, the main Xs in this model, impact support
for the government.

10.9.2 Writing about Regression Tables

Although our goal in constructing tables is to make them stand well on
their own, when writing about regression tables, it is important to do

25 As we will show in Chapter 11, we can also get leverage on this type of difference in the
relationship between X and Y across subpopulations through the use of an interactive
model specification. But here we show this difference in the relationship between X
and Y by presenting the bivariate regression model with thermometer scores for Hillary
Clinton as the dependent variable and Women’s Movement Thermometer scores as the
independent variable on the entire sample, and then subsamples of cases defined by the
gender of the respondent.
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Table 10.5 Economic models of monthly UK government support across
groups of voters, 2004–2011 objective economic measures only

Sample

Independent Upper Middle Low
variable All income income income

Growth 0.25∗∗ 0.61∗∗∗ 0.35∗∗ 0.33∗
(0.11) (0.21) (0.15) (0.20)

Unemployment 0.07 1.18∗∗ −0.24 −1.76∗∗∗
(0.20) (0.47) (0.31) (0.51)

� Inflation −2.72∗∗∗ −3.40∗∗ −4.21∗∗∗ −3.38∗∗
(0.75) (1.46) (1.12) (1.59)

Government Change 12.46∗∗∗ 19.60∗∗∗ 6.28∗ −5.11
(2.27) (4.56) (3.42) (4.84)

Supportt−1 0.78∗∗∗ 0.58∗∗∗ 0.56∗∗∗ 0.28∗∗∗
(0.06) (0.09) (0.08) (0.10)

Constant 6.37∗∗∗ 5.30∗∗ 15.95∗∗∗ 34.61∗∗∗
(2.13) (2.65) (3.66) (5.74)

R2 0.81 0.66 0.58 0.48
N 89 89 89 89

Notes: The dependent variable is the percentage of each sample that reported that they would

vote for the government if an election was held at the time of the survey.

***p < 0.01, **p < 0.05, *p < 0.1 (two-tailed tests, despite directional hypotheses).

a little bit of handholding. In other words, tell your readers what they
should take away from each table. Consider the way in which we just
ended the above section. Although this table is competently constructed,
we don’t know for sure which parts of the table are going to catch the eye
of our readers. All that we have told readers is that there are substantial
differences across groups. Instead of leaving this up to chance, we should
tell them what they should see from this table – for instance, that the largest
effect of growth appears to happen among the high income group. We
should also point out that the effect of unemployment is in the opposite
direction of our theoretical expectations for the highest income group,
statistically insignificant for the middle income group, and statistically sig-
nificant in the expected direction for the lowest income group. We should
point out that the effects of inflation are roughly the same across the
three groups, all statistically significant in the expected (negative) direction,
while for only the high income group is there a statistically significant
and positive effect for the switch in government from the Labour Party to
the Conservative/Liberal Democratic coalition represented by the variable
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named “Government Change.” Finally, we should point out that these
effects that we just discussed are only the short-term effects and that all of
these variables have long-term effects as well, because these models include
a lagged dependent variable, labeled “Supportt−1,” in the table.26

The bottom line with writing about regression tables is that you want
to tell your readers what they should see. This will help you to maximize
the impact of what you have found and to keep your audience focused on
what you are trying to communicate.

10.10 IMPLICATIONS AND CONCLUSIONS

What are the implications of this chapter? The key take-home point –
that failing to control for all relevant independent variables will often lead
to mistaken causal inferences for the variables that do make it into our
models – applies in several contexts. If you are reading a research article in
one of your other classes, and it shows a regression analysis between two
variables, but fails to control for the effects of some other possible cause of
the dependent variable, then you have some reason to be skeptical about
the reported findings. In particular, if you can think of another independent
variable that is likely to be related to both the independent variable and
the dependent variable, then the relationship that the article does show
that fails to control for that variable is likely to be plagued with bias. And
if that’s the case, then there is substantial reason to doubt the findings.
The findings might be right, but you can’t know that from the evidence
presented in the article; in particular, you’d need to control for the omitted
variable to know for sure.

But this critical issue isn’t just encountered in research articles. When
you read a news article from your favorite media web site that reports a
relationship between some presumed cause and some presumed effect –
news articles don’t usually talk about “independent variables” or “depen-
dent variables” – but fails to account for some other cause that you can
imagine might be related to both the independent and dependent variables,
then you have reason to doubt the conclusions.

It might be tempting to react to omitted-variables bias by saying,
“Omitted-variables bias is such a potentially serious problem that I don’t
want to use regression analysis.” That would be a mistake. In fact, the
logic of omitted-variables bias applies to any type of research, no matter
what type of statistical technique is used – in fact, no matter whether the
research is qualitative or quantitative.

26 We will learn more about the way to discuss time-series models in Chapter 12.
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Sometimes, as we have seen, controlling for other causes of the depen-
dent variable changes the discovered effects only at the margins. That
happens on occasion in applied research. At other times, however, failure
to control for a relevant cause of the dependent variable can have serious
consequences for our causal inferences about the real world.

In Chapters 11 and 12, we present you with some crucial extensions
of the multiple regression model that you are likely to encounter when
consuming or conducting research.

CONCEPTS INTRODUCED IN THIS CHAPTER

• bias – a statistical problem that occurs when the expected value of the
parameter estimate that we obtain from a sample will not be equal to the
true population parameter

• dyadic data – data that reflect the characteristics of pairs of spatial units
and/or the relationships between them

• omitted-variables bias – the specific type of bias that results from the
failure to include a variable that belongs in our regression model

• perfect multicollinearity – when there is an exact linear relationship
between any two or more of a regression model’s independent variables

• standardized coefficients – regression coefficients such that the rise-
over-run interpretation is expressed in standard-deviation units of each
variable

• substantive significance – a judgment call about whether or not statis-
tically significant relationships are “large” or “small” in terms of their
real-world impact

• unstandardized coefficients – regression coefficients such that the rise-
over-run interpretation is expressed in the original metric of each variable

EXERCISES

1. Identify an article from a prominent web site that reports a causal relationship
between two variables. Can you think of another variable that is related to
both the independent variable and the dependent variable? Print and turn in a
copy of the article with your answers.

2. In Exercise 1, estimate the direction of the bias resulting from omitting the
third variable.

3. Fill in the values in the third column of Table 10.6.

4. In your own research you have found evidence from a bivariate regression
model that supports your theory that your independent variable Xi is posi-
tively related to your dependent variable Yi (the slope parameter for Xi was
statistically significant and positive when you estimated a bivariate regression
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Table 10.6 Bias in β̂1 when the true population
model is Yi = α + β1Xi + β2Zi + ui but we leave out Z

β2

∑n

i=1
(Xi − X̄)(Zi − Z̄)∑n

i=1
(Xi − X̄)2

Resulting bias in β̂1

0 + ?
0 − ?
+ 0 ?
− 0 ?
+ + ?
− − ?
+ − ?
− + ?

Table 10.7 Three regression models of teacher salaries in the US states and
the District of Columbia

A B C

Percentage of state residents 704.02∗ — 24.56
with a college degree (140.22) — (231.72)

Per capita income — 0.68∗ 0.66∗
— (0.11) (0.19)

Intercept 28768.01∗ 21168.11∗ 21161.07∗
(3913.27) (4102.40) (4144.96)

R2 0.34 0.47 0.47
N 51 51 51

Notes: The dependent variable is the average salary of public elementary and secondary school

teachers.

