

Elementos de Máquinas para Automação

PMR 3307 - A11

Dimensionamento estático de eixos

2023.2

Tipos de eixos quanto ao movimento

Estacionários

- axle -

Elementos não rotativos/rotativos sobre o qual giram os componentes mecânicos.

Não transmite potência nem movimento

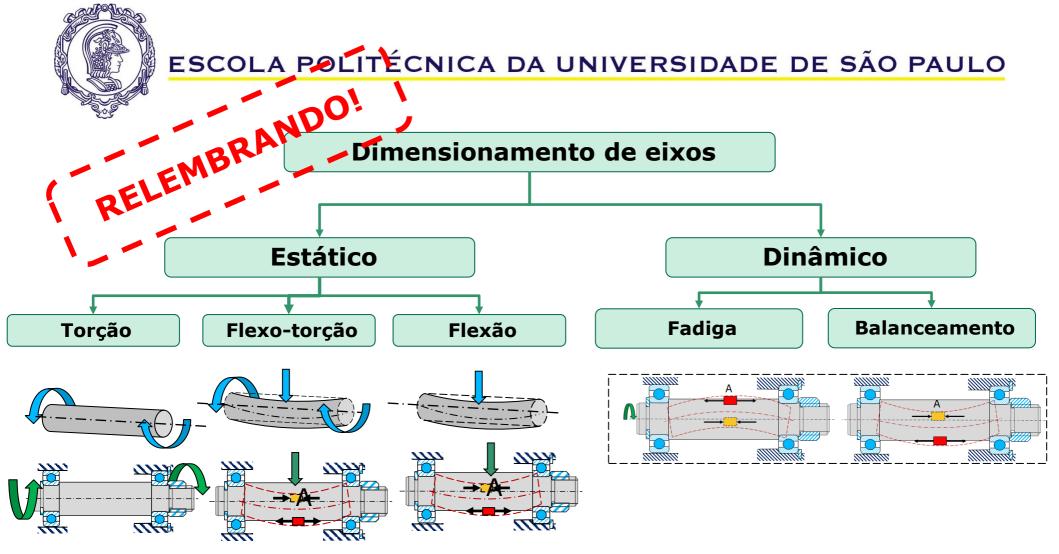
Rotativos

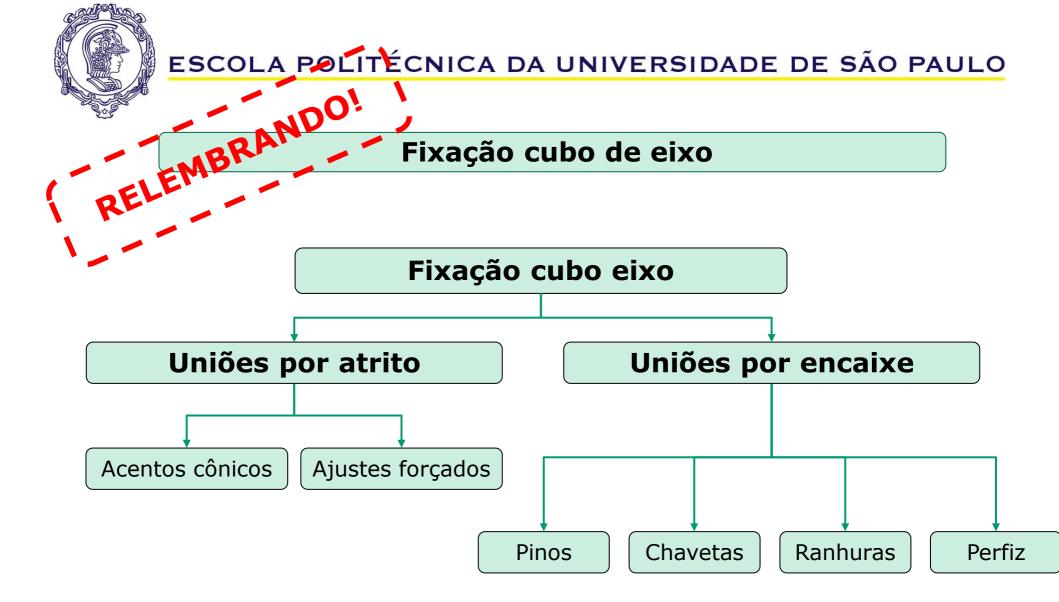
- shafte -

Elemento rotativo utilizado para transmitir potência ou movimento Também denominados de Eixos árvore

são sujeito a apenas a flexão devido aos apoios, e por isso Não transmitem torque. Um eixo não é torcido, apenas flete.

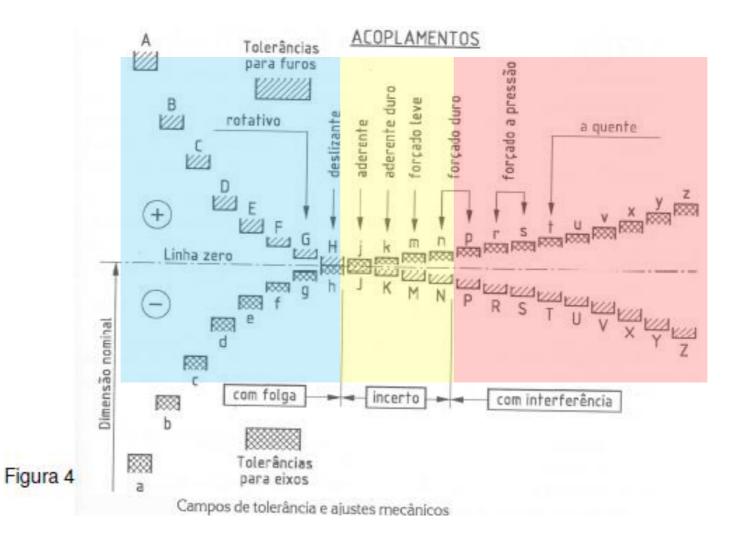
estão sujeitos a flexão, torção e às vezes para cargas axiais (compressão e flambagem).





Fixação cubo de eixo por atrito

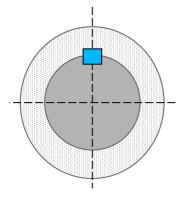
Uniões por atrito

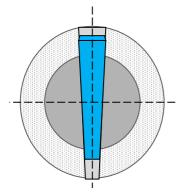


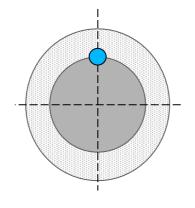
RELEMBRANDO!

