MAT0225 - Funções Analíticas

Lista 2

1° Semestre de 2023

(1) Dado z = x + yi, escreva cada função f(z) abaixo na forma f(z) = u(x,y) + iv(x,y):

(a)
$$f(z) = |z|$$

(b)
$$f(z) = \overline{z}$$
:

(c)
$$f(z) = \sqrt{z}$$
;

(d)
$$f(z) = e^z$$

(e)
$$f(z) = z^2 - 2z + 7$$

$$(f) f(z) = z^3 + z + 1;$$

$$(g) \ f(z) = \frac{4z - 5i}{z + 2i}$$

(h)
$$f(z) = z + \frac{1}{z}$$
;

$$\begin{array}{ll} (a) \ f(z) = |z|; & (b) \ f(z) = \overline{z}; & (c) \ f(z) = \sqrt{z}; \\ (d) \ f(z) = e^z; & (e) \ f(z) = z^2 - 2z + 7; & (f) \ f(z) = z^3 + z + 1; \\ (g) \ f(z) = \frac{4z - 5i}{z + 2i}; & (h) \ f(z) = z + \frac{1}{z}; & (i) \ f(z) = \left|z^2\right| - \overline{z^2 + i}. \end{array}$$

(2) A definição de limite nos diz que, se Ω for um aberto de \mathbb{C} , $z_0 \in \Omega$ e $f \colon \Omega \setminus \{z_0\} \to \mathbb{C}$ for uma função, dizemos que $\lim_{z \to z_0} f(z) = w$, se: para todo $\varepsilon > 0$ existir um $\delta > 0$ tal que

$$\forall z \in \Omega, 0 < |z - z_0| < \delta \Rightarrow |f(z) - w| < \varepsilon.$$

Se f(z) = u(z) + iv(z), e w = a + bi, mostre que

$$\lim_{z \to z_0} f(z) = w \Leftrightarrow \lim_{z \to z_0} u(z) = a e \lim_{z \to z_0} v(z) = b$$

(3) Calcule, caso existam, os seguintes limites, justificando sua resposta:

(a)
$$\lim_{z \to 0} \frac{z^2 - 2}{z + i}$$

(b)
$$\lim_{z \to 1+i} \frac{z+i}{z^2+2}$$

(c)
$$\lim_{z\to 0}\frac{z}{|z|}$$

(d)
$$\lim_{z \to i} \frac{iz^3 + 1}{z - i}$$

(a)
$$\lim_{z \to 0} \frac{z^2 - 2}{z + i}$$
 (b) $\lim_{z \to 1 + i} \frac{z + i}{z^2 + 2}$ (c) $\lim_{z \to 0} \frac{z}{|z|}$ (d) $\lim_{z \to i} \frac{iz^3 + 1}{z - i}$ (e) $\lim_{z \to -2i} \frac{z^3 - 81}{z + 2i}$ (f) $\lim_{z \to 0} \frac{e^z - e^{\overline{z}}}{\text{Im}(z)}$

$$(f) \lim_{z \to 0} \frac{e^z - e^{\overline{z}}}{\operatorname{Im}(z)}$$

(4) Seja
$$f(z) = \frac{2z^2 - 3iz + 2}{z - 2i}$$
.

- (a) Calcule $\lim_{z\to 2i} f(z)$.
- (b) Usando a definição, mostre que $\lim_{z\to 2i} f(z) = 5i$.

(5) Mostre que o limite $\lim_{h\to 0}\frac{\overline{h}}{h}$ não existe. Prove que, dado $\omega\in S^1$, temos

$$\lim_{h\to 0}\frac{\overline{h}}{h}=\omega$$

1

se o limite for feito por um caminho retilíneo adequado.

