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Scattering length and effective range of microscopic
two-body potentials

Mathias Macédo-Lima'™, Lucas Madeira™

1Universidade de Sdo Paulo, Instituto de Fisica de Sao Carlos, Sdo Carlos, SP, Brasil.
@ Or your favorite quantum mechanics textbook: Griffiths, Sakurai, ...
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Motivation

@ Scattering processes are a fundamental way of experimentally probing distributions and
properties of systems in several areas of physics

e Can you name a few examples?
e Low-energy quantum scattering theory
o What is low-energy?
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Introduction

@ What is scattering? @ Classical view

e Scattering is the interaction of an object with a
scattering center

e classical particle

e electromagnetic

e scattering potential
wave

e quantum particle

-
Scattering center

Griffiths
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Introduction

@ Quantum view

-
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Quantum scattering theory

o Hypotheses
@ Elastic scattering
© Incident plane wave e
© Local and finite-ranged potential

ik-r

ikr

i) 2L N ek eTf(k’, k)
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Quantum scattering theory

o Hypotheses
@ Elastic scattering
© Incident plane wave e
© Local and finite-ranged potential

ik-r

ikr

h(r) 225 N (R4 p (1K)

e Formally, in quantum mechanics, a scattering process is described as a transition from one
quantum state to another .
D) = If)

e Assume |i) to be a plane wave |k), that is, a free particle

. ] h2k2
Holi) = Eili) = > —|k)

@ Scattering is taken into account by introducing a potential V(r)

H=Hy+ V(r)
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Quantum scattering theory

@ Quantization of the scattering states

" eik-r

— NoKT _

(rlk) = Ne™™ = 3

@ We must take L — oo to guarantee the continuum character of the state at the end of our
calculations
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Quantum scattering theory

@ More hypotheses
@ Elastic scattering
© Incident plane wave in the z direction: e
@ Local, finite-ranged and spherically-symmetric potential V(r)

ikz

ikr

Ui(r,0) 2L A [e"kz + erf(e)]

o The finite range of the potential (and spherical symmetry) invite us to solve the Schrodinger
equation for V(0 < r <R) #0and V(r > R) =0

h2
2m

V% + V(r)y = Ey
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Spherical coordinates

@ Due to the spherical symmetry of V(r), it is convenient to employ spherical coordinates

2 2
(“5m e (P ) * 3oz + V) 610:6.0) = Eir.6)
@ L is the angular momentum operator
1 o . 0 1 0?
=12 <sin980 SIDQ% + smzé?(W)
@ Its z-component is given by o
L, = —ih—
o
e Construct a complete set of eigenfunctions related to H, L?, and L,
Hi(r,0,¢) = Ei(r,0,9),
L(r,60,9) = (1 + 1)R*)(r, 6, 9),
Lap(r,0,¢) = mhap(r,0, ¢)
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Spherical coordinates

@ We propose a separable solution of the form

1&(& 0, ¢) - Al(r)Ylm(ea ¢)

e To avoid taking the first radial derivative of A;(r), we define the “reduced” radial solution

u(r) = rA;(r) )
<jr2 +k - U(r) - 1(1; 1)> uy(r) =0

o k* =2mE/R?
o U(r) =2mV(r)/?
e [(I+ 1) is the “separation constant”
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Solution for r > R

@ Outside the potential range R, we must solve

2 0
(Ga+2 - v )iy —o

@ The solution for r > R can be written in terms of the spherical Bessel functions j;(x) and n;(x)

w(r) = chrji(kr) + f rny(kr)

o Jolx) = o o) = 2
o jilx) = T — <=l o mi(x) =~ _ sinG)
o o) = 30 _ 2ol _ sint) o mlx) = ~dem) _ dsngn) e
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Spherical Bessel functions

o jols) = 5202 o nolr) =~
o ji(x) = thish _ cote) o ) = 5= _ st
. jz(x) _ 3sixr;(x) . 3cz§(x) . sir;(x) ° nz(x) _ _3c2§(x) _ 3Sixr;(x) + coi( )

First kind 7 Second kind ny

L
&
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Spherical Hankel functions

@ ji(x) and n;(x) are generalized sines and cosines

e It is more convenient to write the solution in terms of ’** /x to represent “incoming” or
“outgoing” spherical waves

e Similarly to ¢* = cos(x) + isin(x), we define the spherical Hankel functions as

hl(l)(x) :jl(x) + inl(x)
hl(z) (x) = ji(x) — iny(x)

1 ie™ 2 ie ™
oh(())(x):—T oh(())(x):7
° hgl)(x) = —e* i ° hgz) (%) = —e ™ &
o hgl)(x) — el X2+)3c3iX73 o h§2) (x) = —H xzf;ix73

@ The solution for u;(r) can be written as
u(r) = Cfl)rhl(l)(kr) + cl(z) rhl(z) (kr)
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Free particle solution

o The free particle solution in cartesian coordinates is a plane wave e/

o In spherical coordinates, ¢’¢ = &7 39 contains all possible values of /. This can be
expressed with Rayleigh’s formula:

o0

pikreosd _ Z i (21 + 1)jy(kr)Py(cos 0)
1=0

e Note that only j; appears. Physically, this is due to the divergence of n;(kr) at r = 0.

