An introduction to low-energy scattering in quantum mechanics

Lucas Madeira ${ }^{1}$
São Carlos Institute of Physics - University of São Paulo - Brazil

SFI5814 - Introdução a Física Atômica e Molecular

September 20, 2023

References

Scattering length and effective range of microscopic two-body potentials

Mathias Macêdo-Lima ${ }^{1}$, Lucas Madeira ${ }^{*}{ }^{*} \square$
${ }^{1}$ Universidade de São Paulo, Instituto de Física de São Carlos, São Carlos, SP, Brasil.

- Or your favorite quantum mechanics textbook: Griffiths, Sakurai, ...

Motivation

- Scattering processes are a fundamental way of experimentally probing distributions and properties of systems in several areas of physics
- Can you name a few examples?
- Low-energy quantum scattering theory
- What is low-energy?

Introduction

- What is scattering?
- Scattering is the interaction of an object with a scattering center
- classical particle
- electromagnetic wave
- quantum particle
- Classical view

Introduction

- Quantum view

Quantum scattering theory

- Hypotheses
(1) Elastic scattering
(2) Incident plane wave $e^{i \mathbf{k} \cdot \mathbf{r}}$
(3) Local and finite-ranged potential

$$
\psi_{\mathbf{k}}(\mathbf{r}) \xrightarrow{\text { large } r} \mathcal{N}\left[e^{i \mathbf{k} \cdot \mathbf{r}}+\frac{e^{i k r}}{r} f\left(\mathbf{k}^{\prime}, \mathbf{k}\right)\right]
$$

Quantum scattering theory

- Hypotheses
(1) Elastic scattering
(2) Incident plane wave $e^{i \mathbf{k} \cdot \mathbf{r}}$
(3) Local and finite-ranged potential

$$
\psi_{\mathbf{k}}(\mathbf{r}) \xrightarrow{\text { large } r} \mathcal{N}\left[e^{i \mathbf{k} \cdot \mathbf{r}}+\frac{e^{i k r}}{r} f\left(\mathbf{k}^{\prime}, \mathbf{k}\right)\right]
$$

- Formally, in quantum mechanics, a scattering process is described as a transition from one quantum state to another

$$
|i\rangle \rightarrow|f\rangle
$$

- Assume $|i\rangle$ to be a plane wave $|\mathbf{k}\rangle$, that is, a free particle

$$
H_{0}|i\rangle=E_{i}|i\rangle=\frac{\hbar^{2} \mathbf{k}^{2}}{2 m}|\mathbf{k}\rangle
$$

- Scattering is taken into account by introducing a potential $V(\mathbf{r})$

$$
H=H_{0}+V(\mathbf{r})
$$

Quantum scattering theory

- Quantization of the scattering states

$$
\langle\mathbf{r} \mid \mathbf{k}\rangle=\mathcal{N} e^{i \mathbf{k} \cdot \mathbf{r}}=\frac{e^{i \mathbf{k} \cdot \mathbf{r}}}{L^{3 / 2}}
$$

- We must take $L \rightarrow \infty$ to guarantee the continuum character of the state at the end of our calculations

Quantum scattering theory

- More hypotheses
(1) Elastic scattering
(2) Incident plane wave in the z direction: $e^{i k z}$
(3) Local, finite-ranged and spherically-symmetric potential $V(r)$

$$
\psi_{\mathbf{k}}(r, \theta) \xrightarrow{\text { large } r} \mathcal{N}\left[e^{i k z}+\frac{e^{i k r}}{r} f(\theta)\right]
$$

- The finite range of the potential (and spherical symmetry) invite us to solve the Schrödinger equation for $V(0<r<R) \neq 0$ and $V(r>R)=0$

$$
-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi+V(r) \psi=E \psi
$$

Spherical coordinates

- Due to the spherical symmetry of $V(r)$, it is convenient to employ spherical coordinates

$$
\left(-\frac{\hbar^{2}}{2 m} \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{L^{2}}{2 m r^{2}}+V(r)\right) \psi(r, \theta, \phi)=E \psi(r, \theta, \phi)
$$

- L is the angular momentum operator

$$
L^{2}=-\hbar^{2}\left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right)
$$

- Its z-component is given by

$$
L_{z}=-i \hbar \frac{\partial}{\partial \phi}
$$

- Construct a complete set of eigenfunctions related to H, L^{2}, and L_{z}

$$
\begin{aligned}
H \psi(r, \theta, \phi) & =E \psi(r, \theta, \phi), \\
L^{2} \psi(r, \theta, \phi) & =l(l+1) \hbar^{2} \psi(r, \theta, \phi), \\
L_{z} \psi(r, \theta, \phi) & =m \hbar \psi(r, \theta, \phi)
\end{aligned}
$$

Spherical coordinates

- We propose a separable solution of the form

$$
\psi(r, \theta, \phi)=A_{l}(r) Y_{l}^{m}(\theta, \phi)
$$

- To avoid taking the first radial derivative of $A_{l}(r)$, we define the "reduced" radial solution $u_{l}(r)=r A_{l}(r)$

$$
\left(\frac{d^{2}}{d r^{2}}+k^{2}-U(r)-\frac{l(l+1)}{r^{2}}\right) u_{l}(r)=0
$$

- $k^{2}=2 m E / \hbar^{2}$
- $U(r)=2 m V(r) / \hbar^{2}$
- $l(l+1)$ is the "separation constant"

Solution for $r>R$

- Outside the potential range R, we must solve

$$
\left(\frac{d^{2}}{d r^{2}}+k^{2}-U(r)^{0}-\frac{l(l+1)}{r^{2}}\right) u_{l}(r)=0
$$

- The solution for $r>R$ can be written in terms of the spherical Bessel functions $j_{l}(x)$ and $n_{l}(x)$

$$
u_{l}(r)=c_{l}^{\prime} r j_{l}(k r)+c_{l}^{\prime \prime} r n_{l}(k r)
$$

- $j_{0}(x)=\frac{\sin (x)}{x}$
- $n_{0}(x)=-\frac{\cos (x)}{x}$
- $j_{1}(x)=\frac{\sin (x)}{x^{2}}-\frac{\cos (x)}{x}$
- $n_{1}(x)=-\frac{\cos (x)}{x^{2}}-\frac{\sin (x)}{x}$
- $j_{2}(x)=\frac{3 \sin (x)}{x^{3}}-\frac{3 \cos (x)}{x^{2}}-\frac{\sin (x)}{x}$
- $n_{2}(x)=-\frac{3 \cos (x)}{x^{3}}-\frac{3 \sin (x)}{x^{2}}+\frac{\cos (x)}{x}$

Spherical Bessel functions

- $j_{0}(x)=\frac{\sin (x)}{x}$
- $n_{0}(x)=-\frac{\cos (x)}{x}$
- $j_{1}(x)=\frac{\sin (x)}{x^{2}}-\frac{\cos (x)}{x}$
- $n_{1}(x)=-\frac{\cos (x)}{x^{2}}-\frac{\sin (x)}{x}$
- $j_{2}(x)=\frac{3 \sin (x)}{x^{3}}-\frac{3 \cos (x)}{x^{2}}-\frac{\sin (x)}{x}$
- $n_{2}(x)=-\frac{3 \cos (x)}{x^{3}}-\frac{3 \sin (x)}{x^{2}}+\frac{\cos (x)}{x}$

Spherical Hankel functions

- $j_{l}(x)$ and $n_{l}(x)$ are generalized sines and cosines
- It is more convenient to write the solution in terms of $e^{i k x} / x$ to represent "incoming" or "outgoing" spherical waves
- Similarly to $e^{i x}=\cos (x)+i \sin (x)$, we define the spherical Hankel functions as

$$
\begin{aligned}
h_{l}^{(1)}(x) & =j_{l}(x)+\operatorname{in}_{l}(x) \\
h_{l}^{(2)}(x) & =j_{l}(x)-\operatorname{in}_{l}(x)
\end{aligned}
$$

