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Elements of Stability Theory

Example: stability analysis for the solution of a SDOF oscillator0δy =



1

2

0

0





 
=  
 

C

0

0





 
=  
 

C
1

0





 
=  
 

C

0

0





 
=  
 

C

Case (a): 𝜆1 ∈ ℝ, 𝜆2 ∈ ℝ, 𝜆1 ≠ 𝜆2 →

Case (b): 𝜆1 = 𝜆2 = 𝜆 ∈ ℝ → ou

Case (c): 𝜆1 = 𝜆 = 𝛼 + 𝑖𝛽 ∈ ℂ, 𝜆2 = ሜ𝜆 = 𝛼 − 𝑖𝛽 ∈ ℂ →

2 4 0− b c

2 4 0− =b c
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with being a Jordan canonical form
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Example: stability analysis for the solution of a SDOF oscillator0δy =



Case (a)

2 1 0  
2 10   

2 10  
2 1 0  = 2 10  = 
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Example: stability analysis for the solution of a SDOF oscillator0δy =



Case (b1)

2 1 0 =  2 10   =
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Case (c)
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Define vector                          in Argand’s plane ...1 2 = +v i vδv
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Example: stability analysis for the solution of a SDOF oscillator0δy =



Synthesis (Thompson)

Elements of Stability Theory

Example: stability analysis for the solution of a SDOF oscillator0δy =



Elements of Stability Theory

Conservative SDOF oscillator

( ) ( ) ( )0 0 0+ =  + =  + =u g u u du g u du uudt g u du
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𝛅 ሶ𝐲 = 𝐟0 𝛅𝐲 = 𝐀𝛅𝐲 + 𝐍 𝛅𝐲

ቤ𝐀 =
𝜕𝐟0
𝜕𝐲

𝟎

where and

𝐹 𝛅𝐲 : 𝐸 → ℝTheorem 6 (Liapunov): if there exists a function such that: 

𝐹 ≥ 0 ∀𝛅𝐲
𝐹 = 0 ⇔ 𝛅𝐲 = 𝟎

ሶ𝐹 =
𝜕𝐹

𝜕𝛿𝑦𝑟
𝛿 ሶ𝑦𝑟 =

𝜕𝐹

𝜕𝛿𝑦𝑟
𝑓0𝑟 ≤ 0

then is L-stable=δy 0

𝐍 𝛅𝐲 = 𝐟0 𝛅𝐲 − 𝐀𝛅𝐲

Elements of Stability Theory

Liapunov’s second method



𝐹 𝛅𝐲 :𝐸 → ℝTheorem 7 (Liapunov): if there exists a function such that: 

𝐹 ≥ 0 ∀𝛅𝐲
𝐹 = 0 ⇔ 𝛅𝐲 = 𝟎

ሶ𝐹 =
𝜕𝐹

𝜕𝛿𝑦𝑟
𝛿 ሶ𝑦𝑟 =

𝜕𝐹

𝜕𝛿𝑦𝑟
𝑓0𝑟 < 0

then is asymptotically stable

in Liapunov’s sense
=δy 0

𝐹 ≥ 0 ∀𝛅𝐲
𝐹 = 0 ⇔ 𝛅𝐲 = 𝟎

ሶ𝐹 =
𝜕𝐹

𝜕𝛿𝑦𝑟
𝛿 ሶ𝑦𝑟 =

𝜕𝐹

𝜕𝛿𝑦𝑟
𝑓0𝑟 > 0

then is L-unstable=δy 0

𝐹 𝛅𝐲 : 𝐸 → ℝTheorem 8 (Chetayev): if there exists a function such that: 

Elements of Stability Theory

Liapunov’s second method



( )F δy is called Liapunov’s function

Elements of Stability Theory

Liapunov’s second method



• Fixed point (stable equilibrium point): asymptotically stable singularity

• Stable limit cycle (periodic attractor): asymptotically stable orbit in the phase space

with one dominating frequency or more than one commensurate dominating

frequencies

• Limit torus: asymptotically stable manifold in the phase space, with more than

one non-commensurate dominating frequency

• Strange attractor (chaos): coexistence of some of the previous attractors with non-

compact (fractal) basins of attraction

Subset of the phase space to which a solution of the dynamical system tends when

for initial conditions in a non-localized subset of the phase space

(basin of attraction)

t →

Elements of Stability Theory

Attractor



Example: van der Pol equation

( )2 2 0u u u u u u− + + + =

( ) sinu t t=

Trivial solution is unstable( ) 0u t =

Periodic attractor is stable

Elements of Stability Theory

Periodic attractor in autonomous dynamical system ( )y g y=



Hirsch & Smale: Differential Equations, Dynamical Systems

and Linear Algebra

Guckenheimer & Holmes: Nonlinear Oscillations, Dynamical Systems

And Bifurcation of Vector Fields

Elements of Stability Theory

Dynamical Systems



• First Poincaré-Bendixson’s Theorem:

If a phase trajectory C remains within a finite region without approaching

a singularity, then C is a limit cycle or it tends to one.

• Second Poincaré-Bendixson’s Theorem:

Given a region D of the phase space, bounded by two curves C’ and C”,

without a singularity in D, C’ e C”,  if all phase trajectories enter (exit)

in D through the boundaries C’ e C”, then there exists at least a stable (unstable)

limit cycle in D.

Elements of Stability Theory

Orbital stability of autonomous SDOF oscillators



• Let be a flow of an autonomous system in         and

a section with normal      . Consider the mapping

defined by the intersection of the flow with .

is termed a “Poincaré’s section” of the flow through

Elements of Stability Theory

Poincaré’s section (map)

( )y = f y ℝ2𝑛

( )y = f y( )0 0→y P y
( ): 0  f y N N


( )0P y ( )y = f y 0y

• If the system is non-autonomous, defined by the flow , an

associated autonomous one defined in          can be proposed

with the addition of , so that the Poincaré’s sections can be defined

orthogonally to the axis at

ሶ𝐲 = 𝐟 𝐲, 𝑡
ℝ2𝑛+1ሶ𝐲 = 𝐠 𝐲

𝑦2𝑛+1 = 𝑡 𝑡 = 𝑡0 + 𝑖𝑇, 𝑖 = 1,2, . . .

ሶ𝑦2𝑛+1 = 1



Elements of Stability Theory

Poincaré’s section (map)

Analyse the complex eigenvalues

of linearized mapping to test stability.( )0DP y

Re Imj j ji = +

Stability for

Instability for

1j 

1j 



Elements of Stability Theory

Example of Poincaré’s section (map)

In polar co-ordinates
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It is readily seen that are a limit cycle1 and r t= =



Elements of Stability Theory

Example of Poincaré’s section (map)

𝑟0 = 1 + 𝜀0 → 𝑟𝑗 = 1 + 𝜀𝑗 for 𝜃 = 𝜃0 + 2𝜋𝑗 𝑗 = 1,2, . . .

Mapping: ሶ𝑟𝑗 = ሶ𝜀𝑗 = − 1 + 𝜀𝑗 1 + 𝜀𝑗
2
− 1 cos2 𝜃0

ሶ𝜀𝑗 = − 2𝜀𝑗 + 3𝜀𝑗
2 + 𝜀𝑗

3 cos2 𝜃0

Linearizing: ሶ𝜀𝑗 = − 2cos2 𝜃0 𝜀𝑗 ⇒ 𝜀𝑗 = 𝜀0𝑒
−4𝜋𝑗 cos2 𝜃0

Mapping in ℝ1: 𝑟𝑗 → 𝑟𝑗+1 = 𝑃 𝑟𝑗

= 1 + 𝑟𝑗 − 1 𝑒−4𝜋 cos2 𝜃0

𝐃𝐏 =
𝑑𝑃 𝑟𝑗

𝑑𝑟𝑗
= 𝑒−4𝜋 cos2 𝜃0

asymptotic stability for 𝜃0 ≠
𝜋

2
or
3𝜋

2
, since 𝜆 < 1

stability for 𝜃0 =
𝜋

2
or
3𝜋

2
, since ሶ𝜀𝑗 = 0 ⇒ 𝜀𝑗 = 𝜀0

Poincaré’s section:       
0 =



Elements of Stability Theory

Periodic attractor in non-autonomous dynamical system ( ),ty g y=

Example: forced Duffing’s equation

( ) ( ) ( )0cosu t a t O   = + + +  

There exist periodic attractors

Falls within stability of singularities...

( )2 3

0 02 cos with  0 1u u u u k t      + + + = +  
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