@ In terms of the spherical Hankel functions,

1 2
10 +hP )

Ji(x) >
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Asymptotic behavior

@ Let us analyze the asymptotic behavior, that is, when » — oo

ix
D (x) 255 (<) =

)

®) large x eiix
By =

X
@ The free-particle solution at r — oo is
o0
: : 20+1) . ;
gitrcosd 1rEeT IZ(; ( 21.; ) [e*" — (—=1)'e™*"] Py(cos ).

@ The first term inside the square brackets represents an outgoing spherical wave, while the
second is related to an incoming spherical wave.
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Asymptotic behavior

ikr cos 6

@ Motivated by the expansion for e , we write the scattered solution for every r > R as

W(r,0) = Ni i'(21 + 1)L”£F)P,(cos 0)
=0

@ And the asymptotic behavior

rger o~ QLHD T () i @) ik
(r,0) N; = [efVel — (—1)lefPe™] Py(cos 0) *)
@ Let us compare with

o0

) ; 21+ 1 ; '
pikreos o large r Z ( 2'4k_ ) [e* — (=1)!e™™*] Py(cos ) ()
17,94
1=0

@ (xx) describes the asymptotic behavior of the wave function for a plane wave without being
scattered, while (x) does the same, but in a situation where scattering could have taken place.
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Phase shift

@ We introduce a new quantity related to the ratio between the constants
L= §k) = o2i01(k)
o Expressing the asymptotic wave function in terms of the phase shift
I 2 (214 1)
U(r,0) =25 NZ TCI(Z) et _ (—1)le™*r] Py(cos 0)
ikr

=0

@ Now we have everything we need to connect with the asymptotic wave function obtained
before we restricted to spherically-symmetric potentials
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Phase shift

@ We know that
ikr

Ui(r, 0) large v ar [e”‘z o erf(e)}

e Expanding e/©*

r

Ui (r, 0) 1erQﬂu\/{ [i (2l.+ 1) (¢ — (=1Yle™*") x Py(cos 6)

eikr
+£(0) }

@ Comparing with

P(r, 0) LI NZ %—f;l)cl(z) [ezj&leikr - (—l)le*"k’} Pi(cos )
1=0
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Phase shift

@ Collecting the terms with ¢/" allows us to write the scattering amplitude as a function of the
phase shift
o 2161 _ 1)
Z (21+1 P(cosf)
=0

@ The factor (e* — 1) /2ik is referred to as the partial wave amplitude f;(k), which may be

rewritten as . .
X — 1 ePiging, 1

filk) = —— =% = kcot o) —

e In terms of S;(k) |
Si(k) = 1+ 2ikfy(k) = &*®)
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Physical meaning of the phase shift

9;(k) is the difference between the phases of the incident and the scattered function
The probability is conserved during the scattering

o The only thing that can change is the phase of the wave function
If V = 0: free particle

o §i(k) =0,fi(k) =0
If V # 0: solution for r < R depends on the details of V

e but for » > R we have a free particle with a “shifted” phase
Defining the phase shift allows us to reduce the scattering problem to calculate a single
quantity, &;(k)

An introduction to low-energy scattering in quantum mechanics Lucas Madeira
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Physical meaning of the phase shift

@ go(r) is the free-particle solution

@ up(r) is the solution in the presence of a scattering potential

u(r)

— uy(r)

== lr)

@ A repulsive potential (V > 0) “pushes” the particle away

u(r)

@ An attractive potential (V < 0) “pulls” the particle towards the origin

An introduction to low-energy scattering in quantum mechanics
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Computing the phase shift

@ Logarithmic derivative

d _ ')
alnf(x) =70

@ To compute the phase shift, we define the dimensionless ratio r x u/(r) /u(r)

= e

e RE=lim.,cR+te

@ The radial solution at » > R is

1 - 1 )
u(r) = EreZ";’hl(l)(kr) + ErhI(Z) (kr) = re’é’(cos dyi(kr) — sin o;my(kr))
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Computing the phase shift

e Equating 3; with the outside log solution (at r = RT):

uy(r) cos 0yf;(kR) — sin &;n)(kR)
bi [rul(r)] - + [cos dyj1(kR) — sin 0;n;(kR)

e After some algebra, we arrive at an expression for the phase shift

_ kRm(kR) — (B — 1) m(kR)

cot 0;(k) = KRJ|(KR) — (B — 1) ju(kR)
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Low-energy limit

e From the radial equation for any partial wave [

a o, I(1+1)
(dr2 +k —U(r)— I"2 ul(r):O
@ We define an effective potential for the /-th partial wave as

RIl+1)
2m  r?

