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ABSTRACT

In clectrical impedance tomography (EIT), weak alternating currents are injected into the object
through the electrodes which are attached on the boundary of the object. The resulting voltages
can be measured with the same electrodes. An estimate for the internal resistivity distribution
of the object is based on known currents and measured voltages. The estimation of static three-
dimensional resistivity distributions is a nonlinear and ill-posed inverse problem.

In EIT the injected currents spread out in three dimensions and if this is not considered in the
reconstruction, off-plane structures may cause many errors, especially in static EIT. Therefore the
three-dimensional (3D) reconstruction is needed, which means that in the realistic EI'T problems,
for example head imaging, thousands of unknown resistivity parameters have to be determined.
These computations take a lot of computer time and storage and therefore the solution method
plays a significant role. Because of the nonlinearity and ill-posedness of EIT standard optimization
approaches can not be utilized.

In this thesis a finite element-based method for the reconstruction of 3D resistivity distributions
is used. The proposed method is based on the so-called complete electrode model that takes into
account the presence of the electrodes and the contact impedances. In this thesis different types of
iterative optimization methods for the solution of the inverse problem have been studied. Methods
in which the expence of inverting large dimensional matrices can be avoided are presented. The
proposed approaches are tested with computer simulations.

In some cases, EIT may involve an unbounded domain. In these cases, it is not reasonable
to model the whole domain but the model is truncated somewhere. The truncation may cause
problems and errors in the image reconstruction. In this thesis the model truncation problem is
solved by using infnite element method, which involves the choosing of the shape functions so that
they extend to infinity. The approach is compared with method of choosing long elements on the
truncation surface.

Universal Decimal Classification: 537.311.6
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INSPEC Thesaurus: electric impedance imaging; image reconstruction; finite element analysis;
clectrical resistivity; optimization; conjugate gradient methods; inverse problems
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CHAPTER |

Introduction

ELECTRICAL IMPEDANCE TOMOGRAPHY

Electrical impedance tomography, EIT, is an imaging modality that can be used
in cases of eonductive targets. In EIT the internal resistivity distribution is re-
construeted based on electrical measurements from the boundary of the target. In
many cases the resistivity distribution carries valuable information on the strue-
tural, and especially, functional properties of the target. For example, in medical
applications, different organs of human body posses contrast in resistivities . Fur-
ther, physiological changes, such as increased blood circulation, cause changes in
electrical resistivities of individual organs.

In EIT the electrodes are placed on the surface of an object and current is
injected into the object through these electrodes. Current is weak alternating
current whose amplitude is usually between 1-5 mA and frequency between 1-100
kHz. The resulting voltages on the surface of the object are measured using the
same or additional voltage measurement electrodes. The internal resistivity dis-
tribution is computed based on this boundary data. This reconstruction problem
is an ill-posed inverse problem in the sense of Hadamard [28], and special methods
are required for the solution. In the sequel reconstruction of conductivity distri-
bution, instead of resistivity distribution, is also discussed. These reconstruction
problems, however, are equivivalent; the conductivity is the inverse of resistivity.

Many applications of EIT have been developed e.g. for medical purposes [112].
A traditional medical application is the imaging of thorax but many promising
results have also been obtained from head imaging, for example, locating and
monitoring of cerebral haemorrhage [86, 71, 13, 62]. Also realistic head models for
numerical computations and validation of three-dimensional algorithms for EI'T of
human brain function have been used [5, 98]. The resistivity information obtained
from EIT could also be used together with EEG {ElectroEnchephaloGraphy), when
the internal current sources are estimated [77, 76]. EIT has also been widely used
in geophysical [113] and industrial applications [20, 115].

The spatial resolution in EIT is relatively poor in comparison to other modal-



10 1. Introduction

ities, such as, magnetic resonance imaging and X-ray tomography. However, for
example in industrial process tomography, where the targets often change very
rapidly, EIT is a workable modality due to its good temporal resolution. The
fastest EIT system can provide as many as 1000 images per second [115].

The mathematical development in EIT was started in 1980 [14] when the
uniqueness of the EIT inverse problem was first addressed. After this paper there
have been many studies on the uniqueness of the recovery of the conductivity in-
side an objeet based on the measurements made on the boundary. The proofs of
the uniqueness in isotropie case in two and three dimensions with different kinds
of assumptions can be found in [96, 84, 55, 54, 95, 23, 53, 41, 18, 83, 72]. If the
conductivity is anisotropic the recovery is non-unique [94].

The EIT reconstruetion methods can be divided in two categories, stationary
and non-stationary imaging. Stationary imaging can further be divided in two
categories, difference imaging and static imaging. In difference imaging two data
sets are measured corresponding to two different target conductivity distributions.
Based on the difference between these measurements the difference of the condue-
tivity distributions can be estimated. In static imaging the reconstruction is based
on a single data set of voltage measurements only, and the aim is to reconstruct
the absolute conductivity distribution. This involves very aceurate computation
of simulated voltages in an arbitrary (simulated reference) conduetivity distribu-
tion. The computation of the voltage measurements when the currents and the
conductivity distribution are known, is called #he forward problem. In this thesis,
reconstruction methods for stationary cases are considered. In non-stationary or
dynamic imaging, the time-dependence of the resistivity distribution is taken into
account, and a reconstruction is obtained after each current injection.

Methods for reconstruction of impedance images are based on mathematical
models that connect the internal resistivity distribution to the measurements made
on the surface of the object. In [17, 91] various models were studied. In connection
with EIT problem these models are referred to as electrode models. It was found
that the most coarse model, the so-called continuum model, highly overestimates
resistivities and also the more accurate models, the gap and the shunt models,
were found respectively, to overestimate and underestimate resistivities [91]. The
most accurate model that has been proposed is the so-called compleie elecirode
model. 'This model can take into account the shunting effect of the electrodes and
also the contact impedances between the electrodes and the object. The contact
impedance is due to the electrochemical reaction in which the electron flow is con-
verted to the ion flow in the object. The contact impedance is especially important
when the voltages on the current carrying electrodes (two electrode method) are
measured. However, the effect of the contact impedance can be minimized by
using the separate electrodes for the measurements (four electrode method). The
complete electrode model has also been used in this study.

In this thesis, the forward problem has been solved by using the finite element
method (FEM). FEM is a feasible method for solving partial differential equations
with complex geometries and non-trivial boundary conditions [35, 66, 44, 12]. In
EIT the finite element method has been used at least since 1985 [70]. For two-
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dimensional cases, see [99, 43, 117, 37, 79, 38, 116] and for three-dimensional cases
with complete electrode model [85, 109, 108, 103, 81, 80]. For three-dimensional
FEM caleulations to solve the forward problem of EIT with simplified electrode
models see e.g. [68, 116, 88 87, 59, 63, 97].

In two-dimensional (2D) EIT, an array of electrodes is attached around an ob-
ject and the images are reconstructed based on the assumption that the injected
currents are confined to the two-dimensional electrode plane. However, when elec-
tric current passes through the objeet the current spreads out in three dimensions.
If this fact is not considered in the image reconstruction, many errors, especially in
static eleetrical impedance tomography, are produced. For this reason the three-
dimensional (3D) approach is justified.

In the early stages of EIT at the beginning of 1980’s, only cross-sectional 2D
images were considered. Fully three-dimensional (3D) EIT has been discussed
later e.g. in [113, 27, 63, 67, 64, 65]. All these proposed approaches have been
based on difference imaging and some of them on ad hoc approaches to reconstruet
3D images. Also many simplifications have been done in the electrode modeling,
which may have produced difficulties of obtaining static reconstructions. In the
following, a short summary of the earlier work considering 3D EIT is given.

In [113, 114], an algorithm for electrical impedance tomography was deseribed
that makes no prior assumptions about current flow paths. It involves the solu-
tion of the associated Poisson equation for inhomogeneous media with an explieit
conductivity-updating scheme that is not subject to matrix ill-conditioning prob-
lems. A finite element method with a simple physical model {continuum model)
was used in the computations. The algorithm uses the measured voltages to cause
a change to the conductivity distribution to tend toward minimization of the differ-
ences between the measured and calculated surface voltages. First the algorithm
calculates the potential and current densities with Neumann boundary conditions.
From these calculations, the voltages at the surface nodes are obtained. These
voltages are compared with actual voltage measurements. Unless the exact con-
ductivity distribution is known in advance, there will be a discrepancy and the
potential distribution is calculated again with Dirichlet boundary condition. This
means that a large number of conductivity-updating iterations are needed. The
algorithm was tested with a three dimensional laboratory experiment with top sur-
face measurements only. A submerged metallic object was imaged with error that
was believed to be due to poor modelling of fields in the vicinity of the electrodes.

In [27], methods for resolving the forward and inverse problems in 3D were
proposed. The forward and inverse computations were based on the continuum
electrode model [17] and its analytical solution. For this reason the proposed
approach can be used for the cylindrical objects only.

A direct sensitivity matrix (DSM) approach for fast 3D image reconstruction
was proposed in [67]. There is no need for inversion of DSM, and the reconstructed
image of conductivity change is obtained directly by the product of the DSM and
the difference between two measurement vectors. This is obtained by assuming
that the matrix (STS)~1ST where S is a sensitivity matrix (the Jacobian), could
be approximated with the DSM where the matrix elements are the inverses of
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the corresponding elements of S. This is a very crude approximation and it is
not guaranteed that it works properly. Further, the boundary element method
was used in construetion of this matrix. This restricts the generality of resistivity
distribution since the boundary element method requires that the areas surrounded
by the given boundaries have the same value of resistivity.

A modification of the “classical” sensitivity method for the 3D image recon-
struction was used in [63, 64]. An image reconstruction algorithm based on the
sensitivity matrix S has been utilized sueh that the relationship between the mea-
sured boundary data AU to the change in conductivity image Ao is AU = SAo
where AU is a difference between a perturbed data set U/ and the uniform case
U,., and similarly for Ao. Each sensitivity coefficient is given with voltage gradi-
ents which are found by calculating the node potentials of each element using the
approximation u = ?’fl —7y ! where r; and 7o are the distances of the image point
to the current injecting and voltage measurement electrode pairs. The sensitiv-
ity matrix is normalized by pre-multiplying S with a diagonal matrix where the
non-zero elements correspond to a theoretical U, data set which can be caleulated
from the node potentials at the electrode sites. The drawbacks of this approach
are that the forward model is very inaccurate, for example, it does not depend on
the estimated parameters o and the method can only be used for the difference
imaging. In [65] the proposed method was applied to 3D EIT of the human thorax.

There have also been attempts to exploit three-dimensional aspects in two-
dimensional reconstruction algorithms, instead of producing fully 3D reconstruc-
tion [24, 40, 83, 82]. In [24] three-dimensional measurements were used for two-
dimensional reconstruction. They used three rings of 16 electrodes, one centrally
and the other two 10 cm on both sides of the central electrode plane. The mea-
surements were obtained for uniform resistivity throughout the model and also for
two perturbations in resistivity introduced, one on the central plane and the other
in the midway between the central and lower electrode plane. The measurements
on the three rings of electrodes were used individually to reconstruct the resistivity
distributions on the respective plane. The objects on the upper and lower planes
were clearly visible also in the reconstruction corresponding to the central plane.
It was suggested to subtract in the “appropriate” proportion normalized images of
the upper and lower planes from the central image. In this way the perturbation
caused by the off-plane target disappeared in the central plane image.

