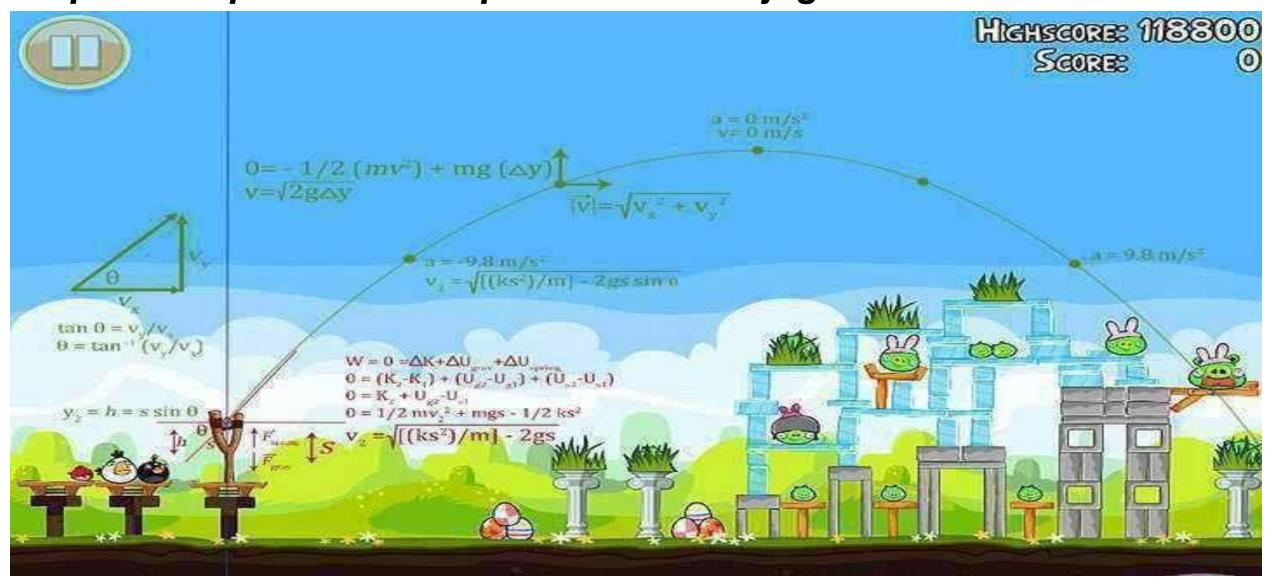
Física 1 – Ciências Moleculares

Caetano R. Miranda AULA 11 – 19/09/2023

crmiranda@usp.br

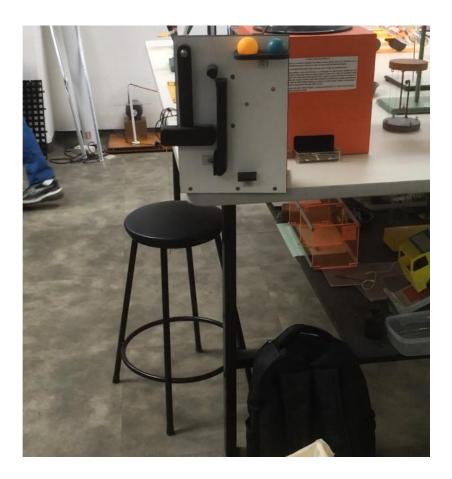
Central de ajuda

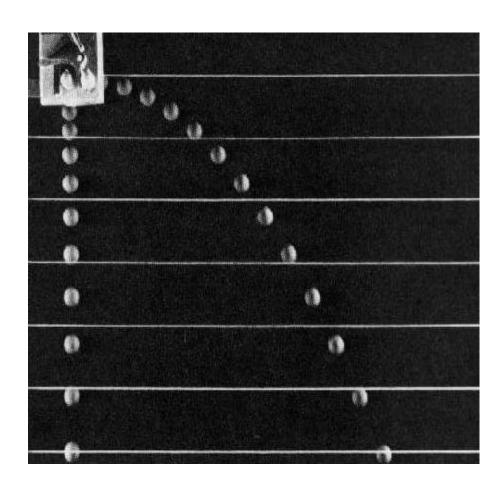
- Missão Sirius (local, horários ida & volta, almoço, ...)
- 2ª Lista de Exercícios
- Projeto do curso
- Aula amanhã (21/09)