Standard errors are in parentheses.

*p < 0.05 (two-tailed t-test).

model). You go to a research presentation in which other researchers present
a theory that their independent variable Zi is negatively related to their depen-
dent variable Yi. They report the results from a bivariate regression model in
which the slope parameter for Zi was statistically significant and negative. Your
Yi and their Yi are the same variable. What would be your reaction to these
findings under each of the following circumstances?

(a) You are confident that the correlation between Zi and Xi is equal to zero.

(b) You think that the correlation between Zi and Xi is positive.

(c) You think that the correlation between Zi and Xi is negative.
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5. Using the results depicted in Table 10.7, interpret the results of the bivariate
models displayed in columns A and B.

6. Using the results depicted in Table 10.7, interpret the results of the multiple
regression model displayed in column C. Compare the results in column C
with those in both columns A and B.

7. Draw a Venn diagram that depicts what is going on between the three variables
based on the results in Table 10.7.
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OVERVIEW

In this chapter we provide introductory discussions of and advice for

commonly encountered research scenarios involving multiple regression

models. Issues covered include dummy independent variables, interactive

specifications, influential cases, and multicollinearity.

All models are wrong, but some are useful.
—George E.P. Box

11.1 EXTENSIONS OF ORDINARY LEAST-SQUARES

In the previous two chapters we discussed in detail various aspects of
the estimation, interpretation, and presentation of OLS regression models.
In this chapter we go through a series of research scenarios commonly
encountered by political science researchers as they attempt to test their
hypotheses within the OLS framework. The purpose of this chapter is
twofold – first, to help you to identify when you encounter these issues
and, second, to help you to figure out what to do to continue on your way.

We begin with a discussion of “dummy” independent variables and
how to properly use them to make inferences. We then discuss how
to test interactive hypotheses with dummy variables. We next turn our
attention to two frequently encountered problems in OLS – outliers and
multicollinearity. With both of these topics, at least half of the battle is
identifying that you have the problem.

11.2 BEING SMART WITH DUMMY INDEPENDENT VARIABLES IN OLS

In Chapter 5 we discussed how an important part of knowing your data
involves knowing the metric in which each of your variables is measured.

246
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Throughout the examples that we have examined thus far, almost all of
the variables, both the independent and dependent variables, have been
continuous. This is not by accident. We chose examples with continuous
variables because they are, in many cases, easier to interpret than models
in which the variables are noncontinuous. In this section, though, we con-
sider a series of scenarios involving independent variables that are not
continuous. We begin with a relatively simple case in which we have a
categorical independent variable that takes on one of two possible values
for all cases. Categorical variables like this are commonly referred to as
dummy variables. Although any two values will do, the most common
form of dummy variable is one that takes on values of one or zero. These
variables are also sometimes referred to as “indicator variables” when a
value of one indicates the presence of a particular characteristic and a
value of zero indicates the absence of that characteristic. After consider-
ing dummy variables that reflect two possible values, we then consider
more complicated examples in which we have an independent variable
that is categorical with more than two values. We conclude this section
with an examination of how to handle models in which we have multi-
ple dummy variables representing multiple and overlapping classifications
of cases.

11.2.1 Using Dummy Variables to Test Hypotheses about a Categorical
Independent Variable with Only Two Values

During the 1996 US presidential election between incumbent Democrat
Bill Clinton and Republican challenger Robert Dole, Clinton’s wife Hillary
was a prominent and polarizing figure. Throughout the next couple of
examples, we will use her “thermometer ratings” by individual respondents
to the National Election Study (NES) survey as our dependent variable.
As we discussed briefly in Chapter 10, a thermometer rating is a survey
respondent’s answer to a question about how they feel (as opposed to how
they think) toward particular individuals or groups on a scale that typically
runs from 0 to 100. Scores of 50 indicate that the individual feels neither
warm nor cold about the individual or group in question. Scores from 50
to 100 represent increasingly warm (or favorable) feelings, and scores from
50 to 0 represent increasingly cold (or unfavorable) feelings.

During the 1996 campaign, Ms. Clinton was identified as being a left-
wing feminist. Given this, we theorize that there may have been a causal
relationship between a respondent’s family income and their thermometer
rating of Ms. Clinton – with wealthier individuals, holding all else con-
stant, liking her less – as well as a relationship between a respondent’s
gender and their thermometer rating of Ms. Clinton – with women, holding
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Source

Model
Residual

Total

hillary_th~o

income
male

female

_cons

coef.

-.8407732
-8.081448

0

69.26185

Std. Err.

.117856
1.495216

(omitted)

1.92343

t

-7.13
-5.40

36.01

P>|t| [95% Conf. Interval]

0.000
0.000

0.000

-1.071949
-11.01432

0.65.48903

-.6095978
-5.148572

73.03467

SS

. reg hillary_thermo income male female
note: female omitted because of collinearity

df MS Number of obs   =
F(2, 1539)      =
Prob > F        =
R-squared       =
Adj R-squared   =
Root MSE        =

1,542
49.17
0.0000
0.0601
0.0588
28.684

80916.663
1266234.71

1347151.37

2
1,539

1,541

40458.3315
822.764595

874.205954

Figure 11.1 Stata output when we include both gender dummy variables in our model

all else constant, liking her more. For the sake of this example, we are going
to assume that both our dependent variable and our income independent
variable are continuous.1 Each respondent’s gender was coded as equaling
either 1 for “male” or 2 for “female.” Although we could leave this gender
variable as it is and run our analyses, we chose to use this variable to create
two new dummy variables, “male” equaling 1 for “yes” and 0 for “no,”
and “female” equaling 1 for “yes” and 0 for “no.”

Our first inclination is to estimate an OLS model in which the specifi-
cation is the following:

Hillary Thermometeri = α + β1Incomei + β2Malei + β3Femalei + ui.

But if we try to estimate this model, our statistical computer program will
revolt and give us an error message.2 Figure 11.1 shows a screen shot of
what this output looks like in Stata. We can see that Stata has reported the
results from the following model instead of what we asked for:

Hillary Thermometeri = α + β1Incomei + β3Femalei + ui.

Instead of the estimates for β2 on the second row of parameter esti-
mates, we get a note that this variable was “dropped.” This is the case
because we have failed to meet the additional minimal mathematical crite-
ria that we introduced when we moved from two-variable OLS to multiple
OLS in Chapter 10 – “no perfect multicollinearity.” The reason that we
have failed to meet this is that, for two of the independent variables in our
model, Malei and Femalei, it is the case that

Malei + Femalei = 1 ∀ i.

1 In this survey, a respondent’s family income was measured on a scale ranging from 1 to 24
according to which category of income ranges they chose as best describing their family’s
income during 1995.

2 Most programs will throw one of the two variables out of the model and report the results
from the resulting model along with an error message.
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Table 11.1 Two models of the effects of gender and
income on Hillary Clinton Thermometer scores

Independent variable Model 1 Model 2

Male — −8.08∗∗∗
(1.50)

Female 8.08∗∗∗ —
(1.50)

Income −0.84∗∗∗ −0.84∗∗∗
(0.12) (0.12)

Intercept 61.18∗∗∗ 69.26∗∗∗
(2.22) (1.92)

R2 0.06 0.06
n 1542 1542

Notes: The dependent variable in both models is the respondent’s

thermometer score for Hillary Clinton.

