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Linear Models

Motivation

 Linear models are a class of statistical models that are used to describe the 

relationship between a dependent variable (or response) and one or more 

independent variables (or predictors) through a linear relationship

 A model is an approximation of reality



Linear Models

Motivation

 Linear models are relatively simple and provide an easily interpreted

mathematical formula



Motivation

To reflect

“The most that can be expected from any model is that it can supply a

useful approximation to reality: All models are wrong; some models are

useful” George Box1

Linear Models

George Box (1919-2013)



Motivation

Linear Models

Models are never perfect!



Motivation: Whats is the difference?

The line in Figure A is just a line, but the line in Figure B is a linear model fit to the data 

Linear Models



Motivation

Linear Models

Residual = Real Value - Predicted Value



Motivation

Linear Models

Which equation will best fit the straight line to the set of data points?



Motivation

 We will focus on analysis of variance (ANOVA) models

 These are frequently used for experimental data analysis 

 Most of the discussion of our course also applies to regression models

Linear Models



Linear models and linear regression are synonymous?

Linear Models

 “Linear model" is a large category of statistical models that describe the

relationship between a dependent variable and one or more independent

variables linearly

≠
 "Linear regression" is a specific technique within the category of linear

models that focuses on modeling a linear relationship between a dependent

variable and one or more independent variables.



Regression Models

Linear Models

The linear regression model (blue line) explains the relationship between the explanatory

variable and the response variable



How to deal with outliers in linear models?

Linear Models

 Outlier Identification: Identify outliers in your data set using, for example, 

scatter plots

 Data Transformations: In some cases, it is possible to apply mathematical

transformations to the data

 Truncation or Cut: Consider removing the most extreme outliers from the data

set if they are found to be invalid values or measurement errors

 Robustness: More robust models are less sensitive to outliers

 Cross Validation: Use cross validation to evaluate how the model handles

outliers (training and validation)



Linear Models

Why do linear models have significant importance in statistics?

 Interpretability: Linear models are relatively simple to understand



Linear Models

Why do linear models have significant importance in statistics?

 Versatility: Linear models can be applied to a wide variety of problems, from 

simple regression to classification problems such as regression



Linear Models

Why do linear models have significant importance in statistics?

 Computational Efficiency: Linear models are computationally efficient and can

be trained on large datasets with less computational and resource effort



Linear Models

Why do linear models have significant importance in statistics?

 Statistical Inference: Linear models allows the application of hypothesis tests

and the obtaining of confidence intervals for the coefficients

 This is important when you want to make statistically significant statements

about relationships between variables



Linear Models

But…

 It is important to understand that linear models may not be the ideal choice

for all types of data

 In cases where relationships are highly non-linear, more complex models such

as decision trees, neural networks or kernel methods (machine learning) may

be more appropriate



What is the difference between correlation and regression 

analysis?

Linear Models



What is Linear Regression?

Linear Models

 Linear regression is a statistical technique used to model the relationship

between a dependent variable (or response) and one or more independent

variables (or predictors) linearly

 Linear regression analysis is used to predict the value of a variable based on

the value of another variable



What is Linear Regression?

Linear Models

In resume, linear regression is to find the best line (or hyperplane, in cases of

multiple independent variables) that fits the data to make predictions or

inferences



Simple Linear Regression Models

 Simple Linear Regression Model describes the linear relationship between a

dependent variable (𝑦) and a single independent variable (𝑋)

𝑦 = 𝛽0 + 𝛽1𝑋 + 𝜀

where:

𝑦 is the dependent or study variable

𝑋 is the independent or explanatory variable 

𝛽0 is an intercept coefficient

𝛽1 is the slope coefficient

𝜀 is the residuals 𝑒~𝑁(0, 𝜎2)

Linear Models



Simple Linear Regression Models

 Simple Linear Regression Model describes the linear relationship between a

dependent variable (𝑦) and a single independent variable (𝑋)

Linear Models

 Objective: Minimize the error term 𝜺, that is, try to get the predicted values as 

close as possible to the observed values 𝒚



Multiple Linear Regression Models

Linear Models

 When the response 𝑦 is often influenced by more than one predictor

variable (𝑋1, 𝑋2, 𝑋3…𝑋𝑛)

For example, the yield of a crop may depend on the amount of nitrogen, potash, and 

phosphate fertilizers used



Multiple Linear Regression Models

Linear Models

 Models the relationship between a dependent variable (𝑦) and two or more

independent variables (𝑋1, 𝑋2, 𝑋3…𝑋𝑛)