- $h_{0}^{(1)}(x)=-\frac{i e^{i^{x}}}{x}$
- $h_{0}^{(2)}(x)=\frac{i e^{-i x}}{x}$
- $h_{1}^{(1)}(x)=-e^{i x} \frac{x+i}{x^{2}}$
- $h_{1}^{(2)}(x)=-e^{-i x \frac{x-i}{x^{2}}}$
- $h_{2}^{(1)}(x)=i e^{i x \frac{x^{2}+3 i x-3}{x^{3}}}$
- $h_{2}^{(2)}(x)=-i e^{-i x \frac{x^{2}-3 i x-3}{x^{3}}}$
- The solution for $u_{l}(r)$ can be written as

$$
u_{l}(r)=c_{l}^{(1)} r h_{l}^{(1)}(k r)+c_{l}^{(2)} r h_{l}^{(2)}(k r)
$$

Free particle solution

- The free particle solution in cartesian coordinates is a plane wave $e^{i k z}$
- In spherical coordinates, $e^{i k z}=e^{i k r \cos \theta}$ contains all possible values of l. This can be expressed with Rayleigh's formula:

$$
e^{i k r \cos \theta}=\sum_{l=0}^{\infty} i^{l}(2 l+1) j_{l}(k r) P_{l}(\cos \theta)
$$

- Note that only j_{l} appears. Physically, this is due to the divergence of $n_{l}(k r)$ at $r=0$.
- In terms of the spherical Hankel functions,

$$
j_{l}(x)=\frac{h_{l}^{(1)}(x)+h_{l}^{(2)}(x)}{2}
$$

Asymptotic behavior

- Let us analyze the asymptotic behavior, that is, when $r \rightarrow \infty$

$$
\begin{aligned}
& h_{l}^{(1)}(x) \xrightarrow{\text { large } x}(-i)^{l+1} \frac{e^{i x}}{x} \\
& h_{l}^{(2)}(x) \xrightarrow{\text { large } x} i^{l+1} \frac{e^{-i x}}{x}
\end{aligned}
$$

- The free-particle solution at $r \rightarrow \infty$ is

$$
e^{i k r \cos \theta} \xrightarrow{\text { large } r} \sum_{l=0}^{\infty} \frac{(2 l+1)}{2 i k r}\left[e^{i k r}-(-1)^{l} e^{-i k r}\right] P_{l}(\cos \theta) .
$$

- The first term inside the square brackets represents an outgoing spherical wave, while the second is related to an incoming spherical wave.

Asymptotic behavior

- Motivated by the expansion for $e^{i k r \cos \theta}$, we write the scattered solution for every $r>R$ as

$$
\psi(r, \theta)=\mathcal{N} \sum_{l=0}^{\infty} i^{l}(2 l+1) \frac{u_{l}(r)}{r} P_{l}(\cos \theta)
$$

- And the asymptotic behavior

$$
\begin{equation*}
\psi(r, \theta) \xrightarrow{\text { large } r} \mathcal{N} \sum_{l=0}^{\infty} \frac{(2 l+1)}{i k r}\left[c_{l}^{(1)} e^{i k r}-(-1)^{l} c_{l}^{(2)} e^{-i k r}\right] P_{l}(\cos \theta) \tag{*}
\end{equation*}
$$

- Let us compare with

$$
\begin{equation*}
e^{i k r \cos \theta} \xrightarrow{\text { large } r} \sum_{l=0}^{\infty} \frac{(2 l+1)}{2 i k r}\left[e^{i k r}-(-1)^{l} e^{-i k r}\right] P_{l}(\cos \theta) \tag{**}
\end{equation*}
$$

- ($* *$) describes the asymptotic behavior of the wave function for a plane wave without being scattered, while $(*)$ does the same, but in a situation where scattering could have taken place.

Phase shift

- We introduce a new quantity related to the ratio between the constants

$$
\frac{c_{l}^{(1)}}{c_{l}^{(2)}}=S_{l}(k)=e^{2 i \delta_{l}(k)}
$$

- Expressing the asymptotic wave function in terms of the phase shift

$$
\psi(r, \theta) \xrightarrow{\text { large } r} \mathcal{N} \sum_{l=0}^{\infty} \frac{(2 l+1)}{i k r} c_{l}^{(2)}\left[e^{2 i \delta_{l}} e^{i k r}-(-1)^{l} e^{-i k r}\right] P_{l}(\cos \theta)
$$

- Now we have everything we need to connect with the asymptotic wave function obtained before we restricted to spherically-symmetric potentials

Phase shift

- We know that

$$
\psi_{\mathbf{k}}(r, \theta) \xrightarrow{\text { large } r} \mathcal{N}\left[e^{i k z}+\frac{e^{i k r}}{r} f(\theta)\right]
$$

- Expanding $e^{i k z}$

$$
\psi_{\mathbf{k}}(r, \theta) \xrightarrow{\text { large } r} \mathcal{N}\left\{\left[\sum_{l=0}^{\infty} \frac{(2 l+1)}{2 i k r}\left(e^{i k r}-(-1)^{l} e^{-i k r}\right) \times P_{l}(\cos \theta)\right]+f(\theta) \frac{e^{i k r}}{r}\right\}
$$

- Comparing with

$$
\psi(r, \theta) \xrightarrow{\text { large } r} \mathcal{N} \sum_{l=0}^{\infty} \frac{(2 l+1)}{i k r} c_{l}^{(2)}\left[e^{2 i \delta_{l}} e^{i k r}-(-1)^{l} e^{-i k r}\right] P_{l}(\cos \theta)
$$

Phase shift

- Collecting the terms with $e^{i k r}$ allows us to write the scattering amplitude as a function of the phase shift

$$
f(\theta)=\sum_{l=0}^{\infty}(2 l+1) \frac{\left(e^{2 i \delta_{l}}-1\right)}{2 i k} P_{l}(\cos \theta)
$$

- The factor $\left(e^{2 i \delta_{l}}-1\right) / 2 i k$ is referred to as the partial wave amplitude $f_{l}(k)$, which may be rewritten as

$$
f_{l}(k)=\frac{e^{2 i \delta_{l}}-1}{2 i k}=\frac{e^{i \delta_{l}} \sin \delta_{l}}{k}=\frac{1}{k \cot \delta_{l}-i k}
$$

- In terms of $S_{l}(k)$

$$
S_{l}(k)=1+2 i k f_{l}(k)=e^{2 i \delta_{l}(k)}
$$

Physical meaning of the phase shift

- $\delta_{l}(k)$ is the difference between the phases of the incident and the scattered function
- The probability is conserved during the scattering
- The only thing that can change is the phase of the wave function
- If $V=0$: free particle
- $\delta_{l}(k)=0, f_{l}(k)=0$
- If $V \neq 0$: solution for $r<R$ depends on the details of V
- but for $r>R$ we have a free particle with a "shifted" phase
- Defining the phase shift allows us to reduce the scattering problem to calculate a single quantity, $\delta_{l}(k)$

Physical meaning of the phase shift

- $g_{0}(r)$ is the free-particle solution
- $u_{0}(r)$ is the solution in the presence of a scattering potential

- A repulsive potential $(V>0)$ "pushes" the particle away
- An attractive potential $(V<0)$ "pulls" the particle towards the origin

Computing the phase shift

- Logarithmic derivative

$$
\frac{d}{d x} \ln f(x)=\frac{f^{\prime}(x)}{f(x)}
$$

- To compute the phase shift, we define the dimensionless ratio $r \times u^{\prime}(r) / u(r)$

$$
\beta_{l}=\left[r \frac{u_{l}^{\prime}(r)}{u_{l}(r)}\right]_{r=R^{-}}
$$

- $R^{ \pm} \equiv \lim _{\epsilon \rightarrow 0} R \pm \epsilon$
- The radial solution at $r>R$ is

$$
u_{l}(r)=\frac{1}{2} r e^{2 i \delta_{l}} h_{l}^{(1)}(k r)+\frac{1}{2} r h_{l}^{(2)}(k r)=r e^{i \delta_{l}}\left(\cos \delta_{l j_{l}}(k r)-\sin \delta_{l} n_{l}(k r)\right)
$$

Computing the phase shift

- Equating β_{l} with the outside \log solution (at $r=R^{+}$):

$$
\beta_{l}=\left[r \frac{u_{l}^{\prime}(r)}{u_{l}(r)}\right]_{r=R^{+}}=1+k R\left[\frac{\cos \delta_{l j_{l}^{\prime}}^{\prime}(k R)-\sin \delta_{l} n_{l}^{\prime}(k R)}{\cos \delta_{l} j_{l}(k R)-\sin \delta_{l} n_{l}(k R)}\right],
$$

