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Motivation

Scattering processes are a fundamental way of experimentally probing distributions and
properties of systems in several areas of physics

Can you name a few examples?
Low-energy quantum scattering theory

What is low-energy?
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Introduction

What is scattering?
Scattering is the interaction of an object with a
scattering center

classical particle

electromagnetic
wave

quantum particle

scattering potential

Classical view

Griffiths
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Introduction

Quantum view
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Quantum scattering theory
Hypotheses

1 Elastic scattering
2 Incident plane wave eik·r

3 Local and finite-ranged potential

ψk(r)
large r−−−→ N

[
eik·r +

eikr

r
f (k′,k)

]

Formally, in quantum mechanics, a scattering process is described as a transition from one
quantum state to another

|i⟩ → |f ⟩
Assume |i⟩ to be a plane wave |k⟩, that is, a free particle

H0|i⟩ = Ei|i⟩ =
ℏ2k2

2m
|k⟩

Scattering is taken into account by introducing a potential V(r)

H = H0 + V(r)
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Quantum scattering theory

Quantization of the scattering states

⟨r|k⟩ = N eik·r =
eik·r

L3/2

We must take L → ∞ to guarantee the continuum character of the state at the end of our
calculations
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Quantum scattering theory

More hypotheses
1 Elastic scattering
2 Incident plane wave in the z direction: eikz

3 Local, finite-ranged and spherically-symmetric potential V(r)

ψk(r, θ)
large r−−−→ N

[
eikz +

eikr

r
f (θ)

]
The finite range of the potential (and spherical symmetry) invite us to solve the Schrödinger
equation for V(0 < r < R) ̸= 0 and V(r > R) = 0

− ℏ2

2m
∇2ψ + V(r)ψ = Eψ
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Spherical coordinates
Due to the spherical symmetry of V(r), it is convenient to employ spherical coordinates(

− ℏ2

2m
1
r2
∂

∂r

(
r2 ∂

∂r

)
+

L2

2mr2 + V(r)
)
ψ(r, θ, ϕ) = Eψ(r, θ, ϕ)

L is the angular momentum operator

L2 = −ℏ2
(

1
sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂ϕ2

)
Its z-component is given by

Lz = −iℏ
∂

∂ϕ

Construct a complete set of eigenfunctions related to H,L2, and Lz

Hψ(r, θ, ϕ) = Eψ(r, θ, ϕ),

L2ψ(r, θ, ϕ) = l(l + 1)ℏ2ψ(r, θ, ϕ),

Lzψ(r, θ, ϕ) = mℏψ(r, θ, ϕ)
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Spherical coordinates

We propose a separable solution of the form

ψ(r, θ, ϕ) = Al(r)Ym
l (θ, ϕ)

To avoid taking the first radial derivative of Al(r), we define the “reduced” radial solution
ul(r) = rAl(r) (

d2

dr2 + k2 − U(r)− l(l + 1)
r2

)
ul(r) = 0

k2 = 2mE/ℏ2

U(r) = 2mV(r)/ℏ2

l(l + 1) is the “separation constant”
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Solution for r > R

Outside the potential range R, we must solve(
d2

dr2 + k2 −���*
0

U(r) − l(l + 1)
r2

)
ul(r) = 0

The solution for r > R can be written in terms of the spherical Bessel functions jl(x) and nl(x)

ul(r) = c′lrjl(kr) + c′′l rnl(kr)

j0(x) =
sin(x)

x

j1(x) =
sin(x)

x2 − cos(x)
x

j2(x) =
3 sin(x)

x3 − 3 cos(x)
x2 − sin(x)

x

n0(x) = − cos(x)
x

n1(x) = − cos(x)
x2 − sin(x)

x

n2(x) = − 3 cos(x)
x3 − 3 sin(x)

x2 + cos(x)
x
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Spherical Bessel functions
j0(x) =

sin(x)
x

j1(x) =
sin(x)

x2 − cos(x)
x

j2(x) =
3 sin(x)

x3 − 3 cos(x)
x2 − sin(x)

x

n0(x) = − cos(x)
x

n1(x) = − cos(x)
x2 − sin(x)

x

n2(x) = −3 cos(x)
x3 − 3 sin(x)

x2 + cos(x)
x
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Spherical Hankel functions
jl(x) and nl(x) are generalized sines and cosines
It is more convenient to write the solution in terms of eikx/x to represent “incoming” or
“outgoing” spherical waves
Similarly to eix = cos(x) + i sin(x), we define the spherical Hankel functions as

h(1)l (x) = jl(x) + inl(x)

h(2)l (x) = jl(x)− inl(x)

h(1)
0 (x) = − ieix

x

h(1)
1 (x) = −eix x+i

x2

h(1)
2 (x) = i eix x2+3ix−3

x3

h(2)
0 (x) = ie−ix

x

h(2)
1 (x) = −e−ix x−i

x2

h(2)
2 (x) = −i e−ix x2−3ix−3

x3

The solution for ul(r) can be written as

ul(r) = c(1)l rh(1)l (kr) + c(2)l rh(2)l (kr)

An introduction to low-energy scattering in quantum mechanics Lucas Madeira 13 / 90



Free particle solution

The free particle solution in cartesian coordinates is a plane wave eikz

In spherical coordinates, eikz = eikr cos θ contains all possible values of l. This can be
expressed with Rayleigh’s formula:

eikr cos θ =

∞∑
l=0

il(2l + 1)jl(kr)Pl(cos θ)

Note that only jl appears. Physically, this is due to the divergence of nl(kr) at r = 0.