(6) Mostre que as funções abaixo são contínuas nos pontos especificados:

(a)
$$f(z) = z^2 - iz + 3 - 2i e z_0 = 2 - i;$$
 (b) $f(z) = \frac{z^3}{z^3 + 3z^2 + z} e z_0 = i;$

(c)
$$f(z) = \frac{z - 3i}{z^2 + 2z - i} e z_0 = 1 + i;$$
 (d) $f(z) = \begin{cases} \frac{z^3 - 1}{z - 1}, & \text{se}|z| \neq 1, \\ 3, & \text{se}|z| = 1 \end{cases}$ e $z_0 = 1;$

(e)
$$f(z) = \begin{cases} \frac{z^3 - 1}{z^2 + z + 1}, & \text{se}|z| \neq 1, \\ \frac{-1 + i\sqrt{3}}{2}, & \text{se}|z| = 1 \end{cases}$$
 $e z_0 = \frac{1 + i\sqrt{3}}{2}.$

(7) Seja $f:\Omega\subset\mathbb{C}\to\mathbb{C}$ uma função e $z_0\in\Omega$, com Ω aberto em \mathbb{C} . Se f for holomorfa em z_0 ,, mostre que fé contínua em z_0 . Se g estiver definida em Ω e for holomorfa em z_0 , mostre que (f+g) será holomorfa em z_0

$$(f+g)'(z_0) = f'(z_0) + g'(z_0).$$

(8) Sejam $f,g:\Omega\subset\mathbb{C}\to\mathbb{C}$ funções holomorfas em $z_0\in\Omega$ (com Ω aberto). Prove que a função produto f(z)g(z) será holomorfa em z_0 e vale a regra de Leibniz:

$$(fg)'(z_0) = f'(z_0)g(z_0) + f(z_0)g'(z_0)$$

(9) Sejam Ω um aberto de \mathbb{C} , $z_0 \in \Omega$ e $f: \Omega \to \mathbb{C}$ uma função holomorfa em z_0 com $f(z_0) \neq 0$. Prove que a função $\frac{1}{f(z)}$ está definida numa vizinhança aberta de z_0 e é holomorfa em z_0 , com:

$$\left(\frac{1}{f}\right)'(z_0) = -\frac{f'(z_0)}{(f(z_0))^2}$$

(10) Determine onde f'(z) existe e calcule seu valor quando

(a)
$$f(z) = z^3 - (4+3i)z - 5i;$$
 (b) $f(z) = \frac{3\overline{z}}{z^2 + 3i};$ (c) $f(z) = z^3 e^{iz};$

(a)
$$f(z) = z^3 - (4+3i)z - 5i$$
; (b) $f(z) = \frac{3z}{z^2 + 3i}$; (c) $f(z) = z^3 e^{iz}$;
(d) $f(z) = \frac{1}{z}$; (e) $f(z) = x^2 + iy^2$; (f) $f(z) = z \operatorname{Im}(z)$;

(g)
$$f(z) = (x^2 - y^2 - y) + i(x + 2xy)$$
.

(11) Dado z = x + yi, verifique, em cada caso, se são satisfeitas as equações de Cauchy-Riemann. Se sim, apresente um domínio apropriado.

(a)
$$f(z) = \overline{z}$$
 (b) $g(z) = y + ix$

(c)
$$h(z) = |z|^2$$
 (d) $k(z) = e^y(\cos x + i \sin y);$

(e)
$$f(z) = \frac{x-1}{(x-1)^2 + y^2} - i \frac{y}{(x-1)^2 + y^2}$$

(12) Mostre que as funções $f(z)=\frac{x}{x^2+y^2}+i\frac{y}{x^2+y^2}$ e $g(z)=\frac{i}{z^2}$ são analíticas para todo $\mathbb{C}\setminus\{0\}$.