Standard errors in parentheses.

Two-sided t-tests: ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10.

In other words, our variables “Male” and “Female” are perfectly corre-
lated: If we know a respondent’s value on the “Male” variable, then we
know their value on the “Female” variable with perfect certainty.

When this happens with dummy variables, we call this situation the
dummy-variable trap. To avoid the dummy-variable trap, we have to omit
one of our dummy variables. But we want to be able to compare the
effects of being male with the effects of being female to test our hypothesis.
How can we do this if we have to omit one of our two variables that
measures gender? Before we answer this question, let’s look at the results
in Table 11.1 from the two different models in which we omit one of
these two variables. We can learn a lot by looking at what is and what
is not the same across these two models. In both models, the parameter
estimate and standard error for income are identical. The R2 statistic is also
identical. The parameter estimate and the standard error for the intercept
are different across the two models. The parameter estimate for male is
−8.08, whereas that for female is 8.08, although the standard error for
each of these parameter estimates is 0.12. If you’re starting to think that all
of these similarities cannot have happened by coincidence, you are correct.
In fact, these two models are, mathematically speaking, the same model.
All of the Ŷ values and residuals for the individual cases are exactly the
same. With income held constant, the estimated difference between being
male and being female is 8.08. The sign on this parameter estimate switches
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from positive to negative when we go from Model 1 to Model 2 because
we are phrasing the question differently across the two models:

• For Model 1: “What is the estimated difference for a female compared
with a male?”

• For Model 2: “What is the estimated difference for a male compared
with a female?”

So why are the intercepts different? Think back to our discussions
in Chapters 9 and 10 about the interpretation of the intercept – it is the
estimated value of the dependent variable when the independent variables
are all equal to zero. In Model 1 this means the estimated value of the
dependent variable for a low-income man. In Model 2 this means the
estimated value of the dependent variable for a low-income woman. And
the difference between these two values – you guessed it – is 61.18 −
69.26 = −8.08!

What does the regression line from Model 1 or Model 2 look like?
The answer is that it depends on the gender of the individual for which
we are plotting the line, but that it does not depend on which of these two
models we use. For men, where Femalei = 0 and Malei = 1, the predicted
values are calculated as follows:

Model 1 for Men:

Ŷi = 61.18 + (8.08 × Femalei) − (0.84 × Incomei)

Ŷi = 61.18 + (8.08 × 0) − (0.84 × Incomei)

Ŷi = 61.18 − (0.84 × Incomei);

Model 2 for Men:

Ŷi = 69.26 − (8.08 × Malei) − (0.84 × Incomei)

Ŷi = 69.26 − (8.08 × 1) − (0.84 × Incomei)

Ŷi = 61.18 − (0.84 × Incomei).

So we can see that, for men, regardless of whether we use the results from
Model 1 or Model 2, the formula for predicted values is the same. For
women, where Femalei = 1 and Malei = 0, the predicted values are
calculated as follows:

Model 1 for Women:

Ŷi = 61.18 + (8.08 × Femalei) − (0.84 × Incomei)

Ŷi = 61.18 + (8.08 × 1) − (0.84 × Incomei)

Ŷi = 69.26 − (0.84 × Incomei);
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Women: Y = 69.26 – (0.84 × Incomei)

Men: Y = 61.18 – (0.84 × Incomei)
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Figure 11.2 Regression lines from the model with a dummy variable for gender

Model 2 for Women:

Ŷi = 69.26 − (8.08 × Malei) − (0.84 × Incomei)

Ŷi = 69.26 − (8.08 × 0) − (0.84 × Incomei)

Ŷi = 69.26 − (0.84 × Incomei).

Again, the formula from Model 1 is the same as the formula from Model 2
for women. To illustrate these two sets of predictions, we have plotted
them in Figure 11.2. Given that the two predictive formulae have the same
slope, it is not surprising to see that the two lines in this figure are parallel
to each other with the intercept difference determining the space between
them.

11.2.2 Using Dummy Variables to Test Hypotheses about a Categorical
Independent Variable with More Than Two Values

As you might imagine, when we have a categorical variable with more
than two categories and we want to include it in an OLS model, things
get more complicated. We’ll keep with our running example of modeling
Hillary Clinton Thermometer scores as a function of individuals’ charac-
teristics and opinions. In this section we work with a respondent’s religious
affiliation as an independent variable. The frequency of different responses
to this item in the 1996 NES is displayed in Table 11.2.

Could we use the Religious Identification variable as it is in our regres-
sion models? That would be a bad idea. Remember, this is a categorical
variable, in which the values of the variable are not ordered from lowest
to highest. Indeed, there is no such thing as “lowest” or “highest” on
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Table 11.2 Religious identification in the 1996 NES

Assigned
numeric value Category Frequency Percent

0 Protestant 683 39.85
1 Catholic 346 20.19
2 Jewish 22 1.28
3 Other 153 8.93
4 None 510 29.75

Totals 1714 100

this variable. So running a regression model with these data as they are
would be meaningless. But beware: Your statistics package does not know
that this is a categorical variable. It will be more than happy to estimate
the regression and report parameter estimates to you, even though these
estimates will be nonsensical.

In the previous section, in which we had a categorical variable
(Gender) with only two possible values, we saw that, when we switched
which value was represented by “1” and “0,” the estimated parameter
switched signs. This was the case because we were asking a different
question. With a categorical independent variable that has more than
two values, we have more than two possible questions that we can ask.
Because using the variable as is is not an option, the best strategy for
modeling the effects of such an independent variable is to include in our
regression a dummy variable for each value of that independent variable
except one.3 The value of the independent variable for which we do not
include a dummy variable is known as the reference category. This is
the case because the parameter estimates for all of the dummy variables
representing the other values of the independent variable are estimated
with reference to that value of the independent variable. So let’s say that
we choose to estimate the following model:

Hillary Thermometeri = α + β1Incomei + β2Protestanti + β3Catholici

+ β4 Jewishi + β5Otheri + ui.

For this model we would be using “None” as our reference category
for religious identification. This would mean that β̂2 would be the esti-
mated effect of being Protestant relative to being nonreligious, and we

3 If our theory was that only one category, such as Catholics, was different from all of
the others, then we would collapse the remaining categories of the variable in question
together and we would have a two-category independent variable. We should do this only
if we have a theoretical justification for doing so.
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Table 11.3 The same model of religion and income on Hillary Clinton
Thermometer scores with different reference categories

Independent
variable Model 1 Model 2 Model 3 Model 4 Model 5

Income −0.97∗∗∗ −0.97∗∗∗ −0.97∗∗∗ −0.97∗∗∗ −0.97∗∗∗
(0.12) (0.12) (0.12) (0.12) (0.12)

Protestant −4.24∗ −6.66∗ −24.82∗∗∗ −6.30∗∗ —
(1.77) (2.68) (6.70) (2.02) —

Catholic 2.07 −0.35 −18.51∗∗ — 6.30∗∗
(2.12) (2.93) (6.80) — (2.02)

Jewish 20.58∗∗ 18.16∗∗ — 18.51∗∗ 24.82∗∗∗
(6.73) (7.02) — (6.80) (6.70)

Other 2.42 — −18.16∗∗ 0.35 6.66∗
(2.75) — (7.02) (2.93) (2.68)

None — −2.42 −20.58∗∗ −2.07 4.24∗
— (2.75) (6.73) (2.12) (1.77)

Intercept 68.40∗∗∗ 70.83∗∗∗ 88.98∗∗∗ 70.47∗∗∗ 64.17∗∗∗
(2.19) (2.88) (6.83) (2.53) (2.10)

R2 0.06 0.06 0.06 0.06 0.06
n 1542 1542 1542 1542 1542

Notes: The dependent variable in both models is the respondent’s thermometer score for Hillary

Clinton.