Cronograma

DATA	aula n°	Segundas (14:00h - 15:45h) - Sala Turma 33	DATA	aula n°	Quartas (14:00h - 15:45h) - Sala Turma 33	DATA	aula nº	Quintas (14:00h - 15:45h) - Sala Turma 33	
21/08	1	Apresentação do Curso	23/08	2	Experimentação 1 - Escalas	24/08	3	Escalas	
28/08	4	Experimentação 2 - Mov. em 1 D	30/08	5	Mov. em 1D	31/08	6	Mov. em 1D	
04/09			06/08			07/09		SEMANA TRABALHO	
11/09	7	Mov. em 1D	13/09	Q	Mov. om 1D	14/09	9	Experimentação 3 - VR & Projéteis	ENTREGA 1
18/09	10	Mov. em 2D e 3D	20/09	11	Mov. em 2D e 3D	21/09	12	Experimentação 4a - Dinâmica	
25/09	13	Experimentação 4b - Principia	27/09	14	Principios da Dinâmica - Leis de Newton	28/09	15	Revisão - P1 - Check point - Projeto	
02/10		PROVA I	04/10	16	Experimentação 5 - Energia e Trabalho	05/10	17	Energia e Trabalho	
09/10	18	Energia e Trabalho	11/10	19	Energia e Trabalho	12/10		FERIADO - N. S. Aparecida	
16/10	20	Experimentação 6 - Física dos Desenhos Animados	18/10	21	Simetria e Conservação	19/10	22	Simetria e Conservação	ENTREGA 2
23/10	23	Experimentação 7 - Colisões	25/10	24	Colisões	26/10	25	Colisões	
30/10	26	Experimentação 8 - VR / Sonificação	01/11	27	Forças de Interação - Sala Invertida	02/11		FERIADO - FINADOS	
06/11	28	Forças de Interação	08/11	28	Revisão - P2 - Check point - Projeto	09/11		PROVA II	
13/11			15/11			16/11		SEMANA TRABALHO	
20/11		FERIADO - Consciência Negra	22/11	30	Experimentação 9 - Aprendizado de Máquina	23/11	31	Rotação e Momento Angular	ENTREGA 3
27/11	32	Física dos Esportes e Parques de Diversão	29/11	33	Rotação e Momento Angular	30/11	34	Experimentaçao 10 - Dança e Robótica	
04/12	35	Forças Inerciais	06/12	36	Forças Inerciais	07/12	3 7	Check point - Projeto	
11/12		PROJETOS	13/12		PROJETOS	14/12		VISTA	ENTREGA 4
18/12		PROVA - SUB - VISTA	20/12		VISTA	21/12			

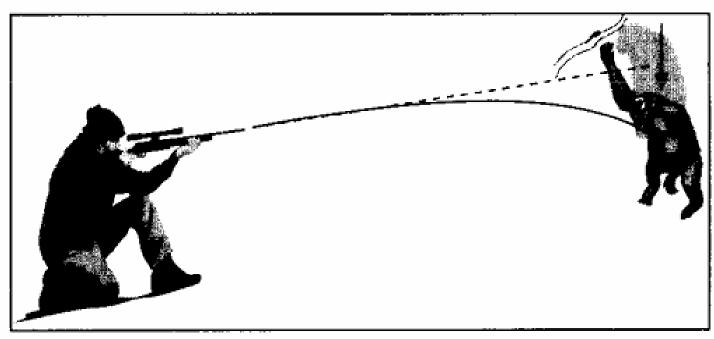
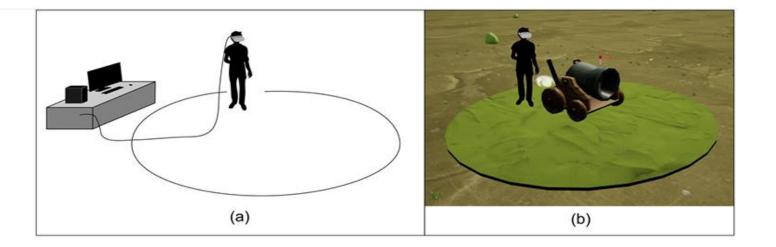
MOVIMENTO 2D & 3D