In [83, 82], the effect of the third dimension on 2D EIT was studied. The
work was based on the applied potential tomography system, [4], and a cylindrical
phantom containing saline. Experimentally obtained magnitudes of pixel values
corresponding to different conditions in the third dimension were presented. The
analysis of these data yielded two observations. First, planes of changed resistivity
out of the electrode plane can appear as both increased and decreased resistivity
in the image. Secondly, it was found that the image of an object is shifted in
position toward the centre almost linearly with distance from the electrode plane
in z-direction and that the slope of this linear variation depends on the radial
distance of object. This observation has been utilized in [82]. They fitted an
empirical curve to this dependence and based on this, developed a method to
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locate 3D objects using only two electrode planes.

Often when fully 3D EIT has been considered, simplified geometrical and
mathematical models have been used [113, 27, 63, 67, 64, 65, 39, 68, 69, 11].
This makes it possible to solve the image reconstruetion problem with the aid of
{semi)analytical methods. This approach is applicable in difference imaging in the
situations where the object is assumed to be geometrically simple. However, in the
cases of absolute imaging and complex geometries accurate modelling is needed,
and furher, numerical methods, such as FEM are needed for solving the forward
problem in the static image reconstruetion. The FEM solution of the most accu-
rate model, the complete electrode model, was first published by the author of this
thesis, [85, 109, 108, 103]. In order to solve the forward problem accurately enough
for the static reconstructions the complete electrode model and FEM with second
order basis functions (also called shape functions, see [12, 35]) were used. The
FEM approximation of the complete electrode model has also been implemented
in refs [81, 80].

INFINITE ELEMENTS

There are many situations in engineering which involve unbounded domain. Spe-
cific examples ean be found in fields such as fluid mechanies, acousties, electromag-
netics, heat and mass transfer. Also deeay of the voltages along one axis in EIT, for
example, in a human leg or a long pipe in industrial applications is approximately
a problem like this. The most common way to solve these problems is to limit the
studied volume at finite distance on which adequate conditions on the field vari-
ables are imposed. This method requires a large number of finite elements leading
to a large system of equations. This increases computing time and computer stor-
age required for reconstuction. Another way is to use “longer” elements on the
boundary. This leads often to ill-conditioned elements and inaccurate solutions.

The development of infinite elements has helped in the proper physical mod-
elling of the far field behavior and in the reduction of the number of elements.
The infinite element method, which involves the choosing of the shape functions
so that they extend to infinity, has been described in [8]. In the so-called mapped
infinite element method the known local element is mapped to the infinite element
whose node(s) of some boundary are at infinity. This method has been used in
[6, 61, 90, 118]. A similar idea has also been used with infinite boundary elements
in [7].

The formulation of the infinite element depends on the type of decay that is to
be incorporated. In general, the types of the decay which are adopted are Tin, with
%, T% and % as the special cases of decay, where r is the distance from the chosen
pole to a general point within the element. In [110] three-dimensional hexahedral
infinite elements with % and % decay have been presented. In [78] some techniques

for testing infinite elements have been presented for the exponential, %

decays. The formulation of infinite elements has been tested by synthesizing special
differential equations. Often these new differential equations are not those which
will be eventually solved by the infinite elements, but other equations which are

and %
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simpler, and preserve the properties of the final differential equation.
The infinite elements method was applied to EIT by the author of this thesis
in [104, 105]

AIMS AND CONTENTS OF THIS THESIS

In this thesis the three-dimensional recontruction in EIT is considered. The main
aims of the thesis are:

1. To present the implemetation of the FEM approximation for the 3D complete
eleetrode model,

2. to ecompare different iterative reconstruction methods in EIT, ineluding a
novel block-nonlinear conjugate gradient method, and

3. to apply the infinite elements method to EIT.

In most of the realistic EIT problems, for example head imaging, thousands
of unknown conductivity {resistivity) have to be determined. These computations
take a lot of computer time and storage. Hence the solution methods plays a
significant role. Because of the nonlinearity and ill-posedness of EIT standard
optimization approaches can not be utilized. In this thesis different types of itera-
tive optimization methods for the solution the inverse problem have been studied
A special nonlinear conjugate-gradient method for 3D EIT is proposed. The ad-
vantage of the conjugate-gradient methods is that the expence of inverting large
dimensional matrices can be avoided. In addition, in the proposed block-nonlinear
conjugate-gradient method the gradients needed for the search direction can be
computed in separate blocks. This reduces further the need of storage in the
computation and allows parallelization. The proposed approaches are tested and
results are compared with computer simulations.

The model truncation problem has been solved with infinite elements. The
idea that the three-dimensional basis functions can be separable has been used. In
the case of the separable basis functions, the integrals over the three-dimensional
infinite elements can be replaced by the integrals over the two-dimensional and
one-dimensional elements. In this work, a cylindrical volume is assumed to be an
unbounded domain only in one direction, so that simple one dimensional infinite
elements can also be used in 3D. The accuracy of the solutions with separable
infinite elements, long finite elements and separable finite elements has also been
compared.

This thesis is divided into six chapters. After Introduction in Chapter 1, differ-
ent types of optimization methods is presented. In Chapter 3, the forward problem
in EIT is discussed. The variational form for the complete electrode model is pre-
sented and finite element method and infinite element method in EIT is considered.
The theory of inverse problem in case of EI'T is discussed in Chapter 4. In Chapter
5, reconstructions with simulated data in static cases are given. Chapter 6 is a
discussion chapter in which the results of the whole thesis are summed up and
suggestions for further development are given.
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On the theory of optimization methods

There are many different types of optimization problems and each type needs
different solution method. Special algorithms have been developed for solving
linear or nonlinear problems. Different types of solution methods are also needed
when the model includes or does not include explicit constraints on the variables
{called constrained problems or unconstrained problems). When the method is
chosen the property of solution has to be considered as well. The fastest algorithms
only seek a local solution instead of real minimum/maximum (global) solution.
Global solutions are necessary in some applications, but they are usually difficult
to identify and locate. Sometimes the already existing standard methods can be
utilized but unfortunately many problems require a solution method tailored just
for the given problem.

Most of the optimization methods are iterative. They begin with an initial
guess and generate a sequence of improved estimates until the optimal solution is
obtained. Some methods need a good initial guess in order to be able to converge
to the global minimum {or maximum). These type of methods can not be used if
there is not enough prior information on the sought solution. The strategies used
to move from one iterate to the next differ from one method to the other. 'I'he
algorithms which are based on Newton method use derivatives (first or second) for
choosing the direction in the iteration. Very often these methods converge fast but
computation of the derivatives takes a lot of computer time and storage especially
in large dimensional problems with thousands of variables. The biggest problem
of these methods is that also the inversion of the large dimensional matrices that
includes the derivatives has to be computed. For large dimensional problems
methods that avoid inversion of these large dimensional matrices are much more
favorable.

In this chapter the optimization methods for both linear and non-linear uncon-
strained problems are discussed in general. The gradient based iterative methods
which can be utilized in three-dimensional electrical impedance tomography will
be considered.
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2.1 Line search methods

Let us denote a multivariable function which has to be minimized by F(z) where
z is a real n-vector = (z1,x9,...,z,)" and F: R* - R,

Fach iteration of line search method computes a search direetion p; and then
decides how far to move along that direetion. The iteration is given by

Tpt1 = Ty + 0Py, (2.1)

where the positive scalar «; is called the step length. The step length tells how
far from the point z; one moves to the direction p;. The suecess of a line search
method depends on effective choices for both p; and . In computing the step
length vz, compromises have to be made. On one hand «; should be chosen such
that it gives a substantial reduction of minimized function ¥ and on the other hand
the time that is taken to choose «; should not be too long. In practice inexact
line search is used to compute a step length that achieves adequate reductions in
I at minimal cost. In next sections different strategies to choose step length oy
and search direction p; is discussed.

2.1.1 Inexact line search

As explained earlier, inexact line search is problematic but has significant role in
convergence rate of the method. Step parameter should be chosen as accurately
as possible, but at the same time too much time is not wanted to be used for
numerous iterations. A standard choice for the step parameter is o, = 1. This in
not effective way because convergence rate is going to be slow if optimal or even
close to optimal o is not used. This can also lead to the situation in which the
minimum can not be found at all even if the search direction is good.

Let us denote ¢lay) = Flzy + arps) = (Fog){ag) where glag) =z, + opps.
By using the chain rule of the partial differentiation of the composite function the
derivative of ¢{ay)

del{ag) i OF(glay)) Ogi{aw)

= 2.2
dorg P Oxg 4 Jay, (2.2)
2 OF (gl
-y ey, (2.3)
i—1 Lh,i
= VF(z;+ a&m)Tp& ) (2.4)
where VF = ((‘;TF, ‘e ,gTF), is obtained. The simplest condition which o, has

to fulfill is that FI'(QT;.; + agp&) < F{zz). One choice to choose oy such that the
previous condition is fulfilled is

F(&Tg + Oé;.;p;.;) < F(&Tg) + ClagVF(xg)Tpg (25)

where 0 < ¢; < 1 and VE{z;)Tp; is the derivative of ¢, at oy = 0 [75]. Because
pi, is descent direction VF(zy)Tpr < 0 (see the next section on steepest descent
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method). The condition {2.5) is called the Armijo condition. The step parameter
oy I8 acceptable only if ¢(wr) is below or equal with the line (o) = Fizy) +
cropVF(z,) py. Because of parameter ¢; the line (o) lies above the graph
P(crr) also for very small values of «y. Step lengths satisfying Armijos condition
are shown in Fig. 2.1. The Armijo condition by itself is not an efficient way

dlon)

Hay)

[e78
acceptable oy k

Figure 2.1: Step lengths satisfying the Armijo condition.

to choose step parameters, because it is satisfied for all small values of oy and
therefore convergence can be very slow. By setting that the derivative at oz has
to be greater than gradient at 0, that is,

VE(zy + appp) i > o VF(z)  'ps (2.6)

where ¢o € ey, 1], it can be ensured that oy is not “too small” and more efficient
convergence can be obtained. The condition (2.6) is called the curvature condition
and together with the Armijo condition they are known as the Wolfe conditions
Step lengths satisfying the Wolfe conditions are shown in Fig. 2.2. It is not guar-
anteed that the slope of tangent at «a, which fulfills both of the Wolfe conditions,
is negative. In order to ensure that the slope is not too positive and on the other
hand that oy is not too far from the stationary point of ¢{ay) the Wolfe condition
{2.6) can be written as

IVE (g + crpe) pe < ol VF () el (2.7)

The Armijo condition and condition (2.7) are known as the strong Wolfe conditions
see Fig. 2.3.

There are also other conditions for choosing step parameters (see for example
[22, 26, 75]). Like Armijo, Wolfe and strong Wolfe conditions they are based
on computation of gradients at several points during the calculations of a;. In
practice, gradients are expensive to compute and therefore it is advisable to use
less expensive methods. For example, the gradient at «j can be approximated by
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$law)

Hog)

acceptable oy Gk

Figure 2.2: Step lengths satisfying the Wolfe conditions. Line #1 is the tangent
line at aj = a'}c such that slope of tangent at a'}c is greater than slope of tangent

when aj = 0.

the difference quotient and the equation (2.7) takes the form

|F(zp + orpr) — Flzg + vpr)]
X — V

< o V) il (2.8)

where v € [0, ag[ [26].

If ¢{ay) is known to be almost quadratic, an effective way to choose the step
parameter is to compute ¢{ay) with few different values of o and then fit a
quadratic function to the data. For the known quadratic function the minimum
point of is easy to compute.

