

• Compostos Carbonílicos

- Aldeídos e cetonas: estrutura, propriedades químicas e físicoquímicas de compostos contendo o grupo carbonila.
- Reações aldólicas
- Ácidos carboxílicos e seus derivados
- Adição e eliminação nucleofílica ao carbono acílico
- Síntese e reações de compostos βdicarbonilados
- Aminas

Estrutura & Ligação

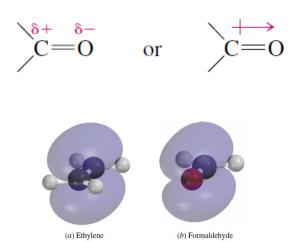
Formaldehyde

Acetaldehyde

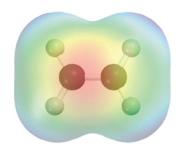
Acetone

 $CH_3CH_2CH = CH_2$

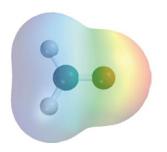
1-Butene


Dipole moment: 0.3 D

 $CH_3CH_2CH=O$


Propanal

Dipole moment: 2.5 D



(b) Formaldehyde

$$C = \overset{\circ}{\bigcirc} : \longleftrightarrow +C - \overset{\circ}{\bigcirc} :$$

Heat of combustion:

Estabilização da carbonila por grupos alquilas

Propriedades Físicas

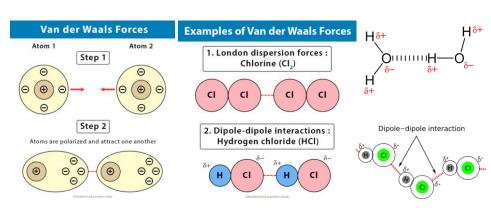
bp (1 atm) Solubility in water (g/100 mL) $CH_3CH_2CH = CH_2$ 1-Butene $-6^{\circ}C$ Negligible

CH₃CH₂CH=O

Propanal

49°C

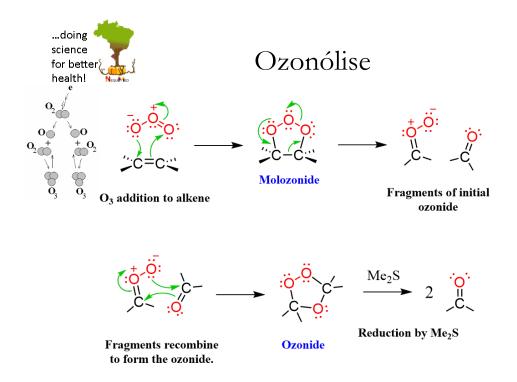
20

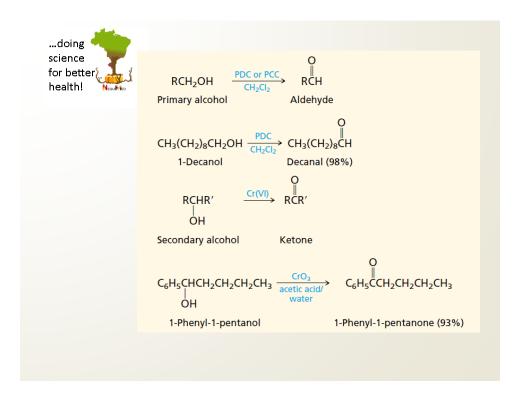

CH₃CH₂CH₂OH

1-Propanol

97°C

Miscible in all


proportions



Fontes de aldeídos e cetonas

Síntese Química

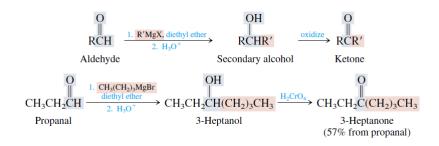
Z	Element	e ⁻ configuration	Electron Configuration Chart s holds up to 2 p holds up to 6 d holds up to 10		
19 20	K Ca	[Ar] <mark>4s¹</mark> [Ar] <mark>4s²</mark>	18 Ar Argon 39.95	25 20 35 30 30 45 40 40 41 55 50 50 51	
22	Ti	[Ar] <mark>3d²4s²</mark>	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶		
24	Cr	[Ar]3d ⁵ 4s ¹	Cr ³⁺ , Cr ⁶⁺	[Ar]3d³, [Ar]	
26	Fe	[Ar] <mark>3d⁶4s</mark> ²	Fe ²⁺ , Fe ³⁺	[Ar]3d ⁶ , [Ar]3d ⁵	
29	Cu	[Ar]3d ¹⁰ 4s ¹	Cu+, Cu ²⁺	[Ar]3d10, [Ar]3d9	
30	Zn	[Ar]3d ¹⁰ 4s ²	Zn ²⁺	[Ar]3d ¹⁰	
31	Ga	[Ar]3d ¹⁰ 4s ² 4p ¹	Ga³+	[Ar]3d ¹⁰	
35	Br	[Ar]3d ¹⁰ 4s ² 4p ⁵	Br	[Kr]	

