MAE 0330

ANÁLISE MULTIVARIADA DE DADOS

Análise de Correspondência

Júlia M Pavan Soler

pavan@ime.usp.br

_			Variáve	el Coluna	
u.a. / Variável Linha	1	2	<u></u>	j	 J
/ 1	Y ₁₁	Y ₁₂		Y _{1j}	Y_{1J}
2	Y ₂₁	Y ₂₂		Y_{2j}	Y_{2J}
i	Y_{i1}	Y_{i2}		Y_{ij}	Y_{iJ}
	Y_{l1}	Y_{l2}		Y_{lj}	Y_{IJ}
1/					

Identificar a estrutura dos dados multivariados com "Tabelas de Contingência"

Objetivos:

- Descrever graficamente os dados dispostos em tabelas de contingência
- Representar graficamente o padrão de associação entre variáveis ⇒ os vetores linha e os vetores coluna da tabela são visualizados como pontos em um espaço vetorial

TÉCNICA GRÁFICA MULTIDIMENSIONAL (similar ao Escalonamento!!)

(essencialmente descritiva, não adota qualquer modelo estrutural, auxilia a análise inferencial)

			Ano				
Jornal	1976	1977	1978	1979	1980	Total	
Α	64	58	67	59	60	308	
В	18	18	23	20	17	96	Ao longo de 5 anos, em
С	12	10	9	12	9	52	cada ano, cerca de 1000
D	36	25	34	31	27	153	pessoas de uma cidade
E	29	21	25	20	20	115	•
F	133	115	116	107	89	560	foram amostradas e
G	34	28	30	26	29	147	questionadas sobre quais
Н	178	143	180	150	148	799	jornais, dentre 21, eles
I	8	8	5	6	6	33	liam regularmente.
J	101	113	143	112	107	576	nam regularmente.
K	66	56	60	58	53	293	
L	87	69	79	68	69	372	
M	23	19	17	19	17	95	Como representar o
N	34	24	29	26	23	136	· •
0	70	56	60	55	50	291	hábito de leitura de
Р	29	20	25	19	18	111	jornais dos cidadãos e
Q	46	40	38	38	33	195	sua variação ao longo
R	123	122	149	122	112	628	do tempo?
S	79	68	70	61	57	335	do tempo:
Т	130	109	148	110	100	597	
U	22	17	19	15	16	89	<u></u>
Total	1322	1139	1326	1134	1060	5981	

Distribuição de 5.387 estudantes escoceses de acordo com a cor dos olhos e dos cabelos (Fisher, 1940)

Cor do cabelo							
Cor olhos	Claro	Ruivo	Médio	Escuro	Preto	Total	
Claros	688	116	584	188	4	1580	
Azul	326	38	241	110	3	718	
Médio	343	84	909	412	26	1774	
Escuro	98	48	403	681	85	1315	
Total	1455	286	2137	1391	118	5387	

Como descrever graficamente o padrão de associação entre as variáveis cor dos olhos e dos cabelos dos estudantes escoceses ?

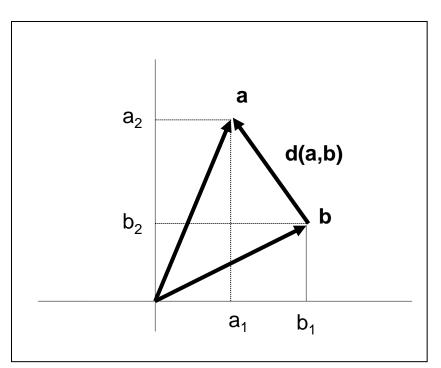
Distribuição dos funcionários de uma empresa de acordo com o tabagismo.

Hábito de Fumar							
Funcionário	Não	Pouco	Médio	Muito	Total		
Nível 1	4	2	3	2	11		
Nível 2	4	3	7	4	18		
Nível 3	25	10	12	4	51		
Nível 4	18	24	33	13	88		
Nível 5	10	6	7	2	25		
Total	61	45	62	25	193		

Para aderir a uma campanha nacional anti-tabagismo, o gerente de Recursos Humanos de uma empresa deseja conhecer o hábito de fumar dos funcionários. Os dados acima foram coletados para esta finalidade.

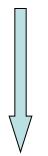
A representação gráfica dos dados é, em geral, de fácil entendimento. Como representar o padrão de associação entre o nível do funcionário e o hábito de fumar em um gráfico?

Influência da idade da adolescente no tipo de namoro (Everitt, 2004)


		F	aixa Etária		
	< 16	16-17	17-18	18-19	19-20
Nenhum namorado	21	21	14	13	8
Namoro sem sexo	8	9	6	8	2
Namoro com sexo	2	3	4	10	10
Total	31	33	24	31	20

Como descrever graficamente o padrão de associação entre as variáveis faixa etária da adolescente e o tipo de namoro ?

(Everitt, 2004)


- Método de decomposição da estatística Qui-Quadrado, usada para testar independência em uma tabela de contingência, em componentes que correspondem a diferentes dimensões da heterogeneidade entre as variáveis coluna da tabela.
- Método que simultaneamente atribui uma escala às linhas e, separadamente, uma escala às colunas da tabela de tal forma a maximizar a correlação entre as duas escalas.
- Método de obtenção de coordenadas para representar as categorias de ambas as variáveis linha e coluna da tabela, de tal forma que o padrão de associação seja representado graficamente ⇒ é um tipo de Escalonamento Multidimensional para uma medida de distância específica para dados categorizados, conhecida como distância Qui-Quadrado.

