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THE RATIONAL NUMBER GAME

NATHAN BOWLER AND FLORIAN GUT

Abstract. We investigate a game played between two players, Maker and Breaker,

on a countably infinite complete graph where the vertices are the rational numbers.

The players alternately claim unclaimed edges. It is Maker’s goal to have after count-

ably many turns a complete infinite graph contained in her coloured edges where the

vertex set of the subgraph is order-isomorphic to the rationals. It is Breaker’s goal

to prevent Maker from achieving this. We prove that there is a winning strategy for

Maker in this game. We also prove that there is a winning strategy for Breaker in

the game where Maker must additionally make the vertex set of her complete graph

dense in the rational numbers.

1. Introduction

Games have always fascinated mathematicians and thus the study of games is a well-

established part of the field of combinatorics. A particular type of game that falls

squarely into graph theory is called the H-building game. This is a game played by

two players on a complete graph G as the board. The players choose a graph H at the

beginning of the game and during the course of the game they alternately claim edges

of G. The first player that has a copy of H contained in the subgraphs of G induced by

their respective claimed edges wins the game. A comprehensive introduction to games

on graphs and other combinatorial games can be found in Beck’s book [Bec08].

If one considers H-building games where G is finite (and therefore also H), then one

quickly finds that there is always a winning strategy for the first player as long as G

is large enough in relation to H : by Ramsey’s theorem [Ram30], there is a number

n = R(|V (H)|) such that for any m ≥ n and any colouring of the edges of Km with two

colours contains a copy of H in one of the colour classes. Thus, one of the players must

have a winning strategy. Another classic result called strategy stealing (see [Bec08])

implies that this can only be the first player. Due to this the existence of a winning

strategy for the first player is known for many games, albeit with no insight into a

precise sequence of moves that secure a win for the first player.

A possible approach to circumvent the shortcuts provided by Ramsey theory and

strategy stealing is to consider infinite H-building games instead: on the one hand

one may assume that the board G is infinite while H is finite, on the other hand one

could also allow H to be infinite. In either case the analysis becomes more difficult, as

explicit winning strategies must be found. This gets tough already for small graphs H ,

as illustrated in [BG23], in which the authors provide a winning strategy for the first
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player in the K4-building game. Thus far, K4 is the largest complete graph for which

a winning strategy on the infinite complete board is known.

As the search for winning strategies appears to be demanding in infinite H-building

games, one may instead consider the Maker-Breaker version of the game. In that game

the premises are the same but only one of the players, Maker, has the aim to complete

a copy of H while the other player, Breaker, simply has the objective to stop Maker

from completing her copy of H .

While for H-building games on an infinite board Ramsey’s theorem no longer ensures

the existence of a winning strategy, there still is a close connection to Ramsey theory (see

[GRS90] by Graham, Rothschild and Spencer for an introduction): Edges of the board

are coloured with two colours and the players want to find a designated substructure

completely within their colour classes, in contrast to Ramsey theory where all edges

of a graph are coloured and one wants to find the relevant substructure in one of the

colours. Therefore these types of games are also called Ramsey games.

Given the close relationship of Ramsey theory and Ramsey games, it is natural to

ask how close the relationship is exactly. For this purpose consider a generalisation of

the H-building game which we call the structural H-building game: One may introduce

further structural information into the board G and then require that H satisfies an

additional property with regards to the structural information of G. For example one

may consider an order on the vertices of G and require that the subset of vertices

that form Maker’s copy of H is order-isomorphic to V (G). With this we return to the

relationship of Ramsey theory and Ramsey games. There are two sides to the question

how closely the two fields are related.

Question 1.1. Let G be a complete graph with a structural property and H be a

graph with a structural property of its vertex set that is compatible with that of V (G).

Suppose that for any 2-colouring of the edges of G there is a monochromatic copy of H

contained in G as a subgraph. Is there a winning strategy for Maker in the structural

H-building game on G?

So far all research seems to be supportive of this assertion, the authors are not aware

of any example disproving Question 1.1.

Question 1.2. Let G be a complete graph with a structural property and H be a

graph with a structural property of its vertex set that is compatible with that of V (G).