Standard errors in parentheses.

Two-sided t-tests: ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10.

could use this value along with its standard error to test the hypothesis that
this effect was statistically significant, controlling for the effects of income.
The remaining parameter estimates (β̂3, β̂4, and β̂5) would all also be inter-
preted as the estimated effect of being in each of the remaining categories
relative to “None.” The value that we choose to use as our reference cate-
gory does not matter, as long as we interpret our results appropriately. But
we can use the choice of the reference category to focus on the relationships
in which we are particularly interested. For each possible pair of categories
of the independent variable, we can conduct a separate hypothesis test.
The easiest way to get all of the p-values in which we are interested is
to estimate the model multiple times with different reference categories.
Table 11.3 displays a model of Hillary Clinton Thermometer scores with
the five different choices of reference categories. It is worth emphasizing
that this is not a table with five different models, but that this is a table
with the same model displayed five different ways. From this table we can
see that, when we control for the effects of income, some of the categories
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Table 11.4 Model of bargaining duration

Independent variable Parameter estimate

Ideological Range of the Government 2.57∗
(1.95)

Number of Parties in the Government −15.44∗∗∗
(2.30)

Post-Election 5.87∗∗
(2.99)

Continuation Rule −6.34∗∗
(3.34)

Intercept 19.63∗∗∗
(3.82)

R2 0.62
n 203

Notes: The dependent variable is the number of days before each government

was formed.

Standard errors in parentheses.

One-sided t-tests: ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10.

of religious affiliation are statistically different from each other in their
evaluations of Hillary Clinton whereas others are not. This raises an inter-
esting question: Can we say that the effect of religious affiliation, control-
ling for income, is statistically significant? The answer is that it depends on
which categories of religious affiliation we want to compare.

11.2.3 Using Dummy Variables to Test Hypotheses about Multiple
Independent Variables

It is often the case that we will want to use multiple dummy independent
variables in the same model. Consider the model presented in Table 11.4,
which was estimated from data from a paper by Lanny Martin and Georg
Vanberg (2003) on the length of time that it takes for coalition govern-
ments to form in Western Europe.4 The dependent variable is the number
of days that a government took to form. The model has two continu-
ous independent variables (“Ideological Range of the Government” and

4 The model that we present in Table 11.4 has been changed from what Martin and Vanberg
present in their paper. This model contains fewer variables than the main model of interest
in that paper. This model was also estimated using OLS regression whereas the models
presented by the original authors were estimated as proportional hazard models. And, we
have not reported the results for a technical variable (labeled “Number of Government
Parties ∗ ln(T)” by the authors) from the original specification. All of these modifications
were made to make this example more tractable.
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Table 11.5 Two overlapping dummy variables
in models by Martin and Vanberg

Continuation rule?

No (0) Yes (1)

Post- No (0) 61 25

Election? Yes (1) 76 41

Note: Numbers in cells represent the number of cases.

“Number of Parties in the Government”) measuring characteristics of the
government that eventually formed and two dummy independent vari-
ables reflecting the circumstances under which bargaining took place. The
variable “Post-Election” identifies governments that were formed in the
immediate aftermath of an election while “Continuation Rule” identifies
bargaining that took place in settings where the political parties from the
outgoing government had the first opportunity to form a new government.
As Table 11.5 indicates, all four possible combinations of these two dummy
variables occurred in the sample of cases on which the model presented in
Table 11.4 was estimated.

So, how do we interpret these results? It’s actually not as hard as it
might first appear. Remember from Chapter 10 that when we moved from
a bivariate regression model to a multiple regression model, we had to
interpret each parameter estimate as the estimated effect of a one-point
increase in that particular independent variable on the dependent variable,
while controlling for the effects of all other independent variables in the
model. This has not changed. Instead, what is a little different from the
examples that we have considered before is that we have two dummy inde-
pendent variables that can vary independently of each other. So, when we
interpret the estimated effect of each continuous independent variable,
we interpret the parameter estimate as the estimated effect of a one-point
increase in that particular independent variable on the dependent vari-
able, while controlling for the effects of all other independent variables
in the model, including the two dummy variables. And, when we interpret
the estimated effect of each dummy independent variable, we interpret the
parameter estimate as the estimated effect of that variable having a value of
one versus zero on the dependent variable, while controlling for the effects
of all other independent variables in the model, including the other dummy
variable. For instance, the estimated effect of a one-unit increase in the
Ideological Range of the Government, holding everything else constant, is
a 2.57 day increase in the amount of bargaining time. And, the estimated
effect of bargaining in the aftermath of an election (versus at a different
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time), holding everything else constant, is a 5.87 day increase in the amount
of bargaining time.

11.3 TESTING INTERACTIVE HYPOTHESES WITH DUMMY VARIABLES

All of the OLS models that we have examined so far have been what we
could call “additive models.” To calculate the Ŷ value for a particular case
from an additive model, we simply multiply each independent variable
value for that case by the appropriate parameter estimate and add these
values together. In this section we explore some interactive models. Inter-
active models contain at least one independent variable that we create by
multiplying together two or more independent variables. When we specify
interactive models, we are testing theories about how the effects of one
independent variable on our dependent variable may be contingent on the
value of another independent variable. We will continue with our running
example of modeling a respondent’s thermometer score for Hillary Clinton.
We begin with an additive model with the following specification:

Hillary Thermometeri = α + β1Women’s Movement Thermometeri

+ β2Femalei + ui.

In this model we are testing theories that a respondent’s feelings
toward Hillary Clinton are a function of their feelings toward the women’s
movement and their own gender. This specification seems pretty reason-
able, but we also want to test an additional theory that the effect of
feelings toward the women’s movement have a stronger effect on feelings
toward Hillary Clinton among women than they do among men. Notice
the difference in phrasing there. In essence, we want to test the hypothesis
that the slope of the line representing the relationship between Women’s
Movement Thermometer and Hillary Clinton Thermometer is steeper for
women than it is for men. To test this hypothesis, we need to create a new
variable that is the product of the two independent variables in our model
and include this new variable in our model:

Hillary Thermometeri

= α + β1Women’s Movement Thermometeri

+ β2Femalei + β3(Women’s Movement Thermometeri × Femalei)+ ui.

By specifying our model as such, we have essentially created two dif-
ferent models for women and men. So we can rewrite our model as follows:

For Men (Female = 0):

Hillary Thermometeri = α +β1Women’s Movement Thermometeri + ui;
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For Women (Female = 1):

Hillary Thermometeri = α + β1Women’s Movement Thermometeri

+ (β2 +β3)(Women’s Movement Thermometeri)

+ ui.