Veff(i") = V(r) +

@ For [ # 0, we a have repulsive centrifugal barrier

o If the reduced wavelength A = \ /27 = 1/k of the incident wave is much larger than the
potential range, that is X > R or kR < 1, then the particle cannot overcome the centrifugal
barrier

@ In this case, the partial waves with / > 0 are unimportant, and the / = 0 component is
dominant in understanding low-energy scattering
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s-wave scattering

o In the low-energy scenario, we consider partial waves with / = 0 to vanish, and the resulting
[ = 0 term is referred to as “s-wave”

@ The s-wave radial component, which we denote by u(()kio) (r), is given by
0 L, #0) _
A(() 7 )(r) = 70;' = €% (cos dgjo (kr) — sin Song (kr))

: 1
— ,i% §
e [kr sin(kr + 50)}
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s-wave scattering

@ We can also solve the zero-energy Schrodinger’s equation, that is k = 0, at r > R:

0
0
d? 0 11+ k=0
dﬂH/—M—% uy (1) =0

@ We simply have ug(kzo) (r)=0
@ The solution can be written as u(()kzo) (r) =c(r—a)
o Its logarithmic derivative is
u <=0 (r) r
r=2 = :
W=Dy r—a

)
@ This needs to be equal to the log derivative of ug#o) (r)

kr cot(kr + o) = r
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Scattering length

@ In the limit £ — 0, and also setting r = 0, we define the scattering length a
lim k cot 5o (k) = —-
im = ——
k—0 coro a

@ We reduced the scattering problem to calculating ¢;(k). Now we reduced the problem even
further: in the E ~ 0 limit, @ encodes all the information we need about scattering.

e Geometrical interpretation: choose ¢ = —1/a in

k=0 r
uy ) =1-~

@ a is simply the intercept of the outside wave function with the x-axis
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ug(r)

— ulr)

An introduction to low-energy scattering in quantum mechanics

Vir)<0

u(r

ug(r)

— uo(r)

V(r) <0

V(ry=0

— uo(r)

Lucas Madeira
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The effective range

Another name for the scattering length expansion is the zero-range expansion

What happens if the range of the potential is small, but non-negligible?

("]

(]

@ We need the next term of the expansion in powers of k of k cot do(k) = —1/a
@ kcot dp(k) is an even function, thus the next term is certainly not linear in &
°

The result is | .
k cot 0o (k) = —— Erokz + Ok
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The effective range

o Consider a different normalization for uo(r > R)
uo(r > R) = cot do(k) sin(kr) + cos(kr)

o Let us take the / = 0 radial equation, for two different wave functions uy, (r) and uy, (r),
labeled by their wave vectors k; = +/2mE; /h and ky = \/2mE, /h,

i (r) = U(r)ugq (r) + Kfug () = 0,
i, (r) = U(r)ug, (r) + K, (r) = 0.
@ Next, we multiply the first equation by u;, and the second by uy, and take their difference,

e, (P)uty (1) = i (), (r) = (k3 — kT g, () (1)

@ We may write the LHS as
" " o / !
i (r)uagy (r) — ey (r)ude, (r) = — [ut (r)uagy (r) — s, (r)ag (r)]
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The effective range

@ Now we integrate from 0 to R,

R
[ (Pt (1) =ty (i ()] = (2 = 12) /0 dr gy ()it (1)

e The integral converges since Ag(r) = uo(r)/r is finite at the origin (up(0) = 0 independently
of the energy).

o Next, we repeat the same procedure for the free-particle (V = 0) radial equation with
solutions denoted by g, (r) and g, (r). The result is the same if we replace u by g

o The free-particle solution is also given by
g(r) = cot do(k) sin(kr) + cos(kr)
@ Note that we do not require g(0) = 0
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The effective range

o Finally, we take the difference between the results
R R
[g;cz (r)gkl (r) - g;c] (r)gkz (r)]o - [u;cz (r)ukl (r) — u;c] (r)ukz (r)]o =
R
08 =) [ dr o (1) = 1, (o 1)

@ The radial solution, uo(r)/r, is finite at r = 0, thus u(0) = 0.
@ g(r) and u(r > R) are equal for r > R

@ Then we are left with

R
8k, (0081, (0) — gk, (0)8,(0) = (k3 — 1) /0 dr (8k, (r)8ky (r) — iy (r)ug, ()]
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The effective range

@ Using g(r) = cot dp(k) sin(kr) + cos(kr) in the RHS

ka cot 8o (k) — ki cot So(k1) = (k3 — k7) /OR dr gk, (1) 8k, (r) — g, (r)ugy (r)]

o If we take the limit k; — 0, we can write k; cot dg(k;) in terms of the scattering length

R
keotdofd) = — + &2 /0 dr lgo(r)gx(r) — uo(F)ug ()]

@ We define the next term ry/2 as

0= Jim k) =2 [ drgh() — ()

@ 1y is called effective range
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Shape-independent approximation

@ The resultant expression is the shape-independent approximation
| 4
kcot (k) = —— + Erok + O(k")
a

@ We are describing the phase shift dp(k) without taking into account the microscopic
parameters of the scattering potential
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Bound states