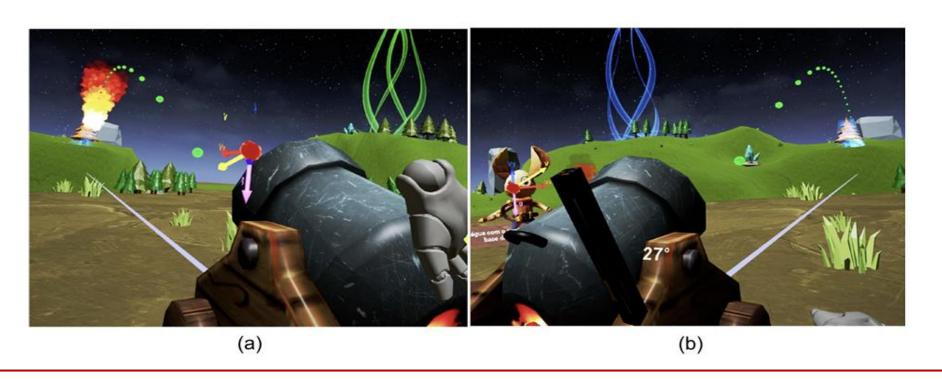

A Física do Angry birds


Tudo que você precisa saber para arrasar no jogo

Observações

Observações


Figura 3.2 O caçador e o macaco.

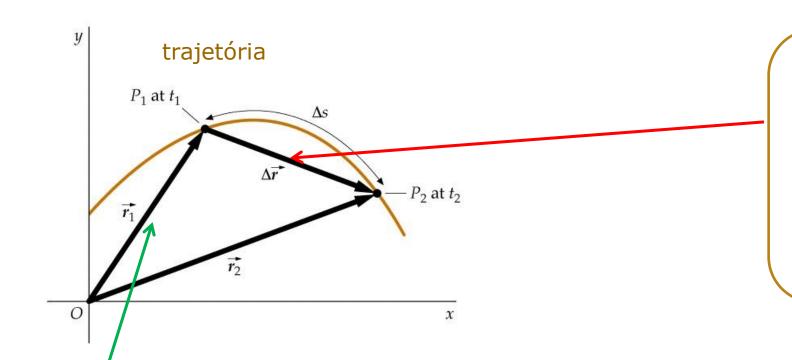

Observações

Fig. 8 Different views of the playing fields. **a** Real and **b** virtual worlds

Vetor Deslocamento

Deslocamento

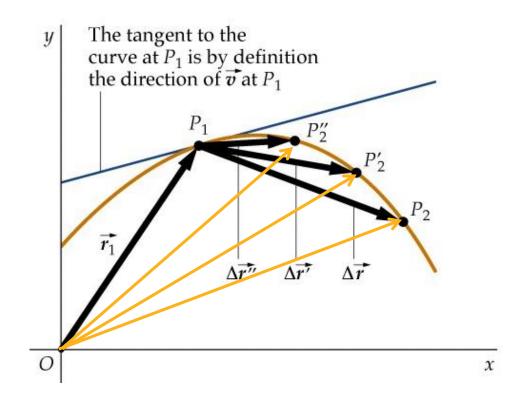
$$\Delta \vec{r} = \vec{r}_2 - \vec{r}_1$$

$$\Delta \vec{r} = (x_2 - x_1)\hat{i} + (y_2 - y_1)\hat{j}$$

$$\Delta \vec{r} = \Delta x \hat{i} + \Delta y \hat{j}$$

Vetor Posição

$$\vec{r} = r_x \hat{i} + r_y \hat{j} = x \hat{i} + y \hat{j}$$


$$\vec{r}_1 = x_1 \hat{i} + y_1 \hat{j}$$

$$\vec{r}_2 = x_2 \hat{i} + y_2 \hat{j}$$

Módulo do deslocamento

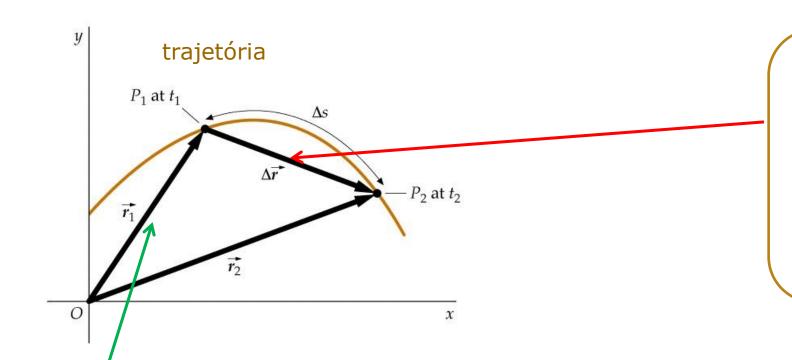
$$\Delta r = \sqrt{\Delta x^2 + \Delta y^2}$$

Vetor Velocidade Instantânea

Na medida em que o intervalo de tempo diminui, a direção do vetor deslocamento se aproxima da direção tangente à curva.