<u>Notação</u>

Distância Euclidiana entre pontos:

$$d^{2}(\mathbf{a},\mathbf{b}) = ||\mathbf{a} - \mathbf{b}|| = (b_{1} - a_{1})^{2} + (a_{2} - b_{2})^{2} = (\mathbf{a} - \mathbf{b})'(\mathbf{a} - \mathbf{b})$$

Escalas diferentes

Heterocedasticidade

Estrutura de Covariância

Distância Euclidiana Ponderada:

$$d^{2}\left(\mathbf{a}^{*},\mathbf{b}^{*}\right) = \left\|\mathbf{a}^{*} - \mathbf{b}^{*}\right\| = \left(\frac{b_{1}}{s_{1}} - \frac{a_{1}}{s_{1}}\right)^{2} + \left(\frac{a_{2}}{s_{2}} - \frac{b_{2}}{s_{2}}\right)^{2} = \left(\mathbf{a} - \mathbf{b}\right)'\mathbf{D}_{s_{ij}}^{-1}\left(\mathbf{a} - \mathbf{b}\right)$$

<u>Distância Euclidiana entre Vetores de Frequências</u>

Distribuição da intenção de voto de eleitores

Ano	Partido 1	Partido 2	Partido 3	Partido 4	Partido 5	Total
2002	0,25	0,44	0,1	0,16	0,05	1
2006*						
0	1195	2290	545	771	199	5000
E	1270	2210	510	780	230	5000

^{*} Resultados parciais de uma pesquisa eleitoral

O: freq. Observadas E: freq. Esperadas (sob as proporções de 2002)

$$\chi^{2} = \sum \frac{(O - E)^{2}}{E} = \frac{75^{2}}{1270} + \frac{80^{2}}{2210} + \frac{35^{2}}{510} + \frac{9^{2}}{780} + \frac{31^{2}}{230} = 14,01$$
 Estatística de um teste de aderência
$$\chi^{2} = (\mathbf{O}_{5\times 1} - \mathbf{E}_{5\times 1})' \mathbf{D}_{E_{5\times 5}}^{-1} (\mathbf{O}_{5\times 1} - \mathbf{E}_{5\times 1}) \Rightarrow \text{Distância ao quadrado entre as freqüências}$$

$$\chi^2 = (\mathbf{O}_{5\times 1} - \mathbf{E}_{5\times 1})' \mathbf{D}_{E_{5\times 1}}^{-1} (\mathbf{O}_{5\times 1} - \mathbf{E}_{5\times 1}) \Rightarrow$$
 Distância ao quadrado entre as freqüências observadas e esperadas com pesos iguais ao inverso das freq. esperadas

A estatística χ^2 é uma medida de distância Euclidiana ao quadrado ponderada

Distância Euclidiana entre Vetores de Frequências

Distribuição da intenção de voto de eleitores

Ano	Partido 1	Partido 2	Partido 3	Partido 4	Partido 5	Total
2002	0,25	0,44	0,1	0,16	0,05	1
2006*						
0	1195	2290	545	771	199	5000
E	1270	2210	510	780	230	5000
$\mathbf{p} = (1/n)\mathbf{O}$	0,239	0,458	0,109	0,154	0,04	1
$\bar{\mathbf{p}} = (1/n)\mathbf{E}$	0,254	0,442	0,102	0,156	0,046	1
		Tr		_		

$$\mathbf{O} , \mathbf{E} \Rightarrow \mathbf{p} , \overline{\mathbf{p}}$$

$$\chi^{2} = (\mathbf{O} - \mathbf{E})' \mathbf{D}_{E}^{-1} (\mathbf{O} - \mathbf{E}) \qquad \chi^{2} = n (\mathbf{p} - \overline{\mathbf{p}})' \mathbf{D}_{\overline{\mathbf{p}}}^{-1} (\mathbf{p} - \overline{\mathbf{p}}) = n \sum_{j} \frac{(p_{j} - \overline{p}_{j})^{2}}{\overline{p}_{j}}$$

A significância da estatística χ^2 depende do tamanho amostral \Rightarrow a distância Euclidiana ponderada entre o vetor de freq. relativas observadas e média é proporcional (a menos do fator n) a esta estatística!

Distância Euclidiana entre Vetores de Frequências

$$\chi^{2} = (\mathbf{O} - \mathbf{E})' \mathbf{D}_{E}^{-1} (\mathbf{O} - \mathbf{E}) \qquad \Rightarrow \qquad \chi^{2} = n (\mathbf{p} - \overline{\mathbf{p}})' \mathbf{D}_{\overline{\mathbf{p}}}^{-1} (\mathbf{p} - \overline{\mathbf{p}}) = n \sum_{j} \frac{(p_{j} - \overline{p}_{j})^{2}}{\overline{p}_{j}}$$

- Análise de Correspondência considera a dispersão de vetores de frequência relativa (p) em um espaço multidimensional. O vetor p é denominado um perfil de frequências relativas.
- É calculada a distância Euclidiana entre o vetor de frequências relativas observadas de cada população \mathbf{p}_i e o vetor de frequências relativas médias $\overline{\mathbf{p}}$, ponderada pelas frequências relativas médias.
- Ainda, a análise é flexível no sentido de dar pesos ("massas") aos perfis p das populações sob estudo, como veremos a seguir.