@ Let us rewrite the scattered wave function at » — oo as

e 2l—|- ekr  p—ilkr—Im)
Y(r,0) B 3/22 Pl (cos®) [ (k)T—f
e For / = 0 and large distances, the radial wave function is proportional to
ikr —ikr
e e
So(k)— —
o(k)— .
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Bound states

e For an arbitrary finite-ranged potential V, the radial solution at » > R for a bound state
(E < 0) obeys

2mE —2mE
u’(r) = ——;:; u(r) = K*u(r), k= v amE

@ The solution can be written as
0 —Kr
u(r > R) = A"+ Be
@ We conclude that the radial function for a bound state at large distances is
K¥

A(r)zu(:)oc e

(large r).
r
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Bound states

@ Scattered solution @ Bound state solution

etkr eftkr e

So(k)— —

o(k) r r r

@ By substituting k — ik, with k purely imaginary, we can connect the bound state with the
scattered solution

—KRr

@ Sp(k) controls the ratio of the outgoing to the incoming wave

@ In the bound state case, we have only the outgoing spherical wave, thus So(k) — oo
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Bound states

o Si(k) = 1 + 2ikfy(k) = €*¥®) is a complex function
@ So(k) — oo by substituting k — ix means it has a pole at k = ix

Imk

K

O Rek
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Bound states

@ In terms of the s-wave scattering amplitude fj (k)
1 1
k == =
folk) = ot — ik —1/a— ik

e We write Sy(k) as

—k—i/a
So(k) = 1+ 2ikfy(k) = ————
o(k) = 1 + 2ikfo (k) k—ia
@ This expression has a pole at k = ik if we identify
1
K= —
a
@ In the zero-energy limit, the energy of a bound state and the scattering length are connected
simply by B2K2 2,2 B2
E = = — = —
2m 2m 2ma?

@ A single parameter originated from the potential determines the bound-state energy
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Two-body scattering

@ So far, we considered only the problem of a single particle being scattered by a finite-ranged
potential V(r) located at r = 0.

@ With a few modifications, we can use the results we obtained to describe two particles
interacting through a pairwise potential which depends only on their spatial separation r

@ The Hamiltonian of a two-body system is separable in the center of mass (CM) and relative

coordinates ) )
h h
2 7V%2 + V(l‘l — 1’2)

H =
2my

2m;
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Two-body scattering

@ We define the CM and relative coordinates

miry + mpry
R:T and r=r;—n

@ H is now separable

H = HCM +Hr7

o,

Hom = ———

M LS
o,

H, = —2err—|—V(r)

@ m, = mymy/(m; + my) is the reduced mass

An introduction to low-energy scattering in quantum mechanics Lucas Madeira
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Applications

@ Spherically symmetric finite well
o Analytical calculation of the s-wave scattering wave function

@ Scattering states (£ > 0)
@® Bound states (E < 0)

e Calculation of the scattering length and effective range
© Zero-range and finite-range approximations
o Estimating bound state energies using the scattering length and effective range expansions
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Spherically-symmetric finite well

@ One way of defining the spherical well is

Ve r) -V for r < R,
r) =
W 0 for r > R.

@ V) has units of [energy]
o It will be clear in the numerical section that it is useful to redefine the potential as
2
Vi) = —Vp s for r <R,
0 forr > R.

@ 1y is a dimensionless parameter related to the depth

@ R is the potential range
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Spherically-symmetric finite well (E > 0)

@ Potential

h2
= fi <R,
vy =4 Cmr O
0 for r > R.
@ £ > Ocase )
d 2m, 2m,
(drz - FV(F) + th) u(r)=0
— Explicit forms for r < Rand r > R
u"(r) + (kg + &) u(r) =0 for r <R,
u"(r) + Ku(r) =0 for r > R,

— k* =2m,E/h* and k3 = 2vy/R?
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Spherically-symmetric finite well (E > 0)

— Ifr <R
u(r) = Asin <\/k2—|—k(2) r> + Bcos (\/k2+k(2) r>

e Since up(0) =0, weset B=10

— Ifr <R
uo(r) = cot do(k) sin(kr) + cos(kr)

— Hence, the solution is of the form

Asin(w/kz—i—k(z)r) for r < R,
u(r) =

cot 0o (k) sin(kr) + cos(kr) for r > R.
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Spherically-symmetric finite well (E > 0)

e Logarithmic derivative at r = R~ and r = R
/ /
[ru (r)] _ [ru (r)]
u(r) r=R— u(r) r=Rt

2 2
\/ K2 + kg cos (\/ k2 + kg R) _ kcot & (k) cos(kR) — ksin(kR)
sin ( fi2 + K2 R) cot 0o (k) sin(kR) + cos(kR)
@ Solving for the phase shift dy(k) without any approximation
ktan (/K2 + i3 R)
do(k) = —kR + arctan
\/ K2+ kG

Lucas Madeira
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Spherically-symmetric finite well (E > 0)

@ Scattering length
o To calculate the scattering length a, we need to take the k — 0 limit
e Rearrange the log derivative so that we collect factors of k cot 6 (k)
o Keep track of the orders employed in the approximation

cos(kR) = 1+ O(k*)
sin(kR) = kR+ O(K)

@ Repeating last slides’ equation:

\V k2 + ki cos (\/ k2 + kg R) _ kcot 0g(k) cos(kR) — ksin(kR)
sin ( /2 + K2 R) cot do(k) sin(kR) + cos(kR)

o Taking the £k — 0 limit:
—1/a
\kgeot (\/KGR | = ————
°C°< °) —Rja+1
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Spherically-symmetric finite well (E > 0)

Solving for a:
tan (\ /k%R)

a=R——V 7

Vi

tan ( /AR a0 \/27)
aRE/%O)RQ\gMO)

It is clear that a depends only on the parameters of the potential, its depth vy and range R

The result is:

@ Note that tan(x) — oo forx = 7 +nm, n=0,£1,£2,...
@ So the first divergence (n = 0) of a appears at
2
Vo = ?
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Spherically-symmetric finite well (E < 0)

@ E < 0Ocase
@ Repeat the same procedure or — E = h*k*/2m, = —h*K?/2m,

> 2m,

@ Solution for u(r)

u(r) = A’ sin (\/k%—/# r) for r <R,

Ble™r" forr > R

@ Match the logarithmic derivatives at r = R,

\/k(%—K,zCOS (,/k(z)—kﬁR) _jee—"R

sin (1 /k% — K2 R) e R
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Spherically-symmetric finite well (E < 0)

o After some manipulations,

k(z)—ﬁ2
tan(ﬂk(z)—/ﬁzR) + X =0
K

@ This is a transcendental equation that shows where the bound-state energies are located

@ Note that the term k(% — K?/k is always positive

@ tan (, /k% — K2 R) must be negative if we want the equation to have solution(s). That is to

say:
g+n7r< \k—K*R<m+nm, n=0,12,..
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Spherically-symmetric finite well (E < 0)

The first bound state is # = 0. Thus

T T
_ k2_ 2 _
2R<V0 /€<R

ko > \/k%—lfz

Since ko = +/2vo/R, we have

>7T2
s W
073

This result shows that there are no bound states if v is not above a certain threshold value

This is the same threshold value that makes |a| — oo

@ The conclusion is that the scattering length diverges when a bound state appears

An introduction to low-energy scattering in quantum mechanics Lucas Madeira 51/90



Spherically-symmetric well - bound states and scattering length

bound states{ bound

a— R 1 _ tan (\/ ZVO) 44 no
““;;%iii;“" bound

state

@ a diverges for:

V2v =7/2+nm (n=0,1,2,...)

@ This coincides with the location of the
bound states

T T N S ——
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Spherically-symmetric finite well - effective range

e First, we need to determine the normalization constant of the scattering solution
Asin(\/kz—kkgr) for r <R,
u(r) =
cot 0o (k) sin(kr) + cos(kr) forr > R

@ To determine the constant A, we impose the continuity of u(r) at r = R

cot do(k) sin(kR) + cos(kR)

sin <\ (k2 + k%R)

A=
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Spherically-symmetric finite well - effective range

@ The normalized solution is written as

cot 8o (k) sin(kR)+cos(kR) . 9 )
u(r) = sG/ergr) (Ve +8r) forr<r,
cot 0 (k) sin(kr) + cos(kr) forr > R.

@ The effective range is defined in the k — 0 limit of u(r):

(1=R/a) _.
lim u(r) = { SmGoR) sin(kor) forr <R,
. I —r/a for r > R.
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Spherically-symmetric finite well - effective range

@ The effective range is given by the integral

o

@ Replacing a in favor of R and ko:

el ! koR 2 N 1
ro = — =
0 3 \tan(koR) — koR koR tan(koR) — (koR)?

@ This shows that ry also depends only on parameters of the potential
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Spherically-symmetric finite well - effective range

B 1 koR :
o= R <1 g (tan(koR) o= k()R) s

1
koR tan(koR) — (koR)z)
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Applications

@ Spherically symmetric finite well
e Analytical calculation of the s-wave scattering wave function

@ Scattering states (E > 0)
©® Bound states (E < 0)

e Calculation of the scattering length and effective range
© Zero-range and finite-range approximations
o Estimating bound state energies using the scattering length and effective range expansions
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Zero-range and finite-range approximations

@ The equation derived in the bound states slide allows us to estimate the bound state energy

with the zero-range approximation x = 1/a,
h? k2 h?

E, =

2m,  2ma?
o To take the effective range into account, we write the s-wave scattering amplitude as

1 1
folk) = kcot do(k) — ik — —1/a+ rok?/2 — ik

e And Sy(k) as

, —i/a — k+ irgk®/2
k) =1+ 2ikfy(k) =

So(k) + 2ikfo (k) —i/a+ k + irgk?/2

@ Making k — ik
_ —l/a—Kk—reK?/2
 —1/a+ Kk —rgk?/2

So(k)

An introduction to low-energy scattering in quantum mechanics Lucas Madeira 58790