2.1.2 Steepest descent method
Consider the linear approximation to ¥ based on the Taylor-series expansion as
Flay + po) & Flag) + VF(z) py (2.9)

where V¥ is the gradient of ¥ and z; € R”. Since the function F is to be
minimized a step along p, is taken such that F(z; + ps) < F{zs) which means
that every p; that satisfies the condition VF(x;)7ps < 0 is a descent direction. If
the direction is chosen to be py = —VF(x) the method is called steepest descent
method. This can also be obtained from the expression of the vectors

VE(zi) e = [VE(@e) 3 lpell; cosd (2.10)

where 8 is the angle between the vectors VF{z;) and p;. Since cosé lies between
-1and 1, pl VF(x;) will be minimized when ¢ is 7, in other words p;, = —V F(xy).
This direction is orthogonal to the equipotential curves of the minimized function.
Therefore the steepest descent method can be formulated as

L4l — Tl — Oé;.;VF(&T;.;) . (211)
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acceptable oy a’ [£79

Figure 2.3: Step lengths satisfying the strong Wolfe conditions. Line #1 is the
tangent line at o = a'}c and line £2 is the tangent line at a3 = a’g such that
absolute values of slope of tangents at all ay € [, @f] are smaller than absolute

value of slope of tangent when «a; = 0.

Advantages of the steepest descent method are that it has guaranteed convergenee
and it requires only calculation of the gradient VF{x;) but not of second deriva-
tives. Disadvantage of the method is that its convergence can be quite slow. Kven
in ideal case in which the objective function ¥ is quadratic (smooth function) and
choosing oy are exact the convergence rate is linear.

2.1.3 Newton’s method

Traditional Newton method has been used to find the zero point of nonlinear
functions f(z), f : R — R. The basic idea in this method is that if z¢ is an
approximation (first guess) to the zero point of f(x) then a closer approximation
will be given by a point z = z; where the tangent to the graph at x = zg cross
the = axis. The tangent can be taken as a linearization for the f(x) in zq. Point
z1 Is chosen to be a new approximation to the zero point and new linearization
is done. This is repeated until the approximation is accurate enough. Hence the
iterative method

Thy1 = xp — o (@) flae) (2.12)

for solving the zero point is obtained. When the stationary point of the nonlinear
function is searched instead of zero point then the zero point of the derivative
function is needed. Thus the derivative function is linearized instead of original
nonlinear function. The Newton method for solving the stationary point will be
formulated in this section.

If the minimized function F(z), ¥ : R” — R, can be assumed to be almost
quadratic, a good choice is to use quadratic approximation for F'(z). A quadratic
function is one of the simplest smooth functions with well determined minimum.
If first and second derivatives of minimized function /' are available, a quadratic
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model of the objective function can be obtained by taking the first three terms of
the Taylor-series expansion about the current point

1
Flay +pr) = Flag) + VF(@) pe + 539?:V2F(1‘k)3% : (2.13)

where V()7 = (35’(2&)

; . Te 3‘;;?)) and V2F(z,) is a symmetric matrix (Hes-
sian matrix)

PF 32F 32F
3:821 Bz10zs Bx18x
PF PR ?F
dxo0x Jz2 Bx28xp
ViF(z) = V(VIOT = o 2 : (2.14)
PF PR IF
Oz, 0z Oz, 0z Jx2

FF_ _ _I*F
Sz, 80x; ~ Oz;0z;
As in the steepest descent case the condition to be fulfilled is F(zy + pi) <

F{zy) which ean be obtained if p; is a minimum point of the quadratic function

where

1
$lpr) = VE(xe) i+ 5pi V2 F (ae)pr (2.15)

By differentiating the function (2.15) with respect to p;, and letting V,, ¢(ps) =0

Vadlpr) = VE@) o (VRE)TVEC) e (216)
= VHF(zp) + V2 F(z)ps = 0 (2.17)
which can be written in the form
VF(zy) = —V>F(zy)px (2.18)
from which p; can be solved
pe = = (V*Fla)) " VF(zs) . (2.19)

The stationary point p; is the unique minimum of the equation (2.15) if the second
derivative of ¢(p;) (= V2F(x;)) is positive definite. The direction (2.19) is called
Newton direction. Therefore Newton’s method can be formulated as

Lyl — T — O (VQF(QZQ))il VF(&Z;.;) . (220)

If V2F(z}) is positive definite, only one iteration is required to reach the min-
imum of the function {2.13) from any starting point zg which is also the minimum
of F{z) if F(x) is quadratic. Convergence rate of Newton’s method is quadratic if
the starting point is sufficiently close to minimum point z* (this means that the
quadratic model is a good approximation for the function #7), the Hesslan matrix
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is positive definite at =™ and Lipschitz continuous in the neighborhood. If the Hes-
slan matrix is not positive definite, the quadratic approximation (2.13) does not
have a minimum. It may not even have a stationary point. Numerous strategies
have been developed to produce an efficient descent method for the indefinite and
negative definite cases. These methods, called a modified Newton Methods, do not
use Newton direction under all circumstances [26, 75].

The effectiveness of Newton’s method is based on curvature information pro-
vided by the Hessian matrix. However, in practice the Hessian is quite often
impossible or difficult to compute or computing takes too much time. Especially,
obtaining the inverse of the Hessian is very demanding and needs a lot of computer
storage. The methods in which approximation to eurvature of a nonlinear fune-
tion can be computed without explicitly forming the Hessian matrix have been
developed. These methods are called Quasi-Newton Methods. Also the inverse
of Hessian can be approximated directly instead of Hessian (see BFGS-method
{Brouden-Fletcher-Goldfarb-Shanno) [22]). In Discrete Newton Methods the Hes-
sian matrix is approximated by finite-difference approximations of the gradients.

2.1.4 Newton-Raphson method

Let us consider the situation in which the minimized funetion ¥ is of form

1 1
Flz) = §T($)TT(33) = §||?’(f€)||§ ; (2.21)
where r(z) = (ri(z),ro(z),...,rn(z))T is a function r : R® — R™. Now the

gradient of /' is (note that V{(a”b) = (Va® )b + (Vb' )a where a and b are vectors)

1
VE(x) = EV(?"(:C)TT(QT)) {2.22)
= (Vr(@)") r(z) (2.23)
9
3z
9
= w [ri ro o 7w || 7(®) (2.24)
o
3T
ror 9r2 . Orm
3x1 3x1 Oz
gry  9rp . Otm
B P (2.25)
L Oz, 3% r 3% r
= (@) (@) (2.26)

where J(z) € R™*™ such that J®)(z);; = 3gi—<36) is called the Jacobian of r. Let

T3

us denote J@© = (Jfr),Jér),...,Jff)) where J;r) is 7’th column of J. Hessian of
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Fis now
V2F(z) = V(VF@)" (2.27)
T
- V((J<r)(x))T7'(x)) (2.28)
= Vi{r(x)TJW) (2.29)
2
= ?2 [ ?,,le(r) ?,,TJQ(r) Y‘TJS) J (2.30)
o
EN
[T EIGAA)
321 T 321
= : : (2.31)
3(r7 I LI AR)!
L E Oxyp,
(2.32)
orT 7(r) 8T 1(r) ] a7 7 oJm
371*’71 &QJ T&zl S Dy
= : : + : : (2.33)
T H{r - T (r) (O]
B0 g | [ g
i i %, - %r;
7 2
arT P oz? — " Jx1 0z,
3:{?1
I A . | ey
ar? 9 9
B 9y T 9%y
T A N
— *8z,,07; — Oz2
(T ENT IO, +ZT? e (2.35)

where Ggr)(:c) = V?r;(z). Now the equation (2.20) takes the form

k£23

-1
LT+l — T — O ((J<r)($& Tj<r) 3,’;.; Z 3];.; G<) 3]&))

TN ) () (2.36)

and it is called Newion-Raphson method. As can be seen it is a special case of
Newton’s method.
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2.2 Linear and nonlinear least squares problems

Newton-Raphson method is often applied for solving linear (or nonlineor) least-
squares problems. First, let us look at the finite-dimensional linear forward prob-
lem which corresponds the measurement situation in which measurements {obser-
vations) includes error. This observation model is of the form

s=Hb+v (2.37)

where v is the error vector of the observations z, ¢ is the vector of parameters
to be determined (corresponds to x in previous sections), H is the mathematieal
model between z and §. Columns of H are assumed to be linearly independent.
The system of equations z = H # is often over determined so ¢ has to be chosen
such that it represents real # as well as possible in “some sense”. In least square
{LS) estimation the estimator #;¢ for the parameter § is obtained by choosing
parameters such that the squared sum of the errors z; — (H8); will be minimized.
Now the minimized function ¥(8) is of form

I~ s 1o
Fo) = 5;% = 50" (2.38)
1
= gle- HOT(z— H) (2.39)
1
= sl=- Ho|3 (2.40)
Let us differentiate the equation {2.38) with respect to ¢
VE(G) = L(9 (z—HOT(z—HO) (2.41)
= 5l5% z .
9(z—HNT
- %(75 —H) (2.42)
= —HY(z-H®) (2.43)
Hence the stationary point §Lg is
O = (HTHY 'HT » . (2.44)
The least square estimator 555 is the unique minimum of the equation (2.39) if
2
33F9§9) = H7H is a positive definite matrix.

If observations are nonlinearly dependent on parameters ¢, in other words

z = h{8) + v where h(0) = (h1(0),... hn(0) (h € C?, that is, h is two times

continuously differentiable), the functional F{8) which has to be minimized is of
form ]

F(0) = 5l — hO)I (245)

It can be seen that the equation {2.45) equals the equation (2.21) with r{8) =

z — h(#) when the minimum of the equation (2.45) can be obtained from the
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equation (2.36). The Jacobian matrix of »(#) is needed and can be computed as

r Bz, —h {8 Bh (6
Ty = & 393< 2= - 3(9(3) = —Jij,

function A{#). Similarly the Hessian of h;(6) is G; = Ggr). With these notations,
the equation (2.36) takes the form

where J denotes the Jacobian of the

Gprt =0y + on (Jgjg +3° (z - hé@)) Gé@)) JT (z - h@)) . (2.46)

i=1
where J;, = J(@), Jp e Rm=n,
2.2.1 Gauss-Newton method

Computing of Hessian is very time and memory consuming. In order to reduee
the computational burden the Hessian of ¥ can be approximated in several ways.
One possibility is the approximation in which the Hessian is of the form

VIF(H) ~ J(6)TJ(6) . (2.47)

This approximation is valid if the initial guess is close to minimum 6%, in other
words, h{fy) ~ z or v(#) = z — h(6y) = 0, that is, the residual is very small. Then
the term y 0" (z2 — hz(@)) Gz(é\g) is negligible. The same approximation can be

used if the model k(é;) is nearly linear in the neighborhood of (/9\;,; and therefore
(; is almost zero. Hence the iteration {2.46) can be written in the form

Oevr = Ot on (JOTIB0) BT (- -nB0) . (248

This is called Gauss-Newton method [10].
The same result can be obtained using Gauss’ method in which nonlinear A(9)
is approximated with a linear function in the neighborhood of some 8y [92]

h{(6) ~ h{0g) + J(00)(6 — ) (2.49)

where J is the Jacobian of A.
Now the functional which has to be minimized can be written as (J = J(6g))

Fi) = llz—ho)P (2.50)
~ glls = higo) — IO~ ) (2.51)
= Sl hlbo) + 8~ TP (2.52)
= Ll - gap (2.53)

where
2=z —h{G) +J0g . {2.54)
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The LS solution corresponding to this linear approximation is

bps = (JTH LT (2.55)
= (JTN Iz — h(6) + J 60) (2.56)
= (JTNT T JT DI e) + (T I T8, (257)
= G+ (JTN IV (2 = h(6) . (2.58)

The model A(#) can be linearized again in 61 and the same step as in {2.58) can
be used again. From this an iterative algorithm

B = Bt o (JOTIB) TG (= - hB) (2.50)

to solve the nonlinear problem is obtained. As ean be seen it is the same as the
algorithm (2.48).