Representação dos Perfis Linha da Tabela

Variável Coluna						_
Variável Linha	1		j		J	Total
1	n ₁₁		n _{1j}		n _{1J}	n _{1.}
i	n _{i1}		n_{ij}	•••	n_{iJ}	$n_{i.}$
•••		• • •	• • •			
I	n _{I1}		n _{Ij}		n _{IJ}	n _{I.}
Total	n _{.1}		n _{.j}		n _{.J}	n

Estatística Qui-Quadrado:

$$\chi^{2} = \sum_{j=1}^{J} \sum_{i=1}^{I} \frac{\left(O_{ij} - E_{ij}\right)^{2}}{E_{ij}} = \frac{\left(O_{11} - E_{11}\right)^{2}}{E_{11}} + \frac{\left(O_{12} - E_{12}\right)^{2}}{E_{12}} + \frac{\left(O_{IJ} - E_{IJ}\right)^{2}}{E_{IJ}}; \qquad O_{ij} = n_{ij} \quad E_{ij} = \frac{n_{i} \cdot n_{.j}}{n}$$

$$\chi^{2} = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{\left(n_{i} \cdot O_{ij} - n_{i} \cdot E_{ij}\right)^{2}}{E_{ij}} = \sum_{i=1}^{I} \sum_{j=1}^{J} n_{i} \cdot \frac{\left(p_{ij} - \overline{p}_{j}\right)^{2}}{\overline{p}_{j}} = \sum_{i=1}^{I} n_{i} \cdot \sum_{j=1}^{J} \left(\frac{p_{ij} - \overline{p}_{j}}{\overline{p}_{j}}\right)^{2} = \sum_{i=1}^{I} n_{i} \cdot d_{i}^{2}$$

$$d_{i}^{2} = (\mathbf{p_{i}} - \overline{\mathbf{p}})' \mathbf{D}_{\overline{\mathbf{p}}}^{-1} (\mathbf{p_{i}} - \overline{\mathbf{p}})$$

p_i: perfil de freqüências relativas da linha i

Representação dos Perfis Linha da Tabela

_		Variável Coluna					
Variável Linha	1		j		J	Total	
1	n ₁₁		n _{1j}		n _{1J}	n _{1.}	
i	n _{i1}		n _{ij}		n _{iJ}	n _{i.}	
1	n _{I1}		n _{Ij}		n _{IJ}	n _{I.}	
Total	n _{.1}		n _{.j}		n _{.J}	n	

$$\begin{aligned} \mathbf{p_i} &= \left(p_{i1}, p_{i2}, ..., p_{iJ} \right)'; & p_{ij} &= \frac{n_{ij}}{n_{i.}} & j = 1, 2, ..., J & i = 1, 2, ..., I \\ \overline{\mathbf{p}} &= \left(\frac{n_{.1}}{n}, \frac{n_{.2}}{n}, ..., \frac{n_{.J}}{n} \right)' & \text{Centr\'oide (linha)} \end{aligned}$$

$$d_i^2 = (\mathbf{p_i} - \overline{\mathbf{p}})' \mathbf{D}_{\overline{\mathbf{p}}}^{-1} (\mathbf{p_i} - \overline{\mathbf{p}}) = \sum_{j=1}^J \frac{(p_{ij} - \overline{p}_j)^2}{\overline{p}_j}$$
 Distância Euclidiana ponderada ao quadrado do perfil de freqüências relativas da linha i ao centróide

relativas da linha i ao cen Como representar tais perfis linha em um espaço multidimensional?

		Variável Coluna					
Variável Linha	1		j		J	Total	
1	n ₁₁		n _{1j}		n _{1J}	n _{1.}	
					•••		
İ	n _{i1}		n _{ij}		n _{iJ}	n _{i.}	
1	n _{I1}		n _{Ij}		n _{IJ}	n _{I.}	
Total	n _{.1}		n _{.j}		n _{.J}	n	

$$\mathbf{p_i} = \left(p_{i1}, p_{i2}, ..., p_{iJ}\right)' \qquad \overline{\mathbf{p}} = \left(\frac{n_{.1}}{n}, \frac{n_{.2}}{n}, ..., \frac{n_{.J}}{n}\right) \qquad d_i^2 = \left(\mathbf{p_i} - \overline{\mathbf{p}}\right)' \mathbf{D}_{\overline{\mathbf{p}}}^{-1} \left(\mathbf{p_i} - \overline{\mathbf{p}}\right)$$

$$\chi^{2} = \sum_{j=1}^{J} \sum_{i=1}^{I} \frac{\left(O_{ij} - E_{ij}\right)^{2}}{E_{ij}} = \frac{\left(O_{11} - E_{11}\right)^{2}}{E_{11}} + \frac{\left(O_{12} - E_{12}\right)^{2}}{E_{12}} + \frac{\left(O_{IJ} - E_{IJ}\right)^{2}}{E_{IJ}}; \qquad in(I) = \chi^{2} / n$$

Ponderação da estatística por n

in(I): medida de Inércia total do conjunto dos I perfis. Mede a variação dos perfis individuais $\mathbf{p_i}$ em torno do centróide $\overline{\mathbf{p}}$.