𝑦 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯+ 𝛽𝑘𝑋𝑘 + 𝜀

𝑦 is the dependent or study variable

𝑋 are the independent or explanatory variable 

𝛽0 is an intercept coefficient (the estimated value of Y when X is equal to zero)

𝛽𝑘 is the slope coefficients for each explanatory variable (rate of change in Y for one unit of 

change in X)

𝜀 is the residuals



Simple x Multiple Linear Regression

Linear Models



Simple x Multiple Linear Regression

Linear Models



Linear Models

 Let´s Practice 01! 

10 values of a variable X (temperature) were observed and the

corresponding Y values (plant growth)

X 25 24.5 22 19.6 19 21 22.8 24 25.6 21.9

Y 5 2 3 3.8 4.9 5.1 3.5 4 5 2.3

#Define the model and parameter estimation

#use “lm (  ) function”

#Represent the points graphically (scatter plot) to see if there is apparent linear 

relationship between X and Y

#use “plot (  ) function”



Linear Models

 Let´s Practice 01! 



Linear Models

 Let´s Practice 01! 



Linear Models

 Let´s Practice 01! 



Linear Models

 Let´s Practice 02! 

Considering an experiment with maize, the following were observed:

 7 repetitions of variables: 

 Y=Plant weight, X1=Dry Matter, X2=Average Diameter, X3=Average Height and 

X4=Number of sheets

Y X1 X2 X3 X4

0,25 12 36 26 38

0,45 15 38 27 45

0,23 12.5 39 28 44

0,10 11 35.5 25 43.5

0,15 15 31 24 39

0,17 10 32 22 35

0,18 14 31.8 21 38



Linear Models

 Let´s Practice 02! 

Considering an experiment with maize, the following were observed:

 7 repetitions of variables: 

 Y=Plant weight, X1=Dry Matter, X2=Average Diameter, X3=Average Height and 

X4=Number of sheets

# Create a data frame with the data

#Define the model and parameter estimation

#use “lm (  ) function”

#Represent the points graphically (scatter plot) to see if there is apparent linear 

relationship between X and Y

#use “plot (  ) function”



Linear Models

 Let´s Practice 02! 



Linear Models

 Let´s Practice 02! 



Building Models

 Imagine you want to compare the yield of two particular genotypes

 For simplicity, assume you collect data from four field replicates for each

genotype

 Let´s Practice 03! 

#Test an initial hypothesis

#Compare the means of each genotype
#Graph to observe the behavior of the 02 genotypes



Initial Hypothesis Testing

 How can we compare the means of each genotype?

 t- test

Building Models



Initial Hypothesis Testing

Building Models

 How can we compare the means of each genotype?

 t- test



Initial Hypothesis Testing

 How can we compare the means of each genotype?

Building Models



 Graph to observe the behavior of the 02 genotypes

Building Models



Building Models



 Can we simply model the average yields?

 Let 𝑦1 represent the yield of a plant with genotype A and 𝑦2 the

yield of a plant with genotype B

Building Models



Building Models

𝑦1 = 𝜇1 + 𝜀1 𝑦2 = 𝜇2 + 𝜀2

where 𝜇1 is the average yield of genotype A; 𝜇2 is the average of

genotype B; 𝜀1 and 𝜀2 are random error terms

 How can we express the models?



 Can we model deviations from a common mean?

 Denote a common intercept by 𝜇 and the effects of genotypes A and B 

by  and 𝜏1 and 𝜏2, respectively 

The model can then be expressed as:

where the values are as previously defined 

𝑦1 = 𝜇1 + 𝜏1 + 𝜀1 𝑦2 = 𝜇2 + 𝜏2 + 𝜀2

Building Models



Because we have observations from four replicates of each genotype, we can 
write a model for each of the observations as:

𝑦11 = 𝜇1 + 𝜏1 + 𝜀11 𝑦12 = 𝜇1 + 𝜏1 + 𝜀12

𝑦13 = 𝜇1 + 𝜏1 + 𝜀13 𝑦14 = 𝜇1 + 𝜏1 + 𝜀14

𝑦21 = 𝜇1 + 𝜏2 + 𝜀21 𝑦22 = 𝜇1 + 𝜏2 + 𝜀22

𝑦23 = 𝜇1 + 𝜏3 + 𝜀23 𝑦24 = 𝜇1 + 𝜏3 + 𝜀24

Building Models



Linear Model

Equivalently, we can write: 

where 𝑦𝑖𝑗 is the observed yield of the 𝑗𝑡ℎ plant of the 𝑖𝑡ℎ genotype and 𝜀𝑖𝑗 is the 

associated random error 

𝑦𝑖𝑗 = µ + 𝜏𝑖 + 𝜀𝑖𝑗 𝑖 = 1,2, 𝑗 = 1,2,3,4

Building Models



 How to represent the eight equations in matrix form?