- After some algebra, we arrive at an expression for the phase shift

$$
\cot \delta_{l}(k)=\frac{k R n_{l}^{\prime}(k R)-\left(\beta_{l}-1\right) n_{l}(k R)}{k R j_{l}^{\prime}(k R)-\left(\beta_{l}-1\right) j_{l}(k R)}
$$

Low-energy limit

- From the radial equation for any partial wave l

$$
\left(\frac{d^{2}}{d r^{2}}+k^{2}-U(r)-\frac{l(l+1)}{r^{2}}\right) u_{l}(r)=0
$$

- We define an effective potential for the l-th partial wave as

$$
V_{\mathrm{eff}}(r)=V(r)+\frac{\hbar^{2}}{2 m} \frac{l(l+1)}{r^{2}}
$$

- For $l \neq 0$, we a have repulsive centrifugal barrier
- If the reduced wavelength $\lambda=\lambda / 2 \pi=1 / k$ of the incident wave is much larger than the potential range, that is $\lambda \gg R$ or $k R \ll 1$, then the particle cannot overcome the centrifugal barrier
- In this case, the partial waves with $l>0$ are unimportant, and the $l=0$ component is dominant in understanding low-energy scattering

s-wave scattering

- In the low-energy scenario, we consider partial waves with $l \neq 0$ to vanish, and the resulting $l=0$ term is referred to as " s-wave"
- The s-wave radial component, which we denote by $u_{0}^{(k \neq 0)}(r)$, is given by

$$
\begin{aligned}
A_{0}^{(k \neq 0)}(r)=\frac{u_{0}^{(k \neq 0)}}{r} & =e^{i \delta_{0}}\left(\cos \delta_{0} j_{0}(k r)-\sin \delta_{0} n_{0}(k r)\right) \\
& =e^{i \delta_{0}}\left[\frac{1}{k r} \sin \left(k r+\delta_{0}\right)\right]
\end{aligned}
$$

s-wave scattering

- We can also solve the zero-energy Schrödinger's equation, that is $k=0$, at $r>R$:

$$
\left(\frac{d^{2}}{d r^{2}}+k^{2^{1^{0}}}-U(r)^{-0}-\frac{l(l+\lambda)^{0}}{r^{2}}\right) u_{0}^{(k=0)}(r)=0
$$

- We simply have $u_{0}^{\prime \prime(k=0)}(r)=0$
- The solution can be written as $u_{0}^{(k=0)}(r)=c(r-a)$
- Its logarithmic derivative is

$$
r \frac{u_{0}^{\prime(k=0)}(r)}{u_{0}^{(k=0)}(r)}=\frac{r}{r-a} .
$$

- This needs to be equal to the \log derivative of $u_{0}^{(k \neq 0)}(r)$

$$
k r \cot \left(k r+\delta_{0}\right)=\frac{r}{r-a}
$$

Scattering length

- In the limit $k \rightarrow 0$, and also setting $r=0$, we define the scattering length a

$$
\lim _{k \rightarrow 0} k \cot \delta_{0}(k)=-\frac{1}{a}
$$

- We reduced the scattering problem to calculating $\delta_{l}(k)$. Now we reduced the problem even further: in the $E \approx 0$ limit, a encodes all the information we need about scattering.
- Geometrical interpretation: choose $c=-1 / a$ in

$$
u_{0}^{(k=0)}(r)=1-\frac{r}{a}
$$

- a is simply the intercept of the outside wave function with the x-axis

The effective range

- Another name for the scattering length expansion is the zero-range expansion
- What happens if the range of the potential is small, but non-negligible?
- We need the next term of the expansion in powers of k of $k \cot \delta_{0}(k)=-1 / a$
- $k \cot \delta_{0}(k)$ is an even function, thus the next term is certainly not linear in k
- The result is

$$
k \cot \delta_{0}(k)=-\frac{1}{a}+\frac{1}{2} r_{0} k^{2}+\mathcal{O}\left(k^{4}\right)
$$

The effective range

- Consider a different normalization for $u_{0}(r>R)$

$$
u_{0}(r>R)=\cot \delta_{0}(k) \sin (k r)+\cos (k r)
$$

- Let us take the $l=0$ radial equation, for two different wave functions $u_{k_{1}}(r)$ and $u_{k_{2}}(r)$, labeled by their wave vectors $k_{1}=\sqrt{2 m E_{1}} / \hbar$ and $k_{2}=\sqrt{2 m E_{2}} / \hbar$,

$$
\begin{aligned}
& u_{k_{1}}^{\prime \prime}(r)-U(r) u_{k_{1}}(r)+k_{1}^{2} u_{k_{1}}(r)=0, \\
& u_{k_{2}}^{\prime \prime}(r)-U(r) u_{k_{2}}(r)+k_{2}^{2} u_{k_{2}}(r)=0 .
\end{aligned}
$$

- Next, we multiply the first equation by $u_{k_{2}}$ and the second by $u_{k_{1}}$ and take their difference,

$$
u_{k_{1}}^{\prime \prime}(r) u_{k_{2}}(r)-u_{k_{1}}(r) u_{k_{2}}^{\prime \prime}(r)=\left(k_{2}^{2}-k_{1}^{2}\right) u_{k_{1}}(r) u_{k_{2}}(r) .
$$

- We may write the LHS as

$$
u_{k_{1}}^{\prime \prime}(r) u_{k_{2}}(r)-u_{k_{1}}(r) u_{k_{2}}^{\prime \prime}(r)=\frac{d}{d r}\left[u_{k_{1}}^{\prime}(r) u_{k_{2}}(r)-u_{k_{2}}^{\prime}(r) u_{k_{1}}(r)\right]
$$

The effective range

- Now we integrate from 0 to R,

$$
\left[u_{k_{2}}^{\prime}(r) u_{k_{1}}(r)-u_{k_{1}}^{\prime}(r) u_{k_{2}}(r)\right]_{0}^{R}=\left(k_{2}^{2}-k_{1}^{2}\right) \int_{0}^{R} d r u_{k_{1}}(r) u_{k_{2}}(r)
$$

- The integral converges since $A_{0}(r)=u_{0}(r) / r$ is finite at the origin $\left(u_{0}(0)=0\right.$ independently of the energy).
- Next, we repeat the same procedure for the free-particle $(V=0)$ radial equation with solutions denoted by $g_{k_{1}}(r)$ and $g_{k_{2}}(r)$. The result is the same if we replace u by g
- The free-particle solution is also given by

$$
g(r)=\cot \delta_{0}(k) \sin (k r)+\cos (k r)
$$

- Note that we do not require $g(0)=0$

The effective range

- Finally, we take the difference between the results

$$
\begin{gathered}
{\left[g_{k_{2}}^{\prime}(r) g_{k_{1}}(r)-g_{k_{1}}^{\prime}(r) g_{k_{2}}(r)\right]_{0}^{R}-\left[u_{k_{2}}^{\prime}(r) u_{k_{1}}(r)-u_{k_{1}}^{\prime}(r) u_{k_{2}}(r)\right]_{0}^{R}=} \\
\left(k_{2}^{2}-k_{1}^{2}\right) \int_{0}^{R} d r\left[g_{k_{1}}(r) g_{k_{2}}(r)-u_{k_{1}}(r) u_{k_{2}}(r)\right]
\end{gathered}
$$

- The radial solution, $u_{0}(r) / r$, is finite at $r=0$, thus $u_{0}(0)=0$.
- $g(r)$ and $u(r>R)$ are equal for $r \geq R$
- Then we are left with

$$
g_{k_{2}}^{\prime}(0) g_{k_{1}}(0)-g_{k_{1}}^{\prime}(0) g_{k_{2}}(0)=\left(k_{2}^{2}-k_{1}^{2}\right) \int_{0}^{R} d r\left[g_{k_{1}}(r) g_{k_{2}}(r)-u_{k_{1}}(r) u_{k_{2}}(r)\right]
$$

The effective range

- Using $g(r)=\cot \delta_{0}(k) \sin (k r)+\cos (k r)$ in the RHS

$$
k_{2} \cot \delta_{0}\left(k_{2}\right)-k_{1} \cot \delta_{0}\left(k_{1}\right)=\left(k_{2}^{2}-k_{1}^{2}\right) \int_{0}^{R} d r\left[g_{k_{1}}(r) g_{k_{2}}(r)-u_{k_{1}}(r) u_{k_{2}}(r)\right]
$$