- (13) Mostre que a funções $f(z) = \frac{x}{x^2 + y^2} i\frac{y}{x^2 + y^2}$, $g(z) = |z|^2$ e $h(z) = e^{\overline{z}}$ não são analíticas em nenhum ponto do plano complexo.
- (14) Seja Ω um aberto conexo de \mathbb{C} e $g \in \mathcal{H}(\Omega)$ (o conjunto das funções analíticas em Ω) com g'(z) = 0para todo $z \in \Omega$. Mostre que g é uma função constante. Suponhamos que f(z) seja uma função holomorfa em Ω , satisfazendo:
 - (1) f', f'' e f''' existem em Ω ;
 - (2) f'''(z) = 0 para todo $z \in \Omega$.

Mostre que f(z) é um polinômio de grau ≤ 2 na variável z...

- (15) Sejam $u(x,y), v(x,y) \in \mathbb{R}[x,y]$ (ou seja, dois polinômios nas variáveis x e y com coeficientes reais). Suponhamos que u e v satisfaçam as equações de Cauchy-Riemann, isto é: $u_x = v_y$ e $u_y = -v_x$, em todo ponto de \mathbb{C} . Será que f(x+iy) := u(x,y) + iv(x,y) é um polinômio na variável z = x + iy, com coeficientes complexos?
- (16) Sejam Ω um aberto conexo de \mathbb{C} .
 - (a) Se $f \in \mathcal{H}(\Omega)$ é tal que $f(\Omega) \subset \mathbb{R}$, mostre que f é constante.
 - (b) Mostre que $g \in \mathcal{H}(\Omega)$ tal que $g(\Omega) \subset i\mathbb{R}$ é constante.
 - (c) Se $h \in \mathcal{H}(\Omega)$ tal que $h(\Omega) \subset \{x + ix : x \in \mathbb{R}\}$, mostre que h é constante.
- (d) Sejam ℓ uma reta qualquer de \mathbb{C} e $f \in \mathcal{H}(\Omega)$ tal que $f(\Omega) \subset \ell$. Mostre que f é constante.
- (e) Sejam $\ell_1, \ell_2, \ldots, \ell_m$ retas quaisquer de \mathbb{C} e $f \in \mathcal{H}(\Omega)$ tal que $f(\Omega) \subset \ell_1 \cup \ell_2 \cup \ldots \cup \ell_m$. Mostre que f é constante.
- (17) Seja $f \in \mathcal{H}(\mathbb{C})$ tal que |f(z)| = 10 para todo $z \in \mathbb{C}$. Mostre que f(z) tem que ser constante em \mathbb{C} .
- (18) Sejam Ω um aberto conexo de \mathbb{C} e $h \in \mathcal{H}(\Omega)$ uma função tal que $(h(z))^2 = \overline{h(z)}$ para todo $z \in \Omega$. Encontre essas h(z)'s.
- (19) Encontre todas as funções f(z) holomorfas num aberto conexo Ω de \mathcal{C} que satisfazem a seguinte propriedade: para todo $z_0 \in \Omega$, ou $f(z_0) = 0$ ou $f'(z_0) = 0$.
- (20) Sejam Ω um aberto conexo de \mathbb{C} e $f(z) \in \mathcal{H}(\Omega)$. Suponhamos que $g(z) = \overline{f(z)}$ também seja holomorfa em Ω . Mostre que f tem que ser constante.
- (21) Encontre todos os valores de $z \in \mathbb{C}$ tais que

(a)
$$e^z = 1 + i\sqrt{3}$$
 (b) $e^z = 1 + i$

(b)
$$e^z = 1 + i$$

(c)
$$e^{2z+1} = 1$$

- (*d*) $e^{e^z} = 1$
- (22) Considere a função $f(z) = e^z$. Desenhe a imagem, sob f(z),
 - (a) das retas verticais x = c e das retas horizontais y = d.
 - (b) dos lados do triângulo de vértices 0, 1 e 1 + i.
 - (c) dos lados do quadrado de vértices 1+i, -1-i, 1-i e -1+i.
 - (d) da circunferência de raio 2 centrada na origem.