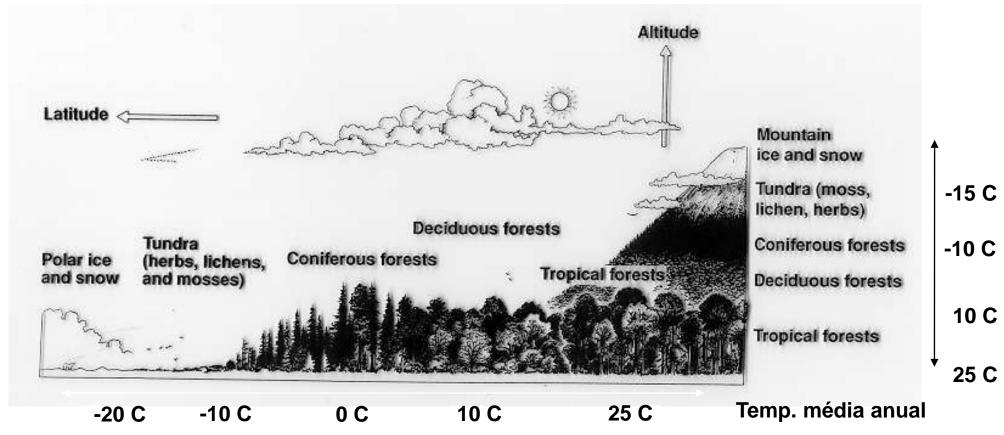
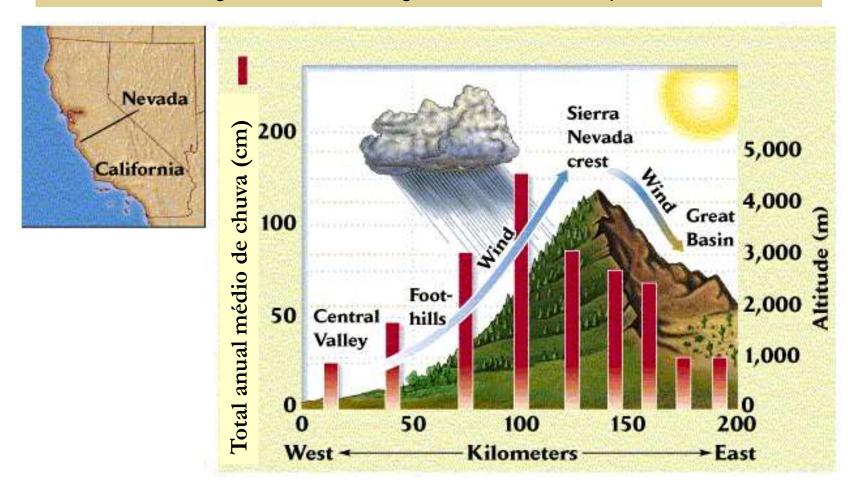
Aula 7 — Calor sensível e as plantas Prof. Fábio Marin

INTRODUÇÃO

- ➤ Temperatura energia interna de uma substância ou um corpo qualquer, vulgarmente associado às sensações de frio e calor; mais especificamente é a medida da <u>energia cinética</u> associada ao movimento (vibração) aleatório das partículas.
- ➤ Diversas das propriedades físicas da matéria se em estado sólido, líquido ou gasoso; sua densidade, solubilidade, pressão de vapor, condutividade hidráulica, etc são dependentes da temperatura do sistema em análise. Além de influenciar nas propriedades químicas, acelerando a velocidade das reações e do metabolismo nos seres vivos.
- Um dos principais fatores determinantes da distribuição e desenvolvimento das plantas e animais