2.3 Methods for ill-posed least squares problems
Let us consider the same observation model as in section 2.2 without the error v
z=H#b, {2.60)

where § € R™ is “a cause”, z € R™ is “a consequence” and H € R™*" is the
model between 8 and z. The matrix equation {2.60) represents m linear equations
in n variables (H : R” — R™, R” is called the domain of H and R™ denoted as
R(H) is called the range of H). In the forward problem the parameters ¢ and
the observation model H are known and the observations z are to be computed.
The inverse problem corresponding the model given above can be divided in two
categories

e Let z be the observed consequence and the model H is known. In that case
the cause 8 has to be determined.

e Let 2 be the observed consequence and 8 the known cause. In that case the
model H has to be determined. In practice this means that the “parametric”
form of the model is known but some of these parameters are unknown.

If 2=0, the set of equations (2.60) is called homogeneous. If z #£ 0 the set is
inhomogeneous. 1t is known that the homogeneous set of equations H # = 0 has
one trivial solution & = 0 or infinite number of solutions. These solutions compose
the subspace called the null-space of H, denoted as N{H). Inhomogeneous set of
equations does not necessarily have any solutions. If one solution #g is known the
set of all solutions is

(010 =60 +0x 0y € N(H)} . (2.61)

As it can be seen, if homogeneous set of equations has only a trivial solution, that
is, N{H) = {0}, inhomogeneous set of equations has a unique solution § = 6.
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In next sections existenece of the solution of the inhomogeneous set of equations is
discussed more elosely, that is, the inverse problems of the first eategory will be
considered.

RANK-DEFICIENT PROBLEMS

Row rank {(R,(H)) is the number of linearly independent rows of matrix H, such
that H € R™*" R, (H) < m. Column rank (R.(H)) is the number of the linearly
independent eolumns of matrix H, so if H € R™*" R,(H) < n. Row rank and
eolumn rank are equal and they are called as rank of H (R{H)) and consequently
R(H) < min{m,n}. If R(H) = min{m, n} the matrix H is said to have full rank or
it is non-singular. If R(H) < min{m,n} the matrix H is rank-deficient or singular.

In order to be able to consider if there is a unique classical solution for the set
of equations (2.60) the augmented matrix H = [H z] is needed [51, 42]. If H and
H have different rank there is no unique classical solution. When the two matrices
have the same rank there is either one unique classical solution or infinite number
of classical solutions. This can be realized by remembering that if equations are
consistent, z is linear combination of the linearly independent eolumn vectors of
H, in other words, z must lie in the subspace of R™ spanned by the linearly
independent eolumns of H. This can be denoted as R(H) = R(H) which means
that z € R™(=R{H)).

If H is square {(m = n) and R(H) = m {all columns and rows are linearly
independent) the equation {2.60) has a unique solution & for every z and therefore
columns of # span the whole R™. Thus columns of H form a basis for the range of
H.IfR(H) < R(H), z is not a linear combination of linearly independent column
vectors of H, and therefore it does not lie in the subspace of R™ (z ¢ R™) and the
equations are inconsistent. In this case there is no classical solution for the set of
equations.

Thus there are three possible cases.

e When m = n, R(H) < m, there is the same number of equations and
variables. If all columns and rows are linearly independent H :1 exists and
there is unique solution for the set of equations. If R(H) = R{H) < m there
will be m — R({H) number of free parameters in the solution. Therefore there

are infinite number of the exact solutions. If R(H) < R{H) there is no exact
solution for the set of equations.

e When m < n, R(H) < m, there are more variables than equations, that is,

the problem is under determined. 1f R(H) = R(H) there will be n — R(H)
number of free parameters in the solution and infinite number of classical

solutions. If R(H) < R(H) there is no classical solution for the set of equa-
tions.

e Whenm > n, R{H) < n, there are more equations than variables, that is, the

problem is over determined. 1f rank R{H) = R(H) some of the equations are
redundant and they can be ignored. There is a solution containing n— R{H)
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number of free parameters. If A has full column rank, which means that
R(H) = n, and R(H) = R(H), the problem reduces to the non-singular
square problem . Hence H ™! exists and the set of equations has a unique
solution. Note that in case of over determined problem, full column rank
does not guarantee that » € R because the number of column vectors is

less than the dimension of the range. If R(H) < R(H) there is no exaet
solution.

In practice there are errors in the observations z, that is, = = Hé + v and
therefore z ¢ R(H). As noted earlier, there is no classical solution for the set
of equations in that case. If H has full column rank the matrix H7H € R»**
is non-singular square matrix and therefore the set of equations (HTH)8 = b is
true for every & € R™ and unique LS-estimate (2.44) exists. Note that if H is
non-singular square matrix LS-estimate equals the unique classical solution g s =
(HTHY 'H7z = H Y(HT")"'H72 = H~'2. For the full column rank matrix it is
also true that the homogeneous set of equations H # = 0 has only trivial solution
8=0.

As explained in section 2.2, in least square estimation the estimator is chosen
such that the square sum of the errors will be minimized, in other words, square
of the norm of the error vector will be minimized (v7v = ||v||3). Let us denote
H 6 e R(H). Norm of the error vector will be minimized when v is orthogonal to
the vector H 8, that is, v € R{H)' where L indicates orthogonal complement.

In some problems z ¢ R{H) and H is not full column rank matrix so there
is no classical or unique LS-estimate for the set of equations. However, every
vector H”z lies in the subspace spanned by the linearly independent columns
of square matrix H? H, that is, H” z is in the range of HTH. Now the set of
equations HT'H6 = H7Tz is always consistent and therefore there is always an
infinite number of LS-solutions [10].

As seen earlier for the rank-deficient problems neither unique classical solution
nor unique LS-solution exists. From the set of the infinite number of LS solutions,
a solution has to be chosen based on some criteria. If there are infinite number
of classical solutions, typically the solution is chosen to be the one that has the
least norm. Also if there are infinite number of LS-solutions §LS who has least
norm can be chosen to be the solution. The LS-solutions of the inhomogeneous
problems are of form 055 = 0rg, + #1s, , Where 05, is a particular least squares
solution and ‘?LSN € N(H). The unique LS-solution of minimum norm can be

obtained by choosing #rg5,, = 0 and @550 € J\/(H)l
[LL-CONDITIONED PROBLEMS

In some problems the matrix / in the observation model is nearly rank-deficient.
These problems are called #il-conditioned or 4{i-posed problems. For ill-conditioned
problems it is typical that a small perturbation in the observations {data) can lead
to an enormous change in the solution. The condition number of H (x(H)) indi-
cates the maximum effect of perturbation on the solution and it can be computed
from the equation x{H) = || H||2||H||2 > 1 where HT is so-called pseudoinverse of
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H. The condition number of the matrix H” H is square of the condition number
of H, and thus, even if matrix H is only slightly ill-conditioned, that is, x(H) is
“small”, there is a big error in the LS-solution of the linear system. Hence, the
LS-problem is unstable, that is, even in the case that a unique solution exists, it
is highly biased.

A straightforward way to stabilize the LS-problem is to “regularize” the so-
lution somehow. There are several known regularization methods such as the
Levenberg-Marquardt method and Tikhonov regularization. In both methods the
original minimization problem is modified in such a way that a stable solution
exists. The truncated SVD method reviewed below is also one way of regularize
the LS-solution. A more sophisticated approach for solving ill-posed problems,
however, is to utilize prior information in the solution. In statistical inversion the
a prior: information of the parameters is written down in the form of probabil-
ity distribution. Also, the solutions obtained in statistical inversion are actually
probability distributions. However, point estimates, such as Mazimum o Posteri-
ori (MAP) estimate, are usually considered. With certain assumptions the MAP
estimate can be written in the form of the {generalized) Tikhonov regularized so-
lution, although the interpretation is different. Several types of spatial [47, 32, 56]
and temporal [8G] prior information has been utilized for example in the case of
EIT. Although the construetion of the prior plays a significant role in statisti-
cal inversion, it is important to notice that in many cases even the use of less
informative priors leads to feasible solutions.

2.3.1 The singular value decomposition

The singular value decomposition (SVD) of the matrix H € R™*” is a matrix
decomposition for the treatment of least squares problems. The idea is that any
m X 1 matrix can be written as

H=Uuxv" (2.62)

where U is an m X m orthonormal unitary matrix, V is an n x n orthonormal
unitary matrix and ¥ is an m x n matrix such that

3= ( %1 ) , (2.63)

where »; = diag(oy, -+ ,0,) with o; > 0 for all . The numbers {o;} are the
singular values of H. They are normally ordered such that o1 > g9 > --- > 0. For
eigenvalues and singular values it is valid that o; = /A; where A; is #’th eigenvalue
of the square matrix H HT ifm < n (HTH if m > n). If H is of rank r, the matrix
has r non-zero singular values, that is, g,41 = --- = g, = 0. The matrices U and
V can be written as

U: (ula”' aum)a V: (yla"' 1y'ﬂ) ) (264)

where vectors u; and v; represent columns of matrices &/ and V. Vectors u; and
v; are the left and right singular vectors of H. The SVD of H can also be written
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as
H = UIEIVYIT == ZO’@%@@? s (265)
i=1
where
Ul:(ul)”')u?)) El:diag(gl)”')g?“)) ‘/1:(211,"',11?«). (266)

Here the matrix H of rank » is decomposed into a sum of » matrices of rank one.
As seen before, four fundamental subspaces of matrix H are needed to
be considered when the minimum norm least squares solution is explored:
NH)NH)YL R(H),R{(H)L. There are also well known relations between the

subspaces
NH =RHT), RH*=N(HT). (2.67)

The SVD gives complete information about these subspaces associated with H. It
can be verified that [10]

N(H) =span{v,y1,--- v} R(H)=span{u, 1, - s} (2.68)
N(HT) =span{v(,---,v,} R{HT) =span{u,--- ,u,} , :
where span{vy,--- ,v,.} denotes the set of all linear combinations of vy,--- ,v,. In
the least square estimation the functional (residual) which has to be minimized if
of form

1
FO) =5 lle - Hol: . (2.69)

U and V are orthonormal matrices, that is, VT U =UUT =, VIV =V VT =],
U1, = HUTH2 = 1 and for the unitary matrices it is valid that ||UT Alls = || All2-
Now the minimized functional can be written as [10]

Sle— 1Ol = S [U7G-nvVTol, (2.70)
= %HUTz—UTHVVTQ)Hz (2.71)
_ %HUTz—UTUEVTVVTQ)Hz (2.72)
= %HUTz—EVTQ)HQ (2.73)
1 a S, 0 b \|J?
() D@L e
L e = .
_ 2H( ) )2, (2.75)

where

a1\ o7 bt N o1
(Yoo, (%) v -
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¥, = diag(oy,--- ,0,), v is rank of H, a; € R", ay € R* 0+ b ¢ R” and
by € R*~ U+ Thus, the residual norm will be minimized for arbitrary by and
by = E;l&l.
Using the second equation in (2.76) it can be written that
8V( " ) . (2.77)
2

The choice by = 0 minimizes the norm [|8||,, and therefore the minimum norm
LS-solution 8 can be written in terms of the SVD [10]

by = V( E;Ol‘“ ) (2.78)
_ v(zjal S)U%, (2.79)

where Y71 = diag{a, *,--- ;o). Let us denote
V( Eél ) ) U7 — gt e RPN (2.80)

Ht is called the pseudoinverse of H or Moore-Penrose inverse and the minimum
norm least squares solution (2.79) is called pseudoinverse solution. 1f H has full
column rank (r = n) then dimension of by and there is a unique least squares
solution for the set of equations. Thus pseudoinverse solution equals the LS-
solution.