$$\vec{v} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t}$$

$$\Delta \vec{r} = \Delta x \, \hat{i} + \Delta y \, \hat{j}$$


$$\vec{v} = \lim_{\Delta t \to 0} \frac{\Delta x \hat{i} + \Delta y \hat{j}}{\Delta t} = \lim_{\Delta t \to 0} \left(\frac{\Delta x}{\Delta t}\right) \hat{i} + \lim_{\Delta t \to 0} \left(\frac{\Delta y}{\Delta t}\right) \hat{j}$$

$$\vec{v} = \frac{dx}{dt} \,\hat{i} + \frac{dy}{dt} \,\hat{j} = v_x \,\hat{i} + v_y \,\hat{j}$$

Módulo da Velocidade

$$v = \sqrt{v_x^2 + v_y^2}$$

Vetor Deslocamento

Deslocamento

$$\Delta \vec{r} = \vec{r}_2 - \vec{r}_1$$

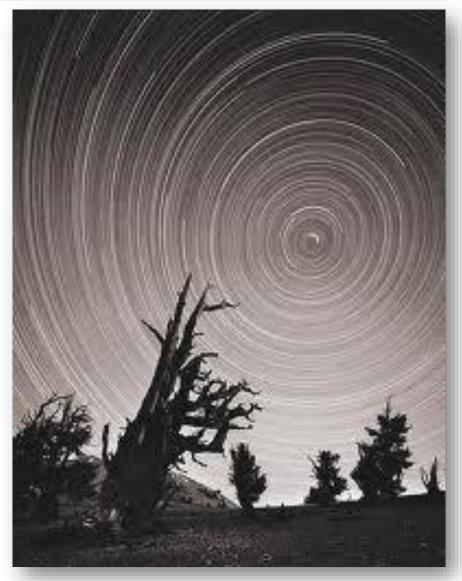
$$\Delta \vec{r} = (x_2 - x_1)\hat{i} + (y_2 - y_1)\hat{j}$$

$$\Delta \vec{r} = \Delta x \hat{i} + \Delta y \hat{j}$$

Vetor Posição

$$\vec{r} = r_x \hat{i} + r_y \hat{j} = x \hat{i} + y \hat{j}$$

$$\vec{r}_1 = x_1 \hat{i} + y_1 \hat{j}$$

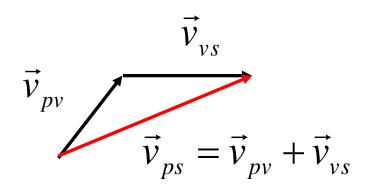

$$\vec{r}_2 = x_2 \hat{i} + y_2 \hat{j}$$

Módulo do deslocamento

$$\Delta r = \sqrt{\Delta x^2 + \Delta y^2}$$

Movimento Relativo

Movimento Relativo Modellus X


O programa Modellus X pode ser adquirido, gratuitamente, a partir do seguinte endereço da internet:

www.modellus.co

Velocidade Relativa

 As velocidades relativas em duas e três dimensões são combinadas da mesma forma adotada para problemas unidimensionais;

Se uma partícula se move com velocidade \mathbf{v}_{pa} em relação ao sistema de referência A que, por sua vez, se move com velocidade \mathbf{v}_{ab} em relação ao sistema de referência B, a velocidade da partícula realativamente ao sistema B é expressa por

$$\vec{v}_{pB} = \vec{v}_{pA} + \vec{v}_{AB}$$

Trajectórias de B em relação a O

Z V_A V_B V_{BA} V_{BA} V_{BA} V_{BA} V_{BA} V_{BA}

Velocidades de A e B medidas pelo observador O

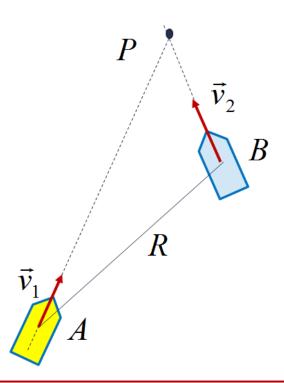
$$\overrightarrow{v_A} = \frac{\overrightarrow{dr_A}}{dt}$$
 $\overrightarrow{v_B} = \frac{\overrightarrow{dr_B}}{dt}$