Influência da altitude

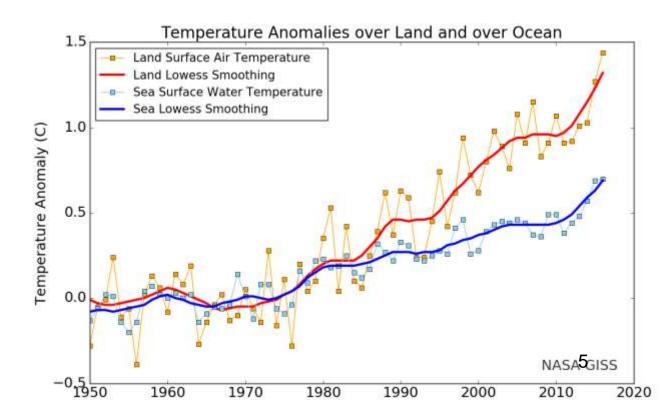

O aumento da altitude ocasiona diminuição da temperatura. Isso ocorre em conseqüência da rarefação do ar e da diminuição da pressão atmosférica

Média \approx - 0,6°C / 100m

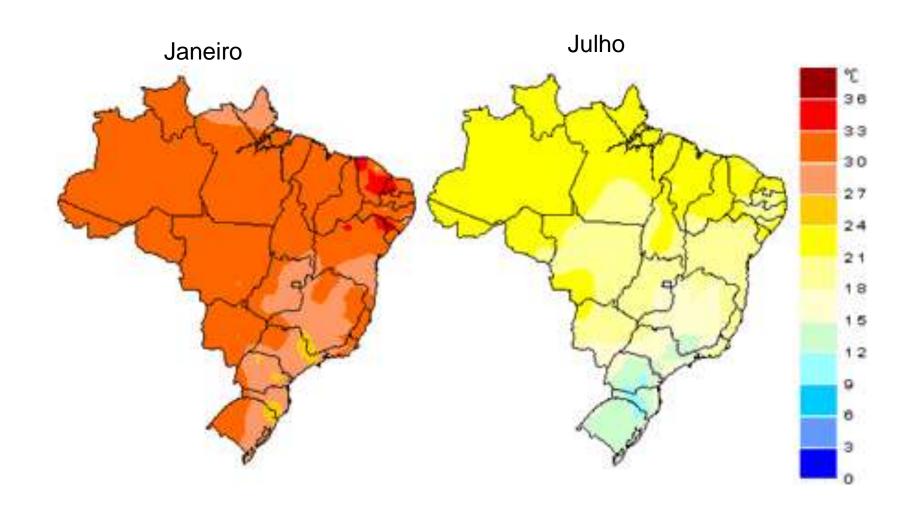
(esse valor depende da quantidade de vapor no ar)

Além disso, a associação da altitude com o relevo pode condicionar o regime de chuvas de uma região. As chuvas orográficas são um exemplo disso:

Esse efeito ocorre também na região da Serra do Mar no Estado de São Paulo, onde a chuva total anual é de 2.150 mm/ano em Santos, de 3.800 mm/ano no alto da Serra e de 1.300 mm/ano na cidade de S. Paulo.


Oceanidade / Continentalidade

Diz respeito a proximidade em relação ao mar.


A água possui alto calor específico (energia necessária para elevar a temperatura de 1 quilo em 1°C).