And we can rewrite the formula for women as:

For Women (Female = 1):

Hillary Thermometeri = (α + β2) + (β1 + β3)

(Women’s Movement Thermometeri) + ui.

What this all boils down to is that we are allowing our regression line
to be different for men and women. For men, the intercept is α and the
slope is β1. For women, the intercept is α + β2 and the slope is β1 + β3.
However, if β2 = 0 and β3 = 0, then the regression lines for men and
women will be the same. Table 11.6 shows the results for our additive and
interactive models of the effects of gender and feelings toward the women’s
movement on Hillary Clinton Thermometer scores. We can see from the
interactive model that we can reject the null hypothesis that β2 = 0 and
the null hypothesis that β3 = 0, so our regression lines for men and women
are different. We can also see that the intercept for the line for women
(α + β2) is higher than the intercept for men (α). But, contrary to our
expectations, the estimated effect of the Women’s Movement Thermometer

Table 11.6 The effects of gender and feelings toward the women’s move-
ment on Hillary Clinton Thermometer scores

Independent variable Additive model Interactive model

Women’s Movement Thermometer 0.68∗∗∗ 0.75∗∗∗
(0.03) (0.05)

Female 7.13∗∗∗ 15.21∗∗∗
(1.37) (4.19)

Women’s Movement — −0.13∗∗
Thermometer × Female (0.06)

Intercept 5.98∗∗ 1.56
(2.13) (3.04)

R2 0.27 0.27
n 1466 1466

Notes: The dependent variable in both models is the respondent’s thermometer score for

Hillary Clinton.

Standard errors in parentheses.

Two-sided t-tests: ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10.
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Figure 11.3 Regression lines from the interactive model

for men is greater than the effect of the Women’s Movement Thermometer
for women.

The best way to see the combined effect of all of the results from the
interactive model in Table 11.6 is to look at them graphically in a figure
such as Figure 11.3. From this figure we can see the regression lines for men
and for women across the range of the independent variable. It is clear from
this figure that, although women are generally more favorably inclined
toward Hillary Clinton, this gender gap narrows when we compare those
individuals who feel more positively toward the feminist movement.

11.4 OUTLIERS AND INFLUENTIAL CASES IN OLS

In Chapter 6 we advocated using descriptive statistics to identify outlier
values for each continuous variable. In the context of a single variable, an
outlier is an extreme value relative to the other values for that variable. But
in the context of an OLS model, when we say that a single case is an outlier,
we could mean several different things. For this reason, we prefer to use the
term “influential” instead of “outlier” in the context of a regression model.

As we discussed in Chapter 6, we should always strive to know our
data well. This means looking at individual variables one at a time before
we estimate a regression with them and identifying univariate outliers. But
just because a case is an outlier in the univariate sense does not necessarily
imply that it will be an influential case in a regression. Nonetheless, we
should look for outliers in the single-variable sense before we estimate our
models and make sure that they are actual values and not values created
by some type of data management mistake.
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In the regression setting, individual cases can be influential in several
different ways:

1. They can have unusual independent variable values. This is known as a
case having large leverage. This can be the result of a single case having
an unusual value for a single variable. A single case can also have large
leverage because it has an unusual combination of values across two or
more variables. There are a variety of different measures of leverage, but
they all make calculations across the values of independent variables in
order to identify individual cases that are particularly different.

2. They can have large residual values (usually we look at squared residu-
als to identify outliers of this variety).

3. They can have both large leverage and large residual values.

The relationship among these different concepts of influence for a
single case in OLS is often summarized as

influencei = leveragei × residuali.

As this formula indicates, the influence of a particular case is determined
by the combination of its leverage and residual values. There are a variety
of different ways to measure these different factors. We explore a couple
of them in the following sections with a controversial real-world example.

11.4.1 Identifying Influential Cases

One of the most famous cases of outliers and influential cases in political
data comes from the 2000 US presidential election in Florida. In an attempt
to measure the extent to which ballot irregularities may have influenced
election results, a variety of models were estimated in which the raw vote
numbers for candidates across different counties were the dependent vari-
ables of interest. These models were fairly unusual because the parameter
estimates and other quantities that are most often the focus of our model
interpretations were of little interest. Instead, these were models for which
the most interesting quantities were the diagnostics of influential cases. As
an example of such a model, we will work with the following:

Buchanani = α + βGorei + ui.

In this model the cases are individual counties in Florida, the dependent
variable (Buchanani) is the number of votes in each Florida county for
the independent candidate Patrick Buchanan, and the independent vari-
able is the number of votes in each Florida county for the Democratic
Party’s nominee Al Gore (Gorei). Such models are unusual in the sense
that there is no claim of an underlying causal relationship between the
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Table 11.7 Votes for Gore and Buchanan in Florida
counties in the 2000 US presidential election

Independent variable Parameter estimate

Votes for Gore 0.004∗∗∗
(0.0005)

Intercept 80.63∗
(46.4)

R2 0.48
n 67

Notes: The dependent variable is the number of votes for Patrick

Buchanan.

Standard errors in parentheses.

Two-sided t-tests: ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10.

independent and dependent variables. Instead, the theory behind this type
of model is that there should be a strong systematic relationship between
the number of votes cast for Gore and those cast for Buchanan across the
Florida counties.5 There was a suspicion that the ballot structure used in
some counties – especially the infamous “butterfly ballot” – was such that
it confused some voters who intended to vote for Gore into voting for
Buchanan. If this was the case, we should see these counties appearing as
highly influential after we estimate our model.

We can see from Table 11.7 that there was indeed a statistically sig-
nificant positive relationship between Gore and Buchanan votes, and that
this simple model accounts for 48 percent of the variation in Buchanan
votes across the Florida counties. But, as we said before, the more interest-
ing inferences from this particular OLS model are about the influence of
particular cases. Figure 11.4 presents a Stata lvr2plot (short for “leverage-
versus-residual-squared plot”) that displays Stata’s measure of leverage on
the vertical dimension and a normalized measure of the squared residu-
als on the horizontal dimension. The logic of this figure is that, as we
move to the right of the vertical line through this figure, we are seeing
cases with unusually large residual values, and that, as we move above
the horizontal line through this figure, we are seeing cases with unusually
large leverage values. Cases with both unusually large residual and leverage
values are highly influential. From Figure 11.4 it is apparent that Pinellas,

5 Most of the models of this sort make adjustments to the variables (for example, logging
the values of both the independent and dependent variables) to account for possibilities
of nonlinear relationships. In the present example we avoided doing this for the sake of
simplicity.
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Figure 11.4 Stata lvr2plot for the model presented in Table 11.7
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Figure 11.5 OLS line with scatter plot for Florida 2000

Hillsborough, and Orange counties had large leverage values but not par-
ticularly large squared residual values, whereas Dade, Broward, and Palm
Beach counties were highly influential with both large leverage values and
large squared residual values.

We can get a better idea of the correspondence between Figure 11.4
and Table 11.7 from Figure 11.5, in which we plot the OLS regression
line through a scatter plot of the data. From this figure it is clear that
Palm Beach was well above the regression line whereas Broward and Dade
counties were well below the regression line. By any measure, these three
cases were quite influential in our model.