In terms of the spherical Hankel functions,

jl(x) =
h(1)l (x) + h(2)l (x)

2
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Asymptotic behavior

Let us analyze the asymptotic behavior, that is, when r → ∞

h(1)l (x)
large x−−−→ (−i)l+1 eix

x
,

h(2)l (x)
large x−−−→ il+1 e−ix

x
.

The free-particle solution at r → ∞ is

eikr cos θ large r−−−→
∞∑

l=0

(2l + 1)
2ikr

[
eikr − (−1)le−ikr]Pl(cos θ).

The first term inside the square brackets represents an outgoing spherical wave, while the
second is related to an incoming spherical wave.
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Asymptotic behavior
Motivated by the expansion for eikr cos θ, we write the scattered solution for every r > R as

ψ(r, θ) = N
∞∑

l=0

il(2l + 1)
ul(r)

r
Pl(cos θ)

And the asymptotic behavior

ψ(r, θ)
large r−−−→ N

∞∑
l=0

(2l + 1)
ikr

[
c(1)l eikr − (−1)lc(2)l e−ikr

]
Pl(cos θ) (∗)

Let us compare with

eikr cos θ large r−−−→
∞∑

l=0

(2l + 1)
2ikr

[
eikr − (−1)le−ikr]Pl(cos θ) (∗∗)

(∗∗) describes the asymptotic behavior of the wave function for a plane wave without being
scattered, while (∗) does the same, but in a situation where scattering could have taken place.
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Phase shift

We introduce a new quantity related to the ratio between the constants

c(1)l

c(2)l

= Sl(k) = e2iδl(k)

Expressing the asymptotic wave function in terms of the phase shift

ψ(r, θ)
large r−−−→ N

∞∑
l=0

(2l + 1)
ikr

c(2)l

[
e2iδleikr − (−1)le−ikr

]
Pl(cos θ)

Now we have everything we need to connect with the asymptotic wave function obtained
before we restricted to spherically-symmetric potentials
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Phase shift

We know that

ψk(r, θ)
large r−−−→ N

[
eikz +

eikr

r
f (θ)

]
Expanding eikz

ψk(r, θ)
large r−−−→ N

{[ ∞∑
l=0

(2l + 1)
2ikr

(
eikr − (−1)le−ikr)× Pl(cos θ)

]
+ f (θ)

eikr

r

}

Comparing with

ψ(r, θ)
large r−−−→ N

∞∑
l=0

(2l + 1)
ikr

c(2)l

[
e2iδleikr − (−1)le−ikr

]
Pl(cos θ)
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Phase shift

Collecting the terms with eikr allows us to write the scattering amplitude as a function of the
phase shift

f (θ) =
∞∑

l=0

(2l + 1)
(e2iδl − 1)

2ik
Pl(cos θ)

The factor (e2iδl − 1)/2ik is referred to as the partial wave amplitude fl(k), which may be
rewritten as

fl(k) =
e2iδl − 1

2ik
=

eiδl sin δl

k
=

1
k cot δl − ik

In terms of Sl(k)
Sl(k) = 1 + 2ikfl(k) = e2iδl(k)
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Physical meaning of the phase shift

δl(k) is the difference between the phases of the incident and the scattered function
The probability is conserved during the scattering

The only thing that can change is the phase of the wave function
If V = 0: free particle

δl(k) = 0, fl(k) = 0
If V ̸= 0: solution for r < R depends on the details of V

but for r > R we have a free particle with a “shifted” phase

Defining the phase shift allows us to reduce the scattering problem to calculate a single
quantity, δl(k)
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Physical meaning of the phase shift
g0(r) is the free-particle solution
u0(r) is the solution in the presence of a scattering potential

A repulsive potential (V > 0) “pushes” the particle away
An attractive potential (V < 0) “pulls” the particle towards the origin
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Computing the phase shift

Logarithmic derivative
d
dx

ln f (x) =
f ′(x)
f (x)

.

To compute the phase shift, we define the dimensionless ratio r × u′(r)/u(r)

βl =

[
r

u′l(r)
ul(r)

]
r=R−

R± ≡ limϵ→0 R ± ϵ

The radial solution at r > R is

ul(r) =
1
2

re2iδlh(1)l (kr) +
1
2

rh(2)l (kr) = reiδl(cos δljl(kr)− sin δlnl(kr))
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Computing the phase shift

Equating βl with the outside log solution (at r = R+):

βl =

[
r

u′l(r)
ul(r)

]
r=R+

= 1 + kR
[
cos δlj′l(kR)− sin δln′l(kR)
cos δljl(kR)− sin δlnl(kR)

]
,

After some algebra, we arrive at an expression for the phase shift

cot δl(k) =
kR n′l(kR)− (βl − 1) nl(kR)
kR j′l(kR)− (βl − 1) jl(kR)
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Low-energy limit
From the radial equation for any partial wave l(

d2

dr2 + k2 − U(r)− l(l + 1)
r2

)
ul(r) = 0

We define an effective potential for the l-th partial wave as

Veff(r) = V(r) +
ℏ2

2m
l(l + 1)

r2

For l ̸= 0, we a have repulsive centrifugal barrier
If the reduced wavelength λ̄ = λ/2π = 1/k of the incident wave is much larger than the
potential range, that is λ̄≫ R or kR ≪ 1, then the particle cannot overcome the centrifugal
barrier
In this case, the partial waves with l > 0 are unimportant, and the l = 0 component is
dominant in understanding low-energy scattering
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s-wave scattering