For nearly rank-deficient problems the smallest singular value o,, or some of
the smallest singular values are nearly zero, that is,

2«1, (2.81)

When o; — 0 then 1/0; — oo and furthermore §MN — 0. One way to stabilize
the solution is to treat very small singular values as zero. This is called as regu-
larization based on SVD or truncated SVD-method [30]. Numerically, if singular
values are less than square root of machine precision computer treats them as zero.
Problems will arise when singular values decay gradually to zero. In this case it is
impractical to say where is the limit after which the singular values can be treated
as zero without loosing essential information. This is the case in ill-posed problems
such as EIT.

2.3.2 Levenberg-Marquardt method

A weaknesses of the Gauss-Newton method is its behavior when the Jacobian
matrix J{xz) is ill-posed, especially when singular values of J(z) decay gradually to
zero. Because the condition number of J{z)7 J(z) is the square of J(z) even small
errors in observations causes a significant error in determining the search direction
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. In Levenberg- Marquardt method the line search strategy is replaced with a frust
region strategy. In this method a convenient and often effective approximation for
the Hessian matrix is used. The main idea is that the original ill-conditioned
problem is modified such that the solution of the modified problem is near to the
solution of the original problem but is less sensitive to errors in the data.

The idea of the trust region approach is to aceept the minimum of the quadratic
model only as long as the model adequately reflects the behavior of the actual
minimized funetion. Usually, the deecision as to whether the model is acceptable is
based on the norm of the computed search direction [10]. In line search methods
search direction is generated and then effort is focused on finding a suitable step
length along this direction. Trust region methods define a region around the
current iterate within which the quadratic model is assumed to be an adequate
representation of the minimized function [75]. After that the step parameter in the
trust region is chosen. In effect, the search direction and step length are chosen
simultaneously. If the step is not acceptable, the size of the region is reduced and a
new minimizer (step parameter) is found. If the region is too small, the algorithm
misses an opportunity to find the direction along which it eould move closer to
the minimum of the objective funetion. If the region is too large, step parameter
may lead too far from the minimum of the objective function. In this case the
size of the region has to be reduced and the whole step has to be taken again. In
practice, if the quadratic model predict accurately the behavior of the minimized
function the size of the trust region is steadily increased to allow longer steps to be
taken. The mathematical formulation of idea of the trust region methods to find
search direction p is the the solution of the constrained quadratic minimization
subproblem

min {lpTAp +b p+ constant} {2.82)
peER” 2
subject to |p|l, <c,

for some scalar ¢. It can be shown (see for example [75]) that the vector p* is a
global solution of the the trust-region problem (2.82) if and only if p* is feasible
and there is a scalar A > 0 such that following conditions are satisfied:

(A+XDp" = —b {2.83)
AMe—llp*llz) = 0O (2.84)
(A + A1) is positive semidefinite {2.85)

In case of nonlinear LS-problem (see Section 2.2) with the linearization A(0) =~
h{bg) + J{06)(0 — 00) = h{fy) + J{0y)p where p = ¢ — 6y, the constrained mini-
mization subproblem can be formulated as

. 1
mm{—h—hww+fwwm§+ﬂm%} (2.86)
peER” 2

. 1
- mm{—W@ﬁ+ﬂ%m%+AM%}, (2.87)
peER” 2
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where r{6y) = z — h(fg). Minimization problem (2.87) ecan also be written as a

least squares problem
s 0] e

where
J - { "}%) } and = — { 7'(20) } . (2.90)
It can be seen that
gWr=rlE = G =) oy
- % (DT I = (Ip)Tr =TT p Ty (202)
_ % ST T T g %w%’ . (2.93)

In the equation (2.93) the matrix J'7.J’ corresponds to the matrix A; in the
equation (2.82), the vector —'7'J" corresponds to the vector 7 and 5’77’ is
constant with respect to the search direction p. Hence the LS-estimate for the

search direction p is

pre = —{(JTI LTy (2.94)

—1
(oo A () e A (T ) )
= (J(0)T J(s) + NI} J(60)Tr(65) | (2.96)

which is the Levenberg-Marquardt direction. The eigenvalues of the square ma-
trix J{(6g)T J(6y) are non-negative (matrix is positive semidefinite). Therefore the
eigenvalues of the matrix J{8)7 J(8;) + M are positive for all A > 0 {matrix is
positive definite) which guarantees that the unique prs {minimum) exists also
when J(fg) is rank deficient. When the search direction is chosen again in every

iteration step and the model A{8) is linearized again in (/9\;,; the iterative algorithm

L J(0,)Tr(0) (2.97)

(/9\;€+1 = (/9\;.; + (J(QQ)TJ(QQ) + Ag[)i
is obtained. This is called the Levenberg-Marquardt method. As can be seen, if
Az — 0O the direction is the same as the Gauss-Newton direction. Whereas if
A, — o0, J(63)T J () will become negligible and the direction becomes parallel
with the steepest-descent direction. Therefore, in order to ensure descent a “good”
value of A, {or ¢) must be chosen in the trust region methods. Typically the scalar
¢ is found by solving the search direction for trial values of ¢. The new iteration
direction prg is chosen such that the minimization subproblem gets smaller value
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than in the previous iteration step. Convergenece of the trust region methods can
be slow for the large residual problems or very nonlinear problems. Many versions
of the Levenberg-Marquardt method have been coded using various strategies to
choose Ay [45].

2.3.3 Tikhonov regularization

One of the most sueeessful methods for solving ill-conditioned LS-problems is
Tikhonov regularization [31]. In this method the solution space is restricted by
imposing an a priori bound ||7 {6 — 6*)||» where 6* is initial {prior) guess for the
solution and 7 is identity matrix.

LINEAR CASE

In linear case the constrained minimization problem is formulated as
n { Sl Hol (298)
min < —||z — .
gckn | 2 i 2
subject to | I(6—0%)2<c,

for some sealar c¢. As seen earlier, the problem (2.98) can also be formulated as

1 .
min = {\H 0 = 2[5+ A*|1(0 - 0)[13} - (2.99)

The parameter A > 0 is called the regularization parameter and it controls the
weight given to the side constraint || 7 (6 — 6*)||2.
The minimized functional in {2.99) can also be written in the form [52]

o) = %H( Y )9_( Az*)

1
= 5||H’<9—z’||2 (2.101)

2
(2.100)

where

H = ( )i: ) and 2’ = ( }\;* ) , N{(H"Y =N(HTH) = {0} for allA>0.

Now the LS estimate for the parameter ¢ is

Ors = (HTH)Y1HT: (2.102)
—1

- ((HT AT) ( f{ )) (HT A1) ( )\‘;* ) (2.103)

= (HTH4+ 1) YH 24 2% . (2.104)

@Lg is a regularized solution, called the Tikhonov -approzimation, of the ill-posed
problem

1 ) _
min (== HoI3) . (2.105)
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As can be seen if A is very small the problem is close to ill-posed problem and the
Tikhonov -approximation will be unstable. If A — oo then 15 — §*. Quite often
the prior guess is chosen to be zero and in this ease ;s — 0 when A — .

NONLINEAR CASE

Many inverse problems are both ill-posed and nonlinear. Typically the lineariza-
tion is used together with the regulation for solving nonlinear ill-posed problems.
In nonlinear case the minimized funetional is of form

1 .
min = {llz = RO} + N1 (0 - )3} - (2.106)

The linearization can be done in two different ways. In Gauss’ method the nonlin-
ear model A(#) is linearized as in the equation {2.49) and the minimized funetional
can be written as

(o) :%{II(Z’—J@II%+>\Qllf(9—9*)llg} (2.107)

where z/ = z — h(f) + JOo and J = J(6). The funetional {2.107) can also be

written as
1 J 2
ro = 5|31 ) o= (o ),

1
= 5||J’<9—z”||§ (2.109)

r J "o 2!
J()\I) and z (A&*)'

Now the LS-estimate of ¢ is

2
(2.108)

where

s = (JTJ)Y o7 (2.110)
= (JTTNITY A% (2.111)
= (JTT N IT(z = hi6e) + J00) + A20%) (2.112)
= (JTTH N IT s — JTh(Be) + JT 0 + A0 (2.113)
If the term A?6q is added and subtracted in equation (2.113) then
O = (JTTEND ™ (T2 = ITh(B0) + JT T00+ A20"+ X200— 226,)(2.114)
= (JTIEXNDTHIT (2 = h(00)) + (JTT + A 10— A*(0g— 6%))(2.115)
= Gt (JTT XD (JT (2 — b)) — A6 — 0)) . (2.116)

In the iterative form, the equation (2.116) can be written as

Oryr = 0k + o (15T + AQ})% (LT (2 = h(By)) = A28, — 67)) (2.117)
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where J, = J(f). If the assumption * = é\g is made the Levenberg-Marquardt
method {2.97) is obtained. This implies that Levenberg-Marquardt algorithm
minimizes only the functional ||z — A(8)||2 (ill-posed).

Another approach is to use Newton method (2.20). Aeccordingly the gradient
and Hessian of the minimized funetional {2.106) is needed. The gradient of the
minimized funetional (2.106) in 6§, is

VF(f) — %% {(z=h(0))T(z = h(0)) + \2(0 — 01T (6 — 0%)} (60) (2.118)
- 5 {2(g-nom) - o
+2X2 %(9—9*)3”) (9—9*)} (2.119)
- _ (%(90))T (2 — h{Bo)) + N*{6 — 67) (2.120)
and the second derivative is
V2R () = — i(zj — hy(60))G;(60) +<%(90))T (%(90)) FAT, (2.121)

Where G is Hessian on A;. Now the Newton-Raphson method takes the form

-1

(/9\&4,1 = (/9\;.; + g JgTJg — Z(Zj — kj(gg))ej(gg) + )\2[
=1
(T (2 = h(B)) — N{B, — 07)) . (2.122)

When the approximation (see Section 2.2.1)
” ~ Phy ~
> (2 = hy(Bk) (W;W) ~0 (2.123)
G=1
is used the iteration can be written in the form
Ot = O + o (ST T + XD (T (2= h(0,)) — A2(0, — 0%)) . (2.124)

as in equation (2.117).