Zero-range and finite-range approximations

e Now we can identify the bound state as pole in the S-matrix by solving

—1/a+Kk—ror?/2=0

1 21”0
K=—|1F4/1-—
ro a

@ Now choosing the appropriate root to compute the bound state energy

2
h2K? K2 2
Ep=—t = .- 1 <o

2m, 2m,ry a

@ which yields the solution
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Zero-range and finite-range approximations

o Example: Helium dimer
o E; = —1.62 mK (found solving the full Schrodinger equation), a = 90.4 A, ry = 8.0 A

— Zero-range approximation

E., h?
kp kp X 2m,a? m (927)

— Finite-range approximation

2
E h? 2
o 71— 1-2) ——1683mK  (101%)
kp kp X 2m,ry a

@ Both the zero- and finite-range results successfully describe the physical system because
kR ~ 0.1
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Zero-range and finite-range approximations

@ Example: Deuteron
o Ejc? = —2.224 MeV, a = 5.4112 fm, ry = 1.7436 fm.
— Zero-range approximation
h*c?
—— = —1.416 MeV (64%)

7
E,.cc=—
¢ 2m,a?

— Finite-range approximation

2.2 2

Bt — — 1€ . (1 —4/1- 2”’) = -2223MeV  (100%)
2m,r a

The range of the potential needed to be taken into account because kR ~ 0.4

We should emphasize that the scales are very different in both examples

“He dimer: spatial scale of A (1071 m) and the energy is of the order of 10~7 eV

Deuteron: the lengths are in the femtometer (10~ m) scale, while the energy is of a few

MeV (10° eV)

@ This exemplifies how universal are these low-energy scattering results
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Numerical Procedure

@ Analytical expressions for the low-energy scattering parameters are only available for a few
potentials

@ Even in those cases, the calculations may be cumbersome, as we saw for the spherical well

@ In general, we need to calculate a and ry numerically
@ We will describe two methods to solve the Schrodinger equation numerically

@ Second-order central difference
@ Numerov’s method
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Numerical Procedure

@ We wish to compute the quantities a and ry
@ To do so, we need to compute the radial solution inside and outside the potential range

e up(r < R): needs to be computed numerically
o ug(r>R)=1—r/a
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Second-order central difference

@ Consider the function u(r) on a discrete set of points r; = iAr,i =0,1,2...,Nand Ar < 1
@ Let us take two Taylor expansions of u(r) around the points r + Ar

r2 l"3

e+ Ar) = u(r) + (AN () + B ) + By 4
},.2 r3

ulr = An) =ulr) = @A) + ) - E ) -

@ The difference of the two Taylor expansions yields an expression for the first derivative, while
their sum results in the second derivative

du Uikl — Ui 3
ar|,_,. B 2Ar +Ol(Ar)]

d*u Uit1 — 2u; + Ui 4
— A
ar|,_, @ Holel
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Second-order central difference

@ We want to solve the zero-energy Schrodinger equation inside the potential range

> 2m, k=0
(52 - v b0 =0

2
dr?

o Uip1 = 2ui +uiy
(Ar)2

r=ri

@ Substituting the central difference second derivative into u”(r)

2m,(Ar)?

hz V(F,’)u,‘

Uir1 = 214,' — U1+
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Second-order central difference

2m,(Ar)?

h2 V(ri)u,-

Uir1 = 2u; —ui—1 +

o If we know the value of the radial solution for two consecutive points, 7;_; and r;, we can
calculate the value for the next point u;
— u(0)=0
— u(Ar) =1
@ This choice allows us to find a solution without worrying about the normalization
o Algorithm:
Q@ Setug=0,u; =1,andi =1
© Compute u;
@ Ifr;, > R+ Ar, stop. Else, increment i by one
© Gotostep?2
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Numerov’s method

@ The second-order central difference is one possible discretization for a numerical second
derivative

@ There are other alternatives if we want to improve the precision of our algorithm

e Numerov’s method is a numerical technique capable of solving differential equations of
second order when the first-order term is not present:

&y
dx?

= —§(x)y(x) + s(x)
@ The s-wave zero-energy radial equation is of this form, withy — u, x — r, s = 0, and

2m,

f(i‘): 2 V(I’)
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Numerov’s method

@ The method provides a solution of the form

5(Ax)? Ax)?
Vil = (Alx {2)’1' <1 - (12X) §i> = Yi-1 (1 + ( 1;) . >
(o)

2

+ (Alz)(si—i-l + 10s; + Si—l)} +O[(Ax)°]

@ The algorithm is mostly unchanged if we use Numerov’s method instead of the second-order
central difference
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Dimensionless quantities

Schrodinger’s equation contains relatively small quantities
— A~ 107 Ts(or~ 10715 eV s)
— Typical masses, length, and energy scales are also small

@ We wish to make Schrodinger’s equation dimensionless
o Instead of this 5
1d m, ny
<_2dr2 — ﬁE 4 th(I’)) up(r) =0
@ we want to solve this

<—;j:2 —E+ V(r)) u(r) =0

Y “h:mr: 1”

An introduction to low-energy scattering in quantum mechanics Lucas Madeira 69/90



Dimensionless quantities

e First, we choose a length scale /

— The convenient value of ¢ depends on the system under study; for atomic physics, it may be 1 A;
for nuclear physics, we may use 1 fm or any other length scale that makes sense for a particular
problem

