MAT6682 - Tópicos de Análise Funcional - 2023 Lista 5

1. Bases de Schauder

- **1.** Sejam X um espaço de Banach, $(x_n)_{n\geq 1}$ uma base de Schauder de X e Y um subespaço fechado de dimensão infinita de X. Dado $m \geq 1$, mostre que existe $y \in Y$ tal que ||y|| = 1 e $y \in \overline{\text{span}}\{x_n : n \geq m\}$.
- **2.** Sejam X um espaço de Banach complexo e X_r o espaço de Banach real obtido através da restrição da multiplicação por escalar a $\mathbb{R} \times X$. Mostre que uma sequência $(x_n)_{n\geq 1}$ em X é uma base de Schauder de X se, e somente se, a sequência $(x_1, ix_1, x_2, ix_2, ..., x_n, ix_n, ...)$ é uma base de Schauder de X_r .
- **3.** Mostre diretamente que a base canônica de ℓ_1 não é contrátil e que a base canônica de c_0 não é limitadamente completa.
- **4.** A base somante de c_0 é a sequência $(x_n)_{n\geq 1}$ definida por $x_n=\sum_{i=1}^n e_i$.
 - a) Mostre que $(x_n)_{n\geq 1}$ é base de Schauder de c_0 .
 - b) Mostre diretamente que $(x_n)_{n\geq 1}$ não é contrátil nem limitadamente completa.
- **5.** Sejam X um espaço de Banach, $(x_n)_{n\geq 1}$ uma base de Schauder de X e $(P_n)_{n\geq 1}$ a sequência de projeções canônicas de $(x_n)_{n\geq 1}$.
 - a) Mostre que $(P_n)_{n\geq 1}$ converge para a identidade uniformemente sobre os compactos de X, isto é, dados K um subconjunto compacto de X e $\varepsilon>0$, existe $N\geq 1$ tal que $\|P_n(x)-x\|<\varepsilon$ para todos $x\in K$ e $n\geq N$.
 - b) Mostre que $(x_n)_{n\geq 1}$ é contrátil se, e somente se, $(P_n)_{n\geq 1}$ converge fracamente para a identidade uniformemente sobre os limitados de X, isto é, dados A um subconjunto limitado de X, $x^* \in X^*$ e $\varepsilon > 0$, existe $N \geq 1$ tal que $|x^*(P_n(x) x)| < \varepsilon$ para todos $x \in A$ e $n \geq N$.
- **6.** Dados X um espaço de Banach e $(x_n)_{n\geq 1}$ uma base de Schauder de X, considere o espaço vetorial

$$Y = \left\{ (\alpha_n)_n \in \mathbb{K}^{\mathbb{N}} : \sup_{m \ge 1} \left\| \sum_{n=1}^m \alpha_n x_n \right\| < +\infty \right\}$$

e a função $\|\cdot\|_Y:Y\to [0,+\infty)$ dada por $\|(\alpha_n)_n\|_Y=\sup_{m\geq 1}\left\|\sum_{n=1}^m\alpha_nx_n\right\|$. Prove as seguintes afirmações:

- a) $\|\cdot\|_Y$ é uma norma completa em Y.
- b) $T: X^{**} \to Y$ dado por $T(x^{**}) = (x^{**}(x_n^*))_{n \ge 1}$ é um operador linear contínuo bem definido.
- c) $T \circ J_X$ é um isomorfismo de X sobre $Z = \left\{ (\alpha_n)_n \in \mathbb{K}^{\mathbb{N}} : \sum_{n=1}^{\infty} \alpha_n x_n \text{ converge em } X \right\}$.
- d) $(x_n)_{n\geq 1}$ é contrátil se, e somente se, T é isomorfismo de X^{**} sobre Y.
- 7. Sejam X um espaço de Banach e $(x_n)_{n\geq 1}$ uma base de Schauder limitadamente completa de X.
 - a) Mostre que a série $\sum_{n=1}^{\infty} x^{**}(x_n^*) x_n$ é convergente em X para todo $x^{**} \in X^{**}$.
 - b) Mostre que o operador linear $P: X^{**} \to X^{**}$ dado por $P(x^{**}) = \sum_{n=1}^{\infty} x^{**}(x_n^*) J_X(x_n)$ é uma projeção contínua tal que $\operatorname{Ker}(P) = Y^{\perp}$, onde $Y = \overline{\operatorname{span}}\{x_n^* : n \ge 1\}$.

- **8.** (**Teorema de James**) Dado X um espaço de Banach com base de Schauder, mostre que as seguintes afirmações são equivalentes:
 - a) X é reflexivo.
 - b) Toda base de Schauder de X é contrátil e limitadamente completa.
 - c) Existe uma base de Schauder de X contrátil e limitadamente completa.