Cuiabá → Amplitude térmica anual entre 8 e 17°C

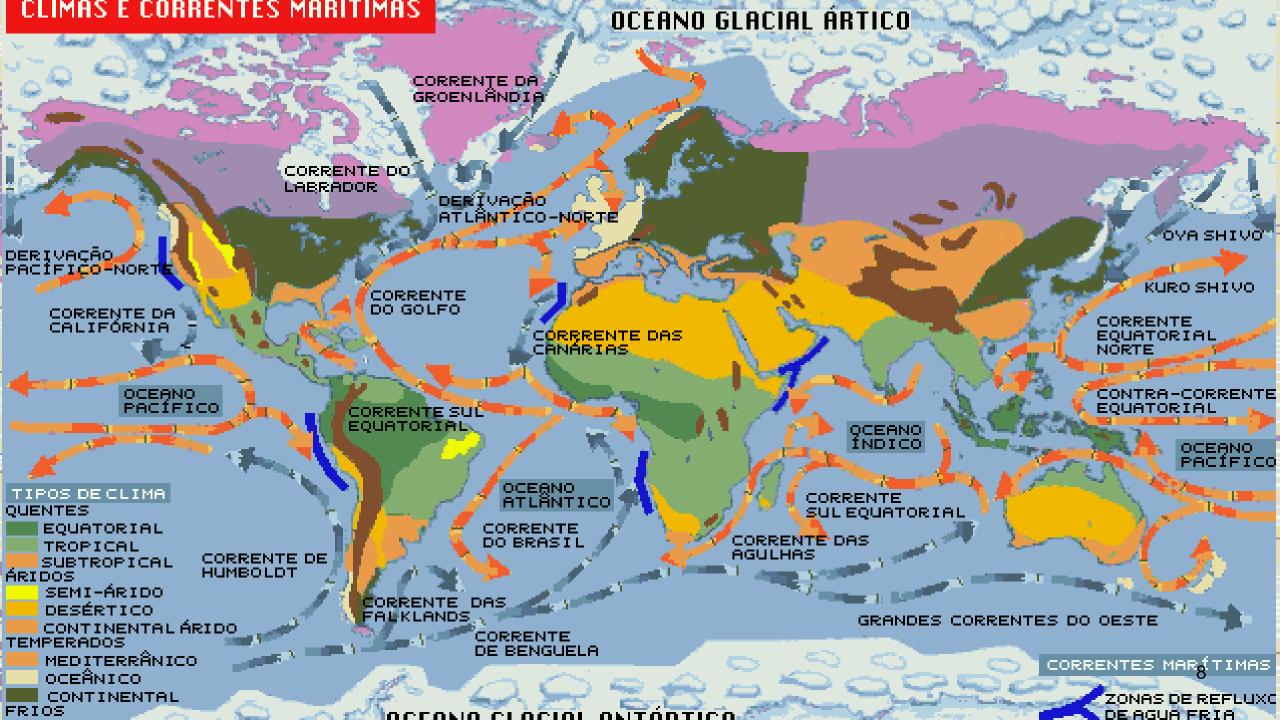
Salvador → Amplitude térmica anual entre 3 e 6°C

Temperatura média anual no Brasil

Correntes Oceânicas

As correntes que circulam

Pólos para Equador - FRIAS


Equador para Pólo - QUENTES.

A atmosfera em contato com essas massas de água entram em equilíbrio térmico com a superfície. Por isso, as correntes tem grande efeito sobre o regime térmico e hídrico (chuvas) na faixa litorânea dos continentes.

Correntes Frias → Condicionam clima ameno e seco Correntes Quentes → Condicionam clima quente e úmido

Exemplo:

Salvador, BA, Brasil
$$\rightarrow$$
 T_{anual} = 24,9°C e P_{anual} = 2.000 mm
Lima, Perú \rightarrow T_{anual} = 19,4°C e P_{anual} = 40 mm

Exposição do terreno

Nas regiões S e SE do Brasil os terrenos com faces voltadas para o N são, em média, mais ensolarados, secos e quentes do que as voltadas para o S.

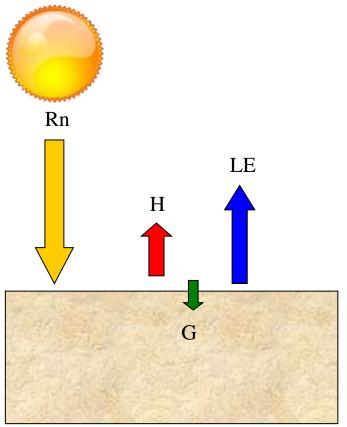
Fatores do microclima controlando a temperatura

Num mesmo local (as vezes com distância de apenas alguns metros), a temperatura da superfície varia de acordo com a sua cobertura. No nosso caso, imagine a temperatura do asfalto em frente ao prédio central e a temperatura do gramadão - é fácil supor que o gramado sempre tem temperatura menor ao meio dia, não é?

