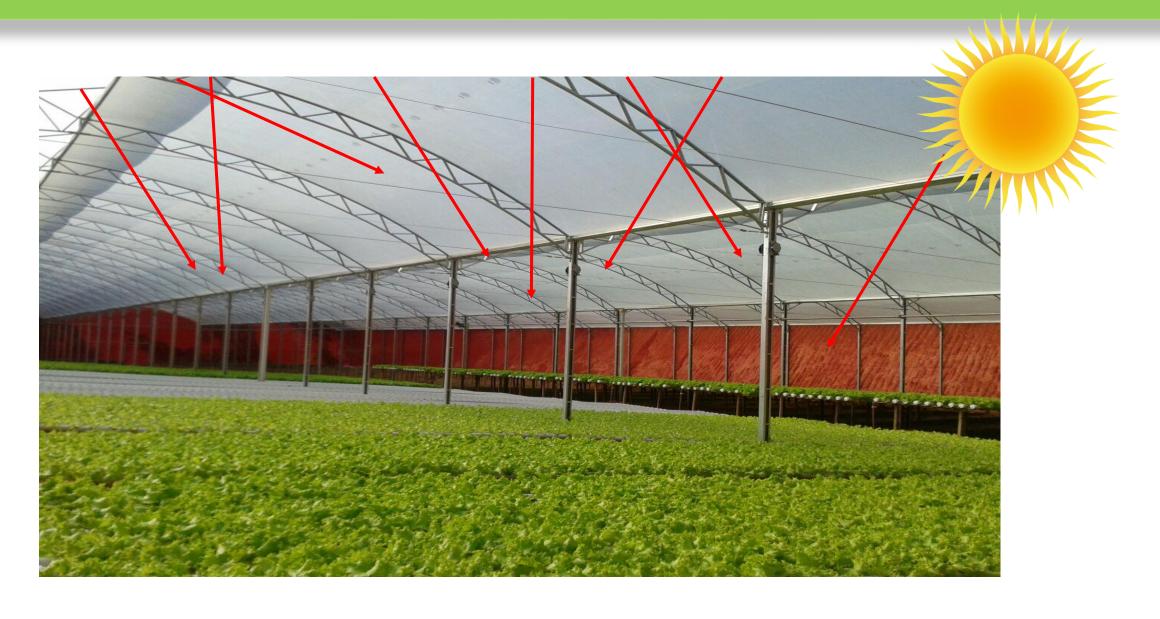
Produção de mudas de hortaliças

Casa-de-vegetação

Projeto da estufa agrícola

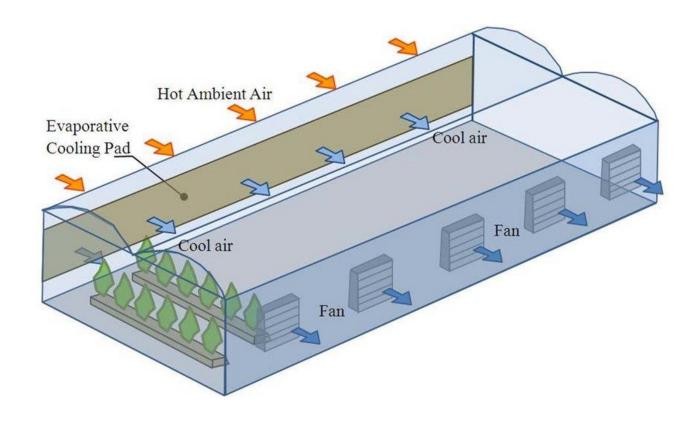

- a) Dimensões do modelo proposto
- b) Descrição e características técnicas
- Cálculos de resistência e carga da estrutura
- Especificações técnicas: estrutura dos pilares, galvanização; aberturas para a troca do volume de ar
- sistemas de ventilação natural (cálculos da estimativa da temperatura e UR do ar)
- sistemas de ventilação artificiais de controle.