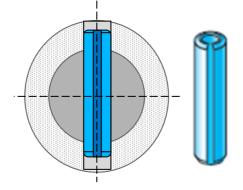
Fixação cubo de eixo

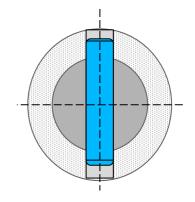
Uniões por Pinos

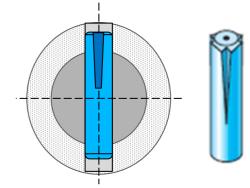


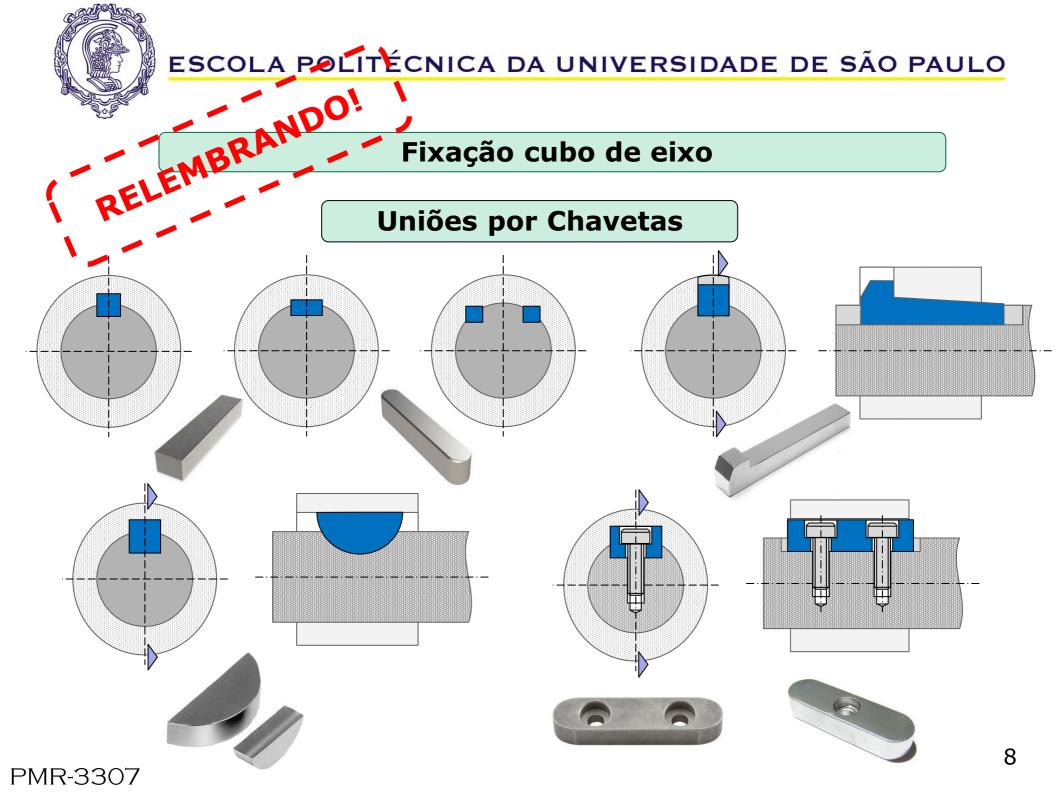


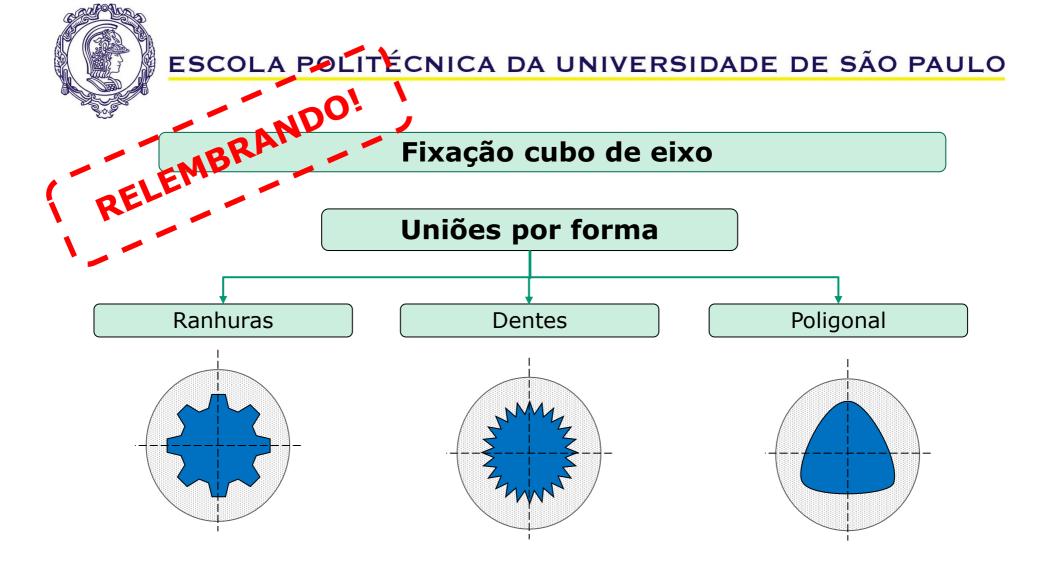






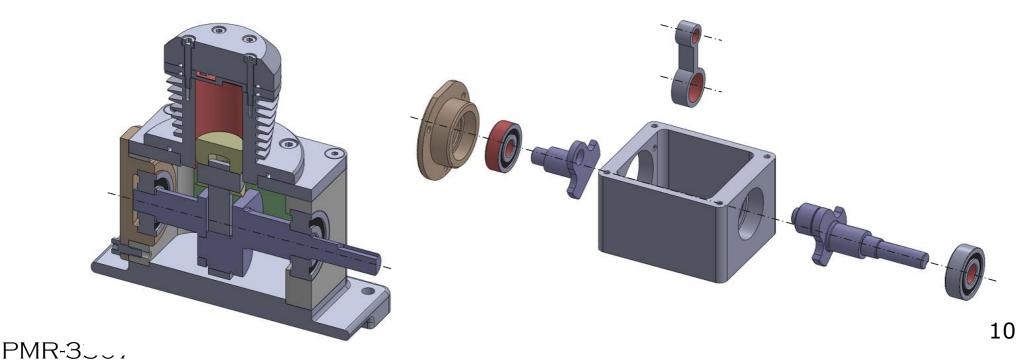






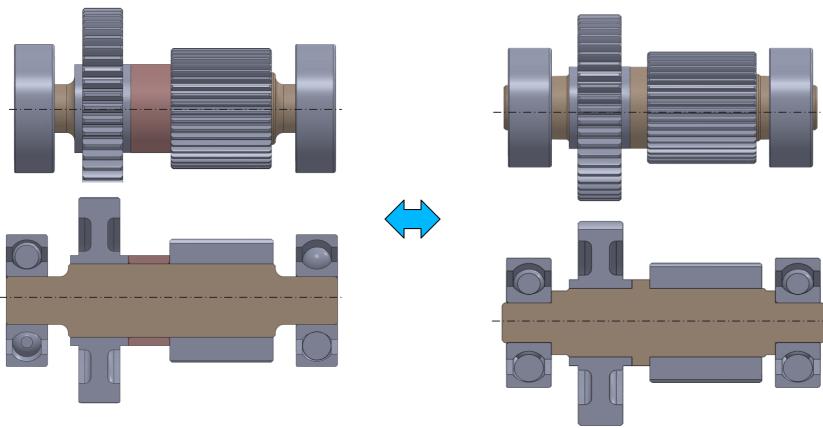
considerações para montagem de eixos

- Deve-se considerar o método de montagem dos componentes no eixo e do conjunto do eixo na estrutura.
- Em geral o maior diâmetro deve ser posicionado no centro do eixo, com diâmetros progressivamente menores em direção às extremidades.

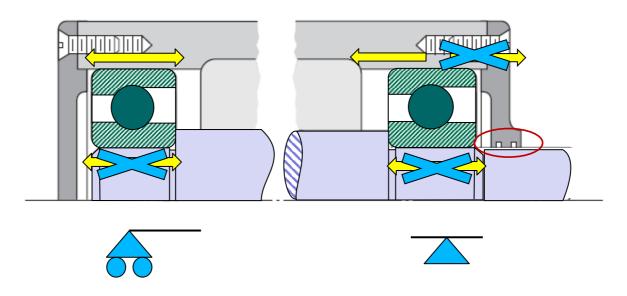


considerações para montagem de eixos

 Se for necessário um espaçamento entre componentes subsequentes o uso de uma manga ou anel espaçador deve ser considerado.