In the low-energy scenario, we consider partial waves with l ̸= 0 to vanish, and the resulting
l = 0 term is referred to as “s-wave”

The s-wave radial component, which we denote by u(k ̸=0)
0 (r), is given by

A(k ̸=0)
0 (r) =

u(k ̸=0)
0

r
= eiδ0(cos δ0j0(kr)− sin δ0n0(kr))

= eiδ0

[
1
kr

sin(kr + δ0)

]
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s-wave scattering
We can also solve the zero-energy Schrödinger’s equation, that is k = 0, at r > R: d2

dr2 +�
�7

0
k2 −���*

0
U(r) −

�
�
�
�>

0
l(l + 1)

r2

 u(k=0)
0 (r) = 0

We simply have u′′(k=0)
0 (r) = 0

The solution can be written as u(k=0)
0 (r) = c(r − a)

Its logarithmic derivative is

r
u′(k=0)

0 (r)

u(k=0)
0 (r)

=
r

r − a
.

This needs to be equal to the log derivative of u(k ̸=0)
0 (r)

kr cot(kr + δ0) =
r

r − a
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Scattering length

In the limit k → 0, and also setting r = 0, we define the scattering length a

lim
k→0

k cot δ0(k) = −1
a

We reduced the scattering problem to calculating δl(k). Now we reduced the problem even
further: in the E ≈ 0 limit, a encodes all the information we need about scattering.

Geometrical interpretation: choose c = −1/a in

u(k=0)
0 (r) = 1 − r

a

a is simply the intercept of the outside wave function with the x-axis

An introduction to low-energy scattering in quantum mechanics Lucas Madeira 27 / 90



An introduction to low-energy scattering in quantum mechanics Lucas Madeira 28 / 90



The effective range

Another name for the scattering length expansion is the zero-range expansion

What happens if the range of the potential is small, but non-negligible?

We need the next term of the expansion in powers of k of k cot δ0(k) = −1/a

k cot δ0(k) is an even function, thus the next term is certainly not linear in k

The result is
k cot δ0(k) = −1

a
+

1
2

r0k2 +O(k4)
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The effective range
Consider a different normalization for u0(r > R)

u0(r > R) = cot δ0(k) sin(kr) + cos(kr)

Let us take the l = 0 radial equation, for two different wave functions uk1(r) and uk2(r),
labeled by their wave vectors k1 =

√
2mE1/ℏ and k2 =

√
2mE2/ℏ,

u′′k1
(r)− U(r)uk1(r) + k2

1uk1(r) = 0,

u′′k2
(r)− U(r)uk2(r) + k2

2uk2(r) = 0.

Next, we multiply the first equation by uk2 and the second by uk1 and take their difference,

u′′k1
(r)uk2(r)− uk1(r)u

′′
k2
(r) = (k2

2 − k2
1)uk1(r)uk2(r).

We may write the LHS as

u′′k1
(r)uk2(r)− uk1(r)u

′′
k2
(r) =

d
dr

[
u′k1

(r)uk2(r)− u′k2
(r)uk1(r)

]
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The effective range

Now we integrate from 0 to R,

[
u′k2

(r)uk1(r)− u′k1
(r)uk2(r)

]R
0 = (k2

2 − k2
1)

∫ R

0
dr uk1(r)uk2(r)

The integral converges since A0(r) = u0(r)/r is finite at the origin (u0(0) = 0 independently
of the energy).

Next, we repeat the same procedure for the free-particle (V = 0) radial equation with
solutions denoted by gk1(r) and gk2(r). The result is the same if we replace u by g

The free-particle solution is also given by

g(r) = cot δ0(k) sin(kr) + cos(kr)

Note that we do not require g(0) = 0
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The effective range

Finally, we take the difference between the results[
g′k2

(r)gk1(r)− g′k1
(r)gk2(r)

]R
0 −

[
u′k2

(r)uk1(r)− u′k1
(r)uk2(r)

]R
0 =

(k2
2 − k2

1)

∫ R

0
dr [gk1(r)gk2(r)− uk1(r)uk2(r)]

The radial solution, u0(r)/r, is finite at r = 0, thus u0(0) = 0.

g(r) and u(r > R) are equal for r ≥ R

Then we are left with

g′k2
(0)gk1(0)− g′k1

(0)gk2(0) = (k2
2 − k2

1)

∫ R

0
dr [gk1(r)gk2(r)− uk1(r)uk2(r)]
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The effective range

Using g(r) = cot δ0(k) sin(kr) + cos(kr) in the RHS

k2 cot δ0(k2)− k1 cot δ0(k1) = (k2
2 − k2

1)

∫ R

0
dr [gk1(r)gk2(r)− uk1(r)uk2(r)]

If we take the limit k1 → 0, we can write k1 cot δ0(k1) in terms of the scattering length

k cot δ0(k) = −1
a
+ k2

∫ R

0
dr [g0(r)gk(r)− u0(r)uk(r)]