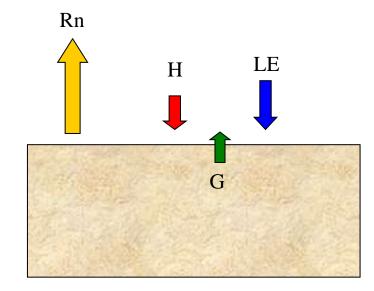
Diferentes coberturas modificam o regime térmico do local

Temperatura do ar, balanço de radiação e de energia

Resultam basicamente do balanço de energia

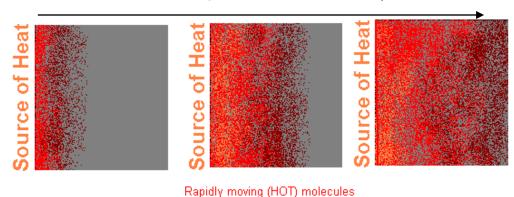

Rn = Saldo de Radiação

H = Fluxo de Calor Sensível

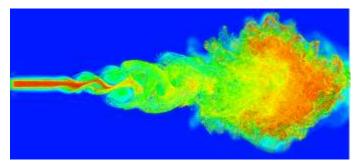

LE = Fluxo de Calor Latente

G = Fluxo de Calor no Solo

A composição e a magnitude do balanço de energia é altamente dependente da umidade do solo e do ar

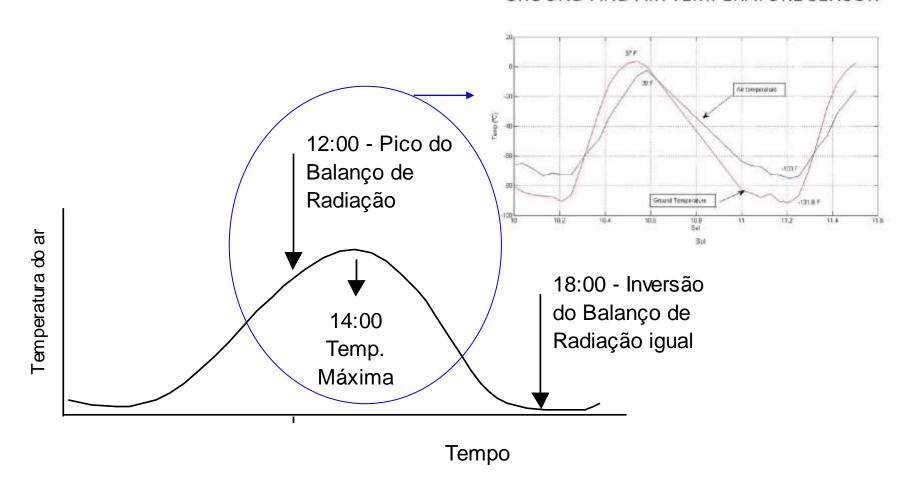


Mecanismos de aquecimento da atmosfera


Aquecimento da atmosfera próxima à superfície terrestre por transporte de energia:

→ Condução molecular – troca de calor sensível por contato entre as "moléculas", com extensão superficial limitada (máximo de 3m);

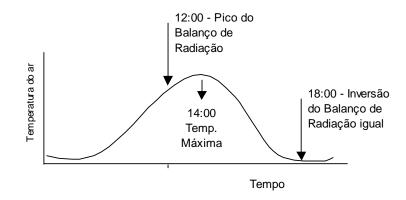
→ Difusão turbulenta: processo "eficiente" de transporte de energia, com movimento ascendente de parcelas de ar aquecidas – dispersão de CO₂, vapor d'água e poeira.


Molecules being bumped and heated up Cold Molecules

Variação Temporal da Temperatura do Ar

→ Diária: Função do Balanço de Radiação na Superfície

GROUND AND AIR TEMPERATURE SENSOR


Medida da Temperatura do Ar

Medida da Temperatura do Ar

- Medida da temperatura medida em condição padrão – comparação entre locais diferentes.
- Altura 1,5 a 2,0 m
- Abrigo ventilado (venezianas ou multipratos)

Medida da Temperatura do Solo

LCE 360 - Meteorologia Agrícola

Sentelhas/Angelocci

Medida da Temperatura do Solo

São utilizados os geotermômetros, cujo o elemento sensor é o mercúrio, que tem como princípio de medida a dilatação de um líquido. Além deles pode-se utilizar outros tipos de elementos sensores, como os termopares e os termistores. Para medida padrão em estações meteorológicas os geotermômetros devem ser instalados a 2, 5, 10, 20, 40 e 100 cm de profundidade em superfície gramada ou de solo desnudo.