Controle dos fatores ambientais

Telas termorrefletoras

Filme difusor

Filme anti-estático



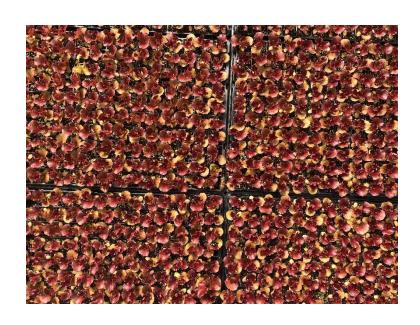
Resfriamento evaporativo

Exaustores na parte superior da estrutura frontal e no fundo devem ser combinados com o sistema PAD & FAN

Qualidade da muda

Qualidade das sementes

Classificação: tamanho, peso, forma, cor, densidade líquida e raio X


Poder germinativo (%)

Vigor

Pureza

Sanidade

Mudas tradicionais

- Menor vigor: hastes de menor calibre e sistema radicular menos rústico.
- Variabilidade no tamanho das mudas: variabilidade no campo: redução de produtividade

Recipientes

Bandejas de poliestireno expandido (não biodegradável)

Bandejas não reciclaveis

Escolha da bandeja


Qual a bandeja ideal para cada cultura???

- 98 células
- 128 células
- 200 células
- 288 células

Tipos de células

Substratos

- Isento de resíduos industriais
- Isentos de microrganismos patogênicos
- Leve
- Boa drenagem
- Alta capacidade de retenção de água
- Porosidade (> 80%)
- Água facilmente disponível (20-30%)

Escolha do substrato

• Fibra de coco: necessidade de umedecimento.

• Substratos à base de casca de pinus e outros materiais (turfa, vermiculita)

• Vermiculita: cobertura das sementes

Substratos

Golden Mix (Amafibra, fibra de coco)

Pindstrup (substrato à base de turfa)

Mudas e plantio (Biomix)

Vermiculita

Fibra de coco- Processador de substrato

Substrato acondicionado no equipamento

Sementes

Aquisição de sementes

Tipo de semente

• Embalagem: volume de produção

Tipos de sementes

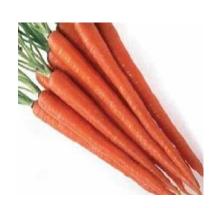
Sementes nuas

Sementes peliculizadas

Sementes incrustadas

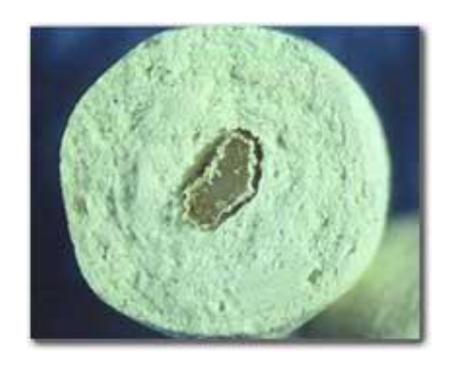
Sementes peletizadas

Sementes nuas


Sementes peliculizadas

pepino

Sementes incrustadas



Sementes peletizadas

Recobrimento das sementes

Vantagens:

· Reconhecimento da semente pela cor;

Favorece a semeadura;

Possibilita a incorporação de produtos;