2.3.4 Generalized Tikhonov regularization

If there is some prior information of the parameters ¢ or the errors v this informa-
tion is worth to be utilized in order to get more accurate solution. Let us consider
the non-linear functional to be minimized in the generalized form

F(9) = % {IL1z = RODIP + X[ La(0 — )%} (2.125)
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Denote the matrices Wy and Ws, such that W, = LF{LI and that Wy = Lng.
Here the matrix Wi is called the weighting matrix. For the Newton-Raphson
method the first and the second derivatives are needed. The gradient is

VF{6) = % % (2 — MO Wiz — h(8)) + N6 — )T Wa(6 — 67) } (60)
= % % {TW, 2 — 2TWh(68) — (h(6))T Wiz + (B(O)T Wi h(6)} (60)
+ % % {2 (FTWob — 6T Wob* — 0*TWab + 0T Wab*) } (60)
— —<%(9 ))TW( — h{#b AWy (b — 6 2.126
— 55 (00 1{z o)) + 2 {th ) (2.126)
and the second derivative is
M
VAF(6s) = - Z(Ll(j, D)z = h(b0)) L1 Gy{bo)
T
+ (%(90)) Wi (%(90)) + AW, (2.127)

where Li(4,:) denotes the §*' row of the matrix L;. Now the Newton-Raphson
method in the generalized form can be written as

-1

M
Opv1 = O top | T Wiy + Z(Ll(j, Nz = h(0e))L1G;(0;) + N2W,
§=1
{JTWi(z = h(Bk)) — N Wa (B, — 67)) . (2.128)

When the approximation VQF(@;) =~ J&TW1 Ji + A2W, is used the iteration can
be written in the form

n N —1
Our1 = O +ap (JeTWid, + X2Wa)
(JTWiz = b)) — N2 Wa (B — 0%)) . (2.129)

The algorithm (2.129) is called Gauss-Newton algorithm in the generalized form.
Typically the weighting matrix W, is chosen to be an identity matrix 7. The
statistical interpretation (see next section) of this choice is that all the components
of the observation noise vector have equal variances and the noise components are
mutually uncorrelated. If the noise components have unequal variances it can be
take into account by setting W; = diag(afz, .. ,01\712) where o, is the error in
2'th observation. Hence the observations with smaller error have bigger weight to
the solution. Furthermore, the correlations between the noise components can be
taken into account by using nondiagonal weighting matrix.

The matrix Ly is called the regularization matriz. It is typically either identity
matrix or if it is known that the solution is smooth, Lo is taken to be a dis-
crete approximation to some derivative operator. When the regularization matrix
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is chosen to be a difference matrix the prior bound ||Ly(6 — 6*)||3 ensures that
two consecutive parameters are not too far from each other. The regularization
parameter A governs the balance between a small residual and a smooth solution.

STATISTICAL INTERPRETATION

In the former it was assumed that the parameters and errors are non-random and
therefore these methods are called deterministic methods. If the parameters and
the observation noise are treated as random variables the observation model, the
prior assumptions, and the estimates can be written in the form of probability
distributions. Methods with type of approach are called as probabilistic methods.
Let us consider the observation model z = A(#) + v, where § and v are random pa-
rameters and the problem is to estimate the parameters 6. Because the model A(8)
and v are independent so the conditional probability density of the measurements
z given # can be written as

plz]0) = p(h(8) + v|0) = p(h(0)10) p(v]6) = p(v]6) . (2.130)

pd]z) = : (2.131)

p(2|0) = : (2.132)

pl0lz) p(z) = p(2|0) p(0) (2.133)
and further
o1y 2190 o150
p(z)

Thus p(8]z) is proportional to p(z]9) p(#), that is,

pl0]z) o< p(2[0) p(0) . (2.135)

The conditional density p(6]z) is called the posterior density because it gives the
probabilities for #’s after the measurements, in contrast to p(8), the prior density
which gives the probabilities for &#’s before the measurements. The conditional
density p(z|0) is called the density.

Let us assume that the noise is Gaussian with expectation £{v)=0 and co-
variance matrix C,, and the parameters # are also Gaussian with expectation
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E(8) = ns and covariance matrix Cp.

—

p(=16) = p(o]) o exp{__«@_qu1@_3@))} (2.136)

\o}

= exp {—%((z —heNTC 2~ h(@))} (2.137)
and .
9(6) —oxexp { =5 (0 = 1) C; 0 - o) | (2138)

where Cy is the covariance matrix of parameters # (correspondingly for »). Co-
variance matrix is defined as

Cy = E{0—m)(0—m)"}
= E{007 —0n) —no6" +memi }
= E{06"}—E{0}nf —ne BE{0}" + nen]
= E{00"} —nomy

The covariance matrix is thus of the form

2.139
2.140
2.141

(
(
(
(2.142

)
)
)
)

E{g%} —9?31 s E{010.) — neim0,,
Cy - : : (2.143)
E{0.9:} —ne,m0, - E{62} —nj,
ggl - 0,6,
_ S (2.144)
T8, - gg

n

where ng is a variance of the parameter #; and o, o, Is a covariance of parameters

Uy and @;. If parameters §; and 0; are uncorrelated 04,4, = 0. The conditional
density of & given z now becomes

p(0]2) o exp {=§{(z = B(O)TCy (= — h(9)) Jexp {—5((0 — 76)TCy (0 — ) }
=exp{—5 [(z = MO)TCT =z = M) + (6 — 1) TCy 1 (0 —mp) ]} (2.145)

The morimum a posterior; estimate (MAP) is the vector § that maximizes the
posterior density (2.145). This is obtained by minimizing the functional
1 _ _

F(O) = 5 [z = BO)TCT &= h(0) + (0 —ne)TC (0 —me)] . (2146)
This is identical to the functional {2.125) in generalized Tikhonov regularization
with choices W; = C; ! and A*Wy = Cy L. As a consequence, increasing the
parameter A in Tikhonov regularization corresponds to decreasing Cy, and the
variances ng which, loosely speaking, describe the uncertainty of the prior. Thus,
increasing the regularization parameter A can be interpreted as strengthening the

prior.
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2.4 Conjugate-gradient methods

The conjugate gradient method is an iterative method for solving a linear system
of equations
Axr =14, (2.147)

where A is n x n symmetric and positive definite matrix [75]. As can be seen the
solution of the problem (2.147) z = A~'b (n x 1 vector) is equal to the solution of
the minimization problem

1
Plz) = §xTAx — 572 + constant {2.148)

whose minimum is at the stationary point.

% = Vg(z) = Az —b =0 (2.149)

from which = ean be solved. The gradient of ¢{z) equals the residual »(z) of the
linear system
V(z) = Az — b= r(z) {2.150)

2.4.1 Conjugate direction method

Let us interpret the conjugate direction method as a technique for minimization
of convex quadratic function {2.148). Because the iteration is given in the form

Th41 = T + O pi (2101)

the minimized function at {k + 1)’th iteration step is of form

1
Hlxpp1) = 5(:8;; + appr) T Alxs + appr) — b7 (21 + cupr) (2.152)

1 1
= 537;{1437;{ + agngpg + §a§p§Apg — b 2y — oy (2.153)

Now the problem is to find oy and p; such that the quadratic function (2.153) will
be minimized. Let us differentiate the function ¢(z, 1) with respect to oy

Op(ay)

Dor (Azp — 0) pe + cupl Aps (2.154)

= (@) pe + cupl Apr (2.155)

where r(x;) = Axy — b. The one-dimensional minimizer of the quadratic function
¢(-) along z; + apps can therefore be given explicitly in the form

T?Jm
plApe

(2.156)

X — —
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A set of nonzero vectors {pg, p1, P2, ..., Pn—1} 18 sald to be conjugate with respect
to the symmetric positive definite matrix A if

i Ap; =0, Vi#j. (2.157)

Set, of conjugate veetors is also linearly independent. When one of the conjugate
directions {po, p1, P2, ..., Pn} 18 chosen to be the search direction in each iteration
step, ¢(-) can be minimized in at most n steps [75]. This can be proved by writing
n’th iteration with the aid of previous iteration steps as

T = g+ oopo {2.158)
Zo = xy T oapr =g+ ogPo t+ P (2.159)
Ty = Ep T Op1Ppo1 = To 0P TP o o 1Pa1 (2.160)

Let us multiply equation (2.160) by pf A (0 <k <n—1)

pi Az = py Azo + oo pf Apo + -+ okph App + 01 Py Apnoy . (2.161)
N — N —
=0 =0

Now the step parameter o can be solved from the equation {2.161)

10514(370 - xn)

o = — (2.162)
i Api
If £'th iterate is multiplied by pl A:
i Az = pi Azo + a1 pL Ap -+ a1 pi Api-i, (2.163)
N—— N——
-0 =0

it can be observed that p! Az = pl Azg. As can be seen if the search directions
are chosen to be the conjugate directions the step parameter in (2.162) will be
the same as the step parameter {2.156) which is exactly the one-dimensional min-
imizer of the quadratic function ¢(-). When the search directions are chosen to
be conjugate directions the method composed of equations {2.151) and (2.156) is
called as Conjugate direction method.

From the equation {2.160) it can be seen that the solution of the minimization
problem (2.148) can also be formulated as

x* = xg +span{po,p1,  ,Pu_1} {2.164)

where span{po,p1, - ,pn—1} denotes the set of all linear combinations of
Po,P1, " ,Pn_1. If the matrix A is diagonal the conjugacy condition (2.157)
can be obtained by choosing the search directions basis vectors of natural base
{{eo,e1,...,e5-1}). In other words after & iterations, the quadratic function has
been minimized on the subspace spanned by {eg,e1,...,e,_1}. Since the natural
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basis vectors are orthonormal one of the components of the solution #* is correctly
determined in each iteration step whereas with conjugacy bases {pg, p1, ..., o }, all
of the eomponents are updated in each iteration steps.
If the matrix A is not diagonal it can be transformed to diagonal by defining
a new variable
=51z

, (2.165)

where S is n X n matrix defined by

S = [pO)pl)“')pnfl} P (2166)

where {pg, p1,..., Pn—1} 1s the set of conjugate directions with respect to A. Now
the quadratic equation (2.148) is of form

H(E) = %%T(STAS)i —(STH)T% . (2.167)

By the conjugacy condition (2.157) the matrix ST AS is diagonal and therefore the
minimum of $ can be found by using the natural basis. Because of the relation
{2.165) each direction e, in Z-space corresponds to the direction p; in z-space.
Hence the conjugate direction method applied to $ with direction e, is equivalent
to the eonjugate direction method applied to ¢ with direction py.