- If we take the limit $k_{1} \rightarrow 0$, we can write $k_{1} \cot \delta_{0}\left(k_{1}\right)$ in terms of the scattering length

$$
k \cot \delta_{0}(k)=-\frac{1}{a}+k^{2} \int_{0}^{R} d r\left[g_{0}(r) g_{k}(r)-u_{0}(r) u_{k}(r)\right]
$$

- We define the next term $r_{0} / 2$ as

$$
r_{0} \equiv \lim _{k \rightarrow 0} \rho(k)=2 \int_{0}^{R} d r\left[g_{0}^{2}(r)-u_{0}^{2}(r)\right]
$$

- r_{0} is called effective range

Shape-independent approximation

- The resultant expression is the shape-independent approximation

$$
k \cot \delta_{0}(k)=-\frac{1}{a}+\frac{1}{2} r_{0} k^{2}+\mathcal{O}\left(k^{4}\right)
$$

- We are describing the phase shift $\delta_{0}(k)$ without taking into account the microscopic parameters of the scattering potential

Bound states

- Let us rewrite the scattered wave function at $r \rightarrow \infty$ as

$$
\psi(r, \theta) \xrightarrow{\text { large } r} \frac{1}{(2 \pi)^{3 / 2}} \sum_{l=0}^{\infty} \frac{(2 l+1)}{2 i k} P_{l}(\cos \theta)\left[S_{l}(k) \frac{e^{i k r}}{r}-\frac{e^{-i(k r-l \pi)}}{r}\right]
$$

- For $l=0$ and large distances, the radial wave function is proportional to

$$
S_{0}(k) \frac{e^{i k r}}{r}-\frac{e^{-i k r}}{r}
$$

Bound states

- For an arbitrary finite-ranged potential V, the radial solution at $r>R$ for a bound state ($E<0$) obeys

$$
u^{\prime \prime}(r)=-\frac{2 m E}{\hbar^{2}} u(r)=\kappa^{2} u(r), \quad \kappa \equiv \frac{\sqrt{-2 m E}}{\hbar}
$$

- The solution can be written as

$$
u(r>R)=A e^{\kappa+r^{0}}+B e^{-\kappa r}
$$

- We conclude that the radial function for a bound state at large distances is

$$
A(r)=\frac{u(r)}{r} \propto \frac{e^{-\kappa r}}{r}(\operatorname{large} r) .
$$

Bound states

- Scattered solution

$$
S_{0}(k) \frac{e^{i k r}}{r}-\frac{e^{-i k r}}{r}
$$

- Bound state solution

$$
\frac{e^{-\kappa r}}{r}
$$

- By substituting $k \rightarrow i \kappa$, with k purely imaginary, we can connect the bound state with the scattered solution

$$
\frac{e^{i k r}}{r}=\frac{e^{i(i \kappa) r}}{r}=\frac{e^{-\kappa r}}{r}
$$

- $S_{0}(k)$ controls the ratio of the outgoing to the incoming wave
- In the bound state case, we have only the outgoing spherical wave, thus $S_{0}(k) \rightarrow \infty$

Bound states

- $S_{l}(k)=1+2 i k f_{l}(k)=e^{2 i \delta_{l}(k)}$ is a complex function
- $S_{0}(k) \rightarrow \infty$ by substituting $k \rightarrow i \kappa$ means it has a pole at $k=i \kappa$

Bound states

- In terms of the s-wave scattering amplitude $f_{0}(k)$

$$
f_{0}(k)=\frac{1}{k \cot \delta_{0}-i k}=\frac{1}{-1 / a-i k}
$$

- We write $S_{0}(k)$ as

$$
S_{0}(k)=1+2 i k f_{0}(k)=\frac{-k-i / a}{k-i / a}
$$

- This expression has a pole at $k=i \kappa$ if we identify

$$
\kappa=\frac{1}{a}
$$

- In the zero-energy limit, the energy of a bound state and the scattering length are connected simply by

$$
E=\frac{\hbar^{2} k^{2}}{2 m}=-\frac{\hbar^{2} \kappa^{2}}{2 m}=-\frac{\hbar^{2}}{2 m a^{2}}
$$

- A single parameter originated from the potential determines the bound-state energy

Two-body scattering

- So far, we considered only the problem of a single particle being scattered by a finite-ranged potential $V(r)$ located at $r=0$.
- With a few modifications, we can use the results we obtained to describe two particles interacting through a pairwise potential which depends only on their spatial separation r
- The Hamiltonian of a two-body system is separable in the center of mass (CM) and relative coordinates

$$
H=-\frac{\hbar^{2}}{2 m_{1}} \nabla_{\mathbf{r}_{1}}^{2}-\frac{\hbar^{2}}{2 m_{2}} \nabla_{\mathbf{r}_{2}}^{2}+V\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
$$

Two-body scattering

- We define the CM and relative coordinates

$$
\mathbf{R}=\frac{m_{1} \mathbf{r}_{1}+m_{2} \mathbf{r}_{2}}{M} \quad \text { and } \quad \mathbf{r}=\mathbf{r}_{1}-\mathbf{r}_{2}
$$

- H is now separable

$$
\begin{aligned}
H & =H_{\mathrm{CM}}+H_{r}, \\
H_{\mathrm{CM}} & =-\frac{\hbar^{2}}{2 M} \nabla_{\mathbf{R}}^{2}, \\
H_{r} & =-\frac{\hbar^{2}}{2 m_{r}} \nabla_{\mathbf{r}}^{2}+V(r)
\end{aligned}
$$

- $m_{r}=m_{1} m_{2} /\left(m_{1}+m_{2}\right)$ is the reduced mass

Applications

(1) Spherically symmetric finite well

- Analytical calculation of the s-wave scattering wave function
(1) Scattering states $(E>0)$
(2) Bound states $(E<0)$
- Calculation of the scattering length and effective range
(2) Zero-range and finite-range approximations
- Estimating bound state energies using the scattering length and effective range expansions

Spherically-symmetric finite well

- One way of defining the spherical well is

$$
V_{\mathrm{sw}}(r)= \begin{cases}-V_{0} & \text { for } r<R \\ 0 & \text { for } r>R\end{cases}
$$

- V_{0} has units of [energy]
- It will be clear in the numerical section that it is useful to redefine the potential as

$$
V(r)= \begin{cases}-v_{0} \frac{\hbar^{2}}{m_{r} R^{2}} & \text { for } r<R \\ 0 & \text { for } r>R\end{cases}
$$

- v_{0} is a dimensionless parameter related to the depth
- R is the potential range

Spherically-symmetric finite well $(E>0)$

- Potential

$$
V(r)= \begin{cases}-v_{0} \frac{\hbar^{2}}{m_{r} R^{2}} & \text { for } r<R \\ 0 & \text { for } r>R\end{cases}
$$

- $E>0$ case

$$
\left(\frac{d^{2}}{d r^{2}}-\frac{2 m_{r}}{\hbar^{2}} V(r)+\frac{2 m_{r}}{\hbar^{2}} E\right) u(r)=0
$$

\rightarrow Explicit forms for $r<R$ and $r>R$

$$
\begin{array}{ll}
u^{\prime \prime}(r)+\left(k_{0}^{2}+k^{2}\right) u(r)=0 & \text { for } r<R, \\
u^{\prime \prime}(r)+k^{2} u(r)=0 & \text { for } r>R,
\end{array}
$$

$\rightarrow k^{2} \equiv 2 m_{r} E / \hbar^{2}$ and $k_{0}^{2} \equiv 2 v_{0} / R^{2}$

Spherically-symmetric finite well $(E>0)$

\rightarrow If $r<R$

$$
u(r)=A \sin \left(\sqrt{k^{2}+k_{0}^{2}} r\right)+B \cos \left(\sqrt{k^{2}+k_{0}^{2}} r\right)
$$

- Since $u_{0}(0)=0$, we set $B=0$
\rightarrow If $r<R$

$$
u_{0}(r)=\cot \delta_{0}(k) \sin (k r)+\cos (k r)
$$

\rightarrow Hence, the solution is of the form

$$
u(r)= \begin{cases}A \sin \left(\sqrt{k^{2}+k_{0}^{2}} r\right) & \text { for } r<R \\ \cot \delta_{0}(k) \sin (k r)+\cos (k r) & \text { for } r>R\end{cases}
$$