O objetivo da análise de Correspondência é encontrar um subespaço de "baixa" dimensão que melhor contenha os perfis \mathbf{p}_i

$$\mathbf{Y}_{I imes J} = egin{pmatrix} \mathbf{p}_{1_{1 imes J}} \\ \mathbf{p}_{I_{1 imes J}} \end{pmatrix}$$

 $\mathbf{Y}_{I\times J} = \begin{pmatrix} \mathbf{p}_{1_{1\times J}} \\ \dots \\ \mathbf{p}_{I_{1\times J}} \end{pmatrix} \quad \text{Matriz de dados (frequências relativas) com a soma de cada linha igual a uma constante c (c=1). O vetor centróide é dado por: <math display="block">\overline{\mathbf{n}} = (\overline{n}, \dots, \overline{n}_{J})'$

$$\overline{\mathbf{p}} = (\overline{p}_1, ..., \overline{p}_J)'$$

Considere as seguintes matrizes:

Matriz de pesos: $D_{q_{i,j}} = diag(q_i = 1/\overline{p}_i = n/n_i)$

Matriz de massas: $D_{w_{I\times I}}=diag(w_i=n_i./n)$ associada à marginal fixada

Então, os eixos principais (denotados por F) dos perfis linha \mathbf{P}_i podem ser obtidos da decomposição espectral da matriz **Y** tal que, para k dimensões e com I>J, tem-se:

$$Y_{I\times J}=N_{I\times I}\ D_{\lambda_{I\times I}}\ M'_{I\times J}\quad ;\qquad N'D_{w}N=M'D_{q}M=I\quad \Rightarrow\quad F_{I\times k}=N_{I\times I}D_{\lambda_{I\times J}}$$

$$\Rightarrow in(I) = \sum_{i=1}^{I} \lambda_i^2 : \text{in\'ercia total} \qquad \Rightarrow \frac{\lambda_1^2 + \lambda_2^2 + \dots + \lambda_k^2}{\sum_{i} \lambda_i^2} \quad : \text{propor\~{c}\~{a}o da in\'ercia}$$

Nível do funcionário vs tabagismo

Hábito de Fumar							
Funcionário	Não	Pouco	Médio	Muito	Total		
Nível 1	4	2	3	2	11		
Nível 2	4	3	7	4	18		
Nível 3	25	10	12	4	51		
Nível 4	18	24	33	13	88		
Nível 5	10	6	7	2	25		
Total	61	45	62	25	193		

Expected Frequencies							
	_	F1		F3			
N1	3,48	2,56	3,53 5,78 16,38 28,27	1,42			
N2	5,69	4,20	5,78	2,33			
N3	16,12	11,89	16,38	6,61			
N4	27,81	20,52	28,27	11,40			
N5	7,90	5,83	8,03	3,24			

				$O_{ij} - E$	$(Z_{ij})^2$
Chi-S	Square	Distand	es	\mathcal{L}_{ij}	
	F0	F1	F2 K	F3	Total
N1 [0,079	0,124	0,081	0,232	0,516
N2	0,502	0,341	0,256	1,194	2,293
N3	4,893	0,301	1,173	1,028	7,395
N4	3,463	0,591	0,792	0,225	5,070
N5	0,557	0,005	0,132	0,474	1,168
Total	9,493	1,362	2,434	3,153	16,442

Estatística
$$\chi^2 = 16,442$$
 (p=0,172)

Relat	Relative Inertias 0,232/16,44									
	F0	F1	F2	F3 K	Total					
N1			0,005							
N2	0,031	0,021	0,016	0,073	0,139					
N3		•	0,071	•						
N4	0,211	0,036	0,048	0,014	0,308					
N5	0,034	0,000	0,008	0,029	0,071					
Total	0,577	0,083	0,148	0,192	1,000					

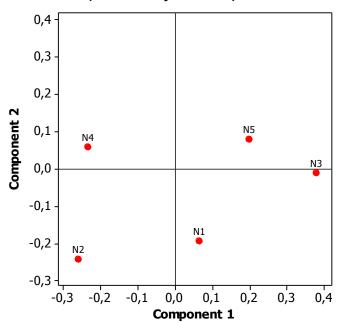
Inércia total=16,442/193=0,08518

Distribuição de funcionários de acordo com o tabagismo

	Hábito de Fumar										
Funcionário	Não Pouco Médio Muito Total										
Nível 1	4	2	3	2	11						
Nível 2	4	3	7	4	18						
Nível 3	25	10	12	4	51						
Nível 4	18	24	33	13	88						
Nível 5	10	6	7	2	25						
Total	61	45	62	25	193						

Perfis	Linha	/	Y _{5x4}		
	. •		F2	F3 √	
N1	0,364	0,182	0,273	0,182 0,222	0,057
N2					
N3	0,490	0,196	0,235	0,078	0,264
N4	0,205	0,273	0,375	0,148	0,456
N5	0,400	0,240	0,280	0,080 0,130	0,130
Mass	0,316	0,233	0,321	0,130	†

$$\Rightarrow Y_{5\times 4} = N D_{\lambda} M' \qquad F_{(k=2)} = N_{5\times 5} D_{\lambda_{5\times 2}}$$


$$\lambda = (0.2734 \ 0.1001 \ 0.0203)$$

$$F_{(k=2)} = \begin{pmatrix} 0,066 & -0,194 & N \text{ivel 1} \\ -0,259 & -0,243 & N \text{ivel 2} \\ 0,381 & -0,011 & N \text{ivel 3} \\ -0,233 & 0,058 & N \text{ivel 4} \\ 0,201 & 0,078 & N \text{ivel 5} \end{pmatrix}$$

Distribuição de funcionários de acordo com o tabagismo

Hábito de Fumar									
Funcionário	Não	Pouco	Médio	Muito	Total				
Nível 1	4	2	3	2	11				
Nível 2	4	3	7	4	18				
Nível 3	25	10	12	4	51				
Nível 4	18	24	33	13	88				
Nível 5	10	6	7	2	25				
Total	61	45	62	25	193				

Representação dos perfis linha

$$\Rightarrow in(eixo1) = \lambda_1^2 = (0.2734)^2 = 0.0748$$

$$\Rightarrow in(eixo 2) = \lambda_2^2 = (0.1001)^2 = 0.01$$

0,0848/0,08518=0,995

- ⇒ 99,5% da inércia total dos dados está representada no plano
- ⇒ os funcionários níveis N5 e N3 são mais semelhantes em seu hábito de fumar. N2 e N4 estão mais distantes deste grupo, sendo mais semelhantes entre si. N1 ocupa uma posição intermediária entre estes grupos.

