ESTABILIDADE DE TALUDES

(continuação)

6. MÉTODO DE FELLENIUS

Este método também é conhecido como método sueco ou método das lamelas.

Como resultado da análise de inúmeros escorregamentos ocorridos em taludes na Suécia, Fellenius (1927) propôs o método de análise a seguir, em que se considera a superfície de ruptura como sendo de forma cilíndrica.

Considere-se um talude e uma superfície circular hipotética de ruptura de centro O e raio R. O maciço em movimento delimitado pelo talude e pela superfície de ruptura é dividido em uma série de lamelas de largura b. O número de lamelas adotado é meramente uma questão de precisão de cálculo. Em geral esse número é da ordem de 8 a 12 lamelas.

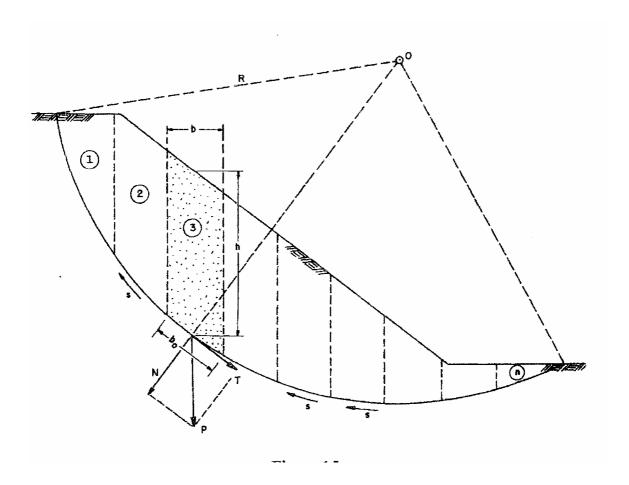


Figura 15

Considere-se uma lamela isolada. A base de cada fatia deve ser considerada como um segmento de reta, e não uma curva, de forma a simplificar o cálculo do seu peso, e a sua inclinação deve ser igual a inclinação média da base curva. O peso dessa lamela, de altura h, será:

$$P = \gamma_n bh$$

sendo a lamela de espessura unitária no sentido normal a figura.

A força P pode ser decomposta em duas componentes: uma delas N, radial e normal à superfície de ruptura, e a outra T, tangencial à mesma superfície. O momento que tende a causar o escorregamento do talude é o momento da resultante das forças tangenciais de cada lamela:

$$M_a = R \sum_{1}^{n} T$$

A força resistente em cada lamela é dada pela soma de duas parcelas:

$$S = sA = (c' + \sigma' tg\phi')A = c'A + N' tg\phi = c'b_0 + (N - U)tg\phi'$$

Portanto o momento das forças resistentes é:

$$M_{r} = R \sum_{1}^{n} S = R \sum_{1}^{n} c'b_{0} + R \sum_{1}^{n} (N - U)tg\phi'$$

e assim o coeficiente de segurança em relação à ruptura será:

$$F = \frac{momento \ resistente \ disponível}{momento \ solicitante} = \frac{R\sum_{1}^{n} S}{R\sum_{1}^{n} T} = \frac{\sum_{1}^{n} c'b_o + \sum_{1}^{n} (N-U)tg\phi'}{\sum_{1}^{n} T}$$

como já visto:

$$b_0 = b/\cos i$$

 $N = P\cos i$

T = Pseni

 $U = ub_0 = ub/cosi$

onde i é a inclinação da base da lamela.

Resulta finalmente:

$$F == \frac{\sum_{1}^{n} \frac{c'b}{\cos i} + \sum_{1}^{n} (P\cos i - \frac{ub}{\cos i}) tg\phi'}{\sum_{1}^{n} Pseni}$$

com $P = \gamma_n bh$.

Podem ser traçadas infinitas superfícies cilíndricas potenciais de ruptura no talude, e a determinação da superfície crítica através da qual há maior probabilidade de haver ruptura (menor coeficiente de segurança) é feita por tentativas. A pesquisa do centro do círculo que apresenta o coeficiente de segurança mínimo é feita considerando-se uma malha de pontos eqüidistantes, que permitem o traçado de curvas de igual coeficiente de segurança, que são concêntricas, em torno do valor mínimo como ilustra a figura 16.

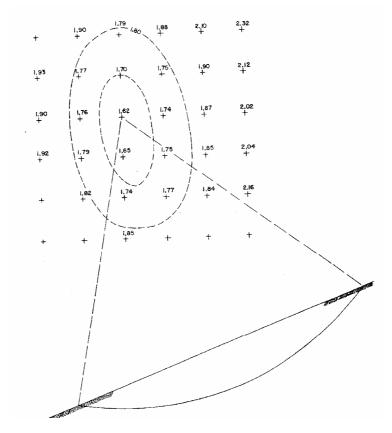


Figura 16

O método das lamelas pode ser aplicado também para o caso quando há percolação d'água pelo maciço. Para levar em conta as forças de percolação basta se ter a rede de fluxo. Considere-se o caso da figura 17, onde se apresenta uma rede de fluxo e uma superfície hipotética de ruptura.

