
Data pre-processing operations 

M. Cristina 
SCC5836/0252 Visualização Computacional 

1 



Data sources 

• Sensors, IoT, measurements, collection, simulations, 
computations, digital transactions, ... 
 

• Raw data: as obtained/collected 
 

• Curated data: went through processes for organization, 
rescaling, smoothing, ...  
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Data transformations 

• Select from the table the attribute(s) you want/need to use in 
a visualization 
 

• Representing the values as required/suitable by the 
visualization technique 

3 



Data transformations 

• Select from the table the attribute(s) you want/need to use in 
a visualization 
 

• Representing the values as required/suitable by the 
visualization technique 
 
– an overview of which are the most common data 

transformations/data processing strategies 
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Terminology: data variables 

• Phenomena are described by multiple variables/attributes 
 
– Independent variable: its values are not determined/affected by 

another variable 
 

– Dependent variables: its values are determined/affected by other 
variable(s) 
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Terminology: data variables 

• Example: you have data from a study designs to test whether 
changes in room temperature have an effect on math test 
scores. 
– The independent variable is the temperature of the room. The 

experimenter varied the room temperature by making it cooler for 
half the participants, and warmer for the other half. 

– The dependent variable is math test scores. The experimenter 
measured the math skills of all participants using a standardized test 
and checked whether their grades differ based on room temperature. 
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Terminology: metadata 

• Data about the data 
– Units, resolution 
– Description, 
– .. 

• Semantics and interpretation 
– Ex.  
– Scientific paper: which is data and which is metadata? 
– Table: which is data and which is metadata? 
– Image: which is data and which is metadata? 
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Data transformation/preprocessing 

• Typically, we do not visualize the raw data: some 
preprocessing/transformation is likely necessary 
 

• ?? 
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Data preprocessing 

• Typically, we do not visualize the raw data: some preprocessing 
is likely necessary 
– Sampling, normalization, handling missing values, handling outliers, 

handling errors, interpolation, attribute selection, identifying 
correlation between attributes, reducing dimensionality... 
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Data preprocessing 

• Typically, we do not visualize the raw data: some preprocessing 
is likely necessary 
 

• Data profiling: `know´ about the data, e.g., type, organization, 
statistical distribution  of variables/attributes, correlations,  
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Steps in data preprocessing 

• Ex. to build a classification model from the data... 
– Ex. creditcard.csv  
– Kaggle: credit card transactions 

 
– Task is binary classification: fraud/not fraud 

 
– https://towardsdatascience.com/data-pre-processing-techniques-

you-should-know-8954662716d6 
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• “Here are the steps I have followed:” 
1. Import libraries 
2. Read data 
3. Checking for missing values 
4. Checking for categorical data 
5. Standardize the data 
6. PCA transformation 
7. Data splitting 
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Data pre-processing tasks 
• Checking for & handling missing values 
• Checking for & handling categorical data (data mining) 
• Verify distribution of variables - check for anomalies and outliers 
• Feature scaling (normalization, standardization) 
• Assessing data (dis)similarity 
• Assess correlation between variables/attributes 
• Dimension reduction (e.g. PCA transformation) 
• Data sub-sampling 
• Data aggregation 
• Data interpolation 
• Data splitting (e.g. for data mining model learning) 
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Data pre-processing tasks 

• Checking for & handling missing values 
 

• What if a value is missing? 
– Discard item? 
– Signal with a `sentinel´ (do not include in computations!)  
– Data imputation: assign a value   
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Data pre-processing tasks 

• Checking for & handling missing values 
 

• What if a value is missing? 
– Discard item? 
– Signal with a `sentinel´ (do not include in computations!)  
– Data imputation: replace missing value with...  

• average?  
• median?   
• most frequent value?  
• interpolated value?  (k-nearest neighbor interpolation? linear 

interpolation?  higher-order interpolation?) 
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Missing values 

• Interpolation 
– Assuming the data is generated by a smooth (spatial) function, it is 

possible to interpolate between known data points in order to infer 
the value of an unknown data point 
 

– Nearest-neighbor interpolation 
 

– Linear interpolation 

18 



Nearest-neighbor interpolation 

19 

Nearest neighbor interpolation 
(blue lines) in one dimension on a 
(uniform) dataset (red points). 
 
See Nearest-neighbor 
interpolation - Wikipedia 
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Nearest-neighbor interpolation 
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Nearest neighbor interpolation on a 
uniform 2D grid (black points). Each 
coloured cell indicates the area in 
which all the points have the black 
point in the cell as their nearest black 
point. 
 