@ Then the dimensionless scaled distance is

o The radial function u(r) has units of [length]~'/? (remember that [ dr|u(r)|* = 1)
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Dimensionless quantities

@ The second derivative becomes

1 d
dr? ~ R2dr
@ Going back to the equation:
e d*u
———— + V(r)u = Eu
@ V(e =Ei
@ We can also define an energy scale B2
€= m 02
@ And now we define the dimensionless energy and potential
- E _ V
E=— V=-—
€ €
o Finally
Vd*u .
*Eﬁ + V(I")M = Fu
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Scattering length and effective range

o After following the numerical solution for ug(r), we’re ready to compute the scattering length
and the effective range
@ Scattering length
— We recall that logarithmic derivative of the wave function outside the potential range is given by

1
R—a

8o(r)
go(r)

r=R+

— This should be equal to the logarithmic derivative of uy(r) at r = R~

8o(r)
8o(r)

—rr R—a  uy(r)

r=R—
— We already have u(R) and u(R £ Ar). Thus the derivative may be computed as

du(r) _ u(R+ Ar) —u(R — Ar)

/ _
Hnurn (R) = dr 2Ar

r=R
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Scattering length and effective range

@ Scattering length
— Now solving for a

2Ar u(R)
u(R+ Ar) — u(R — Ar)
— This expression depends on the ratio of the radial solution, so we ignored the normalization
o Effective range

— On the other hand, the effective range assumes a particular normalization choice
— We multiply u(r) by a constant C such that

_&(R) _ (1-R/a)

~ u(R) u(R)

— The effective range is found by computing the integral

a=R

ro=2 / dr [g3(r) — 1B ()]
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Numerical integration

o The task is essentially to compute numerically an integral of the form
XN
I= / f(x)dx
X1

@ f(x) is known only at a discrete set of equally spaced points, f(x;) = f;, where
i=1,2,3,...,N.

L A d L4 L d L d L A d ®
Xp X1 X2 P XN XN +1
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Numerical integration

@ Trapezoidal rule:

/xzf(x)dx =h [;fl + ;fz] + O(R*f")

@ Using it N — 1 times for the intervals: (x1,x2), (x2,x3), -+, (Xn—1,XN)

(xn —x1)3f”>

/x;‘fo(x)dx =h [;fl +hHh+fd o+ ;f]\/:| + O ( 2
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Numerical integration

@ Simpson’s rule:

/X3f(X)dx =h |:;f1 + gfz + ;ﬁ} + 0 fW)

x1
@ Repeatedly:

w 1 4 2 4 2 4 1 — x1)%f@
/xl f(x)dx =h [3f1 + gfz + §f3 + §f4 +---+ ng—z + ng—l + 3fN:| +0 (W)
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Examples

@ We chose four potentials to illustrate the numerical procedure
— Spherical well
— Modified Poschl-Teller
— Gaussian
— Lennard-Jones

40 1
71 -
20
=2 = 0
—31 —20 1
— Well
—— Pdschl-Teller
—4 1 —— Gaussian —401 —— Lennard-Jones
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
riro /o
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Potentials - Spherical well

— To make the comparison with other potentials easier, we redefine

—Vsw , forr < R,

0, for r > R,

® Vg, is a dimensionless parameter related to the depth
@ gy =1/R

2
— As we saw, € = h—z
ml
— We can compare our numerical solutions with the analytical ones to check the correctness of

the program

makes Schrodinger’s equation dimensionless
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Potentials - Modified Poschl-Teller (mPT)

hZ 2
Vpr(r) = *VPTfigPT
my cosh”(pprr)

@ Very difficult analytical solution for the eigenfunctions

@ There is an analytical expression for a in terms of the parameters of the potential

A
appr = gcot <7T2> +v+ TN,

@ vpr = A(A — 1)/2, y is the Euler-Mascheroni constant and V¥ is the digamma function

@ The |a| — oo case corresponds to A = 2 (cot(m) diverges) or A = —1 (U (—1) diverges), that
iS, VPT = 1

@ For this particular case (|a| — 00), the s-wave zero-energy radial function takes a relatively
simple form

- tanh(upr r)

l/t()(l’ N tanh(upT R)

An introduction to low-energy scattering in quantum mechanics Lucas Madeira 79190



Potentials - mPT

@ We can also calculate the effective range by performing the integral. In this case (|a| — o0),
go(r)=1—r/a=1,so that

R 2
tanh 1
ro:2/ dr 1_73112(/1/])']‘7‘) :2[R— 5 4+
0 tanh”(uprR) tanh®(uprR) ~ per tanh(uprR)

@ Since 1/upr ~ R and the tanh(x) function converges rapidly to 1 as we increase x, we may
set tanh(uprR) = 1. Thus we have that ro = 2/upr for vpr = 1
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Potentials

0 -
@ Spherical well L~
@ Modified Poschl-Teller 14 /
h2 2
Ver(r) = —vPT—$ o]
my cosh” (uprr) e
@ Gaussian —3
— Well
R, e —— Pischl-Teller
Vg(r) = 7vg7:u2 He —4 4 — CGaussian