 Pode ser associada com outras técnicas

Reconhecimento da espécie ou variedade pela cor

Embalagens

Baldes

Baldes com 5 e 10 kg de sementes

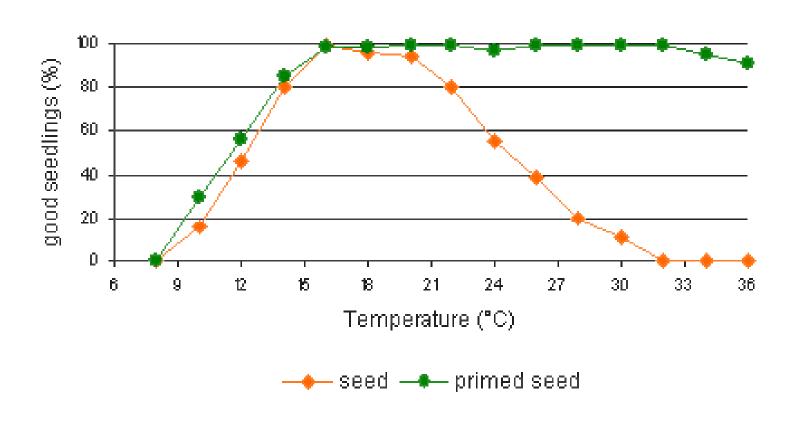
Latas

Latas de 25, 50, 100, 200,300, 400 e 500 g

Latas com 5000 sementes peletizadas de alface

Latas de 50000 sementes encrustadas de cenoura

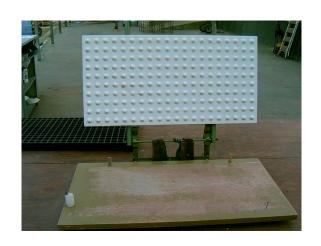
Envelopes


Envelopes com 1, 3, 5, 6, 10 e 12 g de sementes

Envelopes com 50,100, 500 ou 1000 sementes

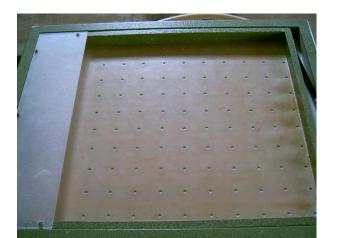
Priming

Quebra da dormência

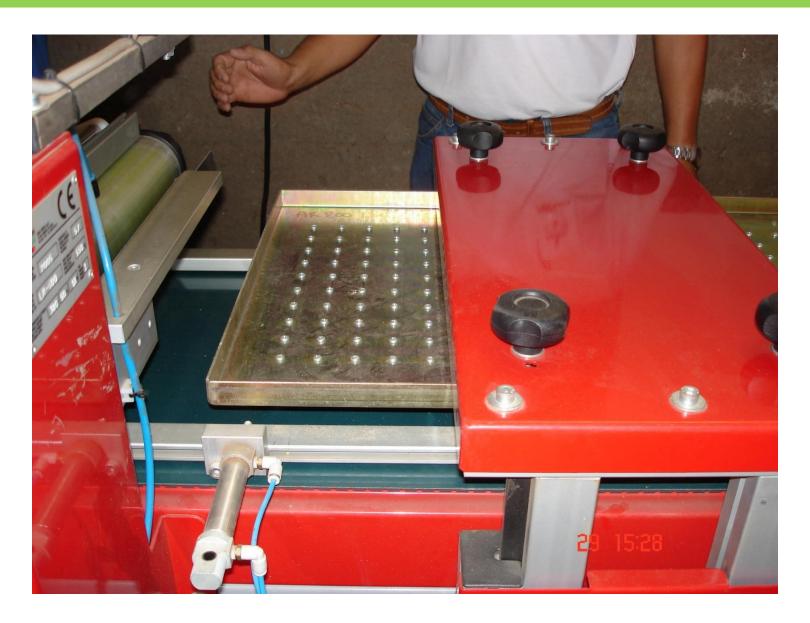

Desvantagens

Custo mais elevado

Perda de vigor das sementes

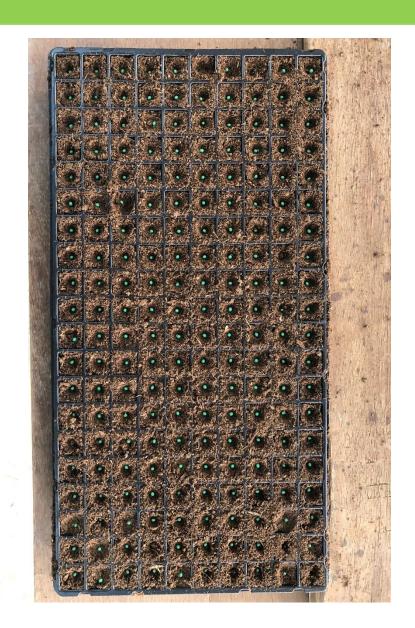

 Menor velocidade de emissão da raiz primária

Equipamentos para semeadura



Semeadora mecanizada

600 bandejas por hora



Semeadura mecanizada

Recobrimento da semente

Temperatura ideal para a germinação de algumas hortaliças.