Suppose that there is a winning strategy for Maker in the structuralH-building game on

G. Does this imply that for any 2-colouring of the edges of G there is a monochromatic

copy of H contained in G as a subgraph?

A good example for this is the K4-building game. For n ≥ 17 the K4-building game

on Kn is a first player win [BG23] and the Ramsey number of 4 is 18 (See Greenwood

and Gleason in [GG55]). In particular for every board size of n ≥ R(4) there is a

winning strategy for the first player. Notably there is a small discrepancy between the

sufficient board size of 17 and the Ramsey number of 18. (Note that in [BG23] there
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is no structural property considered but one could e.g. assume that the vertices of the

board Kℵ0 and the vertices of K4 are totally ordered, which gives the same result.)

Similarly in the Maker-Breaker version of the Kℵ0-building game played on Kℵ0 there

is a winning strategy for Maker [BEG23, Theorem 3.1] and for any 2-colouring of the

countably infinite complete graph there is a monochromatic Kℵ0 , see e.g. Dushnik and

Miller [DM41, Theorem 5.22] for a proof of Ramsey’s theorem for infinite graphs.

In this paper we answer Question 1.2 in the negative. We present a game and a

winning strategy for Maker in that game where the corresponding statement in Ramsey

theory is not true.

Before stating the main result of this paper let us shed some light on another disparity

of finite and infinite graphs which has to do with total orders. While any two total

orders on a given finite set are isomorphic, this is not true for infinite total orders. For

example there are two non-isomorphic total orders on the rational numbers: The usual

order and one induced by an enumeration of the rationals. We carry this over to the

setting of structured H-building games, and make use of this discrepancy: Let KQ be

the complete graph with the rational numbers Q as the vertices. In the KQ-building

game we call KQ the board, of which the two players Maker and Breaker alternately

claim edges. The aim of Maker is to have contained in the subgraph induced by her

claimed edges a copy of the board. That is, a complete graph such that its vertex set

(which is a subset of Q) with the order induced by Q is order isomorphic to Q. It is

Breaker’s goal to stop Maker from achieving this. We will prove that there is a winning

strategy for Maker.

Theorem 1.3. There is a winning strategy for Maker in the KQ-building game.

The corresponding statement in Ramsey theory is false: There is a colouring of the

graph KQ with two colours such that there is no monochromatic copy of KQ contained

in either of the colour classes, which is shown in Proposition 2.3.

In Section 4 we show that the result of Theorem 1.3 cannot be made stronger in the

following sense: consider the dense KQ-building game: The Maker-Breaker game played

on KQ where it is Maker’s goal to finish a copy of the board as in the KQ-building game

with the additional property that the vertex set of Maker’s copy is dense in the vertex

set of the board. We prove that there is a winning strategy for Breaker in the dense

KQ-building game.

2. Preliminaries

In this paper any graph theoretic notions not introduced are drawn from Diestel’s

book [Die17].

The games that we analyse are played between two players, Maker and Breaker. The

players alternately take turns that consist of claiming an edge from the board KQ where

KQ is the complete graph with the rational numbers Q as the vertex set. They claim an

edge by choosing an uncoloured edge of the board and colouring it in their respective

colour. We will refer to Maker by she or her and similarly we refer to Breaker by he or
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him. The goal for Maker will be to colour the edges in such a way that her subgraph

contains a KQ, possibly with an additional property that we introduce in Section 4.

The goal of Breaker always is to simply stop Maker from achieving her defined goal.

For any point in the game we define E(GM) to be the edges that have been coloured

by Maker up to that turn and V (GM) to be the subset of vertices of the board that

are incident with at least one edge of E(GM). With this we define Maker’s subgraph

GM := (V (GM), E(GM)) of the board. We similarly define Breaker’s subgraph GB. For

a vertex v ∈ V (GM) we define NM(v) to be the set of neighbours of v in GM . When

we say that a player connects a vertex v to a vertex w in her or his turn then we mean

that Maker or Breaker claims that edge in her or his turn respectively.