Representação dos Perfis Coluna da Tabela

Distribuição de funcionários de acordo com o tabagismo

				_							
Hábito de Fumar											
Funcionário	o Não Pouco Médio Muito Total										
Nível 1	4	2	3	2	11						
Nível 2	4	3	7	4	18						
Nível 3	25	10	12	4	51						
Nível 4	18	24	33	13	88						
Nível 5	10	6	7	2	25						
Total	61	45	62	25	193						

Problema Dual:

Estudar o padrão de variação da variável hábito de fumar em função do nível funcional na empresa

⇒ Como representar os perfis das frequências relativas das colunas?

Representação dos Perfis Coluna da Tabela

_		Vari <u>ável C</u> oluna								
Variável Linha	1		j		J	Total				
1	n ₁₁		n _{1j}		n _{1J}	n _{1.}				
		•••								
i	n _{i1}		n _{ij}		n _{iJ}	n _{i.}				
•••					• • •					
1	n _{I1}		n _{lj}		n _{IJ}	n _{I.}				
Total	n _{.1}		n _{.j}		n _{.J}	n				

Estatística Qui-Quadrado:

$$\chi^{2} = \sum_{i=1}^{J} \sum_{j=1}^{I} \frac{\left(O_{ij} - E_{ij}\right)^{2}}{E_{ij}} = \frac{\left(O_{11} - E_{11}\right)^{2}}{E_{ij}} + \frac{\left(O_{12} - E_{12}\right)^{2}}{E_{ij}} + \frac{\left(O_{IJ} - E_{IJ}\right)^{2}}{E_{ij}}; \qquad O_{ij} = n_{ij} \quad E_{ij} = \frac{n_{i} n_{.j}}{n}$$

$$\chi^{2} = \sum_{i=1}^{I} \sum_{j=1}^{J} n_{\cdot j} \frac{\left(p_{ij}^{c} - \overline{p}_{i}\right)^{2}}{\overline{p}_{i}} = \sum_{j=1}^{J} n_{\cdot j} \sum_{i=1}^{I} \frac{\left(p_{ij}^{c} - \overline{p}_{i}\right)^{2}}{\overline{p}_{i}} = \sum_{j=1}^{J} n_{\cdot j} d_{j}^{2}$$

$$d_{j}^{2} = \left(\mathbf{p}_{j}^{c} - \overline{\mathbf{p}}^{c}\right)' \mathbf{D}_{\overline{\mathbf{p}}^{c}}^{-1} \left(\mathbf{p}_{j}^{c} - \overline{\mathbf{p}}^{c}\right)$$

 \mathbf{p}_{j}^{c} : perfil de freqüências relativas da coluna j

 $p_{ij}^{c} = \frac{n_{ij}}{n}$ i = 1, 2, ..., I

Representação dos Perfis Coluna da Tabela

_	Vari <u>ável Co</u> luna									
Variável Linha	1		j		J	Total				
1	n ₁₁		n _{1j}		n_{1J}	n _{1.}				
•••										
i	n _{i1}		n _{ij}	•••	n_{iJ}	n _{i.}				
1	n _{I1}		n _{lj}		n_{IJ}	$n_{l.}$				
Total	n _{.1}		n _{.j}		n _{.J}	n				

$$\mathbf{p}_{j} = \left(p_{1j}, p_{2j}, ..., p_{Ij}\right)'; \qquad p_{ij}^{c} = \frac{n_{ij}}{n_{.j}} \qquad i = 1, 2, ..., I$$

$$\overline{\mathbf{p}} = \overline{\mathbf{p}}^{c} = \left(\frac{n_{1.}}{n}, \frac{n_{2.}}{n}, ..., \frac{n_{I.}}{n}\right)' \quad \text{Centr\'oide (coluna)}$$

$$\overline{\mathbf{p}} = \overline{\mathbf{p}}^c = \left(\frac{n_{1.}}{n}, \frac{n_{2.}}{n}, \dots, \frac{n_{I.}}{n}\right)$$
 Centróide (coluna)

$$d_{j}^{2} = \left(\mathbf{p}_{j}^{c} - \overline{\mathbf{p}}^{c}\right)' \mathbf{D}_{\overline{\mathbf{p}}^{c}}^{-1} \left(\mathbf{p}_{j}^{c} - \overline{\mathbf{p}}^{c}\right) = \sum_{i=1}^{I} \frac{\left(p_{ij}^{c} - \overline{p}_{j}^{c}\right)^{2}}{\overline{p}_{j}^{c}}$$
 Distância Euclidiana ponderada ao quadrado do perfil de freqüências relativas da coluna j ao centróide

Como representar tais perfis coluna em um espaço multidimensional?