Trajectórias de B em relação a A

Vetor posição de **B** relativamente a **A**

$$r_{BA} = AB = r_B - r_A$$

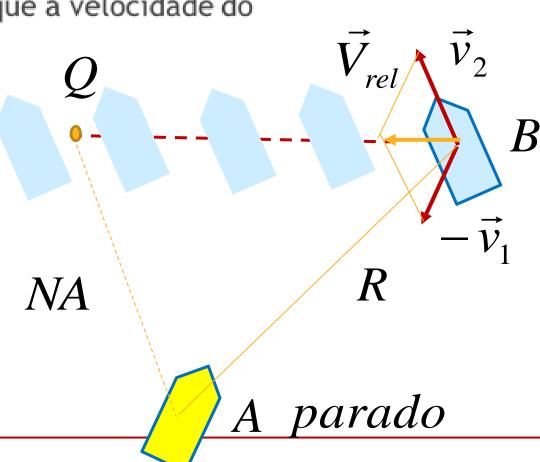
Vetor posição de A relativamente a B


$$\overrightarrow{r_{AB}} = \overrightarrow{BA} = \overrightarrow{r_A} - \overrightarrow{r_B}$$

$$r_{AB} = -r_{BA}$$

Exemplo

Imagine dois navios que em algum instante estão na situação mostrada na figura abaixo. Os vetores $\mathbf{v_1}$ e $\mathbf{v_2}$ representam as velocidades de cada navio com relação ao mar. Os caminhos dos navios se estendem ao longo das direções de movimento, partindo do pontos iniciais A e B, interceptando-se no ponto P.


Os navios colidirão ou passarão a uma distância segura um do outro?

No referencial do mar a solução do problema não é tão evidente, entretanto olhando do ponto de vista de um dos navios a análise é direta.

$$ec{V}_{rel} = ec{v}_2 - ec{v}_1$$

- Imaginando-se no navio que parte do ponto A, a velocidade do navio que parte do ponto B é a soma das velocidades -v₁ e v₂
- Isso representa que o navio A está em repouso, enquanto que a velocidade do navio B relativa a A é a combinação dos vetores \vec{v}_2 e $-\vec{v}_1$.
- O navio B segue uma linha reta, como mostrado nas sucessivas posições da figura.
- O navio B n\(\tilde{a}\) colide com o A por uma dist\(\tilde{a}\) ncia de NA dividido pela magnitude de \(\vec{V}_{rel}\).

Vetor Aceleração Instantânea

$$\vec{a} = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t} = \frac{d\vec{v}}{dt}$$

$$\vec{v} = v_x \hat{i} + v_y \hat{j}$$

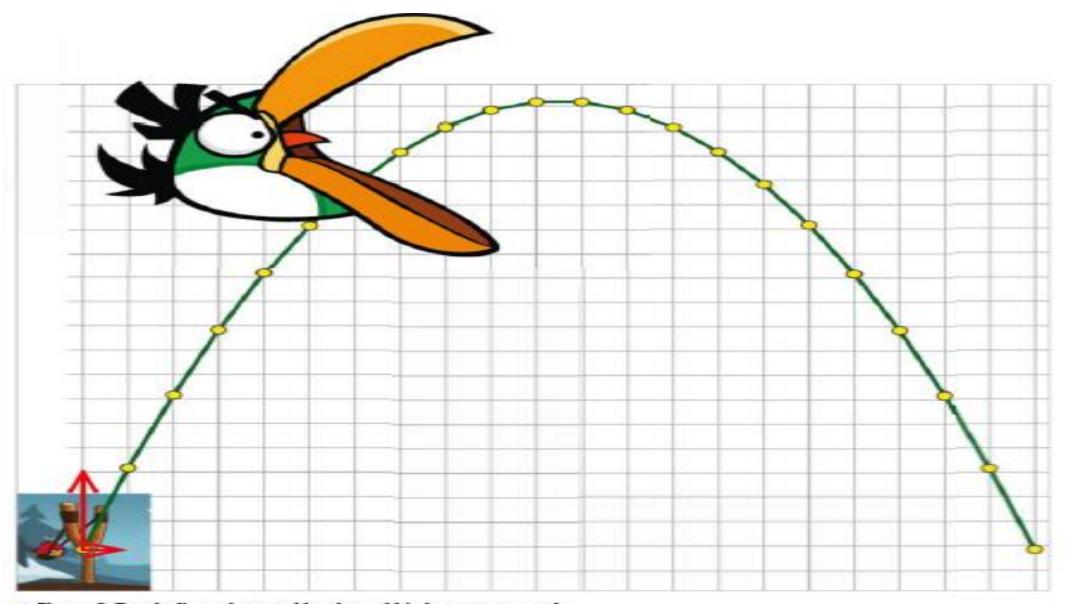
$$\vec{a} = \frac{dv_x}{dt}\hat{i} + \frac{dv_y}{dt}\hat{j} = \frac{d^2x}{dt^2}\hat{i} + \frac{d^2y}{dt^2}\hat{j}$$

$$\vec{a} = a_x \hat{i} + a_y \hat{j}$$

Exercício

Uma bola é lançada e sua posição é dada pelo vetor posição **r** abaixo. Encontre suas velocidades e acelerações como função do tempo. Quais são as posição e velocidade iniciais ?