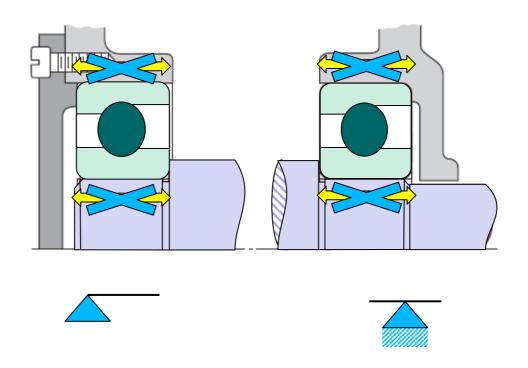


considerações para montagem de eixos



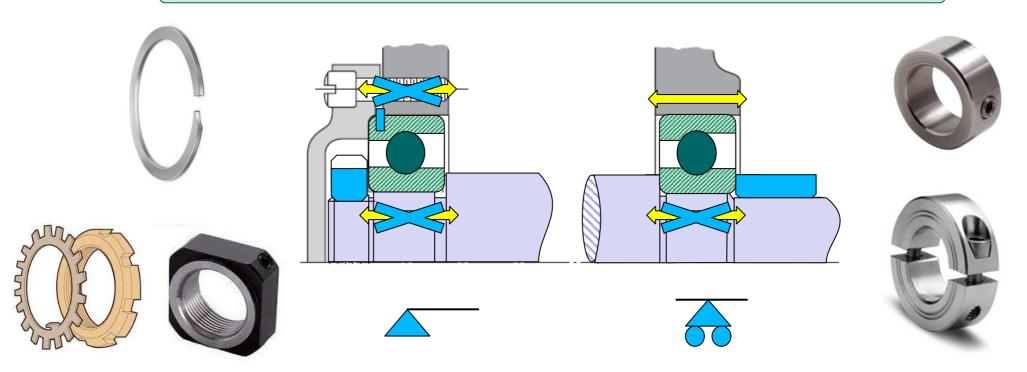
- Arranjos mostrando a montagem dos aneis internos dos rolamentos por interferência, enquanto os aneis externos estão livres na estrutura.
- > Observe o selo de labirinto na flange direita.

considerações para montagem de eixos



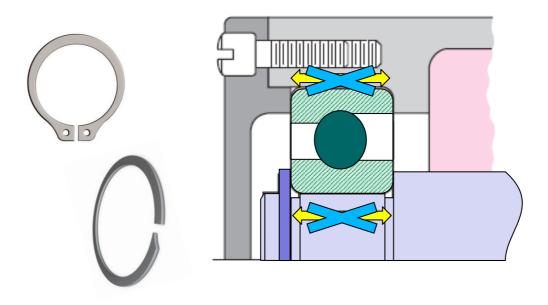
Arranjos mostrando a montagem dos anéis internos dos rolamentos por interferência, enquanto os anéis externos estão prétensionados.

considerações para montagem de eixos



- Neste arranjo, o anel interno do rolamento esquerdo é travado entre uma porca e o encosto do eixo.
- > O anel de pressão na pista externa é usado para posicionar o conjunto do eixo na direção axial.
- > Observação o rolamento direito está livre no alojamento da carcaça.

considerações para montagem de eixos



Nesse caso o anel interno do rolamento é preso ao eixo usando um anel de pressão.

Projeto estático de eixos

Generalidades

- Não é necessário avaliar as tensões em um eixo em todos os pontos
- > Análises mais critériosas devem ser feitas locais críticos.
- Os locais críticos geralmente serão na superfície externa, onde o momento de flexão é maior, onde o torque está presente, e onde existem concentrações de tensõe.
- > O torque é frequentemente considerado constante na operação em estado estacionário.
- > A tensão cisalhante devido a torção será maior nas superfícies externas.

Projeto estático de eixos

Generalidades

- > Os momentos de flexão em um eixo podem ser determinados através dos diagramas de cisalhamento e flexão.
- A maioria dos problemas de eixo incorporam engrenagens ou polias que introduzem forças em dois planos, os diagramas de momento fletor e cortante devem ser feitos em dois planos.
- > Os momentos resultantes são obtidos somando os momentos como vetores em pontos de interesse ao longo do eixo.
- > O ângulo de fase dos momentos não é importante pois o eixo gira.
- > Um momento de flexão constante produzirá uma completa reversão em uma rotação, alternando tração/compressão.

Projeto estático de eixos

Generalidades

- > A tensão normal devido aos momentos de flexão será maior nas superfícies externas.
- As tensões próximas a rolamentos montados nas extremidades do eixo não são críticas, desde que o momento fletor seja pequeno.

Determinação do diâmetro mínimo

Distortion Energy (DE) Goodman

$$d = \left(\frac{16.n}{\pi} \left\{ \frac{1}{S_e} \left[4(k_f.M_a)^2 + 3(k_fs.T_a)^2 \right]^{\frac{1}{2}} + \frac{1}{S_{ut}} \left[4(k_f.M_m)^2 + 3(k_fs.T_m)^2 \right]^{\frac{1}{2}} \right\} \right)^{\frac{1}{3}}$$

 $S_e \Rightarrow Tensão Limite de fadiga$

 $S_{ut} \Rightarrow Tens$ ão máxima

 $K_f \Rightarrow fator de concentração de tensão a flexão$

 $K_{f_s} \Rightarrow fator de concentração de tensão a torção$

 $T_a \Rightarrow Torque \ alternante$

 $T_m \Rightarrow Torque \ m \in dio$

 $M_a \Rightarrow Momento \ alternante$

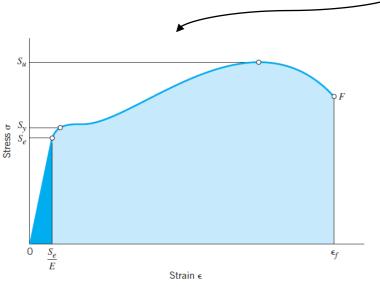
 $M_m \Rightarrow Momento \ m\'edio$

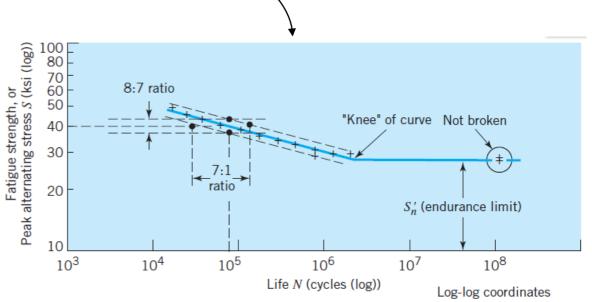
Determinação do diâmetro mínimo

$$d = \left(\frac{16.n}{\pi} \left\{ \frac{1}{S_e} \left[4(k_f.M_a)^2 + 3(k_{fs}.T_a)^2 \right]^{\frac{1}{2}} + \frac{1}{S_{ut}} \left[4(k_f.M_m)^2 + 3(k_{fs}.T_m)^2 \right]^{\frac{1}{2}} \right\} \right)^{\frac{1}{3}}$$

 $S_e \Rightarrow Tensão Limite de fadiga$

 $S_{ut} \Rightarrow Tens$ ão máxima



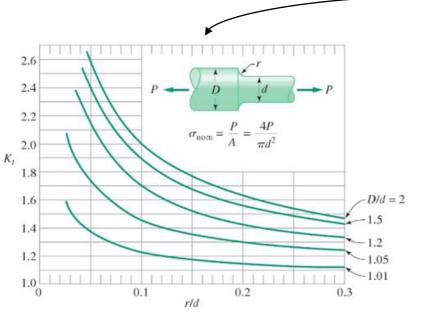


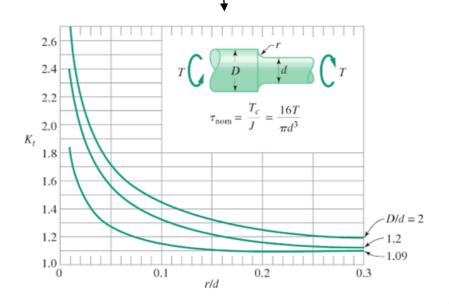
Determinação do diâmetro mínimo

$$d = \left(\frac{16.n}{\pi} \left\{ \frac{1}{S_e} \left[4(k_f.M_a)^2 + 3(k_fs.T_a)^2 \right]^{\frac{1}{2}} + \frac{1}{S_{ut}} \left[4(k_f.M_m)^2 + 3(k_fs.T_m)^2 \right]^{\frac{1}{2}} \right\} \right)^{\frac{1}{3}}$$

