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Elements of Stability Theory
Lagrangian formulation (recalling)

d(or)_or  ov

dt\oq, /] oq, 0q,

=N,,r=12,..,n

System of second-order differential equations (holonomic constraints)

q=h(q.9.t) A, =N (0, Gp0s Gy G, Gy G )

Example: SDOF linear oscillator

§=ylt)—wiqg—28wqg W y(t)= R(t) \f 5—

Example: MDOF linear system

g =M '[R(t) —Kq— Cq]




Elements of Stability Theory

Hamiltonian formulation (recalling)

. ol
Generalized momenta: P, =_—

0d,
Hamiltonian: H = qu p,—T+V
r=1

System of first-order differential equations (holonomic constraints)

oH

qr = apr
oH
pr = 0T




Elements of Stability Theory

Hamiltonian formulation (recalling)

Example: SDOF linear oscillator

oT
p° kg’ —
H=pg-T+V = ¢
PA=T+V =0t p=R(t)—kq—ap

N =R(t)-cq= R(t)—c%




Elements of Stability Theory

Lagrangian formulation:
from second- to first-order system of differential equations through change of variables

0 =1, (0 Gy Gy By, Gy s Gy )

yr = qr yr = yr+n
=

Yren = s Vern =0 (Y0 Yares Yon o t)

y=g(y.t)

Example: SDOF linear oscillator

Y1=4 :> Vi =Y,

Y. =0 Y, = 7/(t)_a)2y1_2§wy2




Elements of Stability Theory

Phase space

Autonomous systems Non-autonomous systems

y=9(y) y=g(y.t)

n-dimensional space (n+1)-dimensional space

Vi X Yo X Y0 Yy X Y, X Y, xt

Y A

- e
S

g




Elements of Stability Theory
Phase space properties for SDOF autonomous systems
Singular phase points (equilibrium points) Y = g(y) =0

Regular phase points Y = g(y) #0

dy, gz(ypyz) gz()’p)’z)
dy, gl(yl, v,) Y,

Phase trajectory tangent

Tangent at singular phase points is indeterminate 92(
dy1 o (YY)

Tangent at regular phase points with 0. (Y1, Y2) =Y, =0and g, (y,,y,)#0
Is orthogonal to the Yy, axis

Through a regular phase point passes just one phase trajectory
(Theorem of Cauchy-Lipschitz)




Elements of Stability Theory

Non-perturbed solution: =Y, (t) r=12,.

Perturbed solution: =Y, (t)+ oY, (t) r=12,...,2n

Y, =0, (Y2 + Y1, Vs +6Ysreres Yon + 6 Y50it) = V7

— fOT(6y115y2" "15y2n1 t)

Perturbation equations:

and N(8y,t) = f,(8y,t) — A(t)dy
0

| of,
8y = A(t)8y + N(8y, t) with A(t) = 3y

Note: the non-perturbed solution corresponds to the
trivial solution 9y = () of the perturbation equations




Elements of Stability Theory

Example: SDOF linear oscillator

0y, =9Y,
oY, =_w25y1_2§a)5y2

8y = £ (dy) or 3y = Ady

off [0 1
0_ —0° -2fw

oy




Elements of Stability Theory

Stability concept (Leipholz)

A non-perturbed solution y°(t) is stable if the distance 8y (t)
to the perturbed solutions remains within prescribed bounds for all times and
arbitrarily defined perturbations

_ Equilibrium y° = const.
Non-perturbed solution _
Motion y°(t)

Kinematical (initial conditions): §y(0) = 0
“Type” of perturbation _ _
Topological (perturbation of parameters or

perturbation of mathematical model)




Elements of Stability Theory

Stability concept (Leipholz)

Local [6y(0)|< &
Perturbation “size” H y( )H<

Global
Global S Global | Global Global |

Local | Local S Local S Local |




Elements of Stability Theory

Stability concept (Leipholz)

_ Deterministic
“Character” of perturbation
Stochastic

Example: definition of stability in the quadratic mean:

imE_[oy(t) <e 05 = _I Sey (0)dw< &

Stability x Reliability x Integrity




Elements of Stability Theory

Stability concept (Leipholz)

_ _ Asymptotic
Evolution of perturbed solution _
Non-asymptotic

Sy, Sy,




Elements of Stability Theory

Stability concept (Leipholz)

- _ _ Kinetic
Admissible region for perturbed solution _
Geometric
A
£ V2
A _
ay(r) “ 3y (1)

y' (1)




Elements of Stability Theory

Stability definitions

Liapunov
Stability of equilibrium of autonomous systems in the sense:
Kinematical, local, deterministic, non-asymptotic, kinetic

Poincare
Stability of motion of autonomous systems in the sense:
kinematical, local, deterministic, non-asymptotic,geometric

Particular case: orbital stability of periodic motions

Structural
Stability of equilibrium or motion in the sense:
topological, local, deterministic, asymptotic

Particular cases: parametric stability; Mathieu stability




Elements of Stability Theory

Liapunov stability

Given g >0 , there exists 5(<)> 0, such that,
if |8y(0)|< (&) then [dy(t)|<e&for t>0

Liapunov’s methods

First method (indirect)
Second method (direct)




Elements of Stability Theory

Liapunov’s first method

Perturbation equation for the analysis of the
stability of equilibrium of the trivial solution oy =0

8y = f,(8y) = A8y + N(8y)

with A= oo and  N(8y) = f,(8y) — A8y
ay 0
Consider the associated linearized problem
oy = Ady
Solucao geral
dy = dy e™




Elements of Stability Theory

Liapunov’s first method
(A-21)dy,=0

For non-trivial solutions it is required that
A-A1|=0

It is the classic eigenvalue problem for matrix A

b A" +b A" +..+b, A+b, =0

In the general case, there exists 2n complex roots for the characteristic equation

A =R +1l, R, and I, are real numbers




Elements of Stability Theory

Liapunov’s first method

Theorem 1 (Liapunov): If R, <0 Vk=12..2n= 8y =0 is L-stable

Theorem 2 (Liapunov): If 3R, >0 =8y =0 is L-unstable

Definition of L-critical case: there exists at least one eigenvalue with
zero real part R, =0, yet none of them with positive real part.

Theorem 3 (Leipholz): In the critical case, if the multiplicity p, of all the
eigenvalues with null real part (R, =0) is equal to the rank decrement d,

of the matrix A— 4,1, then the solution 8y = 0 is L-stable for the linear system.
If p,>d,, then the solution 8y =0 is L-unstable for the linear system.




Elements of Stability Theory
Liapunov’s first method

Theorem 4 (Routh-Hurwitz): If all principal minors of the matrix
B (below) are positive, then the solution &y =0 is L-stable.
The reciprocal is also true.

b, b, 0 0 0 O 0
b, b, b b, 0 O 0
0
B = br>2n=0 and br<0=0




Elements of Stability Theory

Liapunov’s first method

Theorem 5 (Liapunov): Except for the L-critical case, the conclusions drawn from
Theorems 1 and 2 for the linearized system oy = Ady can be extended to the
non-linear system &y = Ady + N(dy)

Dynamical systems theory

Theorem 5° (Hartman-Grobman): If a singularity of the linear system

oy = Ady Is hyperbolic , then the linearized system is topologically equivalent
to the non-linear system §y = Ady + N(ﬁy) In the singularity neighbourhood,
that is, between the phase space flows of the non-linear and the linear systems

there exists a diffeomorphism (transformation that is continuous with continuous
derivative)
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