By a fresh vertex v we mean a vertex that is not incident with a claimed edge of either

player up to that point of the game, i.e. v /∈ V (GM)∪V (GB). In Maker’s strategy that

we will describe in Section 3, Maker will add at most one fresh vertex to GM in each

of her turns except for the first turn. We use this to obtain an enumeration of V (GM),

that is vk stands for the kth vertex added to GM . For the first turn we will indicate a

choice which of the vertices we call v1 and which v2.

In Section 4 we present a winning strategy for Breaker in a variation of the game.

This will be a pairing strategy, that is we will find a family of disjoint pairs of edges of

the board which Breaker will utilise in such a way that whenever Maker claims an edge

of one of the defined pairs, then Breaker claims the other in his following turn. Such a

strategy is then a winning strategy for Breaker if any subgraph of the board with which

Maker could win the game includes at least one of the defined pairs.

For a natural number n ∈ N we define [n] := {1, . . . , n} and for a finite sequence

(a1, a2, . . . , an) of rational numbers and an element a ∈ Q we define (a1, a2, . . . , an)
⌢a :=

(a1, a2, . . . , an, a).

For the rest of this section we give proofs for three folklore results. We prove them

here to keep this paper self-contained.

Proposition 2.1. There is a partition P of Q into pairwise disjoint open intervals and

an order ≤P of P defined by P ≤P Q if and only if either P = Q or p ≤ q for every

p ∈ P and q ∈ Q such that (P,≤P) is order isomorphic to (Q,≤).

Note that since any open interval of Q is again isomorphic to Q (since any two

countable dense total orders without smallest and largest element are isomorphic, see

[BMMN06, Theorem 9.3]), there also exists such a collection for any open interval of

Q.

Proof. Let � be the lexicographic order on Q2 and f : (Q2,�) → (Q,≤) be an order

isomorphism. Then P := {f [{q}×Q] : q ∈ Q} is as desired as ≤P inherits its properties

from ≤. �

Proposition 2.2. For every 2-colouring of the rational numbers there is a monochro-

matic subset that is isomorphic to the rational numbers.

Proof. Choose a collection (P,≤P) as in Proposition 2.1 and let a 2-colouring of Q

be given. Call the colours red and blue. First suppose that there is a set P ∈ P that
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contains no red element. Then P is an open blue interval, which is isomorphic to (Q,≤)

by Cantor’s isomorphism theorem [BMMN06, Theorem 9.3]. Now suppose that every

P ∈ P contains a red element. Then choose such an element from each P . The union

of these elements together with the order p ≤ q ⇔ P ≤ Q where p ∈ P ∈ P and

q ∈ Q ∈ P, is then isomorphic to (Q,≤). �

Proposition 2.3. There is a 2-colouring of KQ such that there is no monochromatic

subgraph KQ.

Proof. First note that N and Q are not order isomorphic, since N has a smallest element,

but Q does not, we will use this for a contradiction. Let (qi)i∈N be an enumeration of Q.

We colour qiqj ∈ E(KQ) blue if either qi ≤ qj and i ≤ j or qj ≤ qi and j ≤ i. Otherwise

we colour it red. Now suppose that there is a subset Q of Q that is isomorphic to (Q,≤)

such that the complete graph induced by Q is monochromatic. This implies that Q is

also order-isomorphic to N or its reversal, a contradiction. �

3. The rational number game

In this section we present a winning strategy for Maker in a variant of the Kℵ0-game.

We will do this by first describing a strategy according to which Maker should play and

then showing in the proof of Theorem 3.1 that there actually is a subgraph with the

desired property if Maker adheres to the strategy. During the game Maker wants to

switch between adding fresh vertices to GM and further connecting vertices of GM to

others in a structured fashion. We will make this more precise later.

Let us define the Q-game strategy : At the beginning of the game Maker chooses

• a partition P of the interval (0, 1) ⊆ Q into open intervals such that there

is an order ≤P of P induced by the regular order on Q such that (P,≤P) is

order isomorphic to (Q, <) where “<” is the usual ordering (this is possible by

Proposition 2.1),

• an enumeration (Pi)i∈N of P, and

• a sequence (ni)i∈N of natural numbers such that every finite sequence of natural

numbers appears infinitely often as a subsequence.