One important result which will be utilized when conjugate gradient method
is considered is that the residual r{z;) =: 7; (gradient of the quadratic function)
is orthogonal to all the previous search directions

rapip; = (Azgpr —b)Tp;, j<k+1 (2.168)
= (Alxy +oypy +ogpipit +oo +osm) — b p (2.169)
= (Az; = b)Tp; +oy(Ap)Tps + ay(Apye )Ty +--- (2.170)
+ olApe) p; (2.171)
= rTp; v ol Aps + oy pl Apy oo Fopl Apy  (2172)
% =0
= 5P p;j;j P} Ap; (2.173)
~ 9 (2.174)

2.4.2 Conjugate gradient method

In previous section the conjugate direction methods were discussed. They were
based on any choice of the conjugate direction set {pg,p1,...,pn—1}. For large-
scale applications it is not practical to compute and/or store the complete set of
direction vectors. In conjugate gradient method a new direction vector p; can be
computed by using previous vector p,_; and therefore only one direction vector
need to be stored. New direction is also conjugate to the previous search vectors
[75].
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In conjugate gradient method the steepest descent direction is chosen to be the
first search direetion and the next ones are chosen to be a linear combination of
the steepest descent direction —V¢{z;) = —r; and the previous search direction
Pr—1

pp = —7p + ngg,1 . (2.175)

The sealar B is to be determined by the requirement that p;z_1 and p; must be
A conjugate such that By = 0. Formulation for 5, can be obtained by multiplying
equation (2.175) by pI | A

i1 Apr = i A(=7k + Brpi-1) (2.176)
N —
=0
and furthermore .
7y Apr 1
By = —A—2 (2.177)
?;{711439&71

Now the complete algorithm for solving the linear system by eonjugate gradient
method can be expressed as

Algorithm 1
Given zg

Set, ?”0:143}0—6,})0:—?”0, k=10
While 7, £ 0 (or 7, > ¢€)

—?"gm

oy = T Apr {2.178)
Tpt1 = T+ gD (2.179)
Tk41 == A$;€+1 —b (2180)

T§+1AP&
Bet1 = T Ape (2.181)
P+l = —Tat1 t+ Osi1Ps (2.182)
k= k+1 {2.183)

end

More economical form for the conjugate gradient method can be formulated by
using the equation (2.182) and the fact that the residual is orthogonal to previous
search directions. Let us multiply equation (2.182) by ?{H

rEpkrt = —ThaThi1 + Bert Thoipk (2.184)
=0
= =i (2.185)
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As can be seen from the equation (2.185) the step parameter «y can also be
formulated as
?f‘g?f‘g

piApy

(2.186)

Ny —

From the equation (2.180) it can be obtained that zz = A~ '(r; + b) and further
zpy1 = A Yrpy1 +b). When these are inserted into equation (2.179) iterative
form for the residual can be formulated as

Tet1 = 15 + opApg (2.187)
and furthermore
TEr1 — T = opApy (2.188)

From the result that the residual r; is orthogonal to all previous search directions
it can be obtained that r; is also orthogonal to all the previous residuals r; in
conjugate gradient method:

1P = Thy (=15 + Bpy—1) =0, J<k+1 (2.189)
thus
T = Biriyps 1 =0 (2.190)
N——
=0

Now 5 can be computed as

rT Aps
B = —SH— (2.191)
Pl Ap
?”T 7 — 7
_ &;1( k!l — TE) (2.192)
P (rag1 —72)
=0
T T
T 7 — 7 T
_ &;1 E+1 3;+1 & (2.193)
PeTer1 — PrpTk
N — N~
=0 :7?”5?”&
?”T 7
- R (2.194)
?”& Tk

and the algorithm takes the form
Algorithm 2

Given xg
Set, ?”0:143}0—6,100:—?”0, k=10
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While 7, # 0 (or 7, > ¢€)

oy = kTE (2.195)
P pl Ap, ’
Tpy1 = Tk T Oppi (2.196)
Te+1 — Ax}chl —-b (2197)

7€+17'3€+1
Bry1 = —m— (2.198)
T Tk
Prtt = —Tiapit+ Bryipe {2.189)
ko= k+1 (2.200)

end

Algorithm 2 is more economical than algorithm 1 because the matrix A is not
needed for the eomputation of 5.

Beeause the search directions are conjugates also the linear conjugate gradient
method converges to z* in at most n steps.

2.4.3 Nonlinear conjugate gradient method

When general nonlinear functions are considered only small modification to the
Algorithm 2 is needed [75, 26]. Let us consider the case when the functional to be
minimized is of form

#z) = 5l = A)IE (2201)

By using the linearization A{x) ~ A{xq) + J(z0)(x — z0) equation (2.201) can be
formulated such that it corresponds with the quadratic funetion (2.148) which is
minimized by linear conjugate gradient method as in section 2.3.2.

1

#z) = §II6’ — Jz|3 (2.202)
1 1

= §xTJTJx —(JT T + 56’76’ , (2.203)

where J = J(zg) and ¥ = b — A(zq) + J(zg)xg. Thus JTJ corresponds to A, J7¥
corresponds to b and %6’76’ is constant with respect to x. The step parameters oy
must be computed with an iterative process explained in the section 2.1.1 rather
than in closed form . There are different methods to choose the scalar 55 in order
to ensure that the search directions are close to the conjugate directions. In next
two section two commonly used methods are discussed.

THE FLETCHER-REEVES METHOD

Let us consider the case of minimizing a general functional #{z). In the Fletcher-
Reeves method the residual r(z), which equals the gradient of quadratic funetion
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$(x) in linear case, is replaced by gradient of the nonlinear function ¥(z)

FR _ VF(%H)TVF(%H)

= 2.204
R V() TV F(ay,) (2.204)
and the algorithm takes the form
Algorithm 3
Given xg
Evaluate VF(zq)
Set pg = —VF{xg), k=0
While VF(z;) # 0 (or VF(z;) > €)
Compute o
Tpy1 = Tk P (2.205)
Evaluate VE(zpq1)
VF(lg l)TVF(:{,g l)
FR + +
‘ = 2.206
ak VF{x) TV F () (2.206)
prit = —VF(zr) + B m (2.207)
k= k+1 (2.208)

end

If minimization problem was quadratic and «; was the exact minimizer this al-
gorithm would be equal to the linear conjugate gradient method. When inexact
minimizer Is used ¢y has to be chosen such that the search direction is a descent
direction.

POLAK-RIBIERE METHOD

In Polak-Ribiere method 35 is computed as

pr VF(x )T (VF(zp1) — VF(z))
B VF(z) TV F{zy) :

(2.209)

If oy is the exact minimizer, the equation {2.209) equals the equation (2.206) since
the gradients are mutually orthogonal.

As explained in the section 2.1.2, if the search direction p;y; is a descent
direction then VF{z; 1) piy1 < 0. Hence from (2.207)

VF(@pr1) pryr = =V E(@p1) T VEF (@) + B VF(ze) Toe <0 (2210)

If Bgﬁ is negative and p; is a descent direction the term Bgﬁ VF($;€+1)T});€ is
positive and may be larger than VF{(zy 1)V (zry1) = ||[VF{(zer1)]3 in which
case VF(&:&H)Tp;.;H > 0 and the direction pg41 is not a descent direction. In
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order to assure that a new direction is descent the condition that only positive
BE ﬁ are accepted a condition

BER — max{6R,0) 2211)

has to be included in Polak-Ribiére method. The condition (2.211) means that
when Bf fl is negative a new search direction is chosen to be the steepest descent
direction —VF(zz,q). If B;fﬁ is positive the new search direction will be a sum
of two descent directions and therefore descent as well.
When the angle between VF(z;,1) and VF(z) is less than n/2 then B;fﬁ <
5 fl which means that in Polak-Ribiere method the new search direction is closer
to steepest descent direction than in Fletcher-Reeves method. When the angle is
more than 7 /2 then Bfﬁ > Gk + IFR, which means that in Polak-Ribiere method
the new search direction is closer to previous search direetion than in Fletcher-
Reeves method.

COMPARISON BETWEEN FLETCHER-REEVES AND POLAK-RIBIERE METHODS

When search direction p; is very poor, which means that p; is almost orthogonal
to the steepest descent direction (VF(z;)Tpy ~ 0), it is obvious that the step
parameter will be very small. Furthermore, z;; will be approximately same as
x; and VF(zy,1) = VF{x;), and therefore

FR (2.212)

and
per1 = —VF(xy) +pi - (2.213)

Numerical experience indicates that Polak-Ribiere method is more robust and
efficient than Fletcher-Reeves method [75].

There are many other choices for 55 that coincide with Fletcher-Reeves formula
BEE in the case where the objective function is quadratic and the line search is
exact but these methods have not been found to be more efficient than Polak-
Ribiere method [75]. However, in every method choosing of step parameter oy has
a significant effect on convergence rate of nonlinear conjugate gradient method.

RESTARTING

In nonlinear conjugate gradient method quadratic assumptions have been used.
If minimized function is not quadratic the method may generate a poor search
direction. A typical requirement for good search direction is that pzy; should
be sufficiently downhill. There are numerous strategies for investigating if search
direction is good. A common strategy is based on observation that the gradients
are mutually orthogonal for the quadratic functions which means that

VF () TV F(ay)
cost = =0 2.214
VE G DIV E T @2214)
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where # is the angle between VF(z;,1) and VF(zy). If gradients are far from
orthogonal which means that
cosf >y {2.215)

{typical value for the parameter v is 0.1) a restart is performed, that is, a new
search direction is chosen to be the steepest deseent direction. Also other choices
for restarting can be made [75].



CHAPTER III

Forward problem in EIT

In EIT, weak alternating currents are injected into the object through the elec-
trodes which are attached on the boundary of the object. The resulting voltages
can be measured with the same electrodes. An estimate for the internal resistivity
distribution of the objeect is obtained by using these voltage measurements. In
order to estimate the resistivity distribution, that is, to solve the inverse problem
of BIT, the forward problem of EIT has to be solved. The forward problem of EI'T
is to compute the boundary voltages when the resistivity distribution and the in-
jected currents are known. Several different mathematical models for the forward
problem have been developed. The most accurate model is called the complete
electrode model. In this thesis the complete electrode model is used as the forward
model, and in order to approximate the solution of the associated mixed boundary
value problem the finite element method is used.

In this section the complete electrode model, and its variational form are dis-
cussed. Also the FEM discretization, the integration over the elements with map-
ping method and infinite elements in 3D EI'T are discussed.

3.1 The complete electrode model

The complete electrode model is the most accurate model for the EIT since it takes
into account the effects of the electrodes and the contact impedances between the
object and the electrodes [17, 91]. With the complete electrode model the measured
potentials can be predicted at the precision of the measurement system [91].
Electromagnetic field inside the object can be modelled by Maxwell equations

V-D = p, (3.1)
V-B = 0
oB

EFE = —— 3.3

V x By (3.3)
oD

H = J+—. 3.4

V x + By (3.4)

48
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where V x is the curl operator, V- is the divergence operator, % partial derivative
with respect to time, F electric field, H magnetic field, B magnetic induction, DD
electric displacement. The charge density has been denoted by p. and the current
density by J, J = J% + J° = source eurrent + ohmic current. Further, in linear
isotropic medium

D = ek (3.5)
B = uH (3.6)
J = ok, (3.7)

are also valid. Here € is permittivity and p permeability of the medium. The
conductivity o is the inverse of the resistivity p.

In EIT, the so-called quasi-static approximation is usually made. That is,
although the alternating currents are used, the time-dependence is neglected. The
quasi-static approximation is adequate in the cases in which the frequenecies of the
alternating currents are small enough, see for example [100].

With the quasi-static approximation the time derivatives in equations (3.3)
and (3.4) are zero. Further, the current source J* is assumed to be zero inside the
object. Because V x E = 0 there is an electric potential « such that

E=—-Vu. (3.8)

Since
V- J=V-(VxH)=0,

from the equation (3.7)
V. oE=0, (3.9)

and thus, by using equation {3.8)
V-eVu=140. (3.10)

The equation (3.10) is the model corresponding to the interior of the object. In
the following section the boundary conditions are derived.

