
CHAPTER 18 

Coding a Training Set 
  

Human coding has long been used to organize and quantify texts. Once a researcher 
has defined categories, human coding is the process of putting these documents into 
these categories manually. While human coding predates modern approaches to statis- 
tical text analysis, it is still extremely useful on its own for small datasets and coding 
of complex concepts. Learning to write an excellent codebook and train coders is also 
important in the context of automated methods as manual coding often forms the basis 
of training and validation sets for statistical classifiers. 

Human coding provides a mapping function from the text to the categories of inter- 
est, one that the humans produce based on their interpretation of the text. This mapping 
function is the combination of the codebook, training given to the coders, and their 
internal thought processes when assigning codes. In comparison to statistical classifi- 
cation, humans can use their substantive and background knowledge to fill in gaps in 
the coding scheme using the context in the text. Even though human coding by itself 
is much slower than automated classification, the process of human coding can also be 
useful for clarifying the categories of interest and how they are communicated. 

While manually placing documents into categories might seem at first to be a 
relatively straightforward task, human coding can be quite complex.' Ambiguities in 
language, limited attention of coders, and nuanced concepts make the reliable classi- 
fication of documents difficult—even for expert coders (Grimmer and Stewart, 2013). 

Unfortunately, teams of expert coders are few and far between, and the modal man- 
ual content analysis project in the social sciences is, as Schrodt (2006) colorfully put 
it describing the collection of events data, “legions of bored students flipping through 
copies of The New York Times” (p. 2). Complications arise because of the deeply contex- 
tual nature of language that makes it difficult to specify an entire codebook ex ante. For 
this reason, we recommend an explicit exploratory/discovery phase in which a prelim- 
inary and concise codebook is written to guide coders, who then apply the codebook to 
an initial set of documents. When using the codebook—particularly at first—coders are 
likely to identify ambiguities in the coding scheme or overlooked categories. This subse- 
quently leads to a revision of the codebook. Only after coders apply the coding scheme 
to documents without noticing substantial ambiguities is a “final” scheme ready to be 
applied to a separate set of documents used for analysis. This ensures that ambiguities 

  

‘Part of this section is drawn from Grimmer and Stewart (2013).
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have been sufficiently addressed without risk of overfitting to the document set used to 
develop the codebook. 

In this chapter, we first cover the basics of developing a codebook, selecting coders, 
and coding a training set. We then also consider other sources of labeled data, includ- 
ing crowd sourcing and supervision with found data. Manual coding is a very important 
topic, but we cannot give a full treatment of it in this book. Fortunately, manual content 
analysis is a richly developed field and there are whole books on how to write a good 
codebook and train coders. We particularly recommend Krippendorff (2012), Neuen- 
dorf (2016), and Riffe et al. (2019) for more detailed treatments of the coding process 

along with practical advice. Barbera et al. (2021) provide an excellent article-length 
treatment of the whole supervised learning process. 

18.1 Characteristics of a Good Training Set 

The goal of human coding is to provide a reliable human mapping from the texts of 
interest to the categories the researcher is interested in. In Part 3: Discovery, we discov- 
ered the concepts we want to measure; in coding a training set, we want to operationalize 

these concepts. Many complications arise when creating this mapping, as we will detail 
more below. Neuendorf (2016, Chapter 1) nicely lays out the following characteristics 
of a good human coded dataset or training set: 

¢ Objectivity-Intersubjectivity: The measurement of the categories is objec- 
tive, in that the understanding of the categories is not specific to a particular 
person. Even if it cannot be objective, Neuendorf (2016) argues that at least it 
should have intersubjectivity, or a shared understanding between researchers. 

« An A Priori Design: As we have discussed in Part 3: Discovery, defining and 
redefining categories is an important part of the research process. In the pro- 
cess of human coding, categories may need to be further refined. However, 
the final training set should be based on a final codebook and coded on fresh 
data. 

¢ Reliability: The mapping of texts to categories should be reliable, in that 
different human coders should produce the same mapping when working 
independently. 

¢ Validity: The measure should reflect the concept or category of interest. The 
category label we assign to the measure should reflect what we are indeed 
measuring. 

¢ Generalizability: To create a training set, we will typically code only a sam- 
ple of a much larger set of data. The mapping we produce with hand coding 
should be generalizable to the entire dataset and the final population the 
researcher is interested in. 