Geotermômetros instalados em gramado

Geotermômetros instalados em solo desnudo

Sensor automático para medida da temp. do solo

Fab. U at NO

Além dos geotermômetros padrões, existem outros tipos de geotermômetros de baixo custo, para uso em plantações.

Cálculo da temperatura média

• IAC:

Tmed =
$$(T_{7h} + T_{14h} + 2.T_{21h})/4$$

• INMET:

Tmed =
$$(T_{9h} + T_{max} + T_{min} + 2.T_{21h})/4$$

Valores extremos:

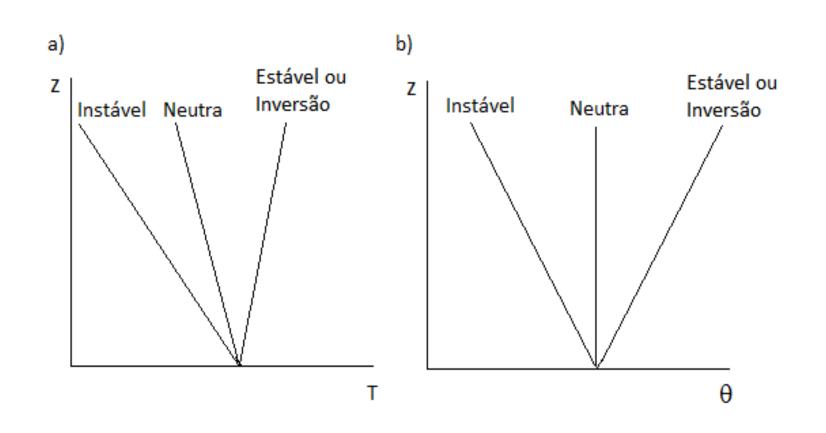
$$Tmed = (Tmax + Tmin)/2$$

Estações Automáticas:

Tmed =
$$\Sigma Tar/N$$

Estabilidade atmosférica

Temperatura Potencial


$$\theta = T \cdot \left(\frac{100}{P_{\text{atm}}}\right)^{0.288}$$

em que θ é a temperatura potencial (K); T_{ar} é a temperatura do ar (K); e P_{atm} é a pressão atmosférica em kPa.

$$Ri = \frac{g \cdot \frac{\Delta \theta}{\Delta z}}{\theta \cdot \left(\frac{\Delta u}{\Delta z}\right)^2}$$

em que g é a aceleração da gravidade (m·s⁻²); θ é a temperatura potencial (K); u é a velocidade do vento (m·s⁻¹) e Δz é a distância vertical entre dois pontos de medida (m).

Perfis de Temperatura

A temperatura como fator agronômico...

✓ A taxa das reações metabólicas é regulada basicamente pela temperatura do ar, afetando, desse modo, tanto o crescimento como o desenvolvimento das plantas.

√ Consequência: a duração das fases ou sub-períodos fenológicos e,
conseqüentemente, o ciclo das culturas tem variação inversamente proporcional a ela.

✓ Um dos primeiros estudos relacionando temperatura e desenvolvimento vegetal foi realizado por Reaumur, na França, por volta de 1735. Ele observou que o ciclo de uma mesma cultura/variedade variava entre localidades e também entre diferentes anos.

✓ Ao fazer o somatório das temperaturas do ar durante os diferentes ciclos, ele
observou que esses valores eram praticamente constantes, definindo isso como

Constante Térmica da Cultura.