We define the next term r0/2 as

r0 ≡ lim
k→0

ρ(k) = 2
∫ R

0
dr [g2

0(r)− u2
0(r)]

r0 is called effective range

An introduction to low-energy scattering in quantum mechanics Lucas Madeira 33 / 90



Shape-independent approximation

The resultant expression is the shape-independent approximation

k cot δ0(k) = −1
a
+

1
2

r0k2 +O(k4)

We are describing the phase shift δ0(k) without taking into account the microscopic
parameters of the scattering potential
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Bound states

Let us rewrite the scattered wave function at r → ∞ as

ψ(r, θ)
large r−−−→ 1

(2π)3/2

∞∑
l=0

(2l + 1)
2ik

Pl(cos θ)

[
Sl(k)

eikr

r
− e−i(kr−lπ)

r

]

For l = 0 and large distances, the radial wave function is proportional to

S0(k)
eikr

r
− e−ikr

r
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Bound states

For an arbitrary finite-ranged potential V , the radial solution at r > R for a bound state
(E < 0) obeys

u′′(r) = −2mE
ℏ2 u(r) = κ2u(r), κ ≡

√
−2mE
ℏ

The solution can be written as

u(r > R) =���:0
Aeκr + Be−κr

We conclude that the radial function for a bound state at large distances is

A(r) =
u(r)

r
∝ e−κr

r
(large r).
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Bound states

Scattered solution

S0(k)
eikr

r
− e−ikr

r

Bound state solution

e−κr

r
By substituting k → iκ, with k purely imaginary, we can connect the bound state with the
scattered solution

eikr

r
=

ei(iκ)r

r
=

e−κr

r
S0(k) controls the ratio of the outgoing to the incoming wave

In the bound state case, we have only the outgoing spherical wave, thus S0(k) → ∞
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Bound states
Sl(k) = 1 + 2ikfl(k) = e2iδl(k) is a complex function
S0(k) → ∞ by substituting k → iκ means it has a pole at k = iκ
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Bound states
In terms of the s-wave scattering amplitude f0(k)

f0(k) =
1

k cot δ0 − ik
=

1
−1/a − ik

We write S0(k) as

S0(k) = 1 + 2ikf0(k) =
−k − i/a
k − i/a

This expression has a pole at k = iκ if we identify

κ =
1
a

In the zero-energy limit, the energy of a bound state and the scattering length are connected
simply by

E =
ℏ2k2

2m
= −ℏ2κ2

2m
= − ℏ2

2ma2

A single parameter originated from the potential determines the bound-state energy
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Two-body scattering

So far, we considered only the problem of a single particle being scattered by a finite-ranged
potential V(r) located at r = 0.

With a few modifications, we can use the results we obtained to describe two particles
interacting through a pairwise potential which depends only on their spatial separation r

The Hamiltonian of a two-body system is separable in the center of mass (CM) and relative
coordinates

H = − ℏ2

2m1
∇2

r1
− ℏ2

2m2
∇2

r2
+ V(r1 − r2)
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Two-body scattering

We define the CM and relative coordinates

R =
m1r1 + m2r2

M
and r = r1 − r2

H is now separable

H = HCM + Hr,

HCM = − ℏ2

2M
∇2

R,

Hr = − ℏ2

2mr
∇2

r + V(r)

mr = m1m2/(m1 + m2) is the reduced mass
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Applications

1 Spherically symmetric finite well
Analytical calculation of the s-wave scattering wave function

1 Scattering states (E > 0)
2 Bound states (E < 0)

Calculation of the scattering length and effective range
2 Zero-range and finite-range approximations

Estimating bound state energies using the scattering length and effective range expansions
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Spherically-symmetric finite well

One way of defining the spherical well is

Vsw(r) =

{
−V0 for r < R,

0 for r > R.

V0 has units of [energy]

It will be clear in the numerical section that it is useful to redefine the potential as

V(r) =

−v0
ℏ2

mrR2 for r < R,

0 for r > R.

v0 is a dimensionless parameter related to the depth

R is the potential range
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Spherically-symmetric finite well (E > 0)

Potential

V(r) =

−v0
ℏ2

mrR2 for r < R,

0 for r > R.

E > 0 case (
d2

dr2 − 2mr

ℏ2 V(r) +
2mr

ℏ2 E
)

u(r) = 0

→ Explicit forms for r < R and r > R

u′′(r) +
(
k2

0 + k2) u(r) = 0 for r < R,

u′′(r) + k2u(r) = 0 for r > R,

→ k2 ≡ 2mrE/ℏ2 and k2
0 ≡ 2v0/R2

An introduction to low-energy scattering in quantum mechanics Lucas Madeira 44 / 90



Spherically-symmetric finite well (E > 0)

→ If r < R

u(r) = A sin

(√
k2 + k2

0 r
)
+ B cos

(√
k2 + k2

0 r
)

Since u0(0) = 0, we set B = 0

→ If r < R
u0(r) = cot δ0(k) sin(kr) + cos(kr)

→ Hence, the solution is of the form

u(r) =

A sin
(√

k2 + k2
0 r
)

for r < R,

cot δ0(k) sin(kr) + cos(kr) for r > R.
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Spherically-symmetric finite well (E > 0)
Logarithmic derivative at r = R− and r = R+[

r
u′(r)
u(r)

]
r=R−

=

[
r

u′(r)
u(r)