Informally speaking, by containing vertices of sufficiently many different intervals in

P, Maker can ensure that a subset of V (GM) actually is isomorphic to Q, as (P,≤P) is

isomorphic to (Q,≤). The enumeration (Pi)i∈N together with the sequence (ni)i∈N will

be used to ensure that different intervals Pi, Pj are well connected to ensure that there

actually is a complete graph using vertices of many different Pi.

In her first turn, Maker claims the edge {0, 1} for herself and sets v1 = 0 and v2 = 1. In

a later turn, suppose V (GM) = {v1, . . . , vk} where vi is the i
th vertex that Maker added

to GM . For every vertex v ∈ V (GM) we define a finite sequence Sv = (vi1 , . . . , viℓ) of the

vertices of NM(v) that were added to GM before v that represents the order in which

Maker claimed the edges vvij . In particular ℓ was the degree of v inGM when Maker first

chose a new fresh vertex after v. Maker uses the sequence Svk to determine from which

interval P ∈ P to choose the vertex that she plays to next: suppose that vk ∈ P ∈ P
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and Svk = (vi1 , . . . , viℓ). Suppose further that |{v ∈ V (GM) : Sv|ℓ = Svk ∧ v ∈ P}| = m,

i.e. there are m previous vertices in P that Maker connected to the same vertices as

vk in the same order in the first ℓ moves of connecting them to GM . Now consider the

(m+ 1)st time that (i1, i2, . . . , iℓ) appears in (ni)i∈N as a subsequence and let n be the

number appearing next. Then Maker wants to play to a vertex of Pn next.

For that purpose she considers the vertices vi such that

(1) vi ∈ Pn ∩ V (GM),

(2) Svi |ℓ = Svk , and

(3) there are at most ℓ ·(ℓ+1) vertices vj ∈ V (GM) with j < i satisfying (1) and (2).

Let us call this set F . If F contains fewer than ℓ(ℓ + 1) + 1 vertices, Maker chooses

a fresh vertex vk+1 ∈ Pnk+1
, claims v1vk+1 and begins the aforementioned process for

vk+1. Otherwise, F has size precisely ℓ(ℓ+1)+1 and Maker continues as follows: Define

L := {v ∈ P ∩ V (GM) : Sv|ℓ = Svk}, i.e. L is the set of vertices of GM that come from

the same partition class of P as vk and in their first ℓ moves of being connected to GM

Maker connected them to GM in the same manner as vk. We define a total order on F

via

vi < vj :⇔







|NM(vi) ∩ L| < |NM(vj) ∩ L| , or

|NM(vi) ∩ L| = |NM(vj) ∩ L| and i < j
. (1)

Maker claims vivk such that vi is minimal with respect to that order. Note that this

choice is unique. In fact the second clause is only there to make this true.

Maker will use this order to play to the vertices of F in a ‘balanced fashion’, that is,

Maker connects vk to an available vertex with the smallest possible number of neigh-

bours vi that behave like vk in the sense that Svi |ℓ = Svk |ℓ. This is useful because this

ensures that for an infinite set of vertices of which each vertex behaves like vk up to

M-degree ℓ, for all but at most ℓ many vertices of F there are infinitely many vertices

that get connected to that vertex.

Theorem 3.1. The Q-game strategy is a winning strategy for Maker in the complete

rational number game.

Note that Theorem 3.1 implies Theorem 1.3.

Proof. For the proof we again fix a sequence (ai)i∈N of natural numbers. This sequence

should contain every number infinitely often and each ai should be at most i. Moreover,

we reuse the partition P and its enumeration (Pi)i∈N from the Q-game strategy. We

recursively build for every m ∈ N a complete graph Km and a set Wm such that

(a) Km−1 ⊆ Km ⊆ GM with V (Km) = {u1, . . . , um}, and

(b) Wm = {w ∈ V (GM) : Sw|m = (u1, . . . , um)}.

For i ∈ [m] we denote by P i the partition class of P that contains ui. We define

Qi
m := {P ∈ P : |Wm ∩ P | = ℵ0 and P i <P P and

there is no j ∈ [m] with P i <P P j <P P}.
(2)

With these definitions we also require Wm to satisfy that
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(c) Qi
m contains a subset that, together with the order induced by <P , is order

isomorphic to (Q, <) for every i ∈ [m], and

(d) um ∈
⋃

Qam−1

m−1 , if m > 1.