See Nearest-neighbor interpolation - 
Wikipedia 
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Linear interpolation of a data set 
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Given data points: 
 (x0, y0), (x1, y1), ..., (xn, yn) 



Linear interpolation 
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known data points: (𝑥𝑥0, 𝑦𝑦0), 𝑥𝑥1, 𝑦𝑦1  
 
Infer value of y corresponding to x,  
assuming a line as the interpolant 
function 

𝑦𝑦 − 𝑦𝑦0
𝑥𝑥 − 𝑥𝑥0

=  
𝑥𝑥1 − 𝑥𝑥0
𝑦𝑦1 − 𝑦𝑦0

 

https://en.wikipedia.org/wiki/Linear_interpolation 



Linear interpolation 
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Geometric interpretation: the value at the green point as a weighted average of 
the values at the red and blue points: the weights are inversely related to the 
distance from the end points to the unknown point, i.e., the closer point has more 
influence than the farther point.   

𝑦𝑦 =  𝑦𝑦0
𝑥𝑥1−𝑥𝑥
𝑥𝑥1−𝑥𝑥0

 + 𝑦𝑦1
𝑥𝑥−𝑥𝑥0
𝑥𝑥1−𝑥𝑥0

 
x0,y0 

x1,y1 

x,y 



Data pre-processing tasks 

• Checking for & handling missing values 
 

• What if a value is missing? 
– Discard item? 
– Replace missing value with...  

 

• Decision depends on many factors and involves several concepts 
– ... the more you know about the data, the more likely you will be able to 

make a sensible choice. 
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Data pre-processing tasks 

• Compute some descriptive statistics, observe data dispersion 
and distribution 
 

• Metrics and graphs! 
– Average, deviation 
– Range, quartiles (Q1, Q2, Q3)  

 
– Box plots, histograms 
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3-sigma rule distribution 
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Symmetric normal distribution 



Data pre-processing tasks 

• Compute some descriptive statistics, observe data dispersion 
and distribution 
 

• Metrics and graphs! 
– Range, quartiles 
– 4.5.1 Calculating the range and interquartile range (statcan.gc.ca)  
– Min, Max, Q1, Q2, Q3  
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https://www150.statcan.gc.ca/n1/edu/power-pouvoir/ch12/5214890-eng.htm


Five number summary: box plot 

min = 1, max = 4, Q1 = 1,5, Q2 = 2,5, Q3 = 3,5 

30 



Data pre-processing tasks 

• Compute some descriptive statistics, observe data dispersion 
and distribution 
 

• Metrics and graphs! 
 

– Box plots, histograms 
– What are Histograms? Analysis & Frequency Distribution | ASQ 
– Box Plot (Box and Whiskers): How to Read One & How to Make One 

in Excel, TI-83, SPSS - Statistics How To 
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https://asq.org/quality-resources/histogram
https://www.statisticshowto.com/probability-and-statistics/descriptive-statistics/box-plot/
https://www.statisticshowto.com/probability-and-statistics/descriptive-statistics/box-plot/


Outlier identification 

• Outliers are data points that don’t belong to a certain 
population, an observation that diverges from otherwise well-
structured data. 
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[20,24,22,19,29,18,4300,30,18] 



Outlier identification 

• Outliers may be valid and important 
– detecting anomalies in heartbeat data can help in predicting heart diseases.  
– anomalies in traffic patterns can help in predicting accidents. 
– can indicate bottlenecks in network infrastructure and traffic between servers… 

 

• They may also result from errors in measurement or collection 
 

https://towardsdatascience.com/5-ways-to-detect-outliers-that-every-data-scientist-
should-know-python-code-70a54335a623 
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Outlier identification 

• In a data distribution approximately normal  
– about 68% of the data values lie within one standard deviation of the 

mean  
– about 95% are within two standard deviations 
– about 99.7% lie within three standard deviations 

 

• Therefore, any data point that is more than 3 times the 
standard deviation is very likely to be anomalous or an outlier 
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Outlier identification 
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Outlier identification 

• Boxplots are a simple and effective way to visualize outliers:  
– the lower and upper whiskers are the boundaries of the data distribution, any 

data points that show outside the whiskers can be considered outliers or 
anomalous. 
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Outlier identification 

• Example 
– Understanding and using Box and Whisker Plots | Tableau 
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https://www.tableau.com/data-insights/reference-library/visual-analytics/charts/box-whisker
https://www.tableau.com/data-insights/reference-library/visual-analytics/charts/box-whisker


Feature Scaling 

• Some ML algorithms & Vis techniques are sensitive to the 
features’ scale 
 

• Important to avoid bias towards variables of higher 
magnitudes (in Vis and ML) 
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Feature Scaling 