]
r=R+

√
k2 + k2

0 cos
(√

k2 + k2
0 R
)

sin
(√

k2 + k2
0 R
) =

k cot δ0(k) cos(kR)− k sin(kR)
cot δ0(k) sin(kR) + cos(kR)

Solving for the phase shift δ0(k) without any approximation

δ0(k) = −kR + arctan

k tan
(√

k2 + k2
0 R
)

√
k2 + k2

0
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Spherically-symmetric finite well (E > 0)
Scattering length

To calculate the scattering length a, we need to take the k → 0 limit
Rearrange the log derivative so that we collect factors of k cot δ0(k)
Keep track of the orders employed in the approximation

cos(kR) = 1 +O(k2)

sin(kR) = kR +O(k3)

Repeating last slides’ equation:√
k2 + k2

0 cos
(√

k2 + k2
0 R
)

sin
(√

k2 + k2
0 R
) =

k cot δ0(k) cos(kR)− k sin(kR)
cot δ0(k) sin(kR) + cos(kR)

Taking the k → 0 limit: √
k2

0 cot

(√
k2

0 R
)

=
−1/a

−R/a + 1
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Spherically-symmetric finite well (E > 0)
Solving for a:

a = R −
tan

(√
k2

0R
)

√
k2

0

The result is:

a = R −
tan

(√
k2

0R
)

√
k2

0

= R

(
1 −

tan
(√

2v0
)

√
2v0

)

It is clear that a depends only on the parameters of the potential, its depth v0 and range R
Note that tan(x) → ∞ for x = π

2 + nπ, n = 0,±1,±2, ...
So the first divergence (n = 0) of a appears at

v0 =
π2

8
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Spherically-symmetric finite well (E < 0)
E < 0 case
Repeat the same procedure or k = iκ → E = ℏ2k2/2mr = −ℏ2κ2/2mr(

d2

dr2 − 2mr

ℏ2 V(r)− 2mr

ℏ2 |E|
)

u(r) = 0

Solution for u(r)

u(r) =

A′ sin
(√

k2
0 − κ2 r

)
for r < R,

B′e−κr for r > R

Match the logarithmic derivatives at r = R,√
k2

0 − κ2 cos
(√

k2
0 − κ2 R

)
sin
(√

k2
0 − κ2 R

) =
−κe−κR

e−κR
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Spherically-symmetric finite well (E < 0)

After some manipulations,

tan

(√
k2

0 − κ2 R
)
+

√
k2

0 − κ2

κ
= 0

This is a transcendental equation that shows where the bound-state energies are located

Note that the term
√

k2
0 − κ2/κ is always positive

tan
(√

k2
0 − κ2 R

)
must be negative if we want the equation to have solution(s). That is to

say:
π

2
+ nπ <

√
k2

0 − κ2 R < π + nπ, n = 0, 1, 2, ...
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Spherically-symmetric finite well (E < 0)

The first bound state is n = 0. Thus

π

2R
<
√

k2
0 − κ2 <

π

R

k0 >
√

k2
0 − κ2

Since k0 =
√

2v0/R, we have

v0 >
π2

8
This result shows that there are no bound states if v0 is not above a certain threshold value

This is the same threshold value that makes |a| → ∞
The conclusion is that the scattering length diverges when a bound state appears
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Spherically-symmetric well - bound states and scattering length

a = R

(
1 −

tan
(√

2v0
)

√
2v0

)

a diverges for:√
2v0 = π/2 + nπ (n = 0, 1, 2, ...)

This coincides with the location of the
bound states
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Spherically-symmetric finite well - effective range

First, we need to determine the normalization constant of the scattering solution

u(r) =

A sin
(√

k2 + k2
0 r
)

for r < R,

cot δ0(k) sin(kr) + cos(kr) for r > R

To determine the constant A, we impose the continuity of u(r) at r = R

A =
cot δ0(k) sin(kR) + cos(kR)

sin
(√

k2 + k2
0R
)
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Spherically-symmetric finite well - effective range

The normalized solution is written as

u(r) =


cot δ0(k) sin(kR)+cos(kR)

sin(
√

k2+k2
0R)

sin
(√

k2 + k2
0 r
)

for r < R,

cot δ0(k) sin(kr) + cos(kr) for r > R.

The effective range is defined in the k → 0 limit of u(r):

lim
k→0

u(r) =

{
(1−R/a)
sin(k0R) sin(k0r) for r < R,

1 − r/a for r > R.
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Spherically-symmetric finite well - effective range

The effective range is given by the integral

r0 = 2
∫ R

0
dr

[(
1 − r

a

)2
−
(

1 − R
a

)2 sin2(k0r)
sin2(k0R)

]

Replacing a in favor of R and k0:

r0 = R

(
1 − 1

3

(
k0R

tan(k0R)− k0R

)2

+
1

k0R tan(k0R)− (k0R)2

)

This shows that r0 also depends only on parameters of the potential
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Spherically-symmetric finite well - effective range

r0 = R

(
1 − 1

3

(
k0R

tan(k0R)− k0R

)2

+

1
k0R tan(k0R)− (k0R)2

)
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Applications

1 Spherically symmetric finite well
Analytical calculation of the s-wave scattering wave function

1 Scattering states (E > 0)
2 Bound states (E < 0)

Calculation of the scattering length and effective range
2 Zero-range and finite-range approximations