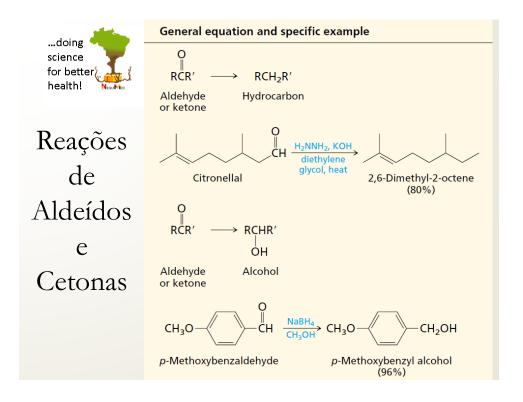
...doing science for better health!

Pyridinium Chlorochromate (PCC) Oxidation Mechanism

...doing science

for better


health!


The Most Common Mild Oxidizing Agents


A primeira etapa do mecanismo envolve o álcool reagente atacando o átomo de iodo (V) e eliminando um grupo de saída acetato (AcO⁻) para formar um intermediário de periodinato.

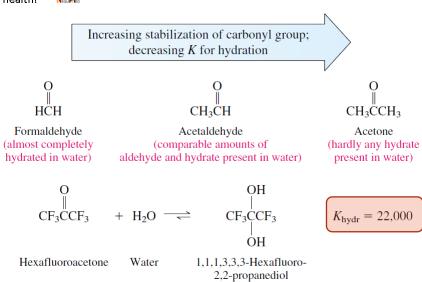
Para cetonas, formação C-C

Propriedade química mais importante do grupo carbonila: reação de adição nucleofílica

$$\delta + C = O + X - Y - Y$$
Aldehyde or ketone Product of nucleophilic addition

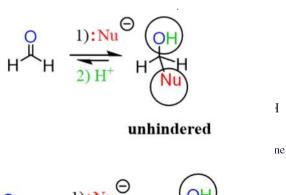
Hidratação de Aldeídos e Cetonas

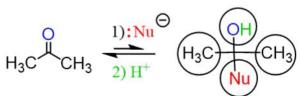
Constantes de equilíbrio (K_{hydr}) para hidratação de alguns aldeídos e cetonas


Carbonyl compound	Hydrate	K _{hydr} *	Percent conversion to hydrate [†]
0	GU (QU)		
HĈH O	CH ₂ (OH) ₂	41	99.96
∥ CH₃CH	CH₃CH(OH)₂	1.8×10^{-2}	50
O ∥ (CH₃)₃CCH	(CH ₃) ₃ CCH(OH) ₂	4.1×10^{-3}	19
O ∥ CH₃CCH₃	(CH ₃) ₂ C(OH) ₂	2.5×10^{-5}	0.14

^{*} $K_{\text{hydr}} = \frac{\text{[hydrate]}}{\text{[carbonyl compound][water]}}$. Units of K_{hydr} are M^{-1} .

[†]Total concentration (hydrate plus carbonyl compound) assumed to be 1 M. Water concentration is 55.5 M.


Considere primeiramente os efeitos eletrônicos



Нуσ

Efeitos estéricos

Mecanismo de hidratação

Mecanismo de hidratação em solução básica

Step 1: Nucleophilic addition of hydroxide ion to the carbonyl group

Step 2: Proton transfer from water to the intermediate formed in the first step

Trajetória de Bürgi-Dunitz

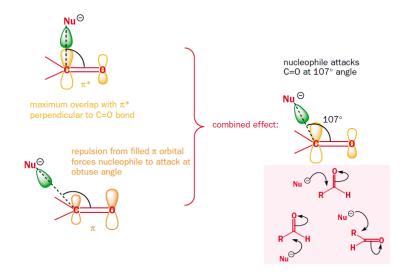
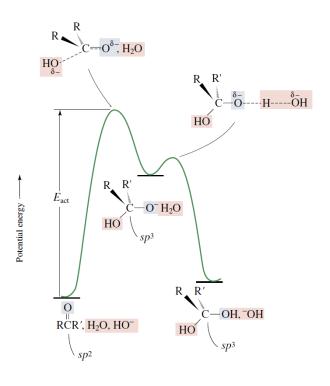
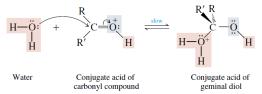
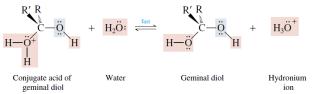