Spherically-symmetric finite well $(E>0)$

- Logarithmic derivative at $r=R^{-}$and $r=R^{+}$

$$
\begin{gathered}
{\left[r \frac{u^{\prime}(r)}{u(r)}\right]_{r=R^{-}}=\left[r \frac{u^{\prime}(r)}{u(r)}\right]_{r=R^{+}}} \\
\frac{\sqrt{k^{2}+k_{0}^{2}} \cos \left(\sqrt{k^{2}+k_{0}^{2}} R\right)}{\sin \left(\sqrt{k^{2}+k_{0}^{2}} R\right)}=\frac{k \cot \delta_{0}(k) \cos (k R)-k \sin (k R)}{\cot \delta_{0}(k) \sin (k R)+\cos (k R)}
\end{gathered}
$$

- Solving for the phase shift $\delta_{0}(k)$ without any approximation

$$
\delta_{0}(k)=-k R+\arctan \left[\frac{k \tan \left(\sqrt{k^{2}+k_{0}^{2}} R\right)}{\sqrt{k^{2}+k_{0}^{2}}}\right]
$$

Spherically-symmetric finite well $(E>0)$

- Scattering length
- To calculate the scattering length a, we need to take the $k \rightarrow 0$ limit
- Rearrange the log derivative so that we collect factors of $k \cot \delta_{0}(k)$
- Keep track of the orders employed in the approximation

$$
\begin{aligned}
\cos (k R) & =1+\mathcal{O}\left(k^{2}\right) \\
\sin (k R) & =k R+\mathcal{O}\left(k^{3}\right)
\end{aligned}
$$

- Repeating last slides' equation:

$$
\frac{\sqrt{k^{2}+k_{0}^{2}} \cos \left(\sqrt{k^{2}+k_{0}^{2}} R\right)}{\sin \left(\sqrt{k^{2}+k_{0}^{2}} R\right)}=\frac{k \cot \delta_{0}(k) \cos (k R)-k \sin (k R)}{\cot \delta_{0}(k) \sin (k R)+\cos (k R)}
$$

- Taking the $k \rightarrow 0$ limit:

$$
\sqrt{k_{0}^{2}} \cot \left(\sqrt{k_{0}^{2}} R\right)=\frac{-1 / a}{-R / a+1}
$$

Spherically-symmetric finite well $(E>0)$

- Solving for a :

$$
a=R-\frac{\tan \left(\sqrt{k_{0}^{2}} R\right)}{\sqrt{k_{0}^{2}}}
$$

- The result is:

$$
a=R-\frac{\tan \left(\sqrt{k_{0}^{2}} R\right)}{\sqrt{k_{0}^{2}}}=R\left(1-\frac{\tan \left(\sqrt{2 v_{0}}\right)}{\sqrt{2 v_{0}}}\right)
$$

- It is clear that a depends only on the parameters of the potential, its depth v_{0} and range R
- Note that $\tan (x) \rightarrow \infty$ for $x=\frac{\pi}{2}+n \pi, \quad n=0, \pm 1, \pm 2, \ldots$
- So the first divergence $(n=0)$ of a appears at

$$
v_{0}=\frac{\pi^{2}}{8}
$$

Spherically-symmetric finite well $(E<0)$

- $E<0$ case
- Repeat the same procedure or $k=i \kappa \rightarrow E=\hbar^{2} k^{2} / 2 m_{r}=-\hbar^{2} \kappa^{2} / 2 m_{r}$

$$
\left(\frac{d^{2}}{d r^{2}}-\frac{2 m_{r}}{\hbar^{2}} V(r)-\frac{2 m_{r}}{\hbar^{2}}|E|\right) u(r)=0
$$

- Solution for $u(r)$

$$
u(r)= \begin{cases}A^{\prime} \sin \left(\sqrt{k_{0}^{2}-\kappa^{2}} r\right) & \text { for } r<R \\ B^{\prime} e^{-\kappa r} & \text { for } r>R\end{cases}
$$

- Match the logarithmic derivatives at $r=R$,

$$
\frac{\sqrt{k_{0}^{2}-\kappa^{2}} \cos \left(\sqrt{k_{0}^{2}-\kappa^{2}} R\right)}{\sin \left(\sqrt{k_{0}^{2}-\kappa^{2}} R\right)}=\frac{-\kappa e^{-\kappa R}}{e^{-\kappa R}}
$$

Spherically-symmetric finite well $(E<0)$

- After some manipulations,

$$
\tan \left(\sqrt{k_{0}^{2}-\kappa^{2}} R\right)+\frac{\sqrt{k_{0}^{2}-\kappa^{2}}}{\kappa}=0
$$

- This is a transcendental equation that shows where the bound-state energies are located
- Note that the term $\sqrt{k_{0}^{2}-\kappa^{2}} / \kappa$ is always positive
- $\tan \left(\sqrt{k_{0}^{2}-\kappa^{2}} R\right)$ must be negative if we want the equation to have solution(s). That is to say:

$$
\frac{\pi}{2}+n \pi<\sqrt{k_{0}^{2}-\kappa^{2}} R<\pi+n \pi, \quad n=0,1,2, \ldots
$$

Spherically-symmetric finite well $(E<0)$

- The first bound state is $n=0$. Thus

$$
\frac{\pi}{2 R}<\sqrt{k_{0}^{2}-\kappa^{2}}<\frac{\pi}{R}
$$

- $k_{0}>\sqrt{k_{0}^{2}-\kappa^{2}}$
- Since $k_{0}=\sqrt{2 v_{0}} / R$, we have

$$
v_{0}>\frac{\pi^{2}}{8}
$$

- This result shows that there are no bound states if v_{0} is not above a certain threshold value
- This is the same threshold value that makes $|a| \rightarrow \infty$
- The conclusion is that the scattering length diverges when a bound state appears

Spherically-symmetric well - bound states and scattering length

$$
a=R\left(1-\frac{\tan \left(\sqrt{2 v_{0}}\right)}{\sqrt{2 v_{0}}}\right)
$$

- a diverges for:

$$
\sqrt{2 v_{0}}=\pi / 2+n \pi \quad(n=0,1,2, \ldots)
$$

- This coincides with the location of the bound states

Spherically-symmetric finite well - effective range

- First, we need to determine the normalization constant of the scattering solution

$$
u(r)= \begin{cases}A \sin \left(\sqrt{k^{2}+k_{0}^{2}} r\right) & \text { for } r<R \\ \cot \delta_{0}(k) \sin (k r)+\cos (k r) & \text { for } r>R\end{cases}
$$

- To determine the constant A, we impose the continuity of $u(r)$ at $r=R$

$$
A=\frac{\cot \delta_{0}(k) \sin (k R)+\cos (k R)}{\sin \left(\sqrt{k^{2}+k_{0}^{2}} R\right)}
$$

Spherically-symmetric finite well - effective range

- The normalized solution is written as

$$
u(r)= \begin{cases}\frac{\cot \delta_{0}(k) \sin (k R)+\cos (k R)}{\sin \left(\sqrt{k^{2}+k_{0}^{2}} R\right)} \sin \left(\sqrt{k^{2}+k_{0}^{2}} r\right) & \text { for } r<R, \\ \cot \delta_{0}(k) \sin (k r)+\cos (k r) & \text { for } r>R\end{cases}
$$

- The effective range is defined in the $k \rightarrow 0$ limit of $u(r)$:

$$
\lim _{k \rightarrow 0} u(r)= \begin{cases}\frac{(1-R / a)}{\sin \left(k_{0} R\right)} \sin \left(k_{0} r\right) & \text { for } r<R \\ 1-r / a & \text { for } r>R\end{cases}
$$

Spherically-symmetric finite well - effective range

- The effective range is given by the integral

$$
r_{0}=2 \int_{0}^{R} d r\left[\left(1-\frac{r}{a}\right)^{2}-\left(1-\frac{R}{a}\right)^{2} \frac{\sin ^{2}\left(k_{0} r\right)}{\sin ^{2}\left(k_{0} R\right)}\right]
$$

- Replacing a in favor of R and k_{0} :

$$
r_{0}=R\left(1-\frac{1}{3}\left(\frac{k_{0} R}{\tan \left(k_{0} R\right)-k_{0} R}\right)^{2}+\frac{1}{k_{0} R \tan \left(k_{0} R\right)-\left(k_{0} R\right)^{2}}\right)
$$