 $K_f \Rightarrow fator de concentração de tensão a flexão$

 $K_{f_s} \Rightarrow fator de concentração de tensão a torção$





Determinação do diâmetro mínimo

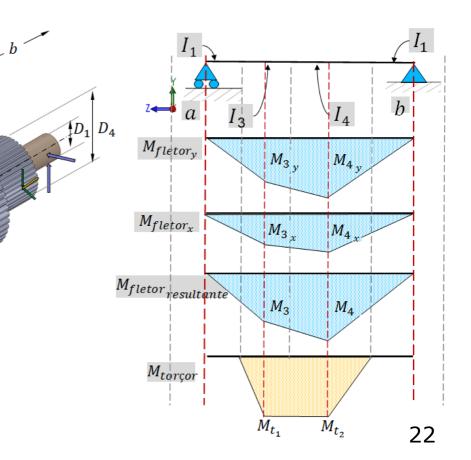
$$d = \left(\frac{16.n}{\pi} \left\{ \frac{1}{S_e} \left[4(k_f.M_a)^2 + 3(k_fs.T_a)^2 \right]^{\frac{1}{2}} + \frac{1}{S_{ut}} \left[4(k_f.M_m)^2 + 3(k_fs.T_m)^2 \right]^{\frac{1}{2}} \right\} \right)^{\frac{1}{3}}$$

 $T_a \Rightarrow Torque \ alternante$

 $T_m \Rightarrow Torque \ m\'edio$

 $M_a \Rightarrow Momento \ alternante$

 $M_m \Rightarrow Momento \ m\'edio$



Determinação do diâmetro mínimo

$$d = \left(\frac{16.n}{\pi} \left\{ \frac{1}{S_e} \left[4(k_f.M_a)^2 + 3(k_{fs}.T_a)^2 \right]^{\frac{1}{2}} + \frac{1}{S_{ut}} \left[4(k_f.M_m)^2 + 3(k_{fs}.T_m)^2 \right]^{\frac{1}{2}} \right\} \right)^{\frac{1}{3}}$$

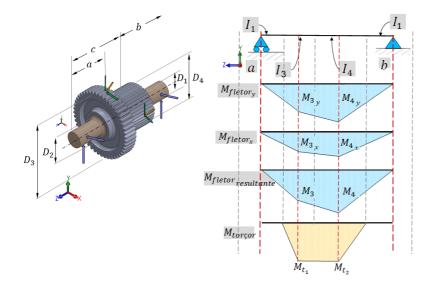
1ª Conclusão?

Determinação do diâmetro mínimo

2ª Conclusão?

Dimensionamento de eixos

Estático



Dinâmico

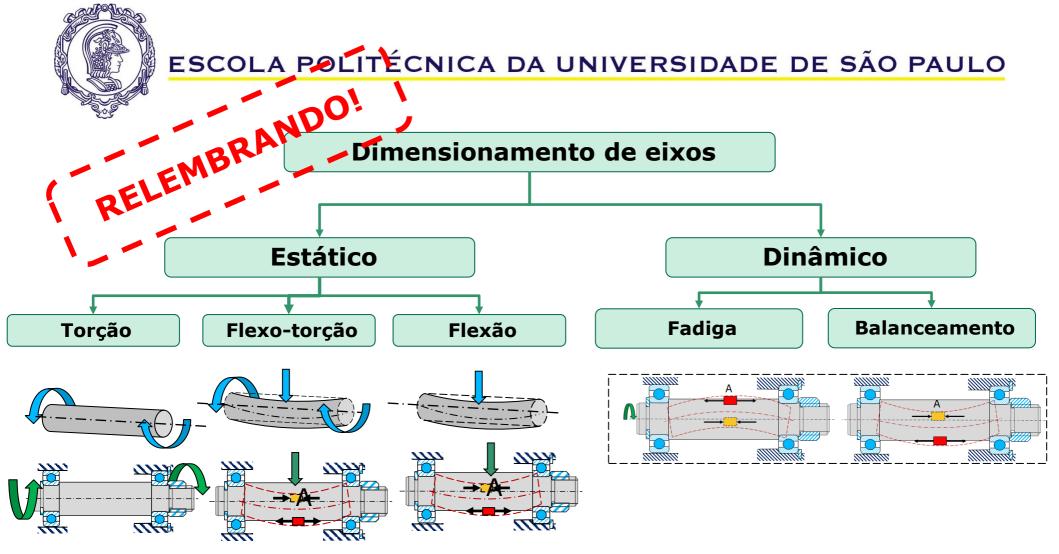
$$d = \left(\frac{16.n}{\pi} \left\{ \frac{1}{S_e} \left[4 \left(k_f . M_a \right)^2 + 3 \left(k_f s . T_a \right)^2 \right]^{\frac{1}{2}} + \frac{1}{S_{ut}} \left[4 \left(k_f . M_m \right)^2 + 3 \left(k_f s . T_m \right)^2 \right]^{\frac{1}{2}} \right\} \right)^{\frac{1}{3}}$$

→ Distortion Energy (DE) Goodman

Distortion Energy (DE) Gerber

Distortion Energy (DE) ASME Elliptic

Distortion Energy (DE) Soderberg



Dimensionamento dinâmico de eixos

Dimensionamento dinâmico de eixos

Teoria da Máxima Energia de Distorção

- ► A Teoria da Máxima Energia de Distorção foi proposta inicialmente por Beltrami em 1885 (primeira tentativa)
- ▶ Huber a apresentou em sua forma atual em 1904.
- ► Foi aperfeiçoada e aplicada por von Mises (1913) e Hencky (1925)
- Usualmente é conhecido como critério de falha de von Mises
- Usualmente aplicada a materiais plásticos

Dimensionamento dinâmico de eixos

RELEMBRA Teoria da Máxima Energia de Distorção

- ► ★ Teoria da Máxima Energia de Distorção também é outro critério de escoamento amplamente utilizada na previsão de falha de materiais dúcteis.
- Neste método a energia elástica total é dividida em duas partes:
 - Uma associada as mudanças volumétricas do material
 - E outra causando distorções de cisalhamento

$$U_{total} = U_{dilata c ilde{a}o} + U_{distor c ilde{a}o}$$

Dimensjonamento dinâmico de eixos

RELEMBRANDO! RELEMBRANDO! RELEMBRANDO! RELEMBRANDO!