A more specific method for detecting the influence of an individual
case involves estimating our model with and without particular cases to
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Table 11.8 The five largest
(absolute-value) DFBETA scores
for β from the model presented
in Table 11.7

County DFBETA

Palm Beach 6.993
Broward −2.514
Dade −1.772
Orange −0.109
Pinellas 0.085

see how much this changes specific
parameter estimates. The resulting
calculation is known as the DFBETA
score (Belsley, Kuh, and Welsch,
1980). DFBETA scores are calculated
as the difference in the parameter
estimate without each case divided
by the standard error of the original
parameter estimate. Table 11.8 dis-
plays the five largest absolute values
of DFBETA for the slope parame-
ter (β) from the model presented in

Table 11.7. Not surprisingly, we see that omitting Palm Beach, Broward,
or Dade has the largest impact on our estimate of the slope parameter.

11.4.2 Dealing with Influential Cases

Now that we have discussed the identification of particularly influential
cases on our models, we turn to the subject of what to do once we have
identified such cases. The first thing to do when we identify a case with
substantial influence is to double-check the values of all variables for such
a case. We want to be certain that we have not “created” an influential
case through some error in our data management procedures. Once we
have corrected for any errors of data management and determined that
we still have some particularly influential case(s), it is important that we
report our findings about such cases along with our other findings. There
are a variety of strategies for doing so. Table 11.9 shows five different
models that reflect various approaches to reporting results with highly
influential cases. In Model 1 we have the original results as reported in
Table 11.7. In Model 2 we have added a dummy variable that identifies
and isolates the effect of Palm Beach County. This approach is sometimes
referred to as dummying out influential cases. We can see why this is called
“dummying out” from the results in Model 3, which is the original model
with the observation for Palm Beach County dropped from the analysis.
The parameter estimates and standard errors for the intercept and slope
parameters are identical from Models 2 and 3. The only differences are
the model R2 statistic, the number of cases, and the additional parameter
estimate reported in Model 2 for the Palm Beach County dummy variable.6

6 This parameter estimate was viewed by some as an estimate of how many votes the ballot
irregularities cost Al Gore in Palm Beach County. But if we look at Model 4, where we
include dummy variables for Broward and Dade counties, we can see the basis for an
argument that in these two counties there is evidence of bias in the opposite direction.
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Table 11.9 Votes for Gore and Buchanan in Florida counties in the 2000 US
presidential election

Independent
variable Model 1 Model 2 Model 3 Model 4 Model 5

Gore 0.004∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.005∗∗∗ 0.005∗∗∗
(0.0005) (0.0002) (0.0002) (0.0003) (0.0003)

Palm Beach — 2606.3∗∗∗ — 2095.5∗∗∗ —
dummy (150.4) (110.6)

Broward — — — −1066.0∗∗∗ —
dummy (131.5)

Dade — — — −1025.6∗∗∗ —
dummy (120.6)

Intercept 80.6∗ 110.8∗∗∗ 110.8∗∗∗ 59.0∗∗∗ 59.0∗∗∗
(46.4) (19.7) (19.7) (13.8) (13.8)

R2 0.48 0.91 0.63 0.96 0.82
n 67 67 66 67 64

Notes: The dependent variable is the number of votes for Patrick Buchanan.

Standard errors in parentheses.

Two-sided t-tests: ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10.

In Model 4 and Model 5, we see the results from dummying out the three
most influential cases and then from dropping them out of the analysis.

Across all five of the models shown in Table 11.9, the slope parameter
estimate remains positive and statistically significant. In most models, this
would be the quantity in which we are most interested (testing hypotheses
about the relationship between X and Y). Thus the relative robustness of
this parameter across model specifications would be comforting. Regard-
less of the effects of highly influential cases, it is important first to know
that they exist and, second, to report accurately what their influence is and
what we have done about them.

11.5 MULTICOLLINEARITY

When we specify and estimate a multiple OLS model, what is the inter-
pretation of each individual parameter estimate? It is our best guess of the
causal impact of a one-unit increase in the relevant independent variable
on the dependent variable, controlling for all of the other variables in the
model. Another way of saying this is that we are looking at the impact of
a one-unit increase in one independent variable on the dependent variable
when we “hold all other variables constant.” We know from Chapter 10
that a minimal mathematical property for estimating a multiple OLS model
is that there is no perfect multicollinearity. Perfect multicollinearity, you
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will recall, occurs when one independent variable is an exact linear func-
tion of one or more other independent variables in a model.

In practice, perfect multicollinearity is usually the result of a small
number of cases relative to the number of parameters we are estimating,
limited independent variable values, or model misspecification. As we have
noted, if there exists perfect multicollinearity, OLS parameters cannot
be estimated. A much more common and vexing issue is high multi-
collinearity. As a result, when people refer to multicollinearity, they
almost always mean “high multicollinearity.” From here on, when we
refer to “multicollinearity,” we will mean “high, but less-than-perfect,
multicollinearity.” This means that two or more of the independent
variables in the model are extremely highly correlated with one another.

11.5.1 How Does Multicollinearity Happen?

Multicollinearity is induced by a small number of degrees of freedom
and/or high correlation between independent variables. Figure 11.6 pro-
vides a Venn diagram illustration that is useful for thinking about the
effects of multicollinearity in the context of an OLS regression model. As
you can see from this figure, X and Z are fairly highly correlated. Our
regression model is

Yi = α + β1Xi + β2Zi + ui.

Looking at Figure 11.6, we can see that the R2 from our regression model
will be fairly high,

R2 = f + d + b
a + f + d + b

.

But we can also see from this figure that the areas for the estimation of our
two slope parameters – area f for β1 and area b for β2 – are pretty small.
Because of this, our standard errors for our slope parameters will tend to be

a

b
d

f

gZ

Y

X
e c

Figure 11.6 Venn diagram with
multicollinearity

fairly large, which makes discovering sta-
tistically significant relationships more dif-
ficult, and we will have difficulty making
precise inferences about the impacts of
both X and Z on Y. It is possible that
because of this problem we would conclude
neither X nor Z has much of an impact
on Y. But clearly this is not the case. As
we can see from the diagram, both X and
Z are related to Y. The problem is that
much of the covariation between X and Y
and between Z and Y is also covariation
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between X and Z. In other words, it is the size of area d that is causing us
problems. We have precious little area in which to examine the effect of X
on Y while holding Z constant, and likewise, there is precious little area in
which to examine the effect of Z on Y while controlling for X.

It is worth emphasizing at this point that multicollinearity is not a
statistical problem (examples of statistical problems include autocorre-
lation, bias, and heteroscedasticity). Rather, multicollinearity is a data
problem. It is possible to have multicollinearity even when all of the
assumptions of OLS from Chapter 9 are valid and all of the minimal
mathematical requirements for OLS from Chapters 9 and 10 have been
met. So, you might ask, what’s the big deal about multicollinearity? To
underscore the notion of multicollinearity as a data problem instead of
a statistical problem, Christopher Achen (1982) has suggested that the
word “multicollinearity” should be used interchangeably with micronu-
merosity. Imagine what would happen if we could double or triple the
size of the diagram in Figure 11.6 without changing the relative sizes
of any of the areas. As we expanded all of the areas, areas f and b
would eventually become large enough for us to precisely estimate the
relationships of interest.