Conceito de Graus-Dia

 Imagine um experimento em que uma cultivar foi cultivada sob diferentes temperaturas. A duração da fase entre a semeadura e o florescimento foi registrado, obtendo-se a Figura ao lado:

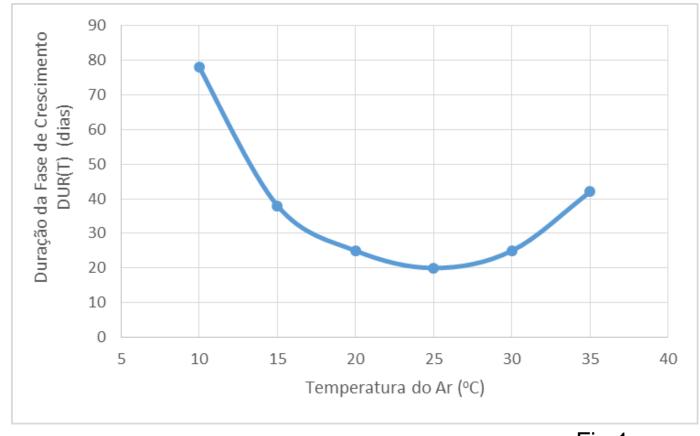
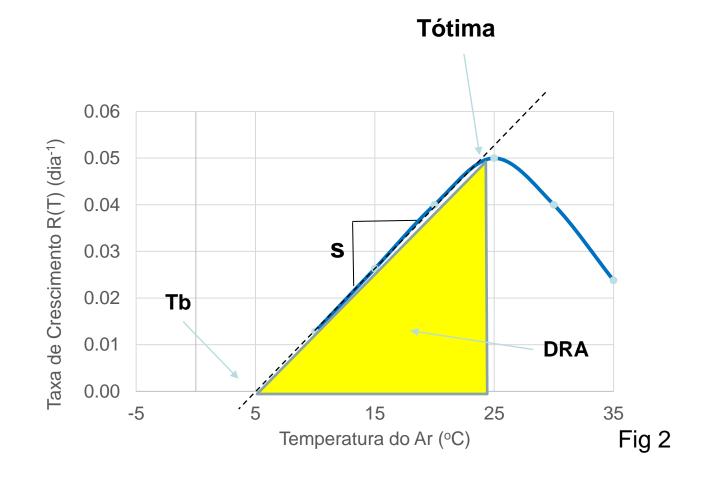



Fig 1

Conceito de Graus-Dia

• Invertendo-se a duração da fase (DUR(T)) obtém-se a taxa de desenvolvimento (R(T)) em função da temperatura. A Figura abaixo ilustra uma relação típica de R(T) em função da temperatura, calculada a partir dos dados da Figura ao lado.

Conceito de Graus-Dia

Integrando R(T) ao longo do tempo, pode-se obter a desenvolvimento acumulado de um organismo e, quando o desenvolvimento acumulado é igual a 1 o desenvolvimento está completo. Assumindo-se R(T) é linear com a temperatura, pode-se escrever R(T)=s(T-Tb)

em que s é o coeficiente angular da linha pontilhada na Figura 2 e Tb é a intersecção com o eixo x. Note que a unidade de s é dia-1.ºC-1. Para temperatura abaixo de Tb o desenvolvimento acumulado é zero. Lembrando que quando o desenvolvimento relativo acumulado (DRA) é igual a 1, então DRA=Constante térmica (CT) e o evento biológico estará completo. É possível computar DRA em função dessa relação linear da seguinte forma:

$$DRA = \int_{t(semeadura)}^{t(colheita)} R(T) dT = \int_{t(semeadura)}^{t(colheita)} s(T - Tb) dt$$

Conceito de graus-dia

Essa equação pode ser simplificada admitindo que s é constante e DRA é igual a 1 (ou seja 100% do ciclo foi concluído):

$$\frac{1}{S} = \int_{t(seme adura)}^{t(colheita)} (T - Tb) dt$$

Lembrando que dT pode ser aproximado para Δt numa notação finitesimal, e que quando Δt=1 pode-se acumular (T-Tb) até um somatório térmico (1/s). Este somatório (=1/s) representa o número de graus-dia necessário para a conclusão de uma dada fase ou mesmo do ciclo de crescimento, sendo também conhecida como **Constante Térmica (CT)**. Para cômputo diário (GD) do número de graus-dias acumulados, pode-se então usar a seguinte expressão:

$$GD = (T - Tb) nd$$

em que T (maiúsculo) é a temperatura media do período (veja no slide seguinte algumas exceções); *nd* representa o número de dias do período; t (minúsculo) é o tempo e T é a temperatura do ar.