Building Models



 How to represent the eight equations in matrix form?

Verify!

Building Models



Linear Models

Exploring more... Linear Model! 



Linear Models

Tradicional Linear Model

𝑦𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜀𝑖

where:

𝑦𝑖 is the dependent or study variable (is the value of the response variable)

𝑋𝑖 is the independent or explanatory variable (a known constant)

𝛽0 is an intercept coefficient (unknown parameter)

𝛽1 is the slope coefficient (unknown parameter)

𝜀𝑖 is the residuals

𝑖 = 1,… , 𝑛



Linear Models

Tradicional Linear Model

We assume that 𝑦𝑖 and 𝜀𝑖 are random variables and that the values of 𝑥𝑖 are 

known constants, which means that the same values of 𝑥1, 𝑥2, . . . , 𝑥𝑛 would 

be used in repeated sampling



Linear Models

Linear Model in Matrix Form

 In general, we can write a linear model in matrix form as:

𝒚 = 𝑿𝜷 + 𝜺

where:

𝒚 is an 𝑛 𝑥 1 vector of observed values (is the dependent or study variable )

𝑿 is an 𝑛 𝑥 𝑝 design matrix (independent variable) 

𝛃 is a 𝑝 𝑥 1 vector of unknown parameters
𝜺 is an 𝑛 𝑥 1 vector of unknown errors 



Residues Assumptions

𝑖) 𝐸 𝜀𝑖𝑗 = 0 for all 𝑖𝑗 (presupposition of conditional expectation of residues)

𝑖𝑖) 𝑣𝑎𝑟 𝜀𝑖𝑗 =𝜎2 for all 𝑖𝑗

𝑖𝑖𝑖) 𝑐𝑜𝑣 𝜀𝑖𝑗 , 𝜀𝑖´´𝑗´ = 0 for all 𝑖 ≠ 𝑖´ and 𝑗 ≠ 𝑗´

𝑖𝑣) 𝜀𝑖𝑗~𝑁 0, 𝜎2 for all 𝑖, 𝑗

Building Models

Any of these assumptions may not be valid with real data



Building Models

 Implying that 𝑦𝑖 depends only on 𝑥𝑖 and that all other variation in 𝑦𝑖 is 

random 

 Means that the expected value (mean) of the residuals (𝜀) for all observations 

(𝑖) and all independent variables (𝑗) is equal to zero

𝑖) 𝐸 𝜀𝑖𝑗 = 0 for all 𝑖𝑗



Building Models

 The variance of 𝜀 or 𝑦 does not depend on the values of 𝑥𝑖 (is also known as the

assumption of homoscedasticity, homogeneous variance or constant variance)

 The dispersion or variability of the residuals must be the same for all

combinations of values of the independent variables

𝑖𝑖) 𝑣𝑎𝑟 𝜀𝑖𝑗 =𝜎2 for all 𝑖𝑗



Building Models

𝑖𝑖𝑖) 𝑐𝑜𝑣 𝜀𝑖𝑗 , 𝜀𝑖´´𝑗´ = 0 for all 𝑖 ≠ 𝑖´ and 𝑗 ≠ 𝑗´

 Indicates that the covariance between the residuals (𝜀) for all different

observations (𝑖 ≠ 𝑖´) and all different independent variables (𝑗 ≠ 𝑗´) must be

equal to zero



Building Models

𝑖𝑣) 𝜀𝑖𝑗~𝑁 0, 𝜎2 for all 𝑖, 𝑗

 Errors are normally distributed (normal distribution with mean equal to zero 

and constant variance)

 This is one of the fundamental assumptions of linear regression, known as the

assumption of normality of residuals



Building Models

 Each assumption has been stated in terms of the 𝜀´s or the 𝑦´s

For example, 𝑣𝑎𝑟 𝜀𝑖𝑗 =𝜎2, then

𝑣𝑎𝑟 𝑦𝑖 =𝐸[𝑦𝑖 − 𝐸 𝑦𝑖 ]
2 = 𝐸(𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖)

2 = 𝐸 𝜀𝑖
2 = 𝜎2



Building Models

 Any of these assumptions may not be valid with real data

 There are techniques for checking on the assumptions 



Building Models

 What are the techniques for checking residual assumptions?