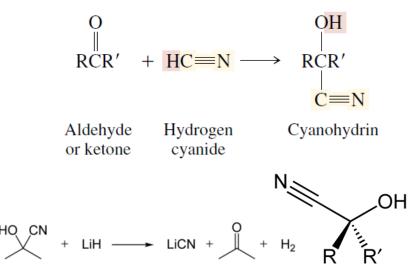
Diagrama
de Energia
Potencial
para a
reação de
hidratação
basecatalisada



Mecanismo em solução ácida: íon hidrônio catalítico

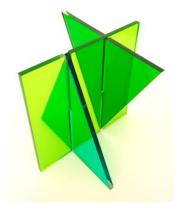

Step 1: Protonation of the carbonyl oxgyen

Step 2: Nucleophilic addition to the protonated aldehyde or ketone



Step 3: Proton transfer from the conjugate acid of the geminal diol to a water molecule

Formação da cianidrina

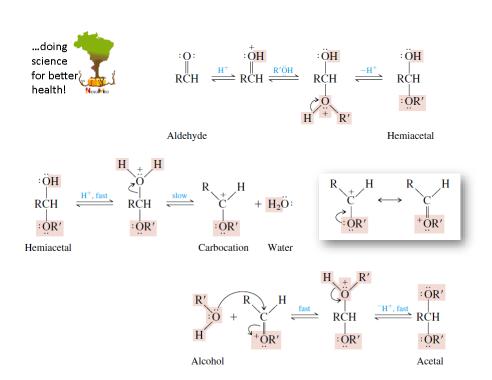


The overall reaction:

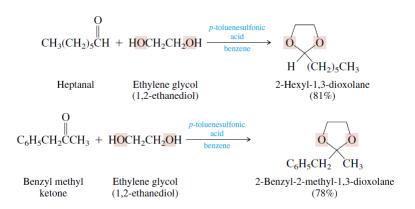
$$\begin{array}{c} R \\ C = O \\ R \end{array} + \begin{array}{c} H - C = N \\ R \end{array} \longrightarrow \begin{array}{c} N = C - C \\ R \end{array} \longrightarrow \begin{array}{c} R \\ C - OH \\ R' \end{array}$$
Aldehyde or ketone Hydrogen cyanide Cyanohydrin

Mecanismo que usa HCN catalítico Step 1: Nucleophilic attack by the negatively charged carbon of cyanide ion at the carbonyl carbon of the aldehyde or ketone. Hydrogen cyanide itself is not very nucleophilic and does not ionize to form cyanide ion to a significant extent. Thus, a source of cyanide ion such as NaCN or KCN is used.

Step 2: The alkoxide ion formed in the first step abstracts a proton from hydrogen cyanide. This step yields the cyanohydrin product and regenerates cyanide ion.


Importante para a produção em larga escala do acrílico, o poli(metil metacrilato) (PMMA).

Formação de Acetal


OH OR'
$$RCH \stackrel{R'OH, H^+}{\longleftarrow} RCH \stackrel{R'OH, H^+}{\longleftarrow} RCH + H_2O$$

$$OR' OR'$$
Aldehyde Hemiacetal Acetal Water
$$O \stackrel{}{\longleftarrow} CH + 2CH_3CH_2OH \stackrel{HCl}{\longleftarrow} CH(OCH_2CH_3)_2$$
Benzaldehyde Ethanol Benzaldehyde diethyl acetal (66%)

Acetais cíclicos

Hidrólise de acetais

$$\begin{array}{c|cccc}
\hline
OR'' & O & O \\
RCR' & + H_2O & \stackrel{H^+}{\Longrightarrow} & RCR' & + 2R''OH \\
\hline
OR'' & Aldehyde & Alcohol or ketone & & & & \\
\end{array}$$