Estimating bound state energies using the scattering length and effective range expansions
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Zero-range and finite-range approximations
The equation derived in the bound states slide allows us to estimate the bound state energy
with the zero-range approximation κ = 1/a,

Ezr = −ℏ2κ2

2mr
= − ℏ2

2mra2

To take the effective range into account, we write the s-wave scattering amplitude as

f0(k) =
1

k cot δ0(k)− ik
=

1
−1/a + r0k2/2 − ik

And S0(k) as

S0(k) = 1 + 2ikf0(k) =
−i/a − k + ir0k2/2
−i/a + k + ir0k2/2

Making k → iκ

S0(k) =
−1/a − κ− r0κ

2/2
−1/a + κ− r0κ2/2
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Zero-range and finite-range approximations

Now we can identify the bound state as pole in the S-matrix by solving

−1/a + κ− r0κ
2/2 = 0

which yields the solution

κ =
1
r0

(
1 ∓

√
1 − 2r0

a

)
Now choosing the appropriate root to compute the bound state energy

Efr = −ℏ2κ2

2mr
= − ℏ2

2mrr2
0

(
1 −

√
1 − 2r0

a

)2
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Zero-range and finite-range approximations

Example: Helium dimer
Ed = −1.62 mK (found solving the full Schrödinger equation), a = 90.4 Å, r0 = 8.0 Å

→ Zero-range approximation

Ezr

kb
= − ℏ2

kb × 2mra2 = −1.48 mK (92%)

→ Finite-range approximation

Efr

kb
= − ℏ2

kb × 2mrr2
0

(
1 −

√
1 − 2r0

a

)2

= −1.63 mK (101%)

Both the zero- and finite-range results successfully describe the physical system because
kR ∼ 0.1
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Zero-range and finite-range approximations
Example: Deuteron

Edc2 = −2.224 MeV, a = 5.4112 fm, r0 = 1.7436 fm.
→ Zero-range approximation

Ezrc2 = − ℏ2c2

2mra2 = −1.416 MeV (64%)

→ Finite-range approximation

Efrc2 = − ℏ2c2

2mrr2
0

(
1 −

√
1 − 2r0

a

)2

= −2.223 MeV (100%)

The range of the potential needed to be taken into account because kR ∼ 0.4
We should emphasize that the scales are very different in both examples
4He dimer: spatial scale of Å (10−10 m) and the energy is of the order of 10−7 eV
Deuteron: the lengths are in the femtometer (10−15 m) scale, while the energy is of a few
MeV (106 eV)
This exemplifies how universal are these low-energy scattering results
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Numerical Procedure

Analytical expressions for the low-energy scattering parameters are only available for a few
potentials

Even in those cases, the calculations may be cumbersome, as we saw for the spherical well

In general, we need to calculate a and r0 numerically
We will describe two methods to solve the Schrödinger equation numerically

1 Second-order central difference
2 Numerov’s method
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Numerical Procedure

We wish to compute the quantities a and r0

To do so, we need to compute the radial solution inside and outside the potential range
u0(r < R): needs to be computed numerically
u0(r > R) = 1 − r/a
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Second-order central difference
Consider the function u(r) on a discrete set of points ri = i∆r, i = 0, 1, 2...,N and ∆r ≪ 1
Let us take two Taylor expansions of u(r) around the points r ±∆r

u(r +∆r) = u(r) + (∆r)u′(r) +
(∆r)2

2
u′′(r) +

(∆r)3

6
u′′′(r) + · · · ,

u(r −∆r) = u(r)− (∆r)u′(r) +
(∆r)2

2
u′′(r)− (∆r)3

6
u′′′(r) + · · ·

The difference of the two Taylor expansions yields an expression for the first derivative, while
their sum results in the second derivative

du
dr

∣∣∣∣
r=ri

=
ui+1 − ui−1

2∆r
+O[(∆r)3]

d2u
dr2

∣∣∣∣
r=ri

=
ui+1 − 2ui + ui−1

(∆r)2 +O[(∆r)4]
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Second-order central difference

We want to solve the zero-energy Schrödinger equation inside the potential range(
d2

dr2 − 2mr

ℏ2 V(r)
)

u(k=0)
0 (r) = 0

d2u
dr2

∣∣∣∣
r=ri

≈ ui+1 − 2ui + ui−1

(∆r)2

Substituting the central difference second derivative into u′′(r)

ui+1 = 2ui − ui−1 +
2mr(∆r)2

ℏ2 V(ri)ui
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Second-order central difference

ui+1 = 2ui − ui−1 +
2mr(∆r)2

ℏ2 V(ri)ui

If we know the value of the radial solution for two consecutive points, ri−1 and ri, we can
calculate the value for the next point ui+1

→ u(0) = 0
→ u(∆r) = 1

This choice allows us to find a solution without worrying about the normalization
Algorithm:

1 Set u0 = 0, u1 = 1, and i = 1
2 Compute ui+1
3 If ri ⩾ R +∆r, stop. Else, increment i by one
4 Go to step 2
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Numerov’s method

The second-order central difference is one possible discretization for a numerical second
derivative

There are other alternatives if we want to improve the precision of our algorithm

Numerov’s method is a numerical technique capable of solving differential equations of
second order when the first-order term is not present:

d2y
dx2 = −ξ(x)y(x) + s(x)

The s-wave zero-energy radial equation is of this form, with y → u, x → r, s = 0, and