Building Models

 Shapiro-Wilk test: Tests the normality of the residuals. A low W statistic

suggests that the residuals do not follow a normal distribution

 What are the techniques for checking residual assumptions?

#If the p-value is greater than the significance level (usually 0.05), there is not enough evidence to reject 

the null hypothesis that the data follows a normal distribution



Building Models

#If the p-value is greater than the significance level (usually 0.05), there is not enough evidence to reject 

the null hypothesis that the data follows a normal distribution

#Use shapiro.test (   ) function to test

#Data: Practice 03



Building Models

 Durbin-Watson test: Evaluates the autocorrelation of residuals. Values close

to 2 indicate independence of the residuals

 What are the techniques for checking residual assumptions?



Building Models

#install.packages("lmtest") libra

#A p-value smaller than your chosen significance level (usually 0.05) may suggest the presence of first-order 

autocorrelation

#Create a data frame with the data

# Perform multiple linear regression

#Data: Practice 02



Building Models

 What are the tests for checking residual assumptions?

 Box-Cox or logarithmic transformations can be applied to the data to make

residuals more normally distributed or to improve homoscedasticity

And others…



Linear Models

 We say that there is a functional relationship between two variables 𝑥
and 𝑦 if there is a function f such that 𝑦 = 𝑓(𝑥)



Linear Models

 There is a probability distribution for 𝑦 for each value of the variable 𝑥, since we 

assume that there is a statistical relationship between 𝑥 and 𝑦

 The mean of 𝑦 varies systematically with respect to 𝑥



Linear Models

 To fit a simple linear regression we need to have at least 3 observations:

 If we only have 2 observations (2 points), the determination of the

line is a problem of analytic geometry

 It is not possible, in this case, to make any statistical analysis



Linear Models

 We must also check whether the number of available observations is

greater than the number of parameters in the regression equation

 The general rule of is that n should be at least 10 to 20 times larger than 

p to obtain robust results and avoid overfitting problems

#What is overfitting?

The model is overfitted to the training data, resulting in unstable and unreliable 

coefficient estimates



Linear Models

 Let´s Practice 04! 

 Create a vector of “X” values

 Apply the quadratic function: 𝑦 = 𝑓 𝑥 = 𝑥2 and to get the y values

 Create a scatter plot



Linear Models

 Let´s Practice 04! 



Linear Models

 Let´s Practice 04! 



Linear Models

 Let´s Practice 04! 



Linear Models

Using a random sample of 𝑛 observations 𝑦1, 𝑦2, . . . , 𝑦𝑛 and the accompanying 

fixed values 𝑥1, 𝑥2, . . . ,𝑥𝑛, we can estimate the parameters 𝛽0, 𝛽1, and 𝜎2

Parameter Estimation: Method of Least Squares



Linear Models

 The main objective of the method is to find the best estimates 𝛽0 and 𝛽1 that

minimize the sum of the squares of the residuals (errors) between the

observed values and the values predicted by the model

Method of Least Squares



Linear Models

Method of Least Squares

 In the least-squares method, we seek estimators 𝛽0 and 𝛽1 that minimize the

sum of squares of the deviations (𝑦𝑖 − ො𝑦𝑖) of the n observed 𝑦𝑖´𝑠 from their

predicted values, then ො𝑦𝑖 = መ𝛽0 + መ𝛽1𝑥𝑖



Linear Models

Method of Least Squares

 To find the values of 𝛽0 and 𝛽1 that minimize the sum of squares of the

deviations, we derivatives with respect to 𝛽0 and 𝛽1



Linear Models

Method of Least Squares

 First, to find the derivatives Ƹ𝜀´ Ƹ𝜀 (sum of the squares of the errors) with respect

to 𝛽0

 and set the results equal to 0



Linear Models

Method of Least Squares

 And, to find the derivatives Ƹ𝜀´ Ƹ𝜀 (the sum of the squares of the errors) with

respect to 𝛽1

 and set the results equal to 0



Linear Models

Method of Least Squares

 The solution to 𝛽0 and 𝛽1 and  is given by

𝑥𝑖 and 𝑦𝑖 are the individual values of 𝑥 and 𝑦 in your data

ҧ𝑥 is the average of the 𝑥 values

ത𝑦 is the average of the 𝑦 values



Linear Models

Students in a statistics class claimed that doing the homework had not 

helped prepare them for the exam (𝑦). The exam score 𝒚 and homework 
score 𝒙 for the 18 students in the class were as follows:

#Find the values of 𝛽0 and 𝛽1: use coef(  ) or lm (  ) functions

#Define the prediction equation

# Create the regression graph (use plot function)

 Let´s Practice 05! 



Linear Models

#Find the values of 𝛽0 and 𝛽1: use coef(  ) or lm (  ) functions



Linear Models

#Find the values of 𝛽0 and 𝛽1: use coef(  ) or lm (  ) functions



Linear Models

#Define the prediction equation



Linear Models

#Create the regression graph 



Linear Models

#Create the regression graph 



Linear Models

Remember the Practice 03:

#Calculate the matrix “X”

#Calculate 𝑋´𝑋 and 𝑋´𝑌
#Calculate the coefficients in a regression model

#Estimate 𝜇, 𝜏1 and 𝜏2

Let´s Practice 06!



Linear Models

#Calculate the matrix “X”



Linear Models

 Remember that:



Linear Models

#Calculate 𝑋´𝑋 and 𝑋´𝑌

# %*% is used to perform matrix multiplication in R



Linear Models

#Calculate መ𝛽 = (𝑋´𝑋)−1𝑋´𝑌

# the solve(  ) function to calculate the inverse matrix of XlX

#the matrix has no inverse

#Calculate the coefficients in a regression model



Linear Models

Restrictions

Non-Full-Rank Models

 As currently defined, 𝑋 is not of full rank

 Notice that the first column is equal to the sum of the other two

 We need restrictions to make 𝑋´𝑋 nonsingular 

#nonsingular: is a square matrix in which its determinant is non-zero (no 

inverse)



Linear Models

 There are multiple possible restrictions

Restrictions



Linear Models

 There are multiple possible constraints

 One such possibility is to set 𝜏1 = 0 (effects of genotypes A)

 The model is then expressed as:

Restrictions



Linear Models

Restrictions



Linear Models

Parameter Estimation with Restrictions: 𝜏1 = 0 (effects of genotypes A)

#Calculate the matrix “X”



Linear Models

#Calculate 𝑋´𝑋 and 𝑋´𝑌



Linear Models

#Calculate መ𝛽 = (𝑋´𝑋)−1𝑋´𝑌

#Calculate the coefficients in a regression model



Linear Models

 Or use the function 𝑙𝑚

#Calculate the coefficients in a regression model



Linear Models

#Calculate the coefficients in a regression model



Linear Models

#Calculate the coefficients in a regression model



Linear Models

Parameter Estimation with Restrictions: Model without the intercept 𝜇



Linear Models

Parameter Estimation with Restrictions: Model with the sum-to-zero

#The coefficients (or parameters) associated with the independent variables are

estimated so that the sum of these coefficients is equal to zero

#to facilitate the interpretation of coefficients



Linear Models

Reduced and Full Models

 Continuing with the previous example, let us begin with the following

reduced model:

𝑦𝑖𝑗 = 𝜇 + 𝜀𝑖𝑗, 𝑖 = 1,2 𝑗 = 1,2,3,4



Linear Models

Reduced and Full Models

 In matrix form

𝑦𝑖𝑗 = 𝜇 + 𝜀𝑖𝑗, 𝑖 = 1,2 𝑗 = 1,2,3,4



Linear Models

Reduced and Full Models

 For this reduced model, the only source of variation is the random error



Linear Models

Reduced and Full Models

 In that case, the error sum of squares (SSE) is equal to the total sum of 

squares (SST)

 It has 𝑛 − 1 associated degrees of freedom (correction for the mean)

 Dividing the sum of squares by its corresponding degrees of freedom yields 

the mean square



Linear Models

Reduced Models

 In R

#y is a function of 1

#models only the intercept, without any effect



Linear Models

Reduced Models

 The ANOVA table: 



Linear Models

Full Models

 Next, we fit the full model, in this case including the genotype factor



Linear Models

Full Models

 Next, we fit the full model, in this case including the genotype factor

 This causes a reduction in the SSE (error sum of squares)

 It explains part of the variation

 The difference in SSE between the full and reduced models is the treatment 

sum of squares

 It has t degrees of freedom, where t is the number of parameters



Linear Models

Full Models

 Fit the full model



Linear Models

Full Models

 Finally, build the ANOVA table:



Linear Models

Partitioning Variability

 How can we quantify the proportion of the total variability explained by
the model?