11.5.2 Detecting Multicollinearity

It is very important to know when you have multicollinearity. In particular,
it is important to distinguish situations in which estimates are statistically
insignificant because the relationships just aren’t there from situations in
which estimates are statistically insignificant because of multicollinearity.
The diagram in Figure 11.6 shows us one way in which we might be
able to detect multicollinearity: If we have a high R2 statistic, but none
(or very few) of our parameter estimates is statistically significant, we
should be suspicious of multicollinearity. We should also be suspicious
of multicollinearity if we see that, when we add and remove independent
variables from our model, the parameter estimates for other independent
variables (and especially their standard errors) change substantially. If we
estimated the model represented in Figure 11.6 with just one of the two
independent variables, we would get a statistically significant relationship.
But, as we know from the discussions in Chapter 10, this would be prob-
lematic. Presumably we have a theory about the relationship between each
of these independent variables (X and Z) and our dependent variable (Y).
So, although the estimates from a model with just X or just Z as the
independent variable would help us to detect multicollinearity, they would
suffer from bias. And, as we argued in Chapter 10, omitted-variables bias
is a severe problem.
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A more formal way to diagnose multicollinearity is to calculate the
variance inflation factor (VIF) for each of our independent variables. This
calculation is based on an auxiliary regression model in which one inde-
pendent variable, which we will call Xj, is the dependent variable and all of
the other independent variables are independent variables.7 The R2 statistic
from this auxiliary model, R2

j , is then used to calculate the VIF for variable
j as follows:

VIFj = 1

(1 − R2
j )

.

Many statistical programs report the VIF and its inverse (1/VIF) by default.
The inverse of the VIF is sometimes referred to as the tolerance index
measure. The higher the VIFj value, or the lower the tolerance index,
the higher will be the estimated variance of Xj in our theoretically spec-
ified model. Another useful statistic to examine is the square root of the
VIF. Why? Because the VIF is measured in terms of variance, but most
of our hypothesis-testing inferences are made with standard errors. Thus
the square root of the VIF provides a useful indicator of the impact the
multicollinearity is going to have on hypothesis-testing inferences.

11.5.3 Multicollinearity: a Simulated Example

Thus far we have made a few scattered references to simulation. In this
section we make use of simulation to better understand multicollinearity.
Almost every statistical computer program has a set of tools for simulating
data. When we use these tools, we have an advantage that we do not
ever have with real-world data: we can know the underlying “population”
characteristics (because we create them). When we know the population
parameters for a regression model and draw sample data from this popu-
lation, we gain insights into the ways in which statistical models work.

So, to simulate multicollinearity, we are going to create a population
with the following characteristics:

1. Two variables X1i and X2i such that the correlation rX1i,X2i = 0.9.
2. A variable ui randomly drawn from a normal distribution, centered

around 0 with variance equal to 1 [ui ∼ N(0, 1)].
3. A variable Yi such that Yi = 0.5 + 1X1i + 1X2i + ui.

7 Students facing OLS diagnostic procedures are often surprised that the first thing that we
do after we estimate our theoretically specified model of interest is to estimate a large set
of atheoretical auxiliary models to test the properties of our main model. We will see that,
although these auxiliary models lead to the same types of output that we get from our main
model, we are often interested in only one particular part of the results from the auxiliary
model. With our “main” model of interest, we have learned that we should include every
variable that our theories tell us should be included and exclude all other variables. In
auxiliary models, we do not follow this rule. Instead, we are running these models to test
whether certain properties have or have not been met in our original model.
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We can see from the description of our simulated population that we
have met all of the OLS assumptions, but that we have a high correlation
between our two independent variables. Now we will conduct a series of
random draws (samples) from this population and look at the results from
the following regression models:

Model 1: Yi = α + β1X1i + β2X2i + ui,

Model 2: Yi = α + β1X1i + ui,

Model 3: Yi = α + β2X2i + ui.

In each of these random draws, we increase the size of our sample start-
ing with n = 5, then 10, and finally 25 cases. Results from models esti-
mated with each sample of data are displayed in Table 11.10. In the first
column of results (n = 5), we can see that both slope parameters are

Table 11.10 Random draws of increasing size from a
population with substantial multicollinearity

Sample: Sample: Sample:
Estimate n = 5 n = 10 n = 25

Model 1:
β̂1 0.546 0.882 1.012∗∗

(0.375) (0.557) (0.394)

β̂2 1.422∗ 1.450∗∗ 1.324∗∗∗
(0.375) (0.557) (0.394)

α̂ 1.160∗∗ 0.912∗∗∗ 0.579∗∗∗
(0.146) (0.230) (0.168)

R2 0.99 0.93 0.89
VIF1 5.26 5.26 5.26
VIF2 5.26 5.26 5.26

Model 2:
β̂1 1.827∗∗ 2.187∗∗∗ 2.204∗∗∗

(0.382) (0.319) (0.207)

α̂ 1.160∗∗ 0.912∗∗ 0.579∗∗∗
(0.342) (0.302) (0.202)

R2 0.88 0.85 0.83

Model 3:
β̂2 1.914∗∗∗ 2.244∗∗∗ 2.235∗∗∗

(0.192) (0.264) (0.192)

α̂ 1.160∗∗∗ 0.912∗∗∗ 0.579∗∗∗
(0.171) (0.251) (0.188)

R2 0.97 0.90 0.86

Notes: The dependent variable is Yi = 0.5 + 1X1i + 1X2i + ui.

Standard errors in parentheses.

Two-sided t-tests: ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10.
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positive, as would be expected, but that the parameter estimate for X1

is statistically insignificant and the parameter estimate for X2 is on the
borderline of statistical significance. The VIF statistics for both variables
are equal to 5.26, indicating that the variance for each parameter estimate
is substantially inflated by multicollinearity. The model’s intercept is sta-
tistically significant and positive, but pretty far from what we know to
be the true population value for this parameter. In Models 2 and 3 we
get statistically significant positive parameter estimates for each variable,
but both of these estimated slopes are almost twice as high as what we
know to be the true population parameters. The 95 percent confidence
interval for β̂2 does not include the true population parameter. This is
a clear case of omitted-variables bias. When we draw a sample of 10
cases, we get closer to the true population parameters with β̂1 and α̂ in
Model 1. The VIF statistics remain the same because we have not changed
the underlying relationship between X1 and X2. This increase in sample
size does not help us with the omitted-variables bias in Models 2 and 3.
In fact, we can now reject the true population slope parameter for both
models with substantial confidence. In our third sample with 25 cases,
Model 1 is now very close to our true population model, in the sense
of both the parameter values and that all of these parameter estimates
are statistically significant. In Models 2 and 3, the omitted-variables bias is
even more pronounced.

The findings in this simulation exercise mirror more general findings
in the theoretical literature on OLS models. Adding more data will alle-
viate multicollinearity, but not omitted-variables bias. We now turn to an
example of multicollinearity with real-world data.

YOUR TURN: Imagining a different simulation

How would the output in Table 11.10 be different if rX1i,X2i = −0.9?

11.5.4 Multicollinearity: a Real-World Example

In this section, we estimate a model of the thermometer scores for US voters
for George W. Bush in 2004. Our model specification is the following:

Bush Thermometeri = α + β1Incomei + β2Ideologyi + β3Educationi

+ β4Party IDi + ui.