- This shows that r_{0} also depends only on parameters of the potential

Spherically-symmetric finite well - effective range

$$
\begin{array}{r}
r_{0}=R\left(1-\frac{1}{3}\left(\frac{k_{0} R}{\tan \left(k_{0} R\right)-k_{0} R}\right)^{2}+\right. \\
\\
\left.\frac{1}{k_{0} R \tan \left(k_{0} R\right)-\left(k_{0} R\right)^{2}}\right)
\end{array}
$$

Applications

(1) Spherically symmetric finite well

- Analytical calculation of the s-wave scattering wave function
(1) Scattering states $(E>0)$
(2) Bound states $(E<0)$
- Calculation of the scattering length and effective range
(2) Zero-range and finite-range approximations
- Estimating bound state energies using the scattering length and effective range expansions

Zero-range and finite-range approximations

- The equation derived in the bound states slide allows us to estimate the bound state energy with the zero-range approximation $\kappa=1 / a$,

$$
E_{z r}=-\frac{\hbar^{2} \kappa^{2}}{2 m_{r}}=-\frac{\hbar^{2}}{2 m_{r} a^{2}}
$$

- To take the effective range into account, we write the s-wave scattering amplitude as

$$
f_{0}(k)=\frac{1}{k \cot \delta_{0}(k)-i k}=\frac{1}{-1 / a+r_{0} k^{2} / 2-i k}
$$

- And $S_{0}(k)$ as

$$
S_{0}(k)=1+2 i k f_{0}(k)=\frac{-i / a-k+i r_{0} k^{2} / 2}{-i / a+k+i r_{0} k^{2} / 2}
$$

- Making $k \rightarrow i \kappa$

$$
S_{0}(k)=\frac{-1 / a-\kappa-r_{0} \kappa^{2} / 2}{-1 / a+\kappa-r_{0} \kappa^{2} / 2}
$$

Zero-range and finite-range approximations

- Now we can identify the bound state as pole in the S-matrix by solving

$$
-1 / a+\kappa-r_{0} \kappa^{2} / 2=0
$$

- which yields the solution

$$
\kappa=\frac{1}{r_{0}}\left(1 \mp \sqrt{1-\frac{2 r_{0}}{a}}\right)
$$

- Now choosing the appropriate root to compute the bound state energy

$$
E_{f r}=-\frac{\hbar^{2} \kappa^{2}}{2 m_{r}}=-\frac{\hbar^{2}}{2 m_{r} r_{0}^{2}}\left(1-\sqrt{1-\frac{2 r_{0}}{a}}\right)^{2}
$$

Zero-range and finite-range approximations

- Example: Helium dimer
- $E_{d}=-1.62 \mathrm{mK}$ (found solving the full Schrödinger equation), $a=90.4 \AA, r_{0}=8.0 \AA$
\rightarrow Zero-range approximation

$$
\frac{E_{z r}}{k_{b}}=-\frac{\hbar^{2}}{k_{b} \times 2 m_{r} a^{2}}=-1.48 \mathrm{mK}
$$

\rightarrow Finite-range approximation

$$
\frac{E_{f r}}{k_{b}}=-\frac{\hbar^{2}}{k_{b} \times 2 m_{r} r_{0}^{2}}\left(1-\sqrt{1-\frac{2 r_{0}}{a}}\right)^{2}=-1.63 \mathrm{mK}
$$

- Both the zero- and finite-range results successfully describe the physical system because $k R \sim 0.1$

Zero-range and finite-range approximations

- Example: Deuteron

$$
\text { - } E_{d} c^{2}=-2.224 \mathrm{MeV}, a=5.4112 \mathrm{fm}, r_{0}=1.7436 \mathrm{fm}
$$

\rightarrow Zero-range approximation

$$
E_{z r} c^{2}=-\frac{\hbar^{2} c^{2}}{2 m_{r} a^{2}}=-1.416 \mathrm{MeV}
$$

\rightarrow Finite-range approximation

$$
E_{f r} c^{2}=-\frac{\hbar^{2} c^{2}}{2 m_{r} r_{0}^{2}}\left(1-\sqrt{1-\frac{2 r_{0}}{a}}\right)^{2}=-2.223 \mathrm{MeV} \quad(100 \%)
$$

- The range of the potential needed to be taken into account because $k R \sim 0.4$
- We should emphasize that the scales are very different in both examples
- ${ }^{4} \mathrm{He}$ dimer: spatial scale of $\AA\left(10^{-10} \mathrm{~m}\right)$ and the energy is of the order of $10^{-7} \mathrm{eV}$
- Deuteron: the lengths are in the femtometer $\left(10^{-15} \mathrm{~m}\right)$ scale, while the energy is of a few $\operatorname{MeV}\left(10^{6} \mathrm{eV}\right)$
- This exemplifies how universal are these low-energy scattering results

Numerical Procedure

- Analytical expressions for the low-energy scattering parameters are only available for a few potentials
- Even in those cases, the calculations may be cumbersome, as we saw for the spherical well
- In general, we need to calculate a and r_{0} numerically
- We will describe two methods to solve the Schrödinger equation numerically
(1) Second-order central difference
(2) Numerov's method

Numerical Procedure

- We wish to compute the quantities a and r_{0}
- To do so, we need to compute the radial solution inside and outside the potential range
- $u_{0}(r<R)$: needs to be computed numerically
- $u_{0}(r>R)=1-r / a$

Second-order central difference

- Consider the function $u(r)$ on a discrete set of points $r_{i}=i \Delta r, i=0,1,2 \ldots, N$ and $\Delta r \ll 1$
- Let us take two Taylor expansions of $u(r)$ around the points $r \pm \Delta r$

$$
\begin{aligned}
& u(r+\Delta r)=u(r)+(\Delta r) u^{\prime}(r)+\frac{(\Delta r)^{2}}{2} u^{\prime \prime}(r)+\frac{(\Delta r)^{3}}{6} u^{\prime \prime \prime}(r)+\cdots, \\
& u(r-\Delta r)=u(r)-(\Delta r) u^{\prime}(r)+\frac{(\Delta r)^{2}}{2} u^{\prime \prime}(r)-\frac{(\Delta r)^{3}}{6} u^{\prime \prime \prime}(r)+\cdots
\end{aligned}
$$

- The difference of the two Taylor expansions yields an expression for the first derivative, while their sum results in the second derivative

$$
\begin{aligned}
& \frac{d u}{d r}\left.\right|_{r=r_{i}} \\
&=\frac{u_{i+1}-u_{i-1}}{2 \Delta r}+\mathcal{O}\left[(\Delta r)^{3}\right] \\
&\left.\frac{d^{2} u}{d r^{2}}\right|_{r=r_{i}}=\frac{u_{i+1}-2 u_{i}+u_{i-1}}{(\Delta r)^{2}}+\mathcal{O}\left[(\Delta r)^{4}\right]
\end{aligned}
$$

Second-order central difference

- We want to solve the zero-energy Schrödinger equation inside the potential range

$$
\begin{aligned}
& \left(\frac{d^{2}}{d r^{2}}-\frac{2 m_{r}}{\hbar^{2}} V(r)\right) u_{0}^{(k=0)}(r)=0 \\
& \left.\frac{d^{2} u}{d r^{2}}\right|_{r=r_{i}} \approx \frac{u_{i+1}-2 u_{i}+u_{i-1}}{(\Delta r)^{2}}
\end{aligned}
$$

- Substituting the central difference second derivative into $u^{\prime \prime}(r)$

$$
u_{i+1}=2 u_{i}-u_{i-1}+\frac{2 m_{r}(\Delta r)^{2}}{\hbar^{2}} V\left(r_{i}\right) u_{i}
$$

Second-order central difference

$$
u_{i+1}=2 u_{i}-u_{i-1}+\frac{2 m_{r}(\Delta r)^{2}}{\hbar^{2}} V\left(r_{i}\right) u_{i}
$$

- If we know the value of the radial solution for two consecutive points, r_{i-1} and r_{i}, we can calculate the value for the next point u_{i+1}
$\rightarrow u(0)=0$
$\rightarrow u(\Delta r)=1$
- This choice allows us to find a solution without worrying about the normalization
- Algorithm:
(1) Set $u_{0}=0, u_{1}=1$, and $i=1$
(2) Compute u_{i+1}
(3) If $r_{i} \geqslant R+\Delta r$, stop. Else, increment i by one
(9) Go to step 2