Representação dos Perfis Linha e Coluna da Tabela

		Variável Coluna								
Variável Linha	1		j		J	Total				
1	n ₁₁		n _{1j}		n _{1J}	n _{1.}				
i	n _{i1}		n _{ij}	•••	n_{iJ}	$n_{i.}$				
•••										
I	n _{I1}		n _{lj}		n _{IJ}	n _{I.}				
Total	n _{.1}		n _{.j}		n _{.J}	n				

$$\begin{aligned} & \mathbf{Y}^{L}{}_{I\times J} = \begin{pmatrix} \mathbf{p}_{1_{1\times J}}^{L} \\ \dots \\ \mathbf{p}_{I_{1\times J}}^{L} \end{pmatrix} \\ & \mathbf{\bar{p}}_{1\times J}^{L} = \left(\overline{p}_{.1}^{L}, \dots, \overline{p}_{.J}^{L} \right)' \\ & D_{q\,J\times J}^{L} = diag\left(q_{j}^{L} = 1/\ \overline{p}_{.j}^{L} \right) \\ & D_{w\,I\times I}^{L} = diag\left(w_{i}^{L} = n_{i.} \ / \ n \right) \end{aligned} \Rightarrow \begin{aligned} & \mathbf{Colunas} \\ & \mathbf{Y}^{C}{}_{J\times I} = \begin{pmatrix} \mathbf{p}_{1_{1\times I}}^{C} \\ \dots \\ \mathbf{p}_{J_{1\times I}}^{C} \end{pmatrix} \\ & \overline{\mathbf{p}}^{C} = \left(\overline{p}_{1.}^{C}, \dots, \overline{p}_{I.}^{C} \right)' \\ & D_{q\,I\times I}^{C} = diag\left(q_{i}^{C} = 1/\ \overline{p}_{i.}^{C} \right) : \text{matriz de product} \\ & D_{w\,J\times J}^{C} = diag\left(w_{j} = n_{.j} \ / \ n \right) : \text{matriz de} \end{aligned}$$

$$\mathbf{Y}^{C}_{J \times I} = \begin{pmatrix} \mathbf{p}_{1_{1 \times I}}^{C} \\ \dots \\ \mathbf{p}_{J_{1 \times I}}^{C} \end{pmatrix}$$

$$\overline{\mathbf{p}}^{C} = \left(\overline{p}_{1.}^{C}, ..., \overline{p}_{I.}^{C}\right)^{C}$$

$$D_{q\,I\times I}^{C}=diag\Big(q_{i}^{C}=1/\,\overline{p}_{i.}^{\,C}\Big)$$
 : matriz de pesos

$$D_{wJ\times J}^{C}=diag(w_{j}=n_{.j}/n)$$
 : matriz de massas

Representação dos Perfis Coluna da Tabela

$$\mathbf{Y}^{L}_{I\times J} = \begin{pmatrix} \mathbf{p}_{1_{1\times I}}^{L} \\ \dots \\ \mathbf{p}_{I_{1\times I}}^{L} \end{pmatrix} \Rightarrow \mathbf{Y}^{C}_{J\times I} = \begin{pmatrix} \mathbf{p}_{1_{1\times I}}^{C} \\ \dots \\ \mathbf{p}_{J_{1\times I}}^{C} \end{pmatrix}$$

$$\bar{\mathbf{p}}^{C} = (\bar{p}_{1.}^{C}, \dots, \bar{p}_{I.}^{C})'$$

$$D_{q\,I\times I}^{C} = diag(q_{i}^{C} = 1/\bar{p}_{i.}^{C}) \qquad D_{w\,J\times J}^{C} = diag(w_{j} = n_{.j}/n)$$

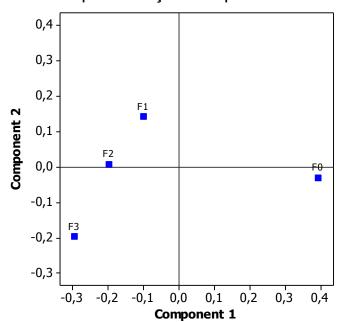
Obter os eixos principais G dos perfis colunas $\mathbf{p}_{i}^{C} \Rightarrow$ obter a decomposição espectral da matriz **Y**^c, tal que, para dimensões de ordem k, tem-se:

$$G_{(k)} = N_{(k)}^{C} D_{\lambda(k)}^{C} \quad \Rightarrow \quad Y^{C}_{J \times I} = N^{C} D_{\lambda}^{C} M^{C'} \quad ; \qquad \qquad N^{C'} D_{w}^{C} N^{C} = M^{C'} D_{q}^{C} M^{C} = I$$

$$\Longrightarrow D_{\lambda}^{C} = D_{\lambda}^{L}$$

 $\Rightarrow D_{\lambda}^{C} = D_{\lambda}^{L}$ \Rightarrow Os valores singulares da representação dos perfis de linha e coluna são os mesmos (a menos do autovalorea linha e coluna são os mesmos (a menos de autovalores nulos) ⇒ o subespaço ótimo para a representação dos perfis linha e coluna é o mesmo!!

Distribuição de funcionários de acordo com o tabagismo


Hábito de Fumar									
Funcionário	Não	Pouco	Médio	Muito	Total				
Nível 1	4	2	3	2	11				
Nível 2	4	3	7	4	18				
Nível 3	25	10	12	4	51				
Nível 4	18	24	33	13	88				
Nível 5	10	6	7	2	25				
Total	61	45	62	25	193				