Hortaliça	Faixa ideal de temperatura (°C)
Alface	20 a 24
Melão	28 a 32
Pepino	27 a 28
Pimentão	25 a 30
Tomate	25

Sala para germinação

Transferência das bandejas para as estufas agrícolas

Desenvolvimento das mudas

SISTEMAS DE IRRIGAÇÃO

Aspersão:

Aspersores estacionários

Sistema fog ou de nebulização

Aspersores móveis

Barra móvel

Detalhes da Barra móvel

Fertirrigação

Fertirrigação

• Início do desenvolvimento da muda: Soluções nutritivas com CE baixas (0,4-0,5 dS/m)

Soluções nutritivas para a fase definitiva (CE de 1,0-1,8 dS/m)

Automação da fertirrigação

Fertilizantes

Fertilizantes utilizados em soluções nutritivas

Fertilizantes sólidos: sais simples e fórmulas

Fonte de N

Fertilizante	Fórmula	Conc. Do nutriente %
Nitrato de amônio	NH4NO3	35%
Nitrato de cálcio	Ca(NO3) ₂ 4H2O	15,5% N, 20% Ca
Nitrato de potássio	KNO3	13% N, 36,5%
Nitrato de magnésio	Mg(NO3) ₂ .6H2O	11% N, 9,5% Mg
Fostato monoamônio (MAP)	NH4H ₂ PO ₄	11% N, 27% P
Fosfato diamônio (DAP)	NH ₄ HPO ₄	21% N, 23% P

Fonte de P

Fertilizante	Fórmula	Conc. Do nutriente %
Fostato monoamônio (MAP)	NH4H ₂ PO ₄	11% N, 27% P
Fosfato diamônio (DAP)	NH ₄ HPO ₄	21% N, 23% P
Fosfato monopotássico	KH2PO4	22,8% P, 28,7% K

Fonte de K

Fertilizante	Fórmula	Conc. Do nutriente %
Cloreto de potássio	KCI	50% K
Nitrato de potássio	KNO3	13% N, 36,5%
Sulfato de potássio	K2SO4	45% K, 18,4% S
Fosfato monopotássico	KH2PO4	22,8% P, 28,7% K

Fonte de Ca

Fertilizante	Fórmula	Conc. Do nutriente %
Nitrato de cálcio	Ca(NO3)2.4H2O	15,5% N e 20% Ca
Ca quelatizado (Librel)		9,5% Ca
Cloreto de cálcio	CaCl ₂	

Fonte de Mg

Fertilizante	Fórmula	Conc. Do nutriente %
Nitrato de magnésio	Mg(NO3) ₂ .6H2O	11% N, 9,5% Mg
Sulfato de magnésio	MgSO4.7H2O	10% Mg, 13% S

Fonte de S

Fertilizante	Fórmula	Conc. Do nutriente %
Sulfato de potássio	K2SO4	45% K, 18,4% S
Sulfato de magnésio	MgSO4.7H2O	10% Mg, 13% S

Fonte de micronutrientes

Fertilizante	Fórmula	Conc. do nutriente %
Sulfato de cobre	CuSO4.5H2O	25,5% Cu, 12,8% S
Sulfato de ferro	FeSO4.7H2O	20,1% Fe, 11,5% S
Dissolvine	Fe-EDTA	13% Fe
Ferrilene	Fe-EDDHA	6% Fe
Sulfato de manganês	CuSO4.H2O	32,5% Mn, 19% S
Sulfato de zinco	CuSO4.7H2O	22,7% Zn, 11,2% S
Ácido bórico	НЗВОЗ	17% B
Borato de sódio (Borax)	Na ₂ B ₄ O ₇ .10H ₂ 0	11% B
Molibdato de sódio	Na ₂ MoO ₄	46,6% Mo