Clearly, (a) implies that
⋃

m∈N K
m = Kℵ0 is a complete graph contained in Maker’s

subgraph GM . By (d) we add a vertex between any pair of vertices ui, uj ∈ Kℵ0 ,

thus V (
⋃

m∈N K
m) contains a subset that is order isomorphic to (Q,≤). The subgraph

induced by these is the desired KQ. Properties (b) and (c) are needed to ensure that

the recursion can be continued indefinitely.

Recursion start: Recall that v1 = 0 was added to GM as the first vertex according

to the Q-game strategy. We set K1 := ({v1}, ∅) and W1 := V (GM) \ {v1}. The

requirements of (a) and (d) are empty in the initial step and therefore satisfied. Property

(b) is true for W1, as according to the Q-game strategy every other vertex of GM is

connected to v1 first. For every P ∈ P Maker added infinitely many vertices to GM , as

the ith vertex she adds is a vertex of Pni
and (ni)i∈N contains every number infinitely

often. Thus Q1
1 = P and therefore Q1

1 satisfies (c).

Recursion step: Let k ≥ 2 and let Kk and Wk satisfying (a) to (d) be given.

We demonstrate how we can find a vertex uk+1 and a set Wk+1 such that Kk+1 :=

G[V (Kk) ∪ {uk+1}] and Wk+1 comply with (a) to (d).

By item (c), Qak
k contains a subset that is order isomorphic to (Q, <). Let Q be

such a subset and x be the first element of (ai)i∈N such that Px is an element of Q but

contains no vertex of V (Kk). We choose x in such a way because this ensures that

there is a partition of Q \ {Px} into two Q-isomorphic subsets Q− and Q+ such that

all Q− ∈ Q− and Q+ ∈ Q+ fulfil Q− <P Px <P Q+. We will choose a vertex of Px as

uk+1. This choice ensures (d).

Next we want to suitably restrict Wk to a set of vertices that were connected to a

vertex of Px, but we also need to make sure that we can preserve (c) for the subsequent

steps. For this purpose we let W ′ := {w ∈ Wk : there is v ∈ Px such that Sw|k+1 =

(u1, . . . , uk, v)} and use this to define Q̂i similarly to the definition in (2): for i ∈ [k]

let P i be the partition class of P that contains ui and set P k+1 := Px. We define

Q̂i := {P ∈ P : |W ′ ∩ P | = ℵ0 and P i <P P and

there is no j ∈ [k] with P i <P P j <P P} .

Claim 1. Q̂i contains a subset that is order isomorphic to (Q, <) for every i ∈ [k + 1].

Proof. Case 1: i ∈ [k+1]\{ak, k+1}. We prove this case by showing that any element

of Qi
k is also an element of Q̂i. The claim then follows from (c).

Consider any P ∈ Qi
k. By definition we have |P ∩ Wk| = ℵ0 and by (b) every

w ∈ P ∩Wk was connected precisely to V (Kk) in its first k moves of being connected

to GM . According to the Q-game strategy, for infinitely many of them Maker played

to a vertex of Px next, thus |P ∩ W ′| = ℵ0. As this is true for any P ∈ P with

|P ∩Wk| = ℵ0, this proves the claim for i ∈ [k + 1] \ {ak, k + 1}.
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Case 2: i ∈ {ak, k + 1}. With the same reasoning as in Case 1 any P ∈ Q− is also in

Q̂ak and any P ∈ Q+ is also in Q̂k+1. Since both, Q− and Q+, are isomorphic to Q,

this implies the claim for i ∈ {ak, k + 1}.

