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Escola Politécnica, University of São Paulo, Brazil

cenmazzi@usp.br
gfranzini@usp.br

04/20/2022

Mazzilli & Franzini (EPUSP) PEF5737 04/20/2022 2 / 19



Outline

1 Objective

2 Algorithm

3 Application to a forced Duffing oscillator

Mazzilli & Franzini (EPUSP) PEF5737 04/20/2022 3 / 19



Objective

Outline

1 Objective

2 Algorithm

3 Application to a forced Duffing oscillator

Mazzilli & Franzini (EPUSP) PEF5737 04/20/2022 4 / 19



Objective

Objective

To describe a numerical algorithm for obtaining bifurcation diagrams;

Application of the algorithm to a forced Duffing oscillator.
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Algorithm

Definitions

A bifurcation diagram offers an idea of the behavior of a dynamical system when the
parameters of the mathematical model are varied;

It also allows identifying bifurcations and chaotic behaviors.

There is no unique algorithm. This class will present an algorithm.

Firstly, you need a mathematical model (equation of motion) for a particular physical
model;

Your mathematical model is defined by a number of parameters such as mass, damping,
stiffness, amplitude/frequency of the external excitation;

In a number of situations, you are interested in investigating the influence of one
parameter of the mathematical model on the response.
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Algorithm

Algorithm

We define a Poincaré’s section. For a periodically forced system, the obvious one is that
characterized by the stroboscopic frequency of the forcing;

Create a scheme for numerically integrating the mathematical model when for a given set
of parameters of the mathematical model;

Carry out some tests with the mathematical model. Try to identify the time spanned by
the transitory responses. This is important because we will compute the Poincaré’s
section after the transitory.

Define a vector containing the values of the parameter you would like to consider in the
bifurcation diagram. Finer discretization leads to a better diagram;

Now, it is time to compute the diagrams. Assume an initial condition for the
mathematical model and run the simulation considering the first value of the parameter to
be varied (p1);

For p1, plot, in the ordinate axis, the points of the Poincaré’s section for one coordinate of
the mathematical model (say, x1). Do not plot the points associated with the transitory
response.
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Algorithm

Algorithm

It is important to emphasize that the plotted points do not necessarily means the
maximum value of the response. However, provided you have the points in the Poincaré’s
section for all coordinates of the mathematical model, you can integrate until the
maximum displacement is achieved (i.e., integrate until the velocity vanishes). In
MATLAB®, use the event location command. Julia also has even location commands.

Some alternatives are found for running the mathematical model for p2, i.e., the second
value of the parameter to be varied. In this algorithm, we use as initial condition for
running the simulation with p2 the last point obtained when the model was run with p1;

Repeat the plot procedure, now with p2 in the abscissa axis and the points in the
Poincaré’s section in the ordinate axis;

Run the mathematical model for p3 using as initial condition the last point obtained when
the mathematical model was run with p2;

Repeat until the last value pn is simulated.
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Application to a forced Duffing oscillator

Mathematical model

Force Duffing oscillator: ü+ δu̇+ αu+ βu3 = p0 cosωt;

We will investigate the influence of the amplitude of the external excitation in the interval
0.2 ≤ p0 ≤ 0.7;

The remaining parameters are fixed: δ = 0.30, α = −1, β = 1, ω = 1.2;

800 points are considered in the Poincaré’s section after disregarding the first 300 forcing
cycles;

The initial condition employed for running the mathematical model with p0 = 0.2 was
u(0) = 1 and u̇(0) = 0.
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Application to a forced Duffing oscillator

Results - Bifurcation diagram

It is possible to identify values of p0 in which bifurcations occur. Notice that close to
p0 = 0.265, a period-doubling bifurcation is obtained;

We emphasize that the indicated points are not necessarily the maximum displacements.
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Application to a forced Duffing oscillator

Bifurcation diagram - a closer look
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Application to a forced Duffing oscillator

Example of periodic orbit: p0 = 0.22
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Period-1 orbit. Red crosses indicate points in the Poincaré’s section.
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Application to a forced Duffing oscillator

Example of periodic orbit: p0 = 0.27
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Period-2 orbit. Red crosses indicate points in the Poincaré’s section.
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Application to a forced Duffing oscillator

Example of periodic orbit: p0 = 0.32
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Chaotic attractor? Red crosses indicate points in the Poincaré’s section.
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Application to a forced Duffing oscillator

Example of periodic orbit: p0 = 0.32
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Application to a forced Duffing oscillator

Example of periodic orbit: p0 = 0.37
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Period-5 orbit. Red crosses indicate points in the Poincaré’s section.
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Application to a forced Duffing oscillator

Example of periodic orbit: p0 = 0.52
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Period-3 orbit. Red crosses indicate points in the Poincaré’s section.
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