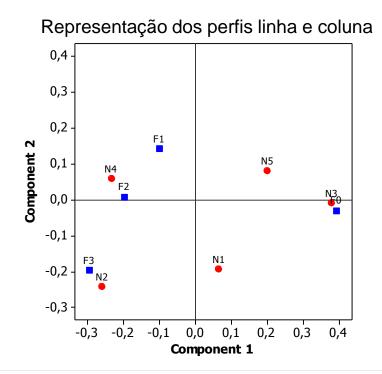
Perfis	Coluna	da Ta	bela		γ ^C ′ _{4x5}	\Rightarrow	$Y^{C'}_{4\times 5} =$	$=N^C D_{\lambda}^C$	$M^{c'}$	$G_{(k)}$:	$=N_{(k)}^{C}D$	$\mathbf{O}_{\lambda(k)}$
	F0	F1	F2	F3				,,		(11)	(11)	<i>70(11)</i>
N1	0,066	0,044	0,048	0,080	0,057		^ (704 0 404	24 0 000			
N2	0,066	0,067	0,113	0,160	0,093		$\lambda = (0,2)$	734 0,100	0,020	3)		
N3	0,410	0,222	0,194	0,160	0,264							
N4	0,295	0,533	0,532	0,520	0,456			0,393	-0,03	1.	— F0	
N5	0,164	0,133	0,113	0,080	0,130				0,00	,' `		
Mass	0,316	0,233	0,321	0,130) -		$G_{(k=2)} =$	-0,1	0,14	1 •	— F1	
	•	•	,	•			(11 2)	-0,196	0,007	7 🕌	— F2	
								-0,294	-0,19	8 🕕	— F3	

Distribuição de funcionários de acordo com o tabagismo

Hábito de Fumar										
Funcionário	Não	Pouco	Médio	Muito	Total					
Nível 1	4	2	3	2	11					
Nível 2	4	3	7	4	18					
Nível 3	25	10	12	4	51					
Nível 4	18	24	33	13	88					
Nível 5	10	6	7	2	25					
Total	61	45	62	25	193					

Representação dos perfis coluna

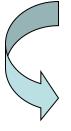
$$\Rightarrow in(eixo1) = \lambda_1^2 = (0.2734)^2 = 0.0748$$


$$\Rightarrow in(eixo 2) = \lambda_2^2 = (0,1001)^2 = 0,01$$

0,0848/0,08518=0,995

- ⇒ 99,5% da inércia total dos dados está representada no plano
- ⇒ disposição linear (C1) dos níveis de hábito de fumar. O grupo de não fumantes está bem distante dos demais

Análise de Correspondência Distribuição de funcionários de acordo com o tabagismo


Hábito de Fumar							
Funcionário	Não	Pouco	Médio	Muito	Total		
Nível 1	4	2	3	2	11		
Nível 2	4	3	7	4	18		
Nível 3	25	10	12	4	51		
Nível 4	18	24	33	13	88		
Nível 5	10	6	7	2	25		
Total	61	45	62	25	193		

Representação conjunta dos perfis da frequência relativa das linhas e colunas da tabela

Tabela de Contingência

			0					
		Variável Coluna						
Variável Linha	1		j		J	Total		
1	n ₁₁		n _{1j}		n _{1J}	n _{1.}		
i	n _{i1}		n _{ij}		n_{iJ}	$n_{i.}$		
I	n _{I1}		n _{lj}		n _{IJ}	n _{I.}		
Total	n _{.1}		n _{.j}		n _{.J}	n		
างเลเ	11.1		11.j		11.J	_		

Matriz de Distâncias Qui-Quadrado entre perfis (de proporções):

Entre os Perfis Linha

	1	2		I
1				
2	$d_{ij}^{2^{Linh}}$. uis	tância	
		as	linhas	sıej
ı				

Entre os Perfis Coluna

	1	2	•••	J
1				
2	$d_{ij}^{2^{Ca}}$			cia entre
		ć	as colu	ınas i e j
J				

_				
Variável Linha	1	 j	 J	Total
1	n ₁₁	n _{1j}	n _{1J}	n _{1.}
•••		 		
i	n _{i1}	n _{ij}	 n_{iJ}	n _{i.}
İ	n _{I1}	n _{Ij}	n _{IJ}	n _{I.}
Total	n _{.1}	n _{.j}	n _{.J}	n

Perfis Linha

	Var	Variável Coluna				
Variável Linha	1		J	Total		
1	p ₁₁ =n ₁₁ /n _{1.}		p _{1J} =n _{1J} /n _{1.}	1		
1	$p_{11}=n_{11}/n_{1.}$		$p_{IJ}=n_{IJ}/n_{I.}$	1		

Perfis Coluna

	V	ariável Col	una
Variável Linha	1		J
1	$p_{11}=n_{11}/n_{.1}$		p _{1J} =n _{1J} /n _{.J}
	p _{l1} =n _{l1} /n _{.1}		pլյ=nլյ/n _. յ
Total	1		1
C	$\overline{n_{ij}}$		

_		Va	ariável Colu	na		
Variável Linha	1		j		J	Total
1	n ₁₁		n _{1j}		n _{1J}	n _{1.}
•••						
i	n _{i1}		n _{ij}		n_{iJ}	n _{i.}
•••						
I	n _{I1}		n _{Ij}		n _{IJ}	n _{I.}
Total	n _{.1}		n _{.j}		n _{.J}	n

Distância Qui-Quadrado – Perfis Linha

$$p_{ij}^{L} = \frac{n_{ij}}{n_{i}}$$
 $i = 1, 2, ..., I$

$$d_{ij}^{2Linhas} = \sum_{k=1}^{J} \frac{\left(p_{ik}^{c} - p_{jk}^{c}\right)^{2}}{p_{.k}}$$