¢ Replicability: The measure should be able to be replicated in the same data, 
and ideally different data and different contexts as well. 

18.2 Hand Coding 

With these goals in mind, we first consider the case where the researcher creates 
a training set using hand coding. Depending on the categories the researcher intends 
to measure and the size of the sample set aside for hand coding, the process of hand 
coding can be very straightforward to a process that takes weeks, months, or even years
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(Baumgartner, Jones, and MacLeod, 1998). Regardless, there are a few basic steps and 
decisions necessary to create a human coded dataset: 

18.2.1 1: DECIDE ON A CODEBOOK 

The codebook is the instruction manual for the coders to place documents into cate- 
gories. If the categories have been created by the researcher, she will have to write her 
own codebook. The codebook not only defines the categories of interest, but also must 
communicate them effectively in order to ensure reliability, validity, and replicability. 
This may mean providing example texts for each category and describing edge cases.” 
Flowcharts can also be used to help the coders understand hierarchy of the categories 
or deal with cases where there are many categories (Krippendorff, 2012, p. 135). 

If the researcher would rather not create a custom codebook from scratch, many 
codebooks exist that could coincide with the goal of the research project. The advan- 
tage of adapting an existing codebook is that it has often been refined through multiple 
rounds of testing. For example, the Comparative Manifestos Project (https://manifesto 
-project.wzb.eu/) provides several versions of codebooks for categorizing the policy 
preferences of election manifestos. 

18.2.2 2: SELECT CODERS 

In order to ensure intersubjectivity, reliability, and replicability, one of the principles 
of human coding is that coders other than the researcher label the data (Krippendorff, 
2012, p. 131). Using a separate set of coders is a test of whether the researcher can 
effectively communicate the categories to other people.’ 

The next question is how many coders to use to label the data. Best practice is for the 
researcher to select at least two for creating the training data. This allows the researcher 
to assess the level of agreement between the coders as a measure of reliability, which we 
discuss in more detail below. The total number of coders the researcher should select 
will depend on how precise the coders are in labeling the data. With trained coders 
with a lot of experience in the research area, researchers may be able to use only two 
coders total. With a less trained or less attentive labor pool where coders may be more 
imprecise, many evaluations of each data point may be necessary to reliably label the 
data. Barberd et al. (2021) provide an excellent overview and characterization of these 

trade-offs in selecting the number of coders. 

18.2.3 3: SELECT DOCUMENTS TO CODE 

Next, the researcher must select which and how many documents to code. For 
generalizability and best performance of the classifier, the training set should be rep- 
resentative of the larger dataset that the researcher intends to code and also of the 
population about which the researcher intends to draw inference. One straightforward 
way to ensure this is to draw a simple random sample of the larger set for the training set. 

The number of documents that should be used in the training set will depend on the 
number of categories and the reliability of the coders. The higher the number of cate- 
gories and the lower the reliability of the coders, the higher the number of documents 

  

See Neuendorf (2016) Chapter 5 for the trade-offs of providing example texts. 
3We acknowledge that this may not always be possible due to funding considerations or poor access to 

coders with sufficient expertise to perform the coding. 
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the researcher will need to create a reliable classifier downstream (Barberd et al., 2021). 
Downstream validation of the classifier can help reveal whether a sufficient number of 
documents has been coded to achieve the desired accuracy. 

18.2.4 4: MANAGE CODERS 

For best performance, researchers should train coders before asking them to label 
the training set. This involves having the coders carefully read the codebook and ask 
any questions. It often also involves asking the coders to label a sample of texts and 
evaluating whether they have understood the instructions, or whether the instructions 
need to be revised. 

Once coders have been trained and the codebook has been finalized, the coders 
should label the data without any contact with each other, or with resources outside 
of the codebook itself (Krippendorff, 2012, p. 131). This ensures that the training data 
produced can be evaluated for reliability. The final training data should be produced 
after the last revision of the codebook. 

18.2.5 5: CHECK RELIABILITY 

The last step in creating a human coded training set is checking for intercoder reli- 
ability.* This involves comparing the labels on the same documents between coders. 
Several different measures can be used to compare labels; two widely used metrics are 
Cohen's kappa (Landis and Koch, 1977) and Krippendorff’s alpha (Krippendorff, 2012). 
We refer the reader to Chapter 6 of Neuendorf (2016) for an excellent overview of the 
metrics and pitfalls of assessing reliability. 