Although we have distinct theories about the causal impact of each
independent variable on people’s feelings toward Bush, Table 11.11
indicates that some of these independent variables are substantially
correlated with each other.
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Table 11.11 Pairwise correlations between independent variables

Bush Therm. Income Ideology Education Party ID

Bush Therm. 1.00 — — — —
Income 0.09∗∗∗ 1.00 — — —
Ideology 0.56∗∗∗ 0.13∗∗∗ 1.00 — —
Education −0.07∗∗∗ 0.44∗∗∗ −0.06∗ 1.00 —
Party ID 0.69∗∗∗ 0.15∗∗∗ 0.60∗∗∗ 0.06∗ 1.00

Notes: Cell entries are correlation coefficients.

Two-sided t-tests: ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10.

Table 11.12 Model results from random draws of increasing
size from the 2004 NES

Independent variable Model 1 Model 2 Model 3

Income 0.77 0.72 0.11
(0.90) (0.51) (0.15)

{1.63} {1.16} {1.24}
Ideology 7.02 4.57∗ 4.26∗∗∗

(5.53) (2.22) (0.67)

{3.50} {1.78} {1.58}
Education −6.29 −2.50 −1.88∗∗∗

(3.32) (1.83) (0.55)

{1.42} {1.23} {1.22}
Party ID 6.83 8.44∗∗∗ 10.00∗∗∗

(3.98) (1.58) (0.46)

{3.05} {1.70} {1.56}
Intercept 21.92 12.03 13.73∗∗∗

(23.45) (13.03) (3.56)

R2 0.71 0.56 0.57
n 20 74 821

Notes: The dependent variable is the respondent’s thermometer score for

George W. Bush.

Standard errors in parentheses; VIF statistics in braces.

Two-sided t-tests: ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10.

In Table 11.12, we present estimates of our model using three different
samples from the NES 2004 data. In Model 1, estimated with data from
20 randomly chosen respondents, we see that none of our independent
variables are statistically significant despite the rather high R2 statistic.
The VIF statistics for Ideology and Party ID indicate that multicollinearity
might be a problem. In Model 2, estimated with data from 74 randomly
chosen respondents, Party ID is highly significant in the expected (positive)
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direction whereas Ideology is near the threshold of statistical significance.
None of the VIF statistics for this model are stunningly high, though they
are greater than 1.5 for Ideology, Education, and Party ID.8 Finally, in
Model 3, estimated with all 820 respondents for whom data on all of the
variables were available, we see that Ideology, Party ID, and Education
are all significant predictors of people’s feelings toward Bush. The sample
size is more than sufficient to overcome the VIF statistics for Party ID and
Ideology. Of our independent variables, only Income remains statistically
insignificant. Is this due to multicollinearity? After all, when we look at
Table 11.11, we see that income has a highly significant positive correlation
with Bush Thermometer scores. For the answer to this question, we need
to go back to the lessons that we learned in Chapter 10: Once we control
for the effects of Ideology, Party ID, and Education, the effect of income
on people’s feelings toward George W. Bush goes away.

11.5.5 Multicollinearity: What Should I Do?

In the introduction to this section on multicollinearity, we described it as a
“common and vexing issue.” The reason why multicollinearity is “vexing”
is that there is no magical statistical cure for it. What is the best thing to
do when you have multicollinearity? Easy (in theory): collect more data.
But data are expensive to collect. If we had more data, we would use them
and we wouldn’t have hit this problem in the first place. So, if you do not
have an easy way to increase your sample size, then multicollinearity ends
up being something that you just have to live with. It is important to know
that you have multicollinearity and to present your multicollinearity by
reporting the results of VIF statistics or what happens to your model when
you add and drop the “guilty” variables.

11.6 WRAPPING UP

The key to developing good models is having a good theory and then
doing a lot of diagnostics to figure out what we have after estimating the
model. What we’ve seen in this chapter is that there are additional (but
not insurmountable!) obstacles to overcome when we consider that some
of our theories involve noncontinuous independent variables. In the next
chapter, we examine the research situations in which we encounter dummy
dependent variables and a set of special circumstances that can arise when
our data have been collected across time.

8 When we work with real-world data, there tend to be many more changes as we move
from sample to sample.
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CONCEPTS INTRODUCED IN THIS CHAPTER

• auxiliary regression model – a regression model separate from the origi-
nal theoretical model that is used to detect one or more statistical prop-
erties of the original model

• DFBETA score – a statistical measure for the calculation of the influence
of an individual case on the value of a single parameter estimate

• dummying out – adding a dummy variable to a regression model to
measure and isolate the effect of an influential observation

• dummy variable – a variable that takes on one of two values (usually one
or zero)

• dummy-variable trap – perfect multicollinearity that results from the
inclusion of dummy variables representing each possible value of a cate-
gorical variable

• high multicollinearity – in a multiple regression model, when two or
more of the independent variables in the model are extremely highly
correlated with one another, making it difficult to isolate the distinct
effects of each variable

• influential case – in a regression model a case which has either a combi-
nation of large leverage and a large squared residual or a large DFBETA
score

• interactive models – multiple regression models that contain at least one
independent variable that we create by multiplying together two or more
independent variables

• leverage – in a multiple regression model, the degree to which an individ-
ual case is unusual in terms of its value for a single independent variable,
or its particular combination of values for two or more independent
variables

• micronumerosity – a suggested synonym for multicollinearity

• reference category – in a multiple regression model, the value of a cat-
egorical independent variable for which we do not include a dummy
variable

• variance inflation factor – a statistical measure to detect the contribution
of each independent variable in a multiple regression model to overall
multicollinearity

EXERCISES

1. Using the model presented in Table 11.4, how many days would you predict
that it would take for a government to form if the government was made up
of two different political parties with an ideological range of 2, if bargaining
was taking place in the immediate aftermath of an election, and there was not
a continuation rule? Show your work.
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2. Using the model presented in Table 11.4, interpret the parameter estimate for
the variable “Continuation Rule.”

3. Using the model presented in Table 11.4, interpret the parameter estimate for
the variable “Number of Parties in the Government.”

4. Using the data set “nes2008.dta” (which is available on the textbook’s web site
at www.cambridge.org/fpsr), investigate two possible causes of a respondent’s
attitudes toward abortion (which you will, for the purposes of this exercise,
need to treat as a continuous variable), using the respondent’s gender and
the respondent’s level of education as your two key independent variables.
First, construct an additive multiple regression model investigating the effects
of gender and education on abortion attitudes. Next, construct an interac-
tive multiple regression model that adds an interaction term for gender and
education. Present the results of both models in a single table. Interpret, first,
the additive regression model, and then interpret the interactive model. Does
education have the same, a smaller, or larger effect on abortion attitudes for
women than it does for men?

5. Using the data set “state data.dta” (which is available on the textbook’s web
site at www.cambridge.org/fpsr), estimate Model C in Table 10.7. Test for
influential observations in the model using a leverage versus squared residual
plot. Write about what this diagnostic test tells you.

6. Test for influential observations in the model that you estimated for Exercise 5
using DFBETA scores. Write about what this diagnostic test tells you.

7. Based on what you found in Exercises 5 and 6, how would you adjust the
original model?

8. Test for multicollinearity in the model that you estimated for Exercise 5. Write
about what you have found.
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