Distância Qui-Quadrado – Perfis Coluna

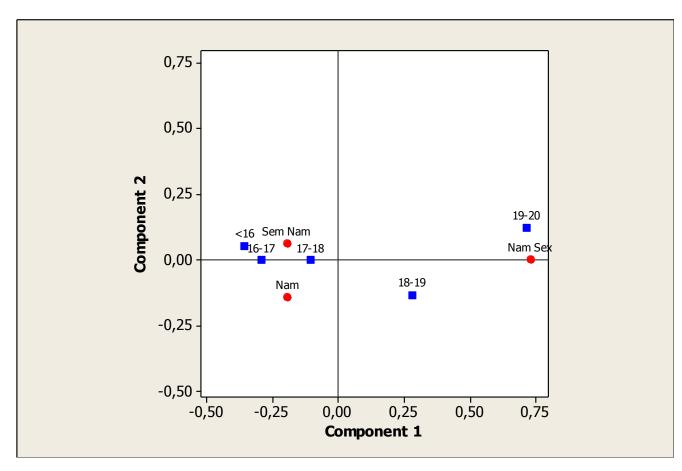
$$p_{ij}^{c} = \frac{n_{ij}}{n_{.j}}$$
 $j = 1, 2, ..., J$

$$d_{ij}^{2Colunas} = \sum_{k=1}^{I} \frac{\left(p_{ki}^{L} - p_{kj}^{L}\right)^{2}}{p_{k}}$$

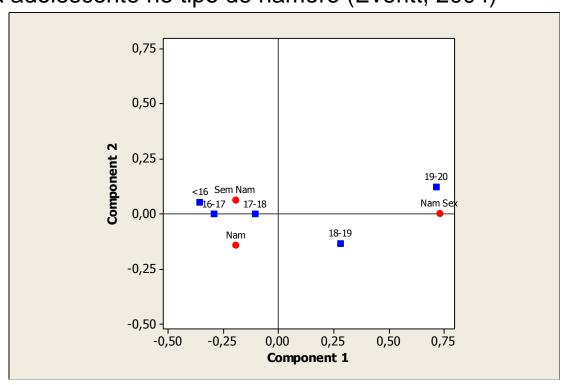
⇒ Extrair as Coordenadas Principais das Matrizes de distâncias
 D^{Linhas} e D^{Colunas} ⇒ resultados equivalentes à solução via dvs de Y^L e Y^C.

Influência da idade da adolescente no tipo de namoro (Everitt, 2004)

			Faixa Etária		
	< 16	16-17	17-18	18-19	19-20
Nenhum namorado	21 (68)	21 (64)	14 (58)	13 (42)	8 (40)
Namoro sem sexo	8 (26)	9 (27)	6 (25)	8 (26)	2 (10)
Namoro com sexo	2 (6)	3 (9)	4 (17)	10 (32)	10 (50)
Total	31 (100%)	33 (100%)	24 (100%)	31 (100%)	20 (100%)


d Colunas	•					, Linhas	•		
d_{ij}	< 16	16-17	17-18	18-19	19-20	d_{ij}	Sem Nam	Nam	NamSexo
<16	0,00	0,09	0,26	0,66	1,07	Sem Nam	0,00	0,21	0,93
16-17		0,00	0,19	0,59	1,01	Nam	,	0,00	0,93
17-18			0,00	0,41	0,83	NamSexo		-,	0,00
18-19				0,00	0,51	Hamooko	1		0,00
19-20					0,00				

Obter as coordenadas principais a partir das matrizes de distâncias Qui-Quadrado.


Influência da idade da adolescente no tipo de namoro (Everitt, 2004)

	CP1	CP2
Sem Nam	-0,1933	0,0610
Nam	-0,1924	-0,1425
Nam Sex	0,7322	0,0002
<16	-0,3547	0,0550
16-17	-0,2897	-0,0003
17-18	-0,1033	-0,0001
18-19	0,2806	-0,1342
19-20	0,7169	0,1234

Influência da idade da adolescente no tipo de namoro (Everitt, 2004)

	l <u></u>	•	
	CP1	CP2	
Sem Nam	-0,1933	0,0610	
Nam	-0,1924	-0,1425	
Nam Sex	0,7322	0,0002	
<16	-0,3547	0,0550	
16-17	-0,2897	-0,0003	
17-18	-0,1033	-0,0001	
18-19	0,2806	-0,1342	
19-20	0,7169	0,1234	

$$d_{Euclid}(<16,16-17) = \sqrt{(-0,3547+0,2897)^2 + (0,055+0,0003)^2} = 0,09$$

$$d_{Qui-Quad}(<16,16-17) = \sqrt{\frac{(0,68-0,64)^2}{0,55} + \frac{(0,26-0,27)^2}{0,24} + \frac{(0,06-0,09)^2}{0,21}} = 0,09$$

	Variável Coluna					_
Variável Linha	1		j		J	Total
1	n ₁₁		n _{1j}		n _{1J}	n _{1.}
•••			•••			
i	n _{i1}		n _{ij}		n_{iJ}	n _{i.}
•••					•••	
1	n _{I1}		n _{lj}		n _{IJ}	n _{I.}
Total	n _{.1}		n _{.j}		n _{.J}	n

- Em um gráfico de coordenadas principais representando somente as categorias linha (ou coluna), as distâncias entre os pontos são distâncias Euclidianas.
- Mas, em um gráfico onde ambos os espaços (linha e coluna) estão representados simultaneamente, é preciso ter cuidado com a comparação entre categorias linha e coluna pois neste caso a medida de distância Euclidiana pode não ser válida ⇒ uma melhor aproximação pode ser conseguida com a padronização das coordenadas principais (dividir os valores pela raiz quadrada da inércia do componente) ⇒ coordenadas assimétricas (no Minitab)