To continue, consider the set F of the first k(k+1)+ 1 many vertices u ∈ P k+1 with

Su|k = (u1, . . . , uk). There is such a set as any vertex u ∈ P k+1∩Wk fulfils this property

and there are infinitely many such vertices by the choice of P k+1. Further, fix i ∈ [k+1]

and consider Q ∈ Q̂i. For any vertex q ∈ Q ∩W ′, Maker considered the set F in the

(k+1)st move of connecting q to GM . As Maker played from Q∩W ′ to F in a balanced

fashion, that is she played to the smallest vertex of F with respect to the order defined

in (1), there are at most k vertices in F that have only finitely many neighbours in

Q ∩W ′. By choosing some superset of k vertices if necessary, we obtain a colouring of

Q̂i indicating for every Q ∈ Q̂i a subset of F of size k such that all other vertices of F

have infinitely many neighbours in Q ∩W ′. By taking the complements of the sets of

size k, the same colouring indicates for each Q for which subset F ′ ⊆ F every vertex

in F ′ was picked by Maker for infinitely many vertices v of Q ∩W ′ to be played to in

the (k+1)st move of connecting v to GM . There are
(

k(k+1)+1
k

)

colours in this colouring

of Q̂i, since every k element subset of F gets assigned a colour and F has k(k + 1) + 1

elements. In particular, this is a finite number. Thus by Proposition 2.2 and Claim 1,

there is a colour class that again contains a subset that is order isomorphic to Q. We

fix a suitable colour class C i ⊆ Q̂i for every i ∈ [k + 1]. As seen, any of the k + 1

fixed colour classes excludes k vertices of F as the next candidate and since F has size

k(k+1)+1, there is at least one vertex in F that is met by the fixed colour class C i for

every i ∈ N. We choose the smallest such vertex as uk+1. Then (b) and (c) are fulfilled

by construction and (d) is fulfilled by the choice of x as mentioned above. Lastly, we

set Kk+1 := G[V (Kk) ∪ {uk+1}], thus also (a) is ensured.

�

4. The dense rational number game

Since Maker can always win in the rational number game, let us consider a variant

of the game in which it is harder for Maker to achieve her goal. Thus, consider the

dense rational number game in which the vertices of the board are again represented by

the rational numbers and it is Maker’s aim to have at the end of the game a complete

graph Kℵ0 contained in her graph GM such that the set of vertices V (Kℵ0) is a dense

subset of Q.

In this game Maker is doomed to fail. We prove this by providing a winning strategy

for Breaker in this variant of the game. We call it the dense Q-game strategy : at the

beginning of the game Breaker picks

• an infinite sequence I := (Ij)j∈N of pairwise disjoint intervals of Q,

• an enumeration Q of Q, and

• an enumeration ({pj, qj})j∈N of the 2-element subsets of Q.
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For any s ∈ Ij \ {pj, qj} where s appears later in the enumeration Q than both pj and

qj he pairs the edges {pjs, qjs}. Then, whenever Maker claims either pjs or qjs in one

of her turns, Breaker claims the other in his following turn.

Lemma 4.1. The dense Q-game strategy is a pairing strategy that is a winning strategy

for Breaker in the dense rational number game.

Proof. To verify that the dense Q-game strategy is a pairing strategy we need to verify

that the pairs of edges {pjs, qjs} are pairwise disjoint. For fixed j and s 6= t ∈ Ij\{pj , qj}

it is true that {pjs, qjs}∩{pjt, qjt} = ∅. For i 6= j with s ∈ Ii and t ∈ Ij, the intersection

of {pis, qis} and {pjt, qjt} can only be nonempty if both s ∈ {pj, qj} and t ∈ {pi, qi}.

But this cannot happen because pi, qi, pj and qj appear in a unique order in the

enumeration Q which ensures that Breaker considers only one of the pairs {pis, qis}

and {pjt, qjt} in this case.

To see that the dense Q-game strategy is a winning strategy for Breaker, suppose for

a contradiction that Maker finishes a KQ whose vertices are dense in Q. Then there is

n ∈ N such that {pn, qn} ⊆ V (KQ). But according to the dense Q-game strategy only

finitely many vertices of In can be in KQ: since at some point both pn and qn have

appeared in Q, only finitely many other elements have appeared before and for every

vertex v ∈ In that appears later in Q the pair {pnv, qnv} is considered in the dense

Q-game strategy. Thus, V (KQ) cannot be dense in In, which implies that the set of

vertices is not dense in Q. �
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