18.2.6 MANAGING DRIFT 

Researchers should be aware of two types of “drift" that might occur when human 
coding. First, the coders themselves may change the way that they assign labels to cate- 
gories as the process of coding wears on. This could be due to anything from fatigue with 
coding to new insights gained during the process of coding (Neuendorf, 2016, Chap- 
ter 6). For this type of drift, it might be useful for the researcher to assess reliability at 
multiple points in the coding process. 

Human coding can also be affected by data drift—where a content stream is evolv- 
ing over time, which can create new ambiguities for the codebook. For example, new 
categories might evolve, collapse, or merge with others as the data changes over time. 
If the codebook is changed based on the drift, it could be that the newer data is labeled 
differently than the old data. In this situation, one final coding round can help assess 
the final reliability of the new codebook (Krippendorff, 2012, 218). 

18.2.7 EXAMPLE: MAKING THE NEWS 

In Making the News, Amber Boydstun considers the important question of what 
types of policy issues receive the most news coverage and why. Boydstun (2013) argues 
that the media do not act purely as watchdogs—patrolling all issue areas—or as alarm 
systems—only responding to sudden events. She instead puts forward an alarm/patrol 
hybrid model of news generation, one where the media are monitoring many issue 

  

‘Note that intercoder reliability does not guarantee accuracy, because coders could have similar errors 
(Barbera et al., 2021). However, without access to “true” labels, true accuracy is difficult to assess.
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areas, but sink disproportionate resources into a few when they become “hot.” To mea- 
sure attention to policy issues in news, she collects a dataset of 31,034 articles from 
The New York Times and places them into policy issue areas. Because she is most inter- 
ested in understanding policy areas that receive the most news attention, she limits her 
analysis to front page stories. 

Boydstun (2013) relies on an existing codebook—the Policy Agendas Project—to 
label each of the front page New York Times articles in her dataset. In order to adapt 
the codebook to The New York Times corpus, she annotated the codebook to provide 
more explicit instructions to the coders. The codebook consists of many categories—27 
major topic categories and 225 subtopics within these 27 major categories. 

Boydstun (2013) trained the coders on a sample of articles, requiring the coders 
to obtain high reliability in this sample before coding the rest of the data. In order to 
ensure reliability over time, Boydstun (2013) ensured that coders labeled duplicate texts 
throughout the coding process. Boydstun (2013) reports both Krippendorff’s alpha and 
Cohen's kappa and has made her codebook available online. 

Boydstun (2013)’s hand coding of front page New York Times articles allows her to 
study attention to the different policy issues over time. She finds that issue coverage 
is highly skewed toward international affairs and often driven by events. For example, 
Figure 18.1 from Boydstun (2013, Chapter 4) shows that the attacks on the World Trade 
Center in September of 2001 drastically shifted media coverage on the front page of The 
New York Times to defense, crowding out issue coverage of other policy areas. 

18.3 Crowdsourcing 

In the last ten years, the introduction of online labor markets such as Mechanical 
Turk has radically altered the landscape of recruitment for annotators, survey respon- 
dents, and participants in experiments (Snow et al., 2008; Kittur, Chi, and Suh, 2008; 
Buhrmester, Kwang, and Gosling, 2011; Berinsky, Huber, and Lenz, 2012; Budak, Goel, 
and Rao, 2016; Benoit et al., 2016). Labor markets provide access to untrained or lightly 
trained workers at scales that would be unfathomable in a typical university setting. 
For tasks that can be easily explained, are relatively straightforward, and can be quickly 
completed, online labor markets can be a valuable way to collect document annotations. 

It is tempting to think about these online labor markets as infinitely large pools of 
workers but they are (at least at the time of writing) actually much smaller than it might 
otherwise seem. For example, Amazon's Mechnical Turk is the most popular online 
labor market for academic research. A recent study estimates that there are less than 
two hundred thousand unique workers, with about two to five thousand active at any 
given time (Difallah, Filatova, and Ipeirotis, 2018). These workers tend to have skewed 
demographic and political characteristics relative to the population as a whole, although 
certainly not as skewed as the population of students in university settings (Huff and 
Tingley, 2015). 

