Lista 9 - MAT-2464

- (1) Seja f(x,y) = sen(xy), x(t) = 3t, $y(t) = t^2$. Considere a função z(t) = f(x(t), y(t)).
 - (i) Calcule z'(t) diretamente.
 - (ii) Calcule z'(t) utilizando a regra da cadeia.
- (2) Seja z = f(x,y) uma função de classe $C^{(1)}$ tal que f(2,1) = 4, $\frac{\partial f}{\partial x}(2,1) = 3$ e $\frac{\partial f}{\partial y}(2,1) = -2$. Considere a função $g(t) = t^2 f(2t^2, 3t^3 2)$. Calcule g'(1).
- (3) Seja z = f(x, y) uma função diferenciável tal que f(2, 1) = 4, $\frac{\partial f}{\partial x}(2, 1) = 1$, $\frac{\partial f}{\partial y}(2, 1) = -1$. Sabe-se que o traço da curva $\gamma(t) = (2t, t^2, z(t))$ está contido no gráfico de f. Determine a reta tangente à curva γ no ponto $\gamma(1)$.
- (4) Sabe-se que z = f(x,y) é uma função diferenciável tal que $x \frac{\partial f}{\partial x}(x,y) y \frac{\partial f}{\partial y}(x,y) = 0$, para todo $(x,y) \in \mathbb{R}^2$. Prove que a função $g(t) = f(t,\frac{2}{t}), t > 0$, é constante.
- (5) Seja z = f(x,y) uma função diferenciável tal que $f(t^2+2t,4-t^3) = 2t+3t^4, \forall t \in \mathbb{R}$. Sabe-se que $\frac{\partial f}{\partial x}(3,3) = 1$. Calcule $\frac{\partial f}{\partial y}(3,3)$ e determine o plano tangente ao gráfico da função f no ponto (3,3,f(3,3)).