Linear Models

Partitioning Variability

 How can we quantify the proportion of the total variability explained by
the model?

 Coefficient of determination, often denoted as R² (R-squared)



Linear Models

Coefficient of Determination (R²)

 R² is a measure that ranges from 0 to 1 

 Represents the proportion of the total variability in the dependent variable (𝑌) 

that is explained by the independent variables (𝑋)

𝑅2= 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇

SSE (Sum of Squared Errors)

SST (Total Sum of Squares) 𝑆𝑆𝐸 =෍

𝑖=1

𝑛

(𝑌𝑖 − ෠𝑌𝑖)
2 𝑆𝑆𝑇 = ෍

𝑖=1

𝑛

(𝑌𝑖 − ത𝑌)2

#Therefore, a higher R² implies a better fit of the model to the data 



Linear Models

Coefficient of Determination (R²)

 The total sum of squares can be partitioned into SST = SSR + SSE, that is



Linear Models

Coefficient of Determination (R²)

#use summary(  ) function

"Multiple R-squared”



Linear Models

Coefficient of Determination (R²)

#Multiple R-squared is a measure of the proportion of

the total variability in the dependent variable that is

explained by the regression model

#Adjusted R-squared is a modified version of Multiple R-

squared that takes into account the number of

independent variables in the model

#Penalizes the inclusion of unnecessary or irrelevant

independent variables in the model



Linear Models

Let´s Practice 07

 Now we can work through a more realistic example

 We will use a subset of the data from the maize drought and nitrogen

stress trials conducted at the CIMMYT breeding program2

 The subset includes yield data for (progenies of) 25 genotypes from an F2

population, obtained from a biparental cross between drought tolerant and

susceptible maize plants

 Data from four different water stress trials are available, including no stress,

intermediate stress and severe stress environments (in two years)
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 Now there are two factors of interest, namely genotypes and environments

 The genotype factor has 25 levels and the environment factor has four levels

 There is only one observation per genotype and environment combination

Let´s Practice 07



Linear Models

 Now there are two factors of interest, namely genotypes and environments

 The genotype factor has 25 levels and the environment factor has four levels

 There is only one observation per genotype and environment combination

 Let:

𝑦𝑖𝑗 represent the yield of the 𝑖th genotype at the 𝑗th environment

𝑔𝑖 represent the effect of the 𝑖th genotype

𝑒𝑗 represent the effect of the 𝑗th environment

Let´s Practice
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 We want to test hypotheses such as 𝐻0 = 𝑔1 = 𝑔2 = ⋯ = 𝑔25
and 𝐻0 = 𝑒1 = 𝑒2 = 𝑒3 = 𝑒4

Let´s Practice
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 Use the R function read.csv to import the data

 Fit the following models:

𝑦𝑖𝑗 = 𝜇 + 𝜀𝑖𝑗

𝑦𝑖𝑗 = 𝜇 + 𝑔𝑖 + 𝜀𝑖𝑗

𝑦𝑖𝑗 = 𝜇 + 𝑒𝑗 + 𝜀𝑖𝑗

𝑦𝑖𝑗 = 𝜇 + 𝑔𝑖 + 𝑒𝑗 + 𝜀𝑖𝑗

 Investigate the sums of squares and 𝐹 statistics
 Make sure to use the correct reduced model in each case!

Let´s Practice
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𝑦𝑖𝑗 = 𝜇 + 𝜀𝑖𝑗

Let´s Practice

#y is a function of 1

#models only the intercept, without any effect
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Let´s Practice

𝑦𝑖𝑗 = 𝜇 + 𝑔𝑖 + 𝜀𝑖𝑗
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Let´s Practice

𝑦𝑖𝑗 = 𝜇 + 𝑒𝑗 + 𝜀𝑖𝑗
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Let´s Practice

𝑦𝑖𝑗 = 𝜇 + 𝑔𝑖 + 𝑒𝑗 + 𝜀𝑖𝑗
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