Differences between crowdsourcing and human coders. There are three big differ- 
ences between working with a small team of human coders and a huge crowd. First, 
in the crowd setting fixed costs have to be lower, so intensive training is less feasible. 
In practical terms this limits the kind of work that can be done by crowd-workers to 
comparatively simple tasks that don’t require expert background. The advantages of 
low fixed costs lead to the second big difference—it is more feasible to quickly scale up 
crowd workers to enable high throughput coding. In a university or industry setting, 
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Figure 18.1. Discussion of defense in front page news articles in The New York Times 

increased substantially after September 11, 2001. Figure 4.8 from Boydstun (2013). 

hiring new workers takes time, but with crowdsourcing thousands of annotations can 
be collected for a simple task in just a few hours. The third major difference, is that 
we have to fully embrace the inevitability of error in annotations. We can conceivably 
train a small team of annotators until error rates are tolerably low, but in crowdsourcing 
we have to come up with ways to reconcile conflicting labels. Thankfully this is an old 
problem which has seen renewed interest in recent years as a result of online labor mar- 
kets (Dawid and Skene, 1979; Sheng, Provost, and Ipeirotis, 2008; Zhang et al., 2014; 
Benoit et al., 2016; Barberd et al., 2021). We return to these methods in Chapter 20 on 
validation. 

Some would add a fourth major difference, that crowdsourcing is cheaper. It is cer- 
tainly true that crowdsourced annotations can be obtained cheaper on Mechanical Turk 
than from undergraduate annotators, but it is questionable whether or not they should 
be. Because the workers are independent contractors, they often end up being paid 
effectively below local minimum wage. We note that while for the purposes of statis- 
tical text analysis it can be helpful to think of the crowd as a certain type of “algorithm,” 
the workers are very much humans and so ethical considerations about appropriate 
compensation apply (Fort, Adda, and Cohen, 2011; Mason and Suri, 2012; Shank, 2016). 

Changing the Task. In practice, the key to using crowdsourcing has generally been 
to find the optimal way to divide the coding task into small “bite-sized" chunks. 
Now that online labor markets have been around for over a decade, researchers have
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Please tell us how dark or light the color below appears. Please tell us how dark or light the color below appears. 

Very dark Somewhat dark Neutral Somewhat light Very light Very dark Somewhat dark Neutral Somewhat light Very light 

(a) Absolute scale (65 on a 100-pt. scale) (b) Absolute scale (70 on a 100-pt. scale) 

Which of the two shades of gray below do you think is darker? 

} 
a 

(c) Comparison (65 and 70 on a 100-pt. scale) 

Figure 18.2. A figure from Carlson and Montgomery (2017) explaining how pairwise com- 

parison tasks can be more tractable than absolute scale tasks. Task C is going to be much 

more consistent than either task A or B. 

started to creatively develop new tasks that can more easily be discretized. Carlson 
and Montgomery (2017) introduce an approach to placing documents on a scale by 
collecting thousands of responses to quick pairwise comparison tasks. 

The core insight is beautifully illustrated by an example from Carlson and Mont- 
gomery (2017), which is depicted in Figure 18.2. For many tasks, such as assessing how 
dark or light a color is, it is quite difficult to assign an absolute scale without some kind 
of reference point. However, it is very tractable to make a reliable assessment of a com- 
parison between two values. These pairwise comparisons can in turn be used to recover 
an underlying latent dimension—an idea that has been around in psychometrics since 
at least Thurstone (1927), and, arguably, traces back to the 1800s. 

In Carlson and Montgomery (2017), they collect many such pairwise judgments by 
recruiting crowd workers through Amazon's Mechanical Turk platform. They show that 
the system is highly reliable and compares favorably to other approaches. Remarkably, 
coders seem to need considerably less training to make a pairwise judgment than to 
accurately assign an absolute scale. The need to make pairwise comparisons causes the 
number of evaluations needed to scale with the number of texts squared, so this general 
approach works best with a moderate number of documents (the largest case is less than 
2,000 documents). 

It is worth emphasizing that the task in Carlson and Montgomery (2017) is not 
fully supervised in the sense that at no point is any unit labeled with its actual “true” 
value. Rather we use indirect feedback about the latent dimension (e.g., which gray 
is darker) to provide insight on the intended measurement. This leaves these styles of 
measurement as a bit of a middle ground between supervised categorization approaches 
and unsupervised approaches, and it is worth careful investigation that the continuous 
dimension that is learned has the intended outcome. 

18.4 Supervision with Found Data 

The last strategy we describe for building a training set is “supervision with found 
data," which involves using found data in order to determine the categories and label 
the documents. This approach uses existing categories produced by individuals outside 
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