🖎 esta iguala-se a energia de distorção de cisalhamento no ponto de escoamento à tração simples, aquela sob tensão combinada, estabelecendo-se um critério de escoamento para tensão combinada

$$U_{dilata c \tilde{a} o} = \frac{3(1-2v)}{2E} p^2 = \frac{(1-2v)}{6E} (\sigma_1 + \sigma_2 + \sigma_3)^2$$

$$U_{distor\tilde{\varsigma}ao} = \frac{1}{12G} \left[(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 \right]$$

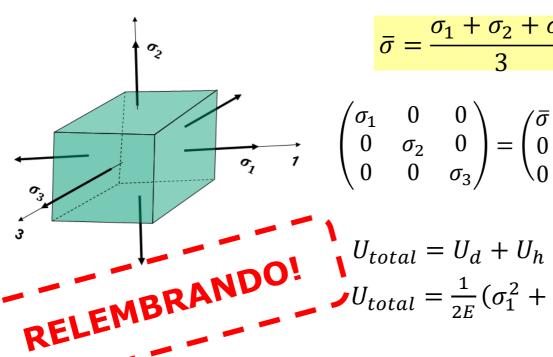
$$G = \frac{E}{2(1+\nu)}$$

$$U_{total} = \frac{1}{2E} (\sigma_1^2 + \sigma_2^2 + \sigma_3^2) - \frac{V}{E} (\sigma_1 \cdot \sigma_2 + \sigma_2 \cdot \sigma_3 + \sigma_3 \cdot \sigma_1)$$

Dimensionamento dinâmico de eixos

Teoria da Máxima Energia de Distorção

Considerando o estado geral de tensões temos:



$$\bar{\sigma} = \frac{\sigma_1 + \sigma_2 + \sigma_3}{3}$$

$$\begin{pmatrix}
\sigma_{1} & 0 & 0 \\
0 & \sigma_{2} & 0 \\
0 & 0 & \sigma_{3}
\end{pmatrix} = \begin{pmatrix}
\bar{\sigma} & 0 & 0 \\
0 & \bar{\sigma} & 0 \\
0 & 0 & \bar{\sigma}
\end{pmatrix} + \begin{pmatrix}
\sigma_{1} - \bar{\sigma} & 0 & 0 \\
0 & \sigma_{2} - \bar{\sigma} & 0 \\
0 & 0 & \sigma_{3} - \bar{\sigma}
\end{pmatrix}$$

$$U_{total} = U_d + U_h$$

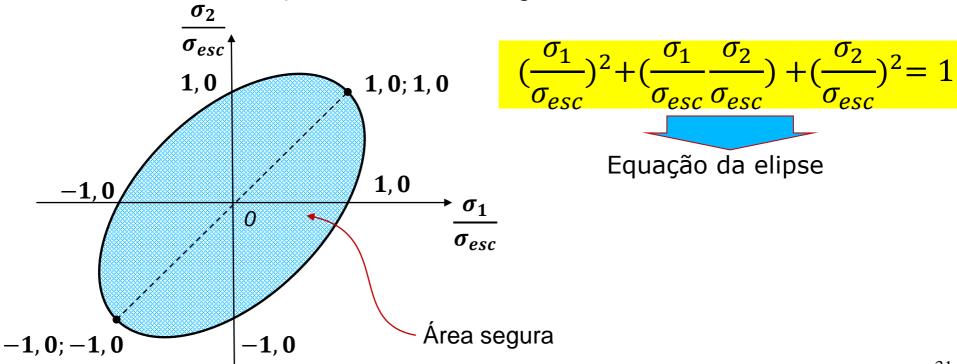
$$U_{total} = \frac{1}{2E} (\sigma_1^2 + \sigma_2^2 + \sigma_3^2) - \frac{V}{E} (\sigma_1 \cdot \sigma_2 + \sigma_2 \cdot \sigma_3 + \sigma_3 \cdot \sigma_1)$$

Considerando material plástico ideal =>
$$(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 = 2\sigma_{esc}^2$$

RELEMBRANDIMENSIONAMENTO dinâmico de eixos

Feoria da Máxima Energia de Distorção

- Critério de escoamento baseado na máxima energia de distorção
- ▶ Para o estado plano de tensão $\sigma_3 = 0$, temos:



Dimensionamento dinâmico de eixos

RELEMBRANDO! RELEMBRANDO! RELEMBRANDO!

Critério de escoamento baseado na máxima energia de

distorção

$$\sigma_{VM} = \sqrt{\frac{(\sigma_{x} - \sigma_{y})^{2} + (\sigma_{y} - \sigma_{z})^{2} + (\sigma_{z} - \sigma_{x})^{2} + 6(\tau_{xy}^{2} + \tau_{yz}^{2} + \tau_{zx}^{2})}{2}}$$

$$\sigma_{VM} = \sqrt{\sigma_x^2 + \sigma_y^2 - \sigma_x \sigma_y + 3\tau_{xy}^2}$$

2D



$$\sigma_{VM} \geq S_{y}$$

$$n = \frac{S_y}{\sigma_{VM}}$$

Onde \mathbf{n} = fator de segurança

Dimensionamento dinâmico de eixos

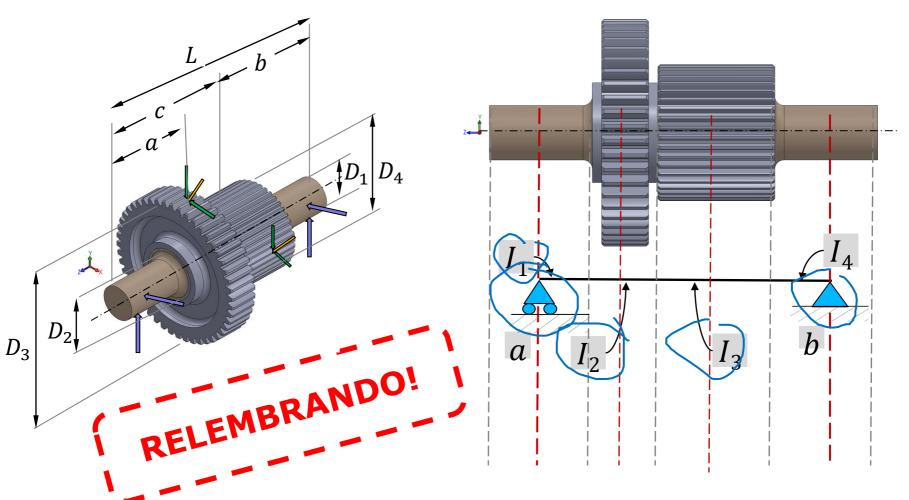
Teoria da Máxima Energia de Distorção

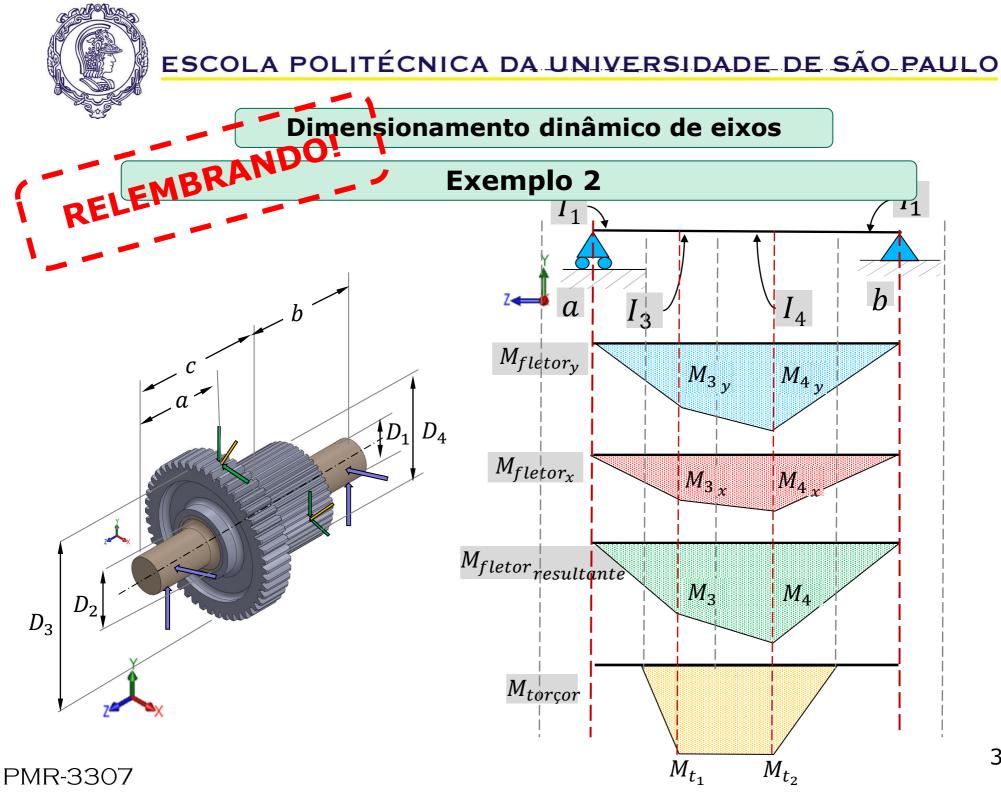
Critério de von Misses não prevê mudanças na resposta do material quando se adicionam as tensões de tração e compressão hidrostática.