ξ(r) = −2mr

ℏ2 V(r)

An introduction to low-energy scattering in quantum mechanics Lucas Madeira 67 / 90



Numerov’s method

The method provides a solution of the form

yi+1 =
1(

1 + (∆x)2

12 ξi+1

){2yi

(
1 − 5(∆x)2

12
ξi

)
− yi−1

(
1 +

(∆x)2

12
ξi−1

)

+
(∆x)2

12
(si+1 + 10si + si−1)

}
+O[(∆x)6]

The algorithm is mostly unchanged if we use Numerov’s method instead of the second-order
central difference
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Dimensionless quantities

Schrödinger’s equation contains relatively small quantities
→ ℏ ∼ 10−34 J s (or ∼ 10−15 eV s)
→ Typical masses, length, and energy scales are also small

We wish to make Schrödinger’s equation dimensionless

Instead of this (
−1

2
d2

dr2 − mr

ℏ2 E +
mr

ℏ2 V(r)
)

u0(r) = 0

we want to solve this (
−1

2
d2

dr̄2 − Ē + V̄(r̄)
)

ū(r̄) = 0

“ℏ = mr = 1”
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Dimensionless quantities

First, we choose a length scale ℓ
→ The convenient value of ℓ depends on the system under study; for atomic physics, it may be 1 Å;

for nuclear physics, we may use 1 fm or any other length scale that makes sense for a particular
problem

Then the dimensionless scaled distance is

r̄ =
r
ℓ

The radial function u(r) has units of [length]−1/2 (remember that
∫

dr|u(r)|2 = 1)

ū(r̄) =
u(r)
ℓ−1/2
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Dimensionless quantities
The second derivative becomes

d2

dr2 =
1
ℓ2

d2

dr̄2

Going back to the equation:

− ℏ2

2mrℓ2
d2ū
dr̄2 + V(r̄)ū = Eū

We can also define an energy scale
ϵ =

ℏ2

mrℓ2

And now we define the dimensionless energy and potential

Ē =
E
ϵ
, V̄ =

V
ϵ

Finally

−1
2

d2ū
dr̄2 + V̄(r̄)ū = Ēū
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Scattering length and effective range
After following the numerical solution for u0(r), we’re ready to compute the scattering length
and the effective range
Scattering length
→ We recall that logarithmic derivative of the wave function outside the potential range is given by

g′0(r)
g0(r)

∣∣∣∣
r=R+

=
1

R − a

→ This should be equal to the logarithmic derivative of u0(r) at r = R−

g′0(r)
g0(r)

∣∣∣∣
r=R+

=
1

R − a
=

u′0(r)
u0(r)

∣∣∣∣
r=R−

→ We already have u(R) and u(R ±∆r). Thus the derivative may be computed as

u′num(R) =
du(r)

dr

∣∣∣∣
r=R

=
u(R +∆r)− u(R −∆r)

2∆r
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Scattering length and effective range
Scattering length
→ Now solving for a

a = R − 2∆r u(R)
u(R +∆r)− u(R −∆r)

→ This expression depends on the ratio of the radial solution, so we ignored the normalization
Effective range
→ On the other hand, the effective range assumes a particular normalization choice
→ We multiply u(r) by a constant C such that

C =
g(R)
u(R)

=
(1 − R/a)

u(R)

→ The effective range is found by computing the integral

r0 = 2
∫ R

0
dr [g2

0(r)− u2
0(r)]
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Numerical integration
The task is essentially to compute numerically an integral of the form

I =
∫ xN

x1

f (x)dx

f (x) is known only at a discrete set of equally spaced points, f (xi) ≡ fi, where
i = 1, 2, 3, ...,N.
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Numerical integration

Trapezoidal rule: ∫ x2

x1

f (x)dx = h
[

1
2

f1 +
1
2

f2

]
+O(h3f ′′)

Using it N − 1 times for the intervals: (x1, x2), (x2, x3), · · · , (xN−1, xN)∫ xN

x1

f (x)dx = h
[

1
2

f1 + f2 + f3 + · · ·+ fN−1 +
1
2

fN

]
+O

(
(xN − x1)

3f ′′

N2

)
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Numerical integration

Simpson’s rule: ∫ x3

x1

f (x)dx = h
[

1
3

f1 +
4
3

f2 +
1
3

f3

]
+O(h5f (4))

Repeatedly:∫ xN

x1

f (x)dx = h
[

1
3

f1 +
4
3

f2 +
2
3

f3 +
4
3

f4 + · · ·+ 2
3

fN−2 +
4
3

fN−1 +
1
3

fN

]
+O

(
(xN − x1)

5f (4)

N4

)
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Examples
We chose four potentials to illustrate the numerical procedure
→ Spherical well
→ Modified Pöschl-Teller
→ Gaussian
→ Lennard-Jones
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Potentials - Spherical well

→ To make the comparison with other potentials easier, we redefine

Vsw(r) =

−vsw
ℏ2µ2

sw

mr
, for r < R,

0, for r > R,

vsw is a dimensionless parameter related to the depth

µsw = 1/R

→ As we saw, ϵ = ℏ2

mrℓ2 makes Schrödinger’s equation dimensionless

→ We can compare our numerical solutions with the analytical ones to check the correctness of
the program
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Potentials - Modified Pöschl-Teller (mPT)

