SCC0250 - Computação Gráfica

Profa. Maria Cristina F. Oliveira

Instituto de Ciências Matemáticas e de Computação (ICMC) Universidade de São Paulo (USP)

18 de setembro de 2023

1 Introdução

2 Transformações entre Sistemas de Coordenadas 2D

1 Introdução

2 Transformações entre Sistemas de Coordenadas 2D

Introdução

 Aplicações de computação gráfica envolvem a transformação de um sistema de coordenadas em outro em vários estágios do processamento da cena

Lembrando

No espaço homogêneo 3D

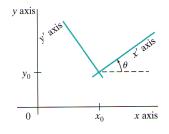
- Um ponto no hiperplano w = 1 é descrito como $P = [\alpha_1, \alpha_2, \alpha_3, 1]$, com α_i valores escalares
- Um vetor é descrito como $v = [\beta_1, \beta_2, \beta_3, 0]$, com β_i valores escalares

1 Introdução

2 Transformações entre Sistemas de Coordenadas 2D

- Para transformar a geometria de uma cena dada em um sistema Oxy para outro sistema O'x'y'
 - Translado (x_0, y_0) para a origem (0, 0)
 - **2** Rotaciono em $-\theta$

$$\mathbf{M}_{xy,x'y'} = \mathbf{R}(-\theta) \cdot \mathbf{T}(-x_0, -y_0)$$



ullet Essa transformação nos dá a geometria da cena em relação ao novo sistema de referência $\mathbf{x}'\mathbf{y}'$ (a cena é a mesma)

 \bullet Uma propriedade importante da matriz de transformação é que a sub-matriz de rotação 2×2 é ortonormal

$$\left[\begin{array}{ccc} r_{xx} & r_{xy} & tr_x \\ r_{yx} & r_{yy} & tr_y \\ 0 & 0 & 1 \end{array}\right]$$

• Isto é, suas linhas (r_{xx}, r_{xy}) e (r_{yx}, r_{yy}) (ou colunas) definem dois vetores unitários ortogonais (ortonormais)

$$r_{xx}^{2} + r_{xy}^{2} = r_{yx}^{2} + r_{yy}^{2} = 1$$
$$r_{xx} \cdot r_{yx} + r_{xy} \cdot r_{yy} = 0$$

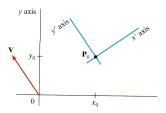
• Isso é facilmente verificado, pois

$$\begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \cos \theta \\ -\sin \theta \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \sin \theta \\ \cos \theta \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

- Assim, se esses vetores forem transformados pela submatriz de rotação, temos
 - $\bullet \ (r_{xx}, r_{xy})$ é transformado em um vetor unitário na direção do eixo x
 - (r_{yx}, r_{yy}) é transformado em um vetor unitário na direção do eixo y

$$\begin{bmatrix} r_{xx} & r_{xy} & tr_x \\ r_{yx} & r_{yy} & tr_y \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} r_{xx} \\ r_{xy} \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} r_{xx} & r_{xy} & tr_x \\ r_{yx} & r_{yy} & tr_y \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} r_{yx} \\ r_{yy} \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

- Essa propriedade é útil porque possibilita outra maneira de derivar a matriz de transformação do sistema Oxy em O'x'y'
 - Para isso, inicialmente definimos a orientação do sistema de coordenadas ${\bf O}'{\bf x}'{\bf y}'$ por um vetor ${\bf V}$ que dá a direção positiva do eixo y'



 V pode ser especificado como um ponto relativo à origem no sistema de coordenadas Oxy, e pode ser normalizado para um vetor unitário v

$$\mathbf{v} = \frac{\mathbf{V}}{|\mathbf{V}|} = (v_x, v_y)$$

 \bullet dado ${\bf v}$ podemos obter o vetor unitário ${\bf u},$ ortogonal a ${\bf v},$ que define a direção do eixo x'

$$\mathbf{u} = (v_y, -v_x) = (u_x, u_y)$$

 Como qualquer matriz de rotação pode ser expressa por um conjunto de vetores ortonormais, a matriz de rotação que alinha os eixos do sistema O'x'y' com os eixos do sistema Oxy pode ser descrita como

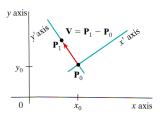
$$\left[\begin{array}{ccc} u_x & u_y & 0 \\ v_x & v_y & 0 \\ 0 & 0 & 1 \end{array} \right]$$

• Isso porque

$$\begin{bmatrix} u_{x} & u_{y} & 0 \\ v_{x} & v_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} u_{x} \\ u_{y} \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} u_{x} & u_{y} & 0 \\ v_{x} & v_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} v_{x} \\ v_{y} \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

ullet É possível especificar V relativo a um ponto P_0 arbitrário no sistema de coordenadas Oxy, ao invés de em relação à origem do sistema. Para isso podemos fazer

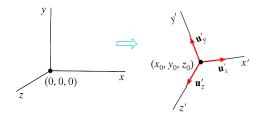
$$v = \frac{P_1 - P_0}{|P_1 - P_0|}$$



1 Introdução

2 Transformações entre Sistemas de Coordenadas 2D

- Assim como em 2D, a transformação entre dois sistemas de coordenadas 3D se dá alinhando (i.e., sobrepondo) os sistemas de coordenadas
- Para transformar um sistema de coordenadas Cartesiano Oxyz
 em outro O'x'y'z', dado que O'x'y'z' é definido em relação a
 Oxyz fazemos
 - lacktriangle Transladamos a origem de O'x'y'z' para a origem de Oxyz
 - $oldsymbol{\Theta}$ Executamos uma sequencia de rotações para alinhar os eixos de Ox'y'z' com os eixos de Oxyz



• Nesse exemplo, primeiro a origem de O'x'y'z' é sobreposta à origem de Oxyz, o que é feito com a translação

$$\mathbf{T}(-x_0, -y_0, -z_0)$$

• E a matriz de rotação que alinha os eixos pode ser obtida em função dos vetores unitários $\mathbf{u'}_x$, $\mathbf{u'}_y$ e $\mathbf{u'}_z$

$$\mathbf{R} = \begin{bmatrix} u'_{xx} & u'_{xy} & u'_{xz} & 0 \\ u'_{yx} & u'_{yy} & u'_{yz} & 0 \\ u_{zx} & u_{zy} & u'_{zz} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

ullet Assim, a transformação completa é dada por ${f R}\cdot{f T}$