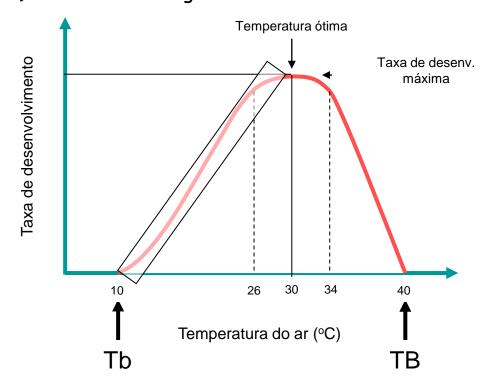
<u>Sistema de Unidades Térmicas ou</u> <u>Graus-dia</u>

Para as condições brasileiras, especialmente no Centro-Sul do Brasil, as temperaturas médias não atingem níveis tão elevados e, assim, não ultrapassam TB. Portanto, no cálculo de GD leva-se em consideração apenas a temperatura média (Tmed), a basal inferior da cultura (Tb), e o número de dias do período (n):

```
- Caso Tb < Tmin \Rightarrow GD = (Tmed - Tb).nd (°C*dia)

- Caso Tb \geq Tmin \Rightarrow GD = ((Tmax - Tb)^2 / 2*(Tmax - Tmin)).nd (°C*dia)

- Caso Tb > Tmax \Rightarrow GD = 0
```


⇒ Para que a cultura atinja uma de suas fases fenológicas ou a maturação é necessário que se acumule a constante térmica (CT), que será dada pelo total de GD acumulados ao longo desse período:

$$CT = \Sigma GDi$$

⇒ Assim como para Tb e TB, cada espécie/variedade vegetal possui suas CTs para as diferentes fases de desenvolvimento e para o ciclo total. A seguir são apresentados valores de CT e Tb para algumas culturas.

Temperaturas cardinais e basais

Como vimos, o crescimento vegetal cessa quando a temperatura do ar caí abaixo de certo valor mínimo ou excede certo valor máximo, independentemente se existirem condições favoráveis de energia solar, disponibilidade de nutrientes e de água no solo. Além deste limite inferior, existe um valor ótimo no qual o crescimento vegetal é máximo e acima do qual há queda na taxa de desenvolvimento. Assim, tem-se o que se convencionou chamar de temperaturas cardeais do crescimento vegetal: zero vital mínimo ou temperatura basal inferior (Tb), ótimo térmico (temperatura ótima) e zero vital máximo ou temperatura basal superior, (TB) como ilustra a figura abaixo.

Cultura	Variedade/Cultivar	Período/Sub-período	Tb (°C)	CT (°Cd)
Arroz	IAC4440	Semeasura-Maturação	11,8	1985
		Semeadura-Emergência	18,8	70
		Emergência-Floração	12,8	1246
		Floração-Maturação	12,5	402
Abacate	Raça Antilhana	Floração-Maturação	10,0	2800
	Raça Guatemalense	Floração-Maturação	10,0	3500
	Híbridos	Floração-Maturação	10,0	4200
Feijão	Carioca 80	Emergência-Floração	3,0	813
Girassol	Contisol 621	Semeadura-Maturação	4,0	1715
	IAC-Anhady	Semeadura-Maturação	5,0	1740
Milho Irrigado	AG510	Semeadura-Flor.Masculino	10,0	800
	BR201	Semeadura-Flor.Masculino	10,0	834
	BR106	Semeadura-Flor.Masculino	10,0	851
	DINA170	Semeadura-Flor.Masculino	10,0	884
Soja	UFV-1	Semeadura-Maturação	14,0	1340
	Paraná	Semeadura-Maturação	14,0	1030
_	Viçoja	Semeadura-Maturação	14,0	1230
Cafeeiro	Mundo Novo	Florescimento-Maturação	11,0	2642
Videira	Niagara Rosada	Poda-Maturação	10,0	1550
	Itáli/Rubi	Poda-Maturação	10,0	1990