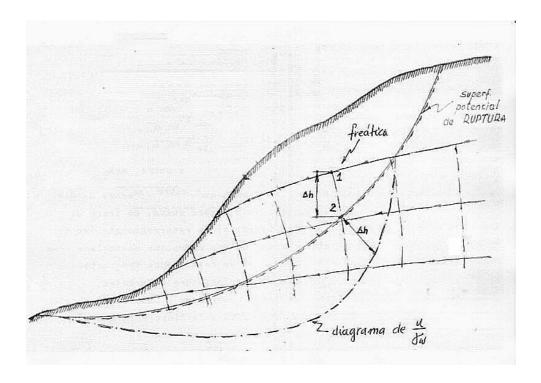


Figura 17

Num ponto qualquer, 2 por exemplo, uma equipotencial corta a superfície de ruptura; nesse ponto a carga piezométrica será dada pela ordenada Δh, distância vertical entre os pontos 1 e 2, estando 1 na freática e na mesma equipotencial de 2. A pressão neutra será pois:

$$u = \gamma_w \Delta h$$

Essa pressão neutra atua normalmente à superfície de escorregamento, de forma que se pode traçar, como mostrado na figura 17, o diagrama das pressões neutras, ao longo da superfície de ruptura, transportando as várias distâncias Δh , normalmente à referida superfície. Esse diagrama permite calcular a pressão neutra atuante em qualquer ponto da superfície de ruptura.

Este método permite também a análise no caso de maciço heterogêneo, constituído de dois ou mais solos diferentes. Para tal basta considerar as diferenças de peso específico no peso das lamelas e utilizar para cada trecho da superfície de escorregamento a envoltória de resistência ao cisalhamento do solo correspondente.

A principal hipótese simplificadora de Fellenius é considerar que as forças que atuam em ambas as faces verticais de uma lamela são iguais compensando-se mutuamente a ponto de poderem ser desprezadas. Este método é conservativo, fornecendo F menores que o real (cerca de 10 a 20%) principalmente para círculos mais profundos.

Roteiro de Cálculo

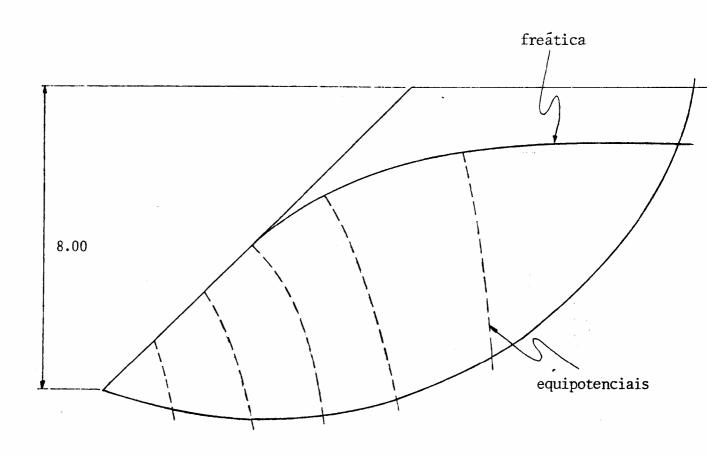
1. Selecione um arco de círculo de ruptura.

- 2. Divida a massa do talude delimitada pelo arco em 8 a 12 fatias verticais (de preferência com largura constante). Faça com que a base da lamela pertença somente a um tipo de solo, no caso de talude com diferentes materiais.
- 3. Calcule o peso P de cada fatia. Se a fatia atravessa mais de um tipo de solo com pesos específicos diferentes, os pesos de cada tipo de material devem ser somados para se determinar o peso total da lamela.
- 4. Para cada lamela determine o ângulo de inclinação (i) e o comprimento (b_o) da base, a coesão(c), o ângulo de atrito (ϕ) e a pressão neutra média na base (u). Se a análise for feita em tensões totais, adote u = 0.
- 5. Preencha a tabela de cálculo anexa e determine F para o círculo adotado.
- 6. Repita as etapas de (1) a (5) para variar círculos até achar um F mínimo.

Exemplo

Analisar a estabilidade do maciço abaixo, segundo o círculo de centro O. Dados: $\gamma_n = 18,5 \text{ kN/m}^3$, $\gamma_{sat} = 20,1 \text{ kN/m}^3$ e s = 35 + σ 'tg28° (kPa). Considerar as condições de resistência idênticas para a região natural e saturada.

+0



Escala 1:100

Figura 18

Inicialmente, traça-se o diagrama das pressões neutras que agem perpendiculares ao círculo de centro O. O procedimento está mostrado na figura 19.