Dimensionamento dinâmico de eixos

Exemplo 2

mod elamento

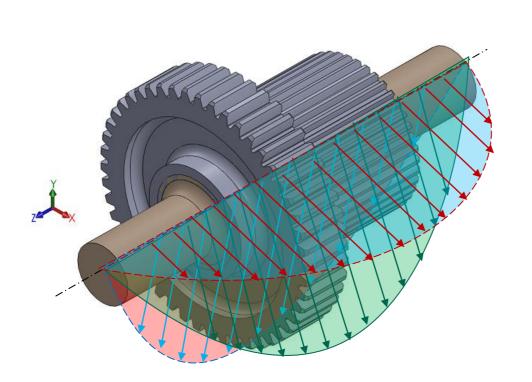


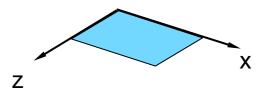


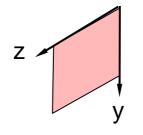
Dimensionamento dinâmico de eixos

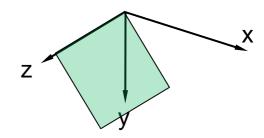
Exemplo 2

Calcular os esforços resultantes







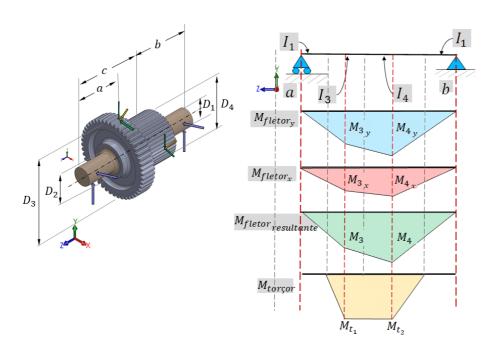


Determinação do diâmetro mínimo

Dimensionamento de eixos

Estático

Dinâmico



$$d = \left(\frac{16.n}{\pi} \left\{ \frac{1}{S_e} \left[4 \left(k_f . M_a \right)^2 + 3 \left(k_f s . T_a \right)^2 \right]^{\frac{1}{2}} + \frac{1}{S_{ut}} \left[4 \left(k_f . M_m \right)^2 + 3 \left(k_f s . T_m \right)^2 \right]^{\frac{1}{2}} \right\} \right)^{\frac{1}{3}}$$

Distortion Energy (DE) Goodman

Distortion Energy (DE) Gerber

Distortion Energy (DE) ASME Elliptic

Distortion Energy (DE) Soderberg

Distortion Energy (DE) Goodman

Equação de DE – Goodman para determinação do diâmetro mínimo do eixo

$$\frac{1}{m} \left\{ \frac{16 \cdot n}{s_e} \left[4(k_f, M_a)^2 + 3(k_f, T_a)^2 \right]^{\frac{1}{2}} + \frac{1}{S_{ut}} \left[4(k_f, M_m)^2 + 3(k_f, T_m)^2 \right]^{\frac{1}{2}} \right\} \right\}^{\frac{1}{3}}$$

 $S_{ut} \Rightarrow Tens\tilde{a}o \ maxima$

 $K_f \Rightarrow fator de concentração de tensão a flexão$

 $K_{f_s} \Rightarrow fator de concentração de tensão a torção$

 $T_a \Rightarrow Torque \ alternante$

 $T_m \Rightarrow Torque \ m\'edio$

 $M_a \Rightarrow Momento alternante$

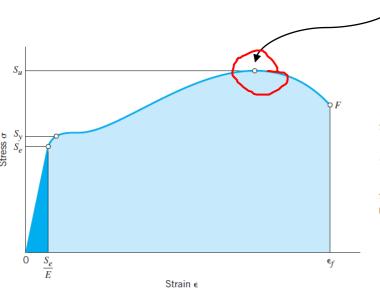
 $M_m \Rightarrow Momento médio$

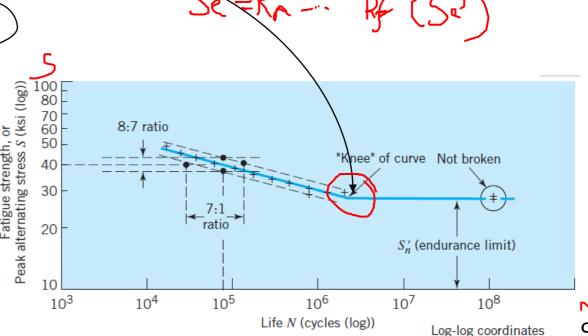
Determinação do diâmetro mínimo

Equação de DE – Goodman para determinação do diâmetro mínimo do eixo

$$d = \left(\frac{16.n}{\pi} \left\{ \frac{1}{S_e} \left[4(k_f.M_a)^2 + 3(k_{fs}.T_a)^2 \right]^{\frac{1}{2}} + \frac{1}{S_{ut}} \left[4(k_f.M_m)^2 + 3(k_{fs}.T_m)^2 \right]^{\frac{1}{2}} \right\} \right)^{\frac{1}{3}}$$

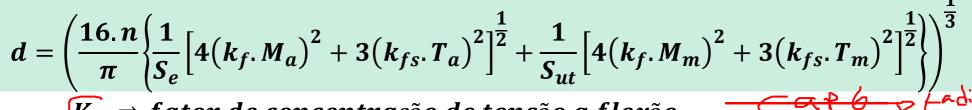
 $S_e \Rightarrow Tens$ ão Limite de fadiga





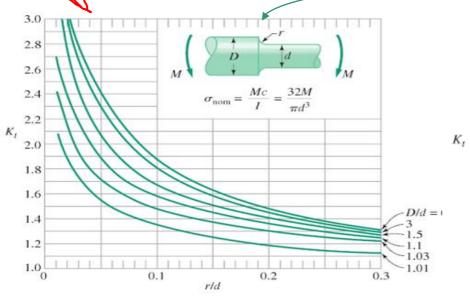
Determinação do diâmetro mínimo

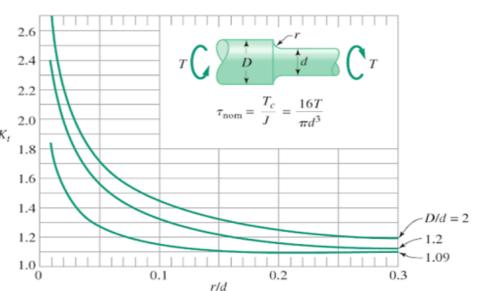
Equação de DE – Goodman para determinação do diâmetro mínimo do eixo



 $K_f \Rightarrow fator de concentração de tensão a flexão$

 K_{f_s} \Rightarrow fator de concentração de tensão a torção





Determinação do diâmetro mínimo

Equação de DE – Goodman para determinação do diâmetro mínimo do eixo

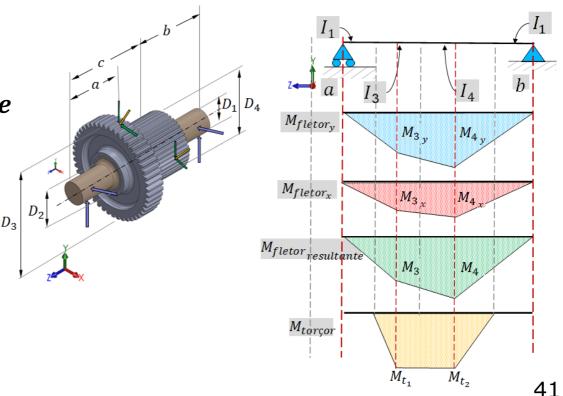
$$d = \left(\frac{16.n}{\pi} \left\{ \frac{1}{S_e} \left[4(k_f. M_a)^2 + 3(k_{fs}. T_a)^2 \right]^{\frac{1}{2}} + \frac{1}{S_{ut}} \left[4(k_f. M_m)^2 + 3(k_{fs}. T_m)^2 \right]^{\frac{1}{2}} \right\} \right)^{\frac{1}{3}}$$