VPT(r) = −vPT
ℏ2

mr

µ2
PT

cosh2(µPTr)

Very difficult analytical solution for the eigenfunctions
There is an analytical expression for a in terms of the parameters of the potential

aµPT =
π

2
cot

(
πλ

2

)
+ γ +Ψ(λ),

vPT = λ(λ− 1)/2, γ is the Euler-Mascheroni constant and Ψ is the digamma function
The |a| → ∞ case corresponds to λ = 2 (cot(π) diverges) or λ = −1 (Ψ(−1) diverges), that
is, vPT = 1
For this particular case (|a| → ∞), the s-wave zero-energy radial function takes a relatively
simple form

u0(r) =
tanh(µPT r)
tanh(µPT R)
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Potentials - mPT

We can also calculate the effective range by performing the integral. In this case (|a| → ∞),
g0(r) = 1 − r/a = 1, so that

r0 = 2
∫ R

0
dr

[
1 − tanh2(µPTr)

tanh2(µPTR)

]
= 2

[
R − R

tanh2(µPTR)
+

1
µPT tanh(µPTR)

]
Since 1/µPT ∼ R and the tanh(x) function converges rapidly to 1 as we increase x, we may
set tanh(µPTR) = 1. Thus we have that r0 = 2/µPT for vPT = 1
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Potentials

Spherical well

Modified Pöschl-Teller

VPT(r) = −vPT
ℏ2

mr

µ2
PT

cosh2(µPTr)

Gaussian

Vg(r) = −vg
ℏ2

mr
µ2

ge−r2µ2
g

The potential range R is not well defined for the mPT and the gaussian potentials
→ Look for a value of R such that the potential is negligible |V(R)| ⩽ ε
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Potentials

Lennard-Jones

VLJ(r) =
ℏ2

mr

[
C12

r12 − C6

r6

]

Note that VLJ(0) diverges and V(∆r) is very large
We can safely set the boundary condition u(0) = 0 but computing u(∆r) may lead to instabilities
Define a range 0 ⩽ r < rmin where u(r) = 0 and start the integration at r = rmin
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Tuning the parameters

The four potentials we presented have two parameters.
Spherical well, mPT, Gaussian are purely attractive

one parameter is associated with the depth of the potential (vsw, vPT, and vg)
and another with its range (µsw, µPT, and µg).

The LJ potential has a repulsive core and an attractive region
C6 controls the attractive interaction
C12 controls the repulsive interaction

Typically, the scattering length and effective range are known, and we want to tune the
parameters of a particular potential to reproduce the desired a and r0 values

Since we want to match two values and have two free parameters, the correspondence is
one-to-one (with the restriction of how many bound states we want)
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Tuning the parameters

To tune the parameters, we follow the following procedure
1 Start with a guess (v1, v2).
2 Compute a and r0
3 Keep v2 fixed. Vary v1 until a has the desired value. Increasing the depth of the potential will

decrease the value of the scattering length (until it diverges and changes from −∞ to +∞).
4 Keep v1 fixed at the value found in step 3. Vary v2 until r0 has the desired value. Increasing the

range of the potential will increase r0.
5 If a and r0 match the desired values, stop. Else, go to step 3 and use the value of v2 found in step

4.
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Results
We present 3 cases: a < 0, |a| → ∞, and a > 0, which correspond to three very distinct
physical situations.

a < 0
∗ Example: neutron-neutron interaction (a = −18.5 fm , r0 = 2.7 fm )

|a| → ∞
∗ Example: unitary Fermi gas

a > 0
∗ Example: deuteron (a = 5.4 fm , r0 = 1.7 fm )

System a (fm) r0 (fm)
Neutron-neutron −18.5 2.7

Unitarity ±∞ 1.0
Deuteron 5.4 1.7
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Results

a < 0

Potential v µ (fm−1) a (fm) r0 (fm)
Neutron-neutron

Well 1.1096 0.3918 −18.52 2.7
mPT 0.9071 0.7991 −18.51 2.7

Gaussian 1.2121 0.5672 −18.55 2.7
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Results

|a| → ∞

Potential v µ (fm−1) a (fm) r0 (fm)
Unitarity

Well 1.2337 1.0000 ∼ −105 1.0
mPT 1.0000 2.0000 ∼ 109 1.0

Gaussian 1.3420 1.4349 ∼ −105 1.0
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Results

a > 0

Potential v µ (fm−1) a (fm) r0 (fm)
Deuteron

Well 1.2337 1.0000 ∼ −105 1.0
mPT 1.0000 2.0000 ∼ 109 1.0

Gaussian 1.3420 1.4349 ∼ −105 1.0
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Results

Scattering length as a function of the strength of the attractive potential
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Conclusions

We presented quantum scattering theory fundamentals focusing on the low-energy limit

In this context, we introduced two significant quantities: the scattering length and the
effective range

To illustrate how these two parameters behave in a concrete example, we derived analytical
expressions for both in the case of the spherical well

We also showed how the energy of a bound state could be calculated using zero- and
finite-range expressions applied to a 4He dimer and the deuteron
We described a numerical procedure that can be used to compute the scattering length and
effective range of any spherically symmetric finite-ranged two-body potential

Examples: spherical well, modified Pöschl-Teller, Gaussian, and Lennard-Jones potentials

Now, you can extend what you learned to your choice of physical systems, and apply the
method to other potentials
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