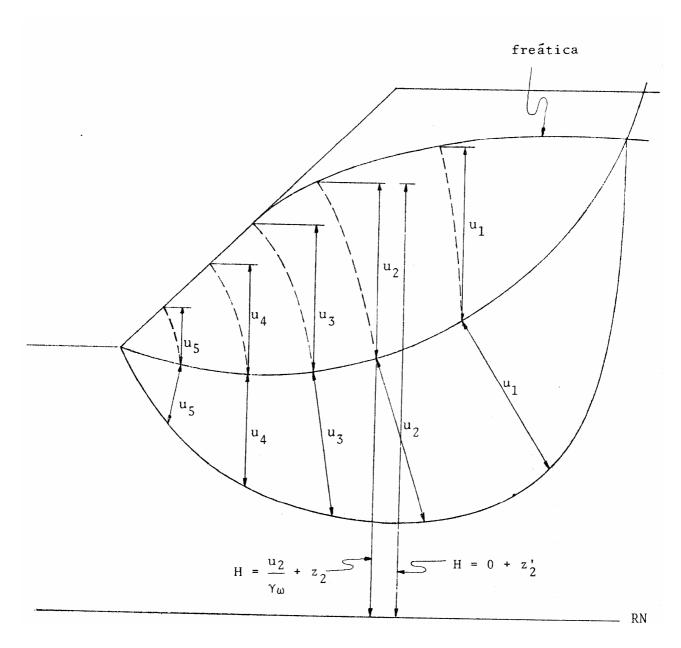


Figura 19

Os valores de pressão neutra que possibilitam o traçado do gráfico estão indicados na tabela a seguir.

Pressão	Valor					
neutra	(kPa)					
u_1	53,5					
u_2	53,5					
u_3	45					
u_4	33,5					
u ₅	18					

A seguir divide-se a massa de solo em lamelas como indicado na figura 20.

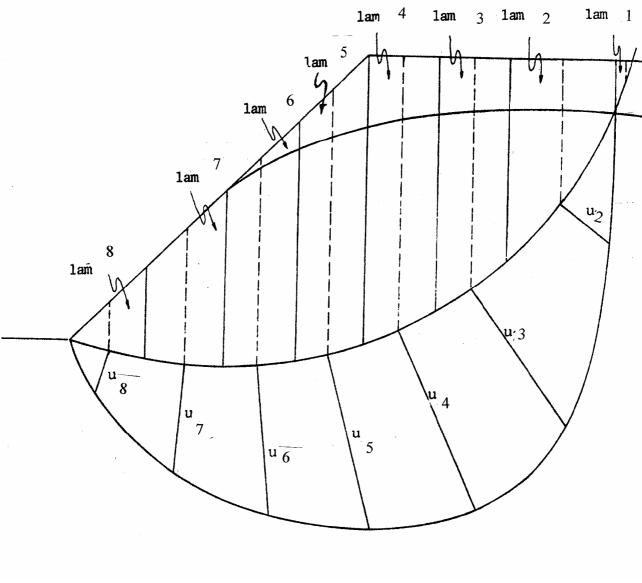


Figura 20

A partir da figura 20, é preenchida a tabela a seguir, donde resulta o seguinte fator de segurança

$$F == \frac{\sum_{1}^{n} \frac{c'b}{\cos i} + \sum_{1}^{n} (P\cos i - \frac{ub}{\cos i})tg\phi'}{\sum_{1}^{n} Pseni} = \frac{385,8 + 684,4}{527,1} = \frac{1070,2}{527,1} = 2,03$$

MÉTODO DE FELLENIUS

Lamella	b (m)	h (m)	i (grau)	$\frac{\gamma}{(kN/m^3)}$	P (kN/m)	P (kN/m)	N (kN/m)	T (kN/m)	b ₀ (m)	u (kN/m)	U (kN/m)	N' (kN/m)	c' (kPa)	φ' (grau)	N'tgφ' (kN/m)	c' b ₀ (kN/m)
1	0,45	0,55	72	18,5	4,58	4,58	1,41	4,35	1,46	(10.0/111)	(10.0,111)	1,41	35	28	0,75	50,97
2	3	1,4	55	18,5	77,70	,	,	,	,			,			,	,
	3	2,6	55	20,1	156,78	234,48	134,49	192,07	5,23	17	88,92	45,58	35	28	24,23	183,06
3	2	1,5	35	18,5	55,50											
	2	4,9	35	20,1	196,98	252,48	206,82	144,82	2,44	47	114,75	92,07	35	28	48,95	85,45
4	2	1,7	25	18,5	62,90											
	2	5,85	25	20,1	235,17	298,07	270,14	125,97	2,21	54	119,16	150,98	35	28	80,28	77,24
5	1,9	1,3	14	18,5	45,70											
	1,9	6	14	20,1	229,14	274,84	266,67	66,49	1,96	50	97,91	168,76	35	28	89,73	68,54
6	2	0,2	5	18,5	7,40											
	2	5,45	5	20,1	219,09	226,49	225,63	19,74	2,01	42	84,32	141,31	35	28	75,13	70,27
7	2,2	3,75	-5	20,1	165,83	165,83	165,19	-14,45	2,21	30	66,25	98,94	35	28	52,61	77,29
8	2	1,35	-12	20,1	54,27	54,27	53,08	-11,28	2,04	13	26,58	26,50	35	28	14,09	71,56

 $\Sigma T = 527,71$

385,78	684,38
Σ S =	1070,16

F= 2,03