Numerov's method

- The second-order central difference is one possible discretization for a numerical second derivative
- There are other alternatives if we want to improve the precision of our algorithm
- Numerov's method is a numerical technique capable of solving differential equations of second order when the first-order term is not present:

$$
\frac{d^{2} y}{d x^{2}}=-\xi(x) y(x)+s(x)
$$

- The s-wave zero-energy radial equation is of this form, with $y \rightarrow u, x \rightarrow r, s=0$, and

$$
\xi(r)=-\frac{2 m_{r}}{\hbar^{2}} V(r)
$$

Numerov's method

- The method provides a solution of the form

$$
\begin{aligned}
y_{i+1}=\frac{1}{\left(1+\frac{(\Delta x)^{2}}{12} \xi_{i+1}\right)} & \left\{2 y_{i}\left(1-\frac{5(\Delta x)^{2}}{12} \xi_{i}\right)-y_{i-1}\left(1+\frac{(\Delta x)^{2}}{12} \xi_{i-1}\right)\right. \\
& \left.+\frac{(\Delta x)^{2}}{12}\left(s_{i+1}+10 s_{i}+s_{i-1}\right)\right\}+\mathcal{O}\left[(\Delta x)^{6}\right]
\end{aligned}
$$

- The algorithm is mostly unchanged if we use Numerov's method instead of the second-order central difference

Dimensionless quantities

- Schrödinger's equation contains relatively small quantities
$\rightarrow \hbar \sim 10^{-34} \mathrm{~J} \mathrm{~s}\left(\right.$ or $\sim 10^{-15} \mathrm{eV}$ s)
\rightarrow Typical masses, length, and energy scales are also small
- We wish to make Schrödinger's equation dimensionless
- Instead of this

$$
\left(-\frac{1}{2} \frac{d^{2}}{d r^{2}}-\frac{m_{r}}{\hbar^{2}} E+\frac{m_{r}}{\hbar^{2}} V(r)\right) u_{0}(r)=0
$$

- we want to solve this

$$
\left(-\frac{1}{2} \frac{d^{2}}{d \bar{r}^{2}}-\bar{E}+\bar{V}(\bar{r})\right) \bar{u}(\bar{r})=0
$$

- " $\hbar=m_{r}=1 "$

Dimensionless quantities

- First, we choose a length scale ℓ
\rightarrow The convenient value of ℓ depends on the system under study; for atomic physics, it may be $1 \AA$; for nuclear physics, we may use 1 fm or any other length scale that makes sense for a particular problem
- Then the dimensionless scaled distance is

$$
\bar{r}=\frac{r}{\ell}
$$

- The radial function $u(r)$ has units of $[\text { length }]^{-1 / 2}$ (remember that $\int d r|u(r)|^{2}=1$)

$$
\bar{u}(\bar{r})=\frac{u(r)}{\ell^{-1 / 2}}
$$

Dimensionless quantities

- The second derivative becomes

$$
\frac{d^{2}}{d r^{2}}=\frac{1}{\ell^{2}} \frac{d^{2}}{d \bar{r}^{2}}
$$

- Going back to the equation:

$$
-\frac{\hbar^{2}}{2 m_{r} \ell^{2}} \frac{d^{2} \bar{u}}{d \bar{r}^{2}}+V(\bar{r}) \bar{u}=E \bar{u}
$$

- We can also define an energy scale

$$
\epsilon=\frac{\hbar^{2}}{m_{r} \ell^{2}}
$$

- And now we define the dimensionless energy and potential

$$
\bar{E}=\frac{E}{\epsilon}, \quad \bar{V}=\frac{V}{\epsilon}
$$

- Finally

$$
-\frac{1}{2} \frac{d^{2} \bar{u}}{d \bar{r}^{2}}+\bar{V}(\bar{r}) \bar{u}=\bar{E} \bar{u}
$$

Scattering length and effective range

- After following the numerical solution for $u_{0}(r)$, we're ready to compute the scattering length and the effective range
- Scattering length
\rightarrow We recall that logarithmic derivative of the wave function outside the potential range is given by

$$
\left.\frac{g_{0}^{\prime}(r)}{g_{0}(r)}\right|_{r=R^{+}}=\frac{1}{R-a}
$$

\rightarrow This should be equal to the logarithmic derivative of $u_{0}(r)$ at $r=R^{-}$

$$
\left.\frac{g_{0}^{\prime}(r)}{g_{0}(r)}\right|_{r=R^{+}}=\frac{1}{R-a}=\left.\frac{u_{0}^{\prime}(r)}{u_{0}(r)}\right|_{r=R^{-}}
$$

\rightarrow We already have $u(R)$ and $u(R \pm \Delta r)$. Thus the derivative may be computed as

$$
u_{\mathrm{num}}^{\prime}(R)=\left.\frac{d u(r)}{d r}\right|_{r=R}=\frac{u(R+\Delta r)-u(R-\Delta r)}{2 \Delta r}
$$

Scattering length and effective range

- Scattering length
\rightarrow Now solving for a

$$
a=R-\frac{2 \Delta r u(R)}{u(R+\Delta r)-u(R-\Delta r)}
$$

\rightarrow This expression depends on the ratio of the radial solution, so we ignored the normalization

- Effective range
\rightarrow On the other hand, the effective range assumes a particular normalization choice
\rightarrow We multiply $u(r)$ by a constant C such that

$$
C=\frac{g(R)}{u(R)}=\frac{(1-R / a)}{u(R)}
$$

\rightarrow The effective range is found by computing the integral

$$
r_{0}=2 \int_{0}^{R} d r\left[g_{0}^{2}(r)-u_{0}^{2}(r)\right]
$$

Numerical integration

- The task is essentially to compute numerically an integral of the form

$$
I=\int_{x_{1}}^{x_{N}} f(x) d x
$$

- $f(x)$ is known only at a discrete set of equally spaced points, $f\left(x_{i}\right) \equiv f_{i}$, where $i=1,2,3, \ldots, N$.

Numerical integration

- Trapezoidal rule:

$$
\int_{x_{1}}^{x_{2}} f(x) d x=h\left[\frac{1}{2} f_{1}+\frac{1}{2} f_{2}\right]+\mathcal{O}\left(h^{3} f^{\prime \prime}\right)
$$

- Using it $N-1$ times for the intervals: $\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right), \cdots,\left(x_{N-1}, x_{N}\right)$

$$
\int_{x_{1}}^{x_{N}} f(x) d x=h\left[\frac{1}{2} f_{1}+f_{2}+f_{3}+\cdots+f_{N-1}+\frac{1}{2} f_{N}\right]+\mathcal{O}\left(\frac{\left(x_{N}-x_{1}\right)^{3} f^{\prime \prime}}{N^{2}}\right)
$$

Numerical integration

- Simpson's rule:

$$
\int_{x_{1}}^{x_{3}} f(x) d x=h\left[\frac{1}{3} f_{1}+\frac{4}{3} f_{2}+\frac{1}{3} f_{3}\right]+\mathcal{O}\left(h^{5} f^{(4)}\right)
$$

- Repeatedly:

$$
\int_{x_{1}}^{x_{N}} f(x) d x=h\left[\frac{1}{3} f_{1}+\frac{4}{3} f_{2}+\frac{2}{3} f_{3}+\frac{4}{3} f_{4}+\cdots+\frac{2}{3} f_{N-2}+\frac{4}{3} f_{N-1}+\frac{1}{3} f_{N}\right]+\mathcal{O}\left(\frac{\left(x_{N}-x_{1}\right)^{5} f^{(4)}}{N^{4}}\right)
$$

Examples

- We chose four potentials to illustrate the numerical procedure
\rightarrow Spherical well
\rightarrow Modified Pöschl-Teller
\rightarrow Gaussian
\rightarrow Lennard-Jones

Potentials - Spherical well

\rightarrow To make the comparison with other potentials easier, we redefine

$$
V_{\mathrm{sw}}(r)= \begin{cases}-v_{\mathrm{sw}} \frac{\hbar^{2} \mu_{\mathrm{sw}}^{2}}{m_{r}}, & \text { for } r<R \\ 0, & \text { for } r>R\end{cases}
$$