• Distance-Based algorithms like KNN, K-means,  SVM, 
multidimensional visualizations (e.g., multidimensional 
projections) are most affected by the range of features 
– This is because behind the scenes they are using distances between 

data points to determine their similarity. 
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https://www.analyticsvidhya.com/blog/2018/03/introduction-k-neighbours-algorithm-clustering/?utm_source=blog&utm_medium=feature-scaling-machine-learning-normalization-standardization
https://www.analyticsvidhya.com/blog/2019/08/comprehensive-guide-k-means-clustering/?utm_source=blog&utm_medium=feature-scaling-machine-learning-normalization-standardization
https://www.analyticsvidhya.com/blog/2017/09/understaing-support-vector-machine-example-code/?utm_source=blog&utm_medium=feature-scaling-machine-learning-normalization-standardization


Feature Scaling 

 
 
 
 
 

 
 
 
Since both the features have different scales, there is a chance that 
higher weigh is given to features with higher magnitude, causing 
the algorithm performance to be biased towards one feature 
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For example, let’s say we have 
data with high school scores of 
students (ranging from 0 to 5) 
and their (predicted) future 
incomes (in thousand $): 



Feature Scaling 
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For example, let’s say we 
have data with high school 
scores of students (ranging 
from 0 to 5) and their future 
incomes (in thousand $): 

Let´s compute Euclidean distances between students 
 
Distance(S1,S2) = 20 
Distance(S2,S3) = 1 
 
Scaling will ensure features have the same importance and 
distances are more comparable 



Feature Scaling 

• Absolute maximum scaling 
• Find the absolute maximum value of the feature in the dataset 
• Divide all the values in the column by that maximum value 

– If we do this for all the numerical columns (features/attributes), then 
all their values will lie between -1 and 1.  
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Feature Scaling 

• Standardization/Min-Max scaling 
 

• Both strategies have the same goal 
– Place all variables values in a comparable scale/magnitude 
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Standardization 

• Z-score 

𝑧𝑧 =  
𝑥𝑥 −  𝜇𝜇
𝜎𝜎

 

 
• Gaussian distribution with 0 mean and 1 standard deviation 
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Normalization 

• Min-Max transformation  
 

𝑋𝑋� =  
𝑋𝑋 −  𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚

𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚
 

 
• Transforms the data values to be in the range [0,1] 
• Must be careful with outlier values: min-max normalization 

may introduce distortions 
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The Big Question – Normalize or Standardize? 

• Normalization is good to use when you know that the data 
distribution does not follow a Gaussian distribution. This can be 
useful in algorithms that do not assume any distribution of the data 
like K-Nearest Neighbors and Neural Networks. 

• Standardization can be helpful in cases where the data follows a 
Gaussian distribution. However, this does not have to be 
necessarily true. Also, unlike normalization, standardization does 
not have a bounding range. So, even if you have outliers in your 
data, they will not be affected by standardization. 
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The Big Question – Normalize or Standardize? 

• However, at the end of the day, the choice of using 
normalization or standardization will depend on your problem 
and task/algorithm.  

• No hard and fast rule to tell you when to normalize or 
standardize your data.  
– You can always start by fitting your model to raw, normalized and 

standardized data and compare the performance for best results. 
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Exercises 

• Compute the median, lower and upper quartiles for the data: 
{1, 11, 15, 19, 20, 24, 28, 34, 37, 47, 50, 57}  

• Draw a box plot for this data 
• Which statistics would you use to summarize the following 

data, which describes the prices, in US$, of 11 products in a 
store? {1, 1, 1.5, 0.5, 1, 1, 1, 1, 1, 1, 20} 

• Draw a box plot for this data 
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Exercises 
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Inform the values of Q1, Q2, Q3, 
minimum and maximum for 
distributions A, B and C 
 
Which is the IQR of each distribution? 
 
Are they symmetric distributions? 
 
Do they include potential outliers? 
 



Exercises 

• For the data: {1, 11, 15, 19, 20, 24, 28, 34, 37, 47, 50, 57}  
– Normalize with maximum scaling 
– Normalize with min-max scaling 
– Normalize with standardization 

• Draw the box plots for the data after each transformation. 
Compare with that of the original data 

• Compute the mean, variance and standard deviation for this 
data: {2, 7, 3, 12, 9} 
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Sources/material/biblio 

T. Munzner, Visualization Analysis & Design 
 
Information Visualization Fundamentals, Enrico Bertini, online 
course in Coursera 
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