Transporte

Fisiologia da produção de mudas

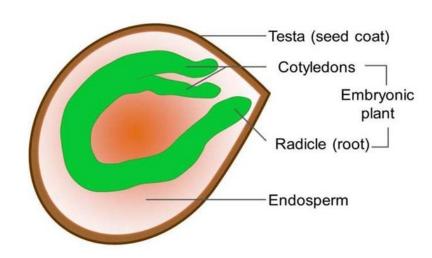
O vigor da semente influencia a emergência, o tempo e uniformidade da emergência das mudas.

O tempo de emergência afeta a uniformidade do tamanho da planta e a produção de frutos de maior calibre.

Regras Internacionais de Análise de Sementes

Germinação, teste de primeira contagem, vigor das plântulas

Mudas de tomate


Qualidade das mudas : determinada pela morfologia dos cotilédones e das primeiras folhas e uniformidade no crescimento.

Teste de germinação não são suficientes para determinar a qualidade de um lote de sementes.

Na morfologia das sementes: cotilédones com pontas agudas dobradas sobre si mesmo: mudas anormais.

Endosperma e cotilédones da semente: reserva

Peso da planta tem influência direta na produção

Mudas tradicionais

- Menor vigor: hastes de menor calibre e sistema radicular menos rústico.
- Variabilidade no tamanho das mudas: variabilidade no campo: redução de produtividade

Mudas tradicionais

 Redução do volume da célula: redução do custo do produção = perda significativa de produtividade

 O vigor da muda influencia o acúmulo de biomassa pela planta no campo e assim afeta a produtividade.

• Bandejas com 11 ml de substrato x bandejas com 33 ml de substrato

REDUÇÃO DE PROUTIVIDADE

"Mudão"

- Maior vigor da muda: sistema radicular e parte aérea mais desenvolvidos (20 dias a mais no viveiro)
- Antecipa o ciclo de produção no campo em até 30 dias

Mudas enxertadas

Vantagens

- Resistência à doenças de solo
- Maior diâmetro da haste
- Maior número de raízes bifurcadas
- Aumento de produtividade
- Maior tolerância ao estresse abiótico
- Maior ciclo de produção

Desafios

- Reduzir os custos de produção
- Maior diversificação de porta-enxertos
- Maior uniformidade das plantas
- Máquina de triagem de mudas com tecnologia ótica

Mudas enxertadas

- Ganho de 15-20% em produtividade (em áreas não contaminadas);
- Custo: R\$ 850,00/mil mudas X R\$ 120,00/mil mudas
- Diferença no custo de R\$ 730,00/mil (30 caixas a mais de tomate/mil plantas para pagar o custo.
- Ganho de 15% Prod. 70 t/h (10,5 t/ha a mais por hectare = 42
 caixas/mil plantas 30 caixas/1000 plantas = 12 caixas/mil plantas = 120 caixas/ha.

Mudões enxertados

- Benefícios da enxertia
- Maior precocidade no sistema produtivo
- Maior ganho em produtividade
- Custo de produção é elevado: R\$ 2000,00/mil mudas: cultivo protegido

Desafios da produção de mudas

- Processo de seleção de sementes mais rigoroso (qualidade interna das sementes): qualidade interna das sementes e peso garantem maior uniformidade dos lotes
- Maior uniformidade das plantas (manejo de aplicação de água e de fertilizantes; iluminação, temperatura)
- Máquina de triagem de mudas com tecnologia ótica
- Reduzir os custos de produção de mudões e mudas enxertadas
- Maior diversificação de porta-enxertos

Principais limitações da produção de mudas

Controle dos fatores ambientais (temperatura, radiação solar e umidade relativa do ar

Manejo da água: falta de monitoramento do ambiente ou do sistema radicular para definir o volume de água aplicado e o nível de umidade do substrato;

Monitoramento da CE e do pH do substrato para definir o manejo da nutrição

baseado nas condições microclimáticas do viveiro;