- v_{sw} is a dimensionless parameter related to the depth
- $\mu_{\mathrm{sw}}=1 / R$
\rightarrow As we saw, $\epsilon=\frac{\hbar^{2}}{m_{r} \ell^{2}}$ makes Schrödinger's equation dimensionless
\rightarrow We can compare our numerical solutions with the analytical ones to check the correctness of the program

Potentials - Modified Pöschl-Teller (mPT)

$$
V_{\mathrm{PT}}(r)=-v_{\mathrm{PT}} \frac{\hbar^{2}}{m_{r}} \frac{\mu_{\mathrm{PT}}^{2}}{\cosh ^{2}\left(\mu_{\mathrm{PT}} r\right)}
$$

- Very difficult analytical solution for the eigenfunctions
- There is an analytical expression for a in terms of the parameters of the potential

$$
a \mu_{\mathrm{PT}}=\frac{\pi}{2} \cot \left(\frac{\pi \lambda}{2}\right)+\gamma+\Psi(\lambda)
$$

- $v_{\mathrm{PT}}=\lambda(\lambda-1) / 2, \gamma$ is the Euler-Mascheroni constant and Ψ is the digamma function
- The $|a| \rightarrow \infty$ case corresponds to $\lambda=2(\cot (\pi)$ diverges) or $\lambda=-1(\Psi(-1)$ diverges $)$, that is, $v_{\mathrm{PT}}=1$
- For this particular case $(|a| \rightarrow \infty)$, the s-wave zero-energy radial function takes a relatively simple form

$$
u_{0}(r)=\frac{\tanh \left(\mu_{\mathrm{PT}} r\right)}{\tanh \left(\mu_{\mathrm{PT}} R\right)}
$$

Potentials - mPT

- We can also calculate the effective range by performing the integral. In this case $(|a| \rightarrow \infty)$, $g_{0}(r)=1-r / a=1$, so that

$$
r_{0}=2 \int_{0}^{R} d r\left[1-\frac{\tanh ^{2}\left(\mu_{\mathrm{PT}} r\right)}{\tanh ^{2}\left(\mu_{\mathrm{PT}} R\right)}\right]=2\left[R-\frac{R}{\tanh ^{2}\left(\mu_{\mathrm{PT}} R\right)}+\frac{1}{\mu_{\mathrm{PT}} \tanh \left(\mu_{\mathrm{PT}} R\right)}\right]
$$

- Since $1 / \mu_{\mathrm{PT}} \sim R$ and the $\tanh (x)$ function converges rapidly to 1 as we increase x, we may set $\tanh \left(\mu_{\mathrm{PT}} R\right)=1$. Thus we have that $r_{0}=2 / \mu_{\mathrm{PT}}$ for $v_{\mathrm{PT}}=1$

Potentials

- Spherical well
- Modified Pöschl-Teller

$$
V_{\mathrm{PT}}(r)=-v_{\mathrm{PT}} \frac{\hbar^{2}}{m_{r}} \frac{\mu_{\mathrm{PT}}^{2}}{\cosh ^{2}\left(\mu_{\mathrm{PT}} r\right)}
$$

- Gaussian

$$
V_{\mathrm{g}}(r)=-v_{\mathrm{g}} \frac{\hbar^{2}}{m_{r}} \mu_{\mathrm{g}}^{2} e^{-r^{2} \mu_{\mathrm{g}}^{2}}
$$

- The potential range R is not well defined for the mPT and the gaussian potentials
\rightarrow Look for a value of R such that the potential is negligible $|V(R)| \leqslant \varepsilon$

Potentials

- Lennard-Jones

$$
V_{\mathrm{LJ}}(r)=\frac{\hbar^{2}}{m_{r}}\left[\frac{C_{12}}{r^{12}}-\frac{C_{6}}{r^{6}}\right]
$$

- Note that $V_{\mathrm{LJ}}(0)$ diverges and $V(\Delta r)$ is very large
- We can safely set the boundary condition $u(0)=0$ but computing $u(\Delta r)$ may lead to instabilities
- Define a range $0 \leqslant r<r_{\text {min }}$ where $u(r)=0$ and start the integration at $r=r_{\text {min }}$

Tuning the parameters

- The four potentials we presented have two parameters.
- Spherical well, mPT, Gaussian are purely attractive
- one parameter is associated with the depth of the potential ($v_{\mathrm{sw}}, v_{\mathrm{PT}}$, and v_{g})
- and another with its range ($\mu_{\mathrm{sw}}, \mu_{\mathrm{PT}}$, and μ_{g}).
- The LJ potential has a repulsive core and an attractive region
- C_{6} controls the attractive interaction
- C_{12} controls the repulsive interaction
- Typically, the scattering length and effective range are known, and we want to tune the parameters of a particular potential to reproduce the desired a and r_{0} values
- Since we want to match two values and have two free parameters, the correspondence is one-to-one (with the restriction of how many bound states we want)

Tuning the parameters

- To tune the parameters, we follow the following procedure
(1) Start with a guess $\left(v_{1}, v_{2}\right)$.
(2) Compute a and r_{0}
(3) Keep v_{2} fixed. Vary v_{1} until a has the desired value. Increasing the depth of the potential will decrease the value of the scattering length (until it diverges and changes from $-\infty$ to $+\infty$).
(9) Keep v_{1} fixed at the value found in step 3. Vary v_{2} until r_{0} has the desired value. Increasing the range of the potential will increase r_{0}.
(6) If a and r_{0} match the desired values, stop. Else, go to step 3 and use the value of v_{2} found in step 4.

Results

- We present 3 cases: $a<0,|a| \rightarrow \infty$, and $a>0$, which correspond to three very distinct physical situations.
- $a<0$
* Example: neutron-neutron interaction $\left(a=-18.5 \mathrm{fm}, r_{0}=2.7 \mathrm{fm}\right)$
- $|a| \rightarrow \infty$
* Example: unitary Fermi gas
- $a>0$
* Example: deuteron $\left(a=5.4 \mathrm{fm}, r_{0}=1.7 \mathrm{fm}\right)$

System	$a(\mathrm{fm})$	$r_{0}(\mathrm{fm})$
Neutron-neutron	-18.5	2.7
Unitarity	$\pm \infty$	1.0
Deuteron	5.4	1.7

Results

- $a<0$

Potential	v	$\mu\left(\mathrm{fm}^{-1}\right)$	$a(\mathrm{fm})$	$r_{0}(\mathrm{fm})$
Neutron-neutron				
Well	1.1096	0.3918	-18.52	2.7
mPT	0.9071	0.7991	-18.51	2.7
Gaussian	1.2121	0.5672	-18.55	2.7

Results

- $|a| \rightarrow \infty$

Potential	v	$\mu\left(\mathrm{fm}^{-1}\right)$	$a(\mathrm{fm})$	$r_{0}(\mathrm{fm})$
Unitarity				
Well	1.2337	1.0000	$\sim-10^{5}$	1.0
mPT	1.0000	2.0000	$\sim 10^{9}$	1.0
Gaussian	1.3420	1.4349	$\sim-10^{5}$	1.0

Results

- $a>0$

Potential	v	$\mu\left(\mathrm{fm}^{-1}\right)$	$a(\mathrm{fm})$	$r_{0}(\mathrm{fm})$
Deuteron				
Well	1.2337	1.0000	$\sim-10^{5}$	1.0
mPT	1.0000	2.0000	$\sim 10^{9}$	1.0
Gaussian	1.3420	1.4349	$\sim-10^{5}$	1.0

Results

- Scattering length as a function of the strength of the attractive potential

Conclusions

- We presented quantum scattering theory fundamentals focusing on the low-energy limit
- In this context, we introduced two significant quantities: the scattering length and the effective range
- To illustrate how these two parameters behave in a concrete example, we derived analytical expressions for both in the case of the spherical well
- We also showed how the energy of a bound state could be calculated using zero- and finite-range expressions applied to a ${ }^{4} \mathrm{He}$ dimer and the deuteron
- We described a numerical procedure that can be used to compute the scattering length and effective range of any spherically symmetric finite-ranged two-body potential
- Examples: spherical well, modified Pöschl-Teller, Gaussian, and Lennard-Jones potentials
- Now, you can extend what you learned to your choice of physical systems, and apply the method to other potentials