3.1.1 Boundary conditions

The current source J® on the boundary of the object 892 is not zero in EIT. On
the boundary the equation (3.9) gets the form

V.-oE=V-J°. (3.11)

Consider a situation shown in Fig. 3.1. A small volume element is placed on the

surface of an object so that the top and the bottom of the domain are parallel with
the boundary [101]. Assume that the current density J*® injected into the object
is a continuous function. Integrating the equation (3.11) over the volume 7

/V~UE dT:/V~JS dr (3.12)
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Figure 3.1: Derivation of the Neumann boundary condition. The electric field
is zero outside the object and thus £ = E5. Further, the source current density
J* inside the object is zero, and thus J* = Jg1 [101].

and by using the Gauss theorem the form

/0E~ndS:—/Js~ndS (3.13)
Js /s

is obtained. Here S'is the boundary of 7 and n is the outward unit normal. When
the volume 7 — 0 the top and the bottom of the cylinder coincide. Since J° =0
inside the object and on the other hand ¥ = 0 outside the object, the equation
{3.13) gets the form

—0E - nlipgide = =77 Ploutside » (3.14)
Furthermore, by using equation (3.8), the boundary condition (Neumann)
H
o =g (3.15)
on

is obtained, where 5 is the negative normal component of the injected current
density J*°. The equation {3.10) together with the equation (3.15) is called the
continuum model

In the real case, however, the current density 7 under the electrodes is not
known. However, the total current 7, = fel 7 dS is known. For this reason the
Neumann condition (3.15) is rewritten in the form

/ a@ dsS=1,, ¢=12..L (3.16)
Jey on

where e, is the surface of the £th electrode, [, is injected current into the £'th
electrode and 92 the boundary of the object. Furthermore, on the boundary
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between the electrodes the current density 7 = 0, and thus

O
o— =
on

L
0, zed\|Je (3.17)
=1

Moreover, the shunting effeet on the electrodes can be taken into account by
considering the following condition

u=Uy, £=1,2,...,.L x€e (3.18)

where Uy is the voltage on the #'th electrode. The equation (3.10) together with
the equations {3.16)-(3.18) is called the shunt model.

If both the shunting effect of the electrodes and the eontact impedance between
the electrodes and tissue are taken into account the complete electrode model is
obtained. In that case the equation (3.18) is replaced by equation

o
wt ot — U, =12, L zce, (3.19)
on

where z, is the effective contact impedance between the £'th electrode and object.
Thus, the complete electrode model consists of the following equations

V-(oVu) = 0, z €8 {(3.20)
8
wt ol — U, zcen =121 (3.21)
On
8
/ o Zas = I, zcen =12, L (3.22)
Jey on
Ou L
om0 = 0, xG@Q\geg (3.23)

In addition, the charge conservation law

i
S5 =0 (3.24)

=1

must be fulfilled. Furthermore, in order to find a unique solution for the forward
problem, the reference point for the potential has to be fixed. This can be done
for example by setting

i
d U =0. (3.25)
=1

The existence and uniqueness of the solution for the complete electrode model has
been proven in [91].
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3.2 Finite element method in EIT

Finite element method (FEM) is traditionally used to solve problems in structure
analysis. However, it can be used to solve numerically most of the problems which
can be described as differential equations, partial differential equations, integral
equations or variational equations in general. As the name, finite element method,
indicates that the region of interest is divided into a finite number of regions
or elements. The elements can be segments of the line in one dimension (1D),
triangles or quadrilaterals in two dimensions (2D), and tetrahedron, hexahedron
or wedges in three dimensions (3D). An element is composed of nodes and one or
more faces of the element.

Before using numerical methods, such as FEM, one should be guaranteed that
a unique solution exists, that is, the problem has to be mathematically sound
[28]. Advantages of FEM are that dimension, time dependence or nonlinearity
do not necessarily limit the method. The physical qualities such as density or
resistivity ean vary inside the object. They can also depend on the solution of
another mathematical model. Also the convergence analysis of FEM is rigorous
[12] and different boundary conditions {Dirichlet, Neumann, Newton) can be used.

In comparison with other methods, for example finite difference method, the
biggest advantage of FEM is that complicated geometries ean be used. Further-
more, the unknown functions can be approximated inside each element by linear or
higher order polynomials. In finite difference method, the unknown functions are
approximated only in the nodes, so a denser mesh is needed in order to obtain the
same accuracy as in FEM. In addition, the implementation of complex boundary
conditions may be difficult when using finite difference methods.

In order to use FEM for the numerical solution of differential equations, partial
differential equations or integral equations one first needs to write down the so-
called variational form {weak form) for the equation. The variational form is an
alternative way to formulate the original equation and the associated boundary
conditions. For the variational equation the residual of the original differential
equation (or partial differential equation or integral equation) is formed. The
residual is multiplied by a test function v(x) and integrated over the domain 2.
Test functions v belong to some Sobolev space (in EIT v(z) € H'()). In FEM,
the next step is to find a finite dimensional approximation for the solution of the
variational problem. The solution w(z) of the partial differential equation is thus
approximated by the finite sum

K
ulz) ~ Y i) (3.26)
i=1

where p;(z),% = 1, ..., K are the basis functions which form the basis of the discrete
solution space, and K is the number of the nodes. In Galerkin FEM approzimation
the test functions v are also chosen to be the basis functions ¢;. When the approx-
imation (3.26) is inserted into the variational problem, a system of linear equations
is obtained which can be written in the matrix form. This will be discussed later
when finite element method in EIT is considered.
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Depending on the partial differential equations and their boundary conditions
the basis functions can be chosen to be whatever linearly independent funetions
from the discrete solution space. However, the basis functions in FEM are usually
chosen such that the requirements between the basis funetions ¢; and the nodes
€2

1

oy 3L i=j
pilzs) { 0, otherwise (3.27)

are fulfilled. In that case the system of equations is faster to solve sinee most of
the integrals in the variational form will be zero. Note also that with this choice
the parameters w«; in equation (3.26) are the values of the solution in 4’th node.
With certain partial differential equations (2nd order) the basis functions can be
chosen to be piecewise linear or piecewise higher order polynomials.

3.2.1 Variational form for the complete electrode model

For the FEM solution of the complete eleetrode model the variational equation is
needed. In this section the variational form for the complete electrode model is
derived formally. For more rigorous proof for the variational formulation, see for
example [91] or [103].

Let us consider the complete electrode model as a group of connected par-
tial differential equations. The objeet which is studied separates into two parts,
boundary of the domain 9§ and domain §2. Let us denote that test functions
v € HY(§) (for the potential ») and V € R¥ (V = (V,..., V) (for the volt-
ages Uy on the electrodes) such that the condition Zé’zl V, = 0 is fulfilled and
let H = H(Q) x RY. By multiplying equation (3.20) by test functions v and by
integrating over the domain §2

/ oV - (oVu)de =10 (3.28)
/9
is obtained. From Green’s formula (if 92 is smooth enough)
o
/ oV - (oVu)dz = / ey ds - / oVu- -Vudz =10, (3.29)
I aa On I

is obtained for all w,v € H'(Q) when V - (oVu) € L%(§2). Here L?(Q) is a set
of Lebesque square integrable functions. The boundary of the domain can be
separated into two parts, domain under the electrodes e, and domain between the
electrodes 90\ Ué’:l es, and thus from ({3.29) it can be written that

/ vdS +Z/ U—Q]dS /0Vu~V21d:€:O. (3.30)
JOONUE | e Q

=0

The first integral is because of the equation (3.23). Furthermore, the equation
{3.21) implies

Ou w—Up
T ol {(3.31)
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where the contaet impedance z, is constant under the electrode. Now the equation
{3.30) can be written in the form

L
Zi/(u—Ug)vdSJr/aVu-Vvdx:O. (3.32)
=1 e Q

Next, let us multiply the equation (3.21) by the test function V; and integrate
the produet over the electrode ey.

o

/(u+zm—“md5:/ U, VedS, =12 . L, (3.33)

ep on ep

which is equivalent with the equation (V} is constant under the electrode)
o

/(u—Ug)ngSJrng/ cas—0 . =12 IL. (3.34)

o er on

=1,

The second integral in the equation (3.34) is equal with the injected eurrent 7,

according to the equation (3.22). Let us divide the equation (3.34) by z,
1
—J (u—=U)VedS+ Vel =0, (£=1,2,..,L, {3.35)

zZy eo

which is equivalent with the equation

L L
1

§:—/(u_Ug)vgdS+§jvgzg:o. (3.36)

=1 e —1

Combining the equations {3.32) and {3.36)
Zé’zl z17 fe[(u — UpvdS + [, 0Vu-Vodz
= it % L, (0= UnVedS + S0 Vil (3.37)

which is equal with the equation

i i
Zl/(u—Ug)(y—vg)dS+/avu-wdx:Zngg. (3.38)
7—1 2y, ep J5

=1

The left hand side in the equation {3.38)

i
8((u,U),(y,V)):/aVu~V21d:€+Zz%/(u—Ug)(v—Vg)dS (3.39)
e=1 7t e

782

is so called bilinear form B : H x H — R. Hence the variational equation for the
complete electrode model is of form

L
B{(w,U),(v,V)) =Y LVy, Yo,V)eH. (3.40)
=1
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3.2.2 FEM approximation of the complete electrode model

The finite element method is used to turn the variational (infinite dimensional)
equation given above into a finite dimensional formulation. First, the domain
1 is diseretized into small elements (tetrahedron in our case). Next, the finite
dimensional approximations are written for the unknown functions. The potential
distribution within the object is approximated with the finite sum

N
uh(z) = Z o i) (3.41)

and the potentials on the electrodes as
L—1
Ut =" pimy, (3.42)
=1

where the functions ¢; form a basis for the finite dimensional subspace H” of H'(Q)
and the basis functions n; are chosen, for example, so that ny = (1,-1,0, ..., 0T,
ng = (1,0,—1,0,...,007 € RY*! ete. This choice for n; ensures that the con-
dition {3.25) is fulfilled. In (3.41) A is the number of nodes in the finite
element mesh and the coeflicients o; and B; are to be determined. Insert-
ing these two approximative functions into the variational equation (3.40) and
by choosing v = ¢; and V = n,;, when the set of test functions is of form
Q=1[{$1,0),...,(¢n,0),(0,7m1),...,(0,n_1)], results in a system of linear equa-
tions which can be written in the matrix form as [12]

A0 = f (3.43)

where ¢ = (o, )7, if @ = (01, 09,...,ax5) and B = (B, P2,...,Br_1). Thus the
approximation for the potentials u* and U" are obtained by solving (3.43)

6=A1f. (3.44)

In equation (3.43) f = (0,?)7, where 0 € RN and T = (L =Dy b =1, 1 —
1p). The matrix A is of the form

A(C% g) (3.45)
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where
Lo
B@ﬁ::ammwwm:LWQV%@@w+ZZ/@%w,
=1 €t
ij=1,2 N (3.46)
1 1
Cli,j) = 8<<¢>2~,0>,<0,nj)>—(—/ $idS — — qbédS) ,
21 €1 i+l €41
i=1,2,. N, j=12 .. L-1 (3.47)

Loy
mm>:8wmmww:25/mwww
=1 et

z ) J o
- { m+|e3+i|’ 2:3 2)371)"')}—:_1 (348)
21 2541
where |e;] is the measure (area) of the electrode j. The potentials U} (£ =1,--- | L,

L is the number of the electrodes) on the electrodes can be written according
equation (3.42) as

-1
£3 £3 £3 £3 ’QT
Ut = [of Uy Uy - UL =D Bing,
=1
B B2 B3 Br—1
-3 0 0 0
0 _B, 0 0
= S T S I e I 0
0 0 0 .
0 0 0 ’
0
: —Br—1
Zégllﬁz
-5
—[
_ — 6 (3.49)
— 4
—Br—1

This can be written in the matrix form

Uk =gt (3.50)
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where C € RE*(E~1) is a sparse matrix such that

1 1 1 1
-1 0 0 0
0 -1 0 0
€= 0 0 -1 0 (3.51)
0 0 0 0 -1
and B = (B, P2, -+ ,Br_1). Let us return to the solution (3.44) giving approxima-

tions for both the internal potential distribution and the electrode potentials. In
equation (3.44) the relation between injected currents and the electrode potentials
is thus of the form

Ut =¢p” = CR(p)T = CR(p)CTT = R(p)I , (3.52)

where R{p) € RU-DX(=D) g5 5 block of the inverse matrix A