
Prof. Carlos Eduardo Nigro Mazzilli

Universidade de São Paulo

Nonlinear Dynamics of structures and

mechanical systems



Lesson 2.1



Elements of Stability Theory

Lagrangian formulation (recalling)
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Example: SDOF linear oscillator
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Example: MDOF linear system
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System of second-order differential equations (holonomic constraints)



Hamiltonian formulation (recalling)
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System of first-order differential equations (holonomic constraints)



Example: SDOF linear oscillator
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Hamiltonian formulation (recalling)
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Example: SDOF linear oscillator
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Lagrangian formulation:

from second- to first-order system of differential equations through change of variables
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Elements of Stability Theory

Phase space

Autonomous systems

( )y g y=

Non-autonomous systems

n-dimensional space
(n+1)-dimensional space
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Phase space properties for SDOF autonomous systems 

Phase trajectory tangent
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Singular phase points (equilibrium points)

Regular phase points 
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Tangent at singular phase points is indeterminate

Tangent at regular phase points with

is orthogonal to the axis

Through a regular phase point passes just one phase trajectory

(Theorem of Cauchy-Lipschitz)
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Non-perturbed solution:

Note: the non-perturbed solution corresponds to the

trivial solution of the perturbation equationsδy = 0
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ቤ𝐀 𝑡 =
𝜕𝐟0
𝜕𝐲

𝟎

𝛅 ሶ𝐲 = 𝐀 𝑡 𝛅𝐲 + 𝐍 𝛅𝐲, 𝑡 with and 𝐍 𝛅𝐲, 𝑡 = 𝐟0 𝛅𝐲, 𝑡 − 𝐀 𝑡 𝛅𝐲

Elements of Stability Theory

𝛅 ሶ𝐲 = 𝐟0 𝛅𝐲, 𝑡

𝛿 ሶ𝑦𝑟 = 𝑓0𝑟 𝛿𝑦1, 𝛿𝑦2, . . . , 𝛿𝑦2𝑛, 𝑡
Perturbation equations:



Example: SDOF linear oscillator
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A non-perturbed solution is stable if the distance

to the perturbed solutions remains within prescribed bounds for all times and

arbitrarily defined perturbations

( )t0
y ( )tδy

Non-perturbed solution
Equilibrium

Motion

“Type” of perturbation
Kinematical (initial conditions):

Topological (perturbation of parameters or

perturbation of mathematical model)

.const0
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y

( )0δy 0
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Stability concept (Leipholz)
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Stability concept (Leipholz)

Perturbation “size”
Local

Global

( )0 δy 

Global I

Local S

Global S
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Global I

Local I



“Character” of perturbation
Deterministic

Stochastic

Example: definition of stability in the quadratic mean:
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Stability x Reliability x Integrity
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Stability concept (Leipholz)



Evolution of perturbed solution
Asymptotic

Non-asymptotic
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Stability concept (Leipholz)



Admissible region for perturbed solution
Kinetic

Geometric
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Stability concept (Leipholz)



Liapunov

Stability of equilibrium of autonomous systems in the sense:

kinematical, local, deterministic, non-asymptotic, kinetic

Poincaré

Stability of motion of autonomous systems in the sense:

kinematical, local, deterministic, non-asymptotic,geometric

Particular case: orbital stability of periodic motions

Structural

Stability of equilibrium or motion in the sense:

topological, local, deterministic, asymptotic

Particular cases: parametric stability; Mathieu stability

Elements of Stability Theory

Stability definitions



Given , there exists , such that,

if , then for( )t δy ( ) ( )0  δy 

0  ( ) 0  
0t 

Liapunov’s methods

First method (indirect)

Second method (direct)

Elements of Stability Theory

Liapunov stability



𝛅 ሶ𝐲 = 𝐟0 𝛅𝐲 = 𝐀𝛅𝐲 + 𝐍 𝛅𝐲

ቤ𝐀 =
𝜕𝐟0
𝜕𝐲

𝟎

with and 𝐍 𝛅𝐲 = 𝐟0 𝛅𝐲 − 𝐀𝛅𝐲

Perturbation equation for the analysis of the

stability of equilibrium of the trivial solution δy 0=

Consider the associated linearized problem

δy Aδy=

Solução geral
te

0
δy δy=
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Liapunov’s first method



For non-trivial solutions it is required that

( )
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A I δy 0− =

0A I− =

It is the classic eigenvalue problem for matrix A

2 2 1

0 1 2 1 2... 0n n

n nb b b b  −

−+ + + + =

In the general case, there exists 2n complex roots for the characteristic equation

Elements of Stability Theory

Liapunov’s first method
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Theorem 1 (Liapunov): If 0 1,2...2  is L-stablekR k n δy 0  =  =

0  is L-unstablekR δy 0   =Theorem 2 (Liapunov): If

Definition of L-critical case: there exists at least one eigenvalue with

zero real part              , yet none of them with positive real part.0kR =

Theorem 3 (Leipholz): In the critical case, if the multiplicity of all the

eigenvalues with null real part is equal to the rank decrement

of the matrix , then the solution for the linear system.

If , then the solution for the linear system.

kp

( )0kR = kd

kA I−  is L-stableδy 0=

k kp d  is L-unstableδy 0=
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Liapunov’s first method



Theorem 4 (Routh-Hurwitz): If all principal minors of the matrix

(below) are positive, then the solution .

The reciprocal is also true.
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Liapunov’s first method



Theorem 5’ (Hartman-Grobman): If a singularity of the linear system

is hyperbolic , then the linearized system is topologically equivalent

to the non-linear system                                   in the singularity neighbourhood,

that is, between the phase space flows of the non-linear and the linear systems

there exists a diffeomorphism (transformation that is continuous with continuous

derivative)

δy Aδy=

( )= +δy Aδy N δy

Dynamical systems theory

Elements of Stability Theory

Liapunov’s first method

Theorem 5 (Liapunov): Except for the L-critical case, the conclusions drawn from

Theorems 1 and 2 for the linearized system                   can be extended to the

non-linear system ( )= +δy Aδy N δy

δy Aδy=
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