 $T_a \Rightarrow Torque alternante$

 $T_m \Rightarrow Torque \ m\'edio$

 $M_a \Rightarrow Momento alternante$

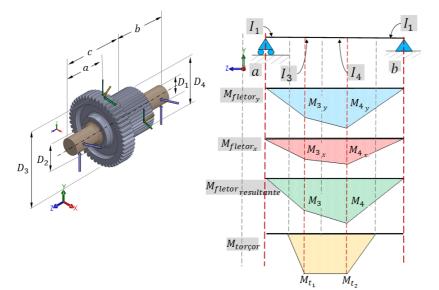
M_m ⇒ Momento médio



Determinação do diâmetro mínimo

Dimensionamento de eixos

Estático



Dinâmico

$$d = \left(\frac{16 \cdot n}{\pi} \left\{ \frac{1}{S_e} \left[4 \left(k_f \cdot M_a \right)^2 + 3 \left(k_f \cdot T_a \right)^2 \right]^{\frac{1}{2}} + \frac{1}{S_{ut}} \left[4 \left(k_f \cdot M_m \right)^2 + 3 \left(k_f \cdot T_m \right)^2 \right]^{\frac{1}{2}} \right\} \right)^{\frac{1}{3}}$$

Distortion Energy (DE) Goodman

Distortion Energy (DE) Gerber

Distortion Energy (DE) ASME Elliptic

Distortion Energy (DE) Soderberg

Determinação do diâmetro mínimo

Equação da DE Gerber

$$\mathbf{d} = \left(\frac{8. n. A}{\pi. S_e} \left\{ 1 + \left[1 + \left(\frac{2. B. S_e}{A. S_{ut}}\right)^2 \right]^{\frac{1}{2}} \right\} \right)^{\frac{1}{3}}$$

$$A = \sqrt{4(k_f.M_m)^2 + 3(k_f).T_a)^2}$$

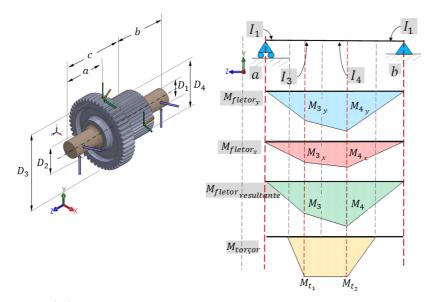
$$B = \sqrt{4(k_f.M_m)^2 + 3(k_fs)T_m)^2}$$

Determinação do diâmetro mínimo

Dimensionamento de eixos

Estático

Dinâmico



$$d = \left(\frac{16.n}{\pi} \left\{ \frac{1}{S_e} \left[4 \left(k_f . M_a \right)^2 + 3 \left(k_f s . T_a \right)^2 \right]^{\frac{1}{2}} + \frac{1}{S_{ut}} \left[4 \left(k_f . M_m \right)^2 + 3 \left(k_f s . T_m \right)^2 \right]^{\frac{1}{2}} \right\} \right)^{\frac{1}{3}}$$

Distortion Energy (DE) Goodman

Distortion Energy (DE) Gerber

Distortion Energy (DE) ASME Elliptic

Distortion Energy (DE) Soderberg

Determinação do diâmetro mínimo

Equação da DE ASME Elliptic

$$d = \left\{ \frac{16 \cdot n}{\pi} \left[4 \left(\frac{k_f \cdot M_a}{S_e} \right)^2 + 3 \left(\frac{k_f \cdot T_a}{S_e} \right)^2 + 4 \cdot \left(\frac{k_f \cdot M_m}{S_y} \right)^2 + 3 \left(\frac{k_f \cdot T_m}{S_y} \right)^2 \right]^{\frac{1}{3}} \right\}$$

Determinação do diâmetro mínimo

Dimensionamento de eixos

Estático

 M_{fletor_x}

M_{fletor} resultante

 $M_{torçor}^{\perp}$

b

 M_4

 M_4

 M_3 .

Dinâmico

$$d = \left(\frac{16 \cdot n}{\pi} \left\{ \frac{1}{S_e} \left[4 \left(k_f \cdot M_a \right)^2 + 3 \left(k_f \cdot T_a \right)^2 \right]^{\frac{1}{2}} + \frac{1}{S_{ut}} \left[4 \left(k_f \cdot M_m \right)^2 + 3 \left(k_f \cdot T_m \right)^2 \right]^{\frac{1}{2}} \right\} \right)^{\frac{1}{3}}$$

Distortion Energy (DE) Goodman

Distortion Energy (DE) Gerber

Distortion Energy (DE) ASME Elliptic

Distortion Energy (DE) Soderberg

Determinação do diâmetro mínimo

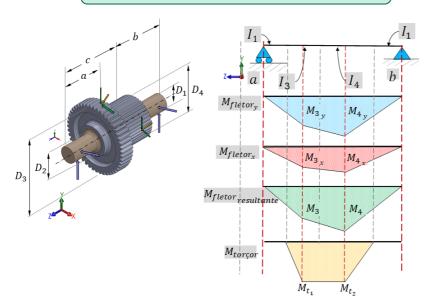
Equação da DE Sodeberg

$$d = \left(\frac{16.n}{\pi} \left\{ \frac{1}{S_e} \left[4(k_f, M_a)^2 + 3(k_f, T_a)^2 \right]^{\frac{1}{2}} + \frac{1}{S_{yt}} \left[4(k_f, M_m)^2 + 3(k_f, T_m)^2 \right]^{\frac{1}{2}} \right\} \right)^{\frac{1}{3}}$$

Determinação do diâmetro mínimo

Dimensionamento de eixos

Estático



Dinâmico

$$d = \left(\frac{16.n}{\pi} \left\{ \frac{1}{S_e} \left[4(k_f.M_a)^2 + 3(k_{fs}.T_a)^2 \right]^{\frac{1}{2}} + \frac{1}{S_{ut}} \left[4(k_f.M_m)^2 + 3(k_{fs}.T_m)^2 \right]^{\frac{1}{2}} \right\} \right)^{\frac{1}{3}}$$

- Distortion Energy (DE) Goodman
- Distortion Energy (DE) Gerber
- Distortion Energy (DE) ASME Elliptic
- Distortion Energy (DE) Soderberg

Determinação do diâmetro mínimo

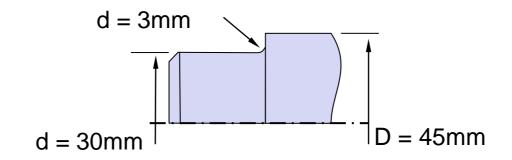
Exercício

Em um eixo usinado, cujo o menor diâmetro d é 30mm, e o grande diâmetro maior D é 45mm, e o raio do filete é 3mm. O momento fletor é de 180 Nm, e o momento de torção constante é de 125 Nm. O eixo de aço tratado termicamente tem uma tensão máxima $S_{ut} = 724$ MPa, e uma tensão de escoamento de $S_v = 565$ MPa. A confiabilidade é de 0,99.

- (a) Determine o fator de segurança de fadiga do projeto usando cada uma das falhas de fadiga critérios descritos nesta seção.
- ➤ (b) Determine o fator de segurança.