0.0 0.5 1.0 1.5 2.0 2.5 3.0
riro

@ The potential range R is not well defined for the mPT and the gaussian potentials
— Look for a value of R such that the potential is negligible |V(R)| < e
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Potentials

40 1
201
@ Lennard-Jones
V(r)—hf2 CIZNNCo =0
L m, | ri2 ro 2
=401 —— Lennard-Jones
T T T T

0.0 0.5 1.0 1/.I5 2.0 2.5 3.0
r/To
@ Note that V15(0) diverges and V(Ar) is very large
e We can safely set the boundary condition u(0) = 0 but computing u(Ar) may lead to instabilities

e Define arange 0 < r < rmyi, where u(r) = 0 and start the integration at r = ry;,
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Tuning the parameters

o The four potentials we presented have two parameters.

@ Spherical well, mPT, Gaussian are purely attractive

e one parameter is associated with the depth of the potential (vsy, vpr, and vy)
o and another with its range (psw, fpt, and fig).

The LJ potential has a repulsive core and an attractive region
o (¢ controls the attractive interaction
e Cj, controls the repulsive interaction

Typically, the scattering length and effective range are known, and we want to tune the
parameters of a particular potential to reproduce the desired a and ry values

Since we want to match two values and have two free parameters, the correspondence is
one-to-one (with the restriction of how many bound states we want)
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Tuning the parameters

@ To tune the parameters, we follow the following procedure
@ Start with a guess (vy, ;).
© Compute a and rg
© Keep v, fixed. Vary v; until a has the desired value. Increasing the depth of the potential will
decrease the value of the scattering length (until it diverges and changes from —oo to 4-00).
© Keep v, fixed at the value found in step 3. Vary v, until ry has the desired value. Increasing the
range of the potential will increase ry.

@ If a and ry match the desired values, stop. Else, go to step 3 and use the value of v, found in step
4.
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Results

@ We present 3 cases: a < 0, |a| — oo, and a > 0, which correspond to three very distinct
physical situations.

ea<0
+ Example: neutron-neutron interaction (¢ = —18.5 fm, rop = 2.7 fm )

o |a] = o0
+ Example: unitary Fermi gas

ea>0
* Example: deuteron (a =5.4fm,r) = 1.7 fm)

System a (fm) rop(fm)
Neutron-neutron —18.5 2.7
Unitarity Fo0 1.0
Deuteron 54 1.7
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Results

ea<0
1.2
Potential v p(m™Y)  a(fm) ro (fm) 109
Neutron-neutron £ 08
Well 1.1096 0.3918 —18.52 2.7 lg
mPT 09071 07991 —18.51 27 %] _
Gaussian 1.2121  0.5672 —18.55 2.7 =, o
— Gaussian
0.2 = Lennard-Jones
=== Analytical solution
OO T T T T
0 1 2 3 4
r [fm
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Results

@ |a| —» o0
1.0
Potential v w(@Em™Y  a(fm) ry (fm) 0.8
Unitarity e
Well 1.2337 1.0000 ~ —10° 1.0 E 0.6
mPT ~ 1.0000 2.0000 ~10° 1.0  — _
Gaussian 13420 14349 ~—10° 1.0 =] N
024 —— Gaussian
| ennard-Jones
——=- Analytical solution
0.0 T T T T T T
0.0 0.5 L0 L3 2.0 25
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Results

@ea>0

Potential v o (fm= Y  adm) ry(fm)

Deuteron =

Well 1.2337 1.0000 ~ —10° 1.0
mPT  1.0000 2.0000 ~ 10° 1.0
Gaussian  1.3420 1.4349 ~—10° 1.0

Well

Péschl-Teller
Ganssian
Lennard-Jones
Analytical solution

0.24
0.0 T T
0 1 2
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Results

@ Scattering length as a function of the strength of the attractive potential

100 10 T
1
1
i
i
504 = i
i
1
i
S g IS——— !
— 0+ = 0 [

] S i
|
—50 4 — Caussian 5 i
-— el i
@ Poschl-Teller |

—-=Analytical solution ! e |ennard-Jones

—100 T T T —10 T T — T T
0.0 0.5 1.0 15 20 25 0.0 0.1 0.2 033 0.4 0.5
v Cs/(ro)
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Conclusions

We presented quantum scattering theory fundamentals focusing on the low-energy limit

In this context, we introduced two significant quantities: the scattering length and the
effective range

To illustrate how these two parameters behave in a concrete example, we derived analytical
expressions for both in the case of the spherical well

We also showed how the energy of a bound state could be calculated using zero- and
finite-range expressions applied to a *He dimer and the deuteron

We described a numerical procedure that can be used to compute the scattering length and
effective range of any spherically symmetric finite-ranged two-body potential

o Examples: spherical well, modified Poschl-Teller, Gaussian, and Lennard-Jones potentials

Now, you can extend what you learned to your choice of physical systems, and apply the
method to other potentials
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