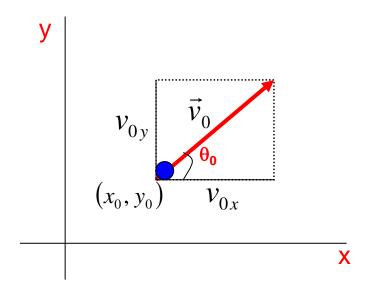
$$\vec{r} = 1.5 \,\hat{i} + (12 \,\hat{i} + 16 \,\hat{j})t - 4.9 \,\hat{j} \,t^2$$


$$\vec{r}_{x} = (1.5 + 12t)\hat{i} \Rightarrow v_{x} = \frac{dx}{dt} = 12 \, m/s \qquad a_{x} = \frac{dv_{x}}{dt} = 0$$

$$\vec{r}_{y} = (16t - 4.9t^{2})\hat{j} \Rightarrow v_{y} = \frac{dy}{dt} = (16 - 9.8t)m/s \qquad a_{y} = \frac{dv_{y}}{dt} = -9.8 \, m/s^{2}$$

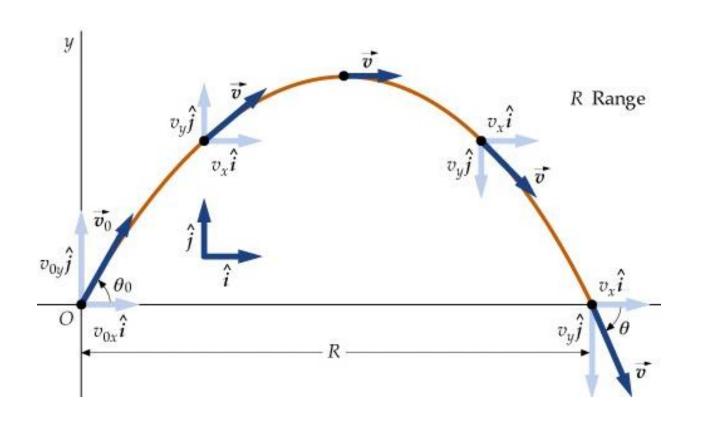
$$\vec{v} = 12 \hat{i} + (16 - 9.8 t)\hat{j}$$

$$\vec{a} = -9.8 \ \hat{j}$$


A Física do Angry birds

▲ Figure 1: Parabolic path traced by the red bird at a steep angle

Lançamento Oblíquo


Projétil lançado em uma trajetória bidimensional, a partir da posição inicial (r_0) , com uma velocidade inicial (v_0) , com um ângulo θ em relação à horizontal, fica submetido à uma aceleração vertical (-g).

 $\mathbf{v_x}$ não depende de $\mathbf{v_y}$ e vice-versa

as componentes horizontal e vertical do movimento de um projétil <u>são independentes</u>.

Decomposição do Movimento nas Duas Coordenadas

Equações do movimento

$$x(t) = x_0 + v_{0x}t + \frac{a}{2}t^2$$

$$y(t) = y_0 + v_{0y}t + \frac{a}{2}t^2$$

$$a_x = 0$$

$$a_y = -g$$

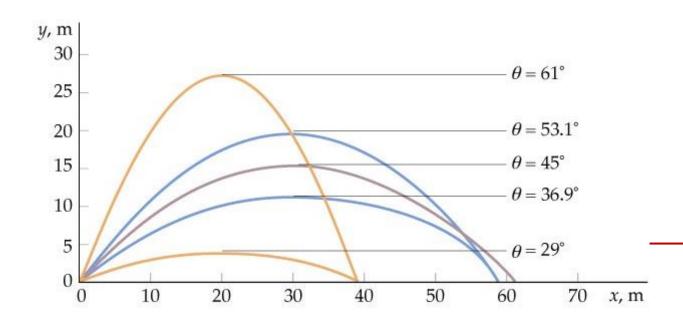
$$x(t) = x_0 + v_{0x}t$$

$$a_x = 0$$
 $x(t) = x_0 + v_{0x}t$
 $a_y = -g$ $y(t) = y_0 + v_{0y}t - \frac{g}{2}t^2$

$$v_{0x} = v_0 \cos \theta_0$$

$$v_{0y} = v_0 \sin \theta_0$$

$$\vec{r}(t) = x(t)\hat{i} + y(t)\hat{j}$$


$$\vec{r}(t) = (x_0 + v_{0x}t)\hat{i} + (y_0 + v_{0y}t - \frac{g}{2}t^2)\hat{j}$$

Decomposição do Movimento nas Duas Coordenadas

- Equações de Movimento para um Projétil:
- Condições Iniciais do Movimento: $x_0 = 0$ e $y_0 = 0$

- $x(t) = x_0 + v_{0x}t$ (1)
- $y(t) = y_0 + v_{0y}t \frac{1}{2}gt^2$ (2)
- Equação da Trajetória: isola t na equação (1) e substitui na equação (2)

$$y(x) = v_{0y} \left(\frac{x}{v_{0x}}\right) - \frac{1}{2} g \left(\frac{x}{v_{0x}}\right)^2 = \left(\frac{v_{0y}}{v_{0x}}\right) x - \left(\frac{g}{2v_{0x}^2}\right) x^2$$

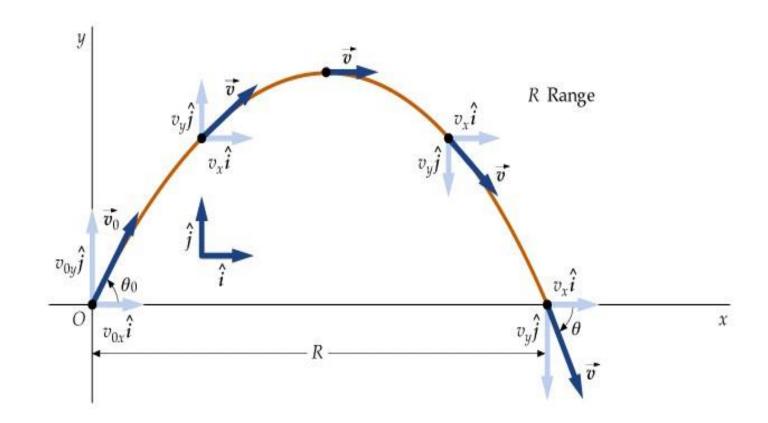
$$y(x) = (tg\theta_0)x - \left(\frac{g}{2v_0^2\cos^2\theta_0}\right)x^2$$

trajetória é uma parábola

Tempo Total de Vôo

$$x(t) = v_{0x}t$$

$$x(t) = v_{0x}t$$


$$v_{0x} = v_0 \cos \theta_0$$

$$y(t) = v_{0y}t - \frac{g}{2}t^2$$

$$v_{0y} = v_0 \sin \theta_0$$

$$v_{0x} = v_0 \cos \theta_0$$

$$v_{0y} = v_0 \sin \theta_0$$

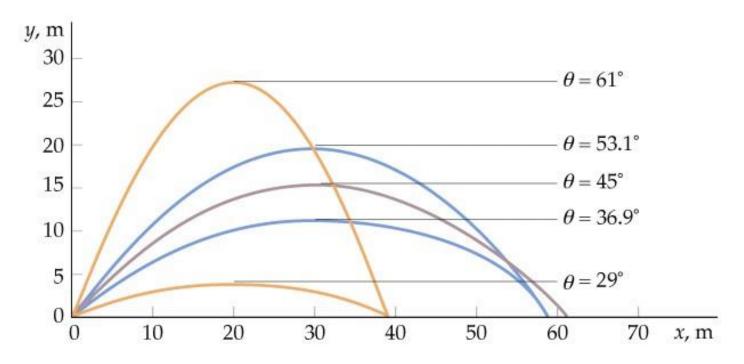
Para t=T (tempo total) | y=0

$$0 = v_{0y}T - \frac{g}{2}T^2$$

$$0 = v_{0y} - \frac{g}{2}T$$

$$0 = v_{0y} - \frac{g}{2}T$$

$$T = \frac{2v_{0y}}{g} = \frac{2v_0}{g}\sin\theta_0$$


Alcance Horizontal Máximo (R)

Alcance máximo $(x=R) \Rightarrow$ tempo total (t=T)

$$x(t) = v_{0x}t$$

$$y(t) = v_{0y}t - \frac{g}{2}t^2$$

$$T = \frac{2v_{0y}}{g} = \frac{2v_0}{g}\sin\theta_0$$

$$x(T) = R$$

$$R = v_{0x}T$$

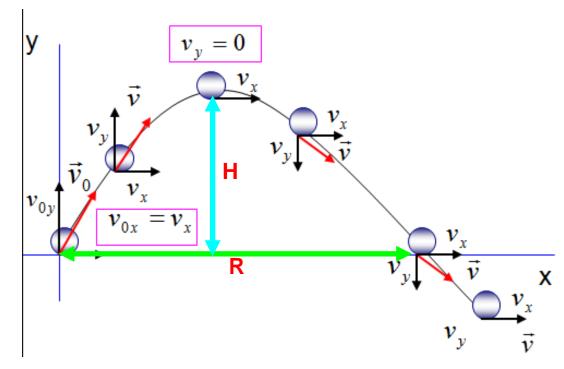
$$R = v_0 \cos \theta_0 (\frac{2v_0}{g} \sin \theta_0)$$

$$R = \frac{2v_0^2}{g}\sin\theta_0\cos\theta_0$$

$$R = \frac{v_0^2}{g} \sin 2\theta_0$$

Para qual ângulo R é máximo ?

Altura Máxima


$$y = y_0 + v_0 \ sen \theta_0 \ t - \frac{1}{2} g \ t^2$$
 (1)

$$v_{y} = v_{o} \, sen \theta_{0} - g \, t \tag{2}$$

Em (1):
$$y_o = 0 \ e \ y = H \Rightarrow H = v_0 sen \theta_0 \ t - \frac{1}{2} g \ t^2$$
 (3)

$$Em \quad (2): \quad v_y = 0 \Rightarrow \quad t = \frac{v_o \ sen \theta_0}{g} \tag{4}$$

$$(4) em (3): \quad H = v_0 \operatorname{sen} \theta_0 \left(\frac{v_o \operatorname{sen} \theta_0}{g} \right) - \frac{1}{2} g \left(\frac{v_o \operatorname{sen} \theta_0}{g} \right)^2 \qquad \qquad H = \frac{v_o^2}{2g} \sin^2 \theta_0$$

$$H = \frac{v_0^2}{2g} \sin^2 \theta_0$$

Para qual ângulo, H é máximo?

Curiosidades olímpicas

Objeto	peso (homem/mulher)	velocidade a	alcance âi	ng de lançamento
Martelo	7,3 kg / 4,0 kg	100 km/h	80 r	m 36° a 44°
Peso	7,3 kg / 4,0 kg	55 km/h	23 r	m 34° a 41°
Disco	2,0 kg / 1,0 kg	100 km/h	75 r	m 30° a 40°
Dardo	800 g / 600 g	110 km/h	100	m 31° a 38°

Sumário

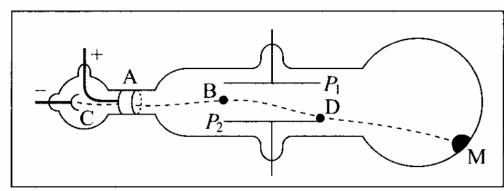
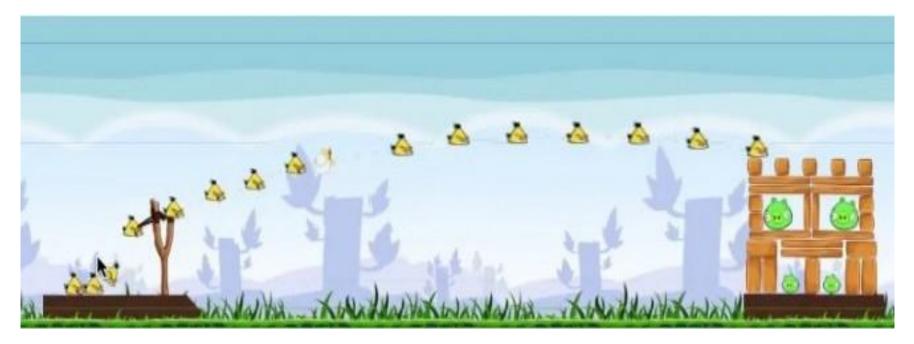
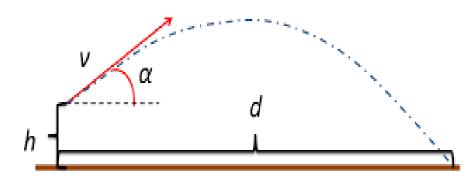




Figura 3.26 Tubo de raios catódicos.

Lançamento do chão

$$d = \frac{v^2 sen(2 \times)}{g}$$

Lançamento de uma altura h

$$d = \frac{v^2 sen(2 \propto)}{2g} \left[1 + \left(1 + \frac{2gh}{v^2 sen^2(\alpha)} \right)^{1/2} \right]$$

Sumário -20/09/2023

- Movimento em 2D
- Lançamento de projéteis

Devolutiva:

Como foi a aula hoje ? (Moodle)

https://forms.gle/P3Lo4YB7H48NiHDv5