Determinação do diâmetro mínimo

Exercício



 $K_f \Rightarrow fator de concentração de tensão a flexão$

$$\frac{D}{d} = \frac{45}{30} = 1,4$$

$$\frac{r}{d} = \frac{3}{30} = 0,1$$

$$\frac{K_f}{d} \Rightarrow 1,65$$

$$\frac{D}{d} = \frac{45}{30} = 0,1$$

$$\frac{R_f}{d} \Rightarrow 1,65$$

$$\frac{3.0}{2.8}$$

$$\frac{2.8}{2.6}$$

$$\frac{2.8}{2.6}$$

$$\frac{2.8}{2.6}$$

$$\frac{2.8}{2.6}$$

$$\frac{2.8}{2.6}$$

$$\frac{2.2}{2.0}$$

$$\frac{2.2}{2.0}$$

$$\frac{2.2}{1.0}$$

$$\frac{3.2M}{\pi d^3}$$

$$\frac{3.0}{1.5}$$

$$\frac{3.0}{1.5}$$

$$\frac{1.5}{1.0}$$

$$\frac{1.5}{1.03}$$

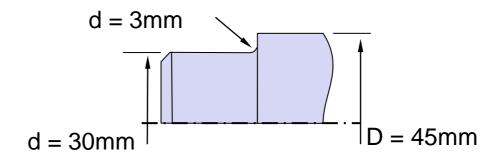
$$\frac{1.5}{1.03}$$

$$\frac{1.5}{1.03}$$

$$\frac{1.5}{1.03}$$

Determinação do diâmetro mínimo

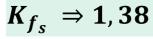
Exercício

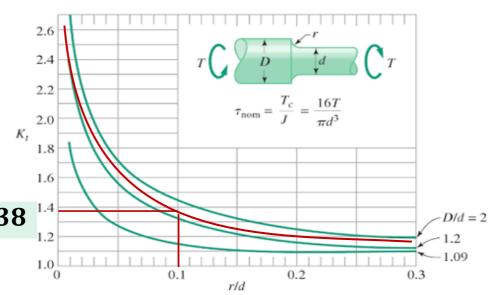


 $K_{f_s} \Rightarrow fator de concentração de tensão a torção$

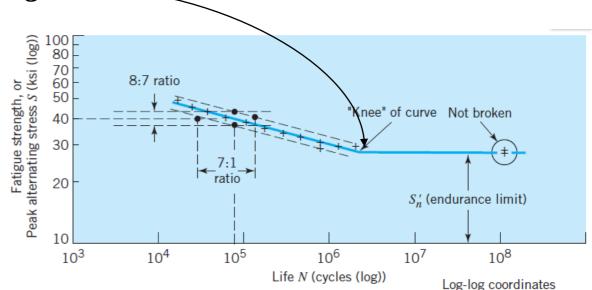
$$\frac{D}{d} = \frac{45}{30} = 1.4$$

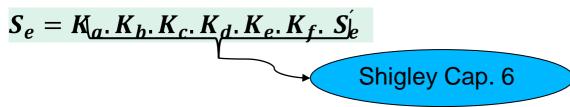
$$\frac{r}{d} = \frac{3}{30} = 0,1$$





Determinação do diâmetro mínimo





Determinação do diâmetro mínimo

Exercício

$$S'_{e} = \begin{cases} 0.5S_{ut} & S_{ut} \le 200 \text{ kpsi } (1400 \text{ MPa}) \\ 100 \text{ kpsi} & S_{ut} > 200 \text{ kpsi} \\ 700 \text{ MPa} & S_{ut} > 1400 \text{ MPa} \end{cases} \qquad k_{b} = \begin{cases} (d/0.3)^{-0.107} = 0.879d^{-0.107} & 0.11 \le d \le 2 \text{ in} \\ 0.91d^{-0.157} & 2 < d \le 10 \text{ in} \\ (d/7.62)^{-0.107} = 1.24d^{-0.107} & 2.79 \le d \le 51 \text{ mm} \\ 1.51d^{-0.157} & 51 < d \le 254 \text{ mm} \end{cases}$$

$$S_{ut} = 724MPa \Rightarrow S_e = 0, 5. S_{ut} = 362MPa$$

$$S_e = K_a.K_b.K_c.K_d.K_e.K_f.S_e = 362\text{MPa}$$
Shigley Cap. 6

$$K_c = K_d = K_f = 1$$

$$K_e = 0814$$

$$K_a = 2, 7. (S_{ut})^{-0.265}$$

$$K_a = 2, 7. (362)^{-0.265}$$

$$K_b = \left(\frac{d}{7,62}\right)^{-0.107}$$

$$K_b = \left(\frac{30}{7,62}\right)^{-0,107}$$

$$K_b=0.86$$

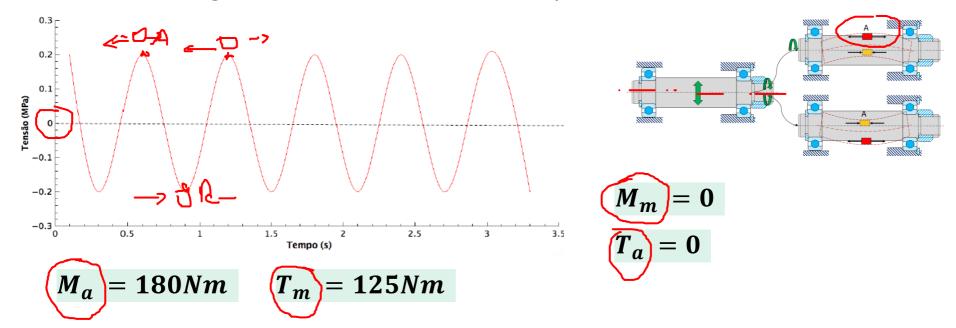
$$S_e = 0, 57.0, 86.0, 814.362 = 144, 5MPa$$

$$S_e = 144,5 \text{MPa}$$

Determinação do diâmetro mínimo

Exercício

Para um eixo girando a reversão será completa a cada volta



Determinação do diâmetro mínimo

Fator de N=2, 5segurança

Aplicando a Equação de DE Goodman

Exercício

$$\frac{1}{\pi} \left\{ \frac{1}{S_e} \left[4(k_f \cdot M_a)^2 + 3(k_f \cdot T_a)^2 \right]^{\frac{1}{2}} + \frac{1}{S_{ut}} \left[4(k_f \cdot M_m)^2 + 3(k_f \cdot T_m)^2 \right]^{\frac{1}{2}} \right\} \right\}^{\frac{1}{3}}$$

$$S_e = 144,5 \text{MPa}$$

$$K_f \Rightarrow 1,65$$

$$M_a = 180Nm$$

$$K_{f_s} \Rightarrow 1.38$$

$$T_a = 0$$

$$M_m = 0$$

$$T_m = 125Nm$$

$$d = \left(\frac{16.n}{\pi} \left\{ \frac{1}{S_e} \left[4(k_f.M_a)^2 + 0 \right]^{\frac{1}{2}} + \frac{1}{S_{ut}} \left[0 + 3(k_{fs}.T_m)^2 \right]^{\frac{1}{2}} \right\} \right)^{\frac{1}{3}}$$

$$\frac{1}{n} = \left(\frac{16}{\pi \cdot d} \left\{ \frac{1}{S_e} \left[4(k_f \cdot M_a)^2 + 0 \right]^{\frac{1}{2}} + \frac{1}{S_{ut}} \left[0 + 3(k_f \cdot T_m)^2 \right]^{\frac{1}{2}} \right\} \right)^{\frac{1}{3}}$$

$$n\cong 1,6$$

Determinação do diâmetro mínimo

Exercício

Aplicando a Equação de DE Gerber

 $n \cong 1,85$

Aplicando a Equação de DE ASME

 $n \cong 1,91$

Aplicando a Equação de DE Sobeberge

 $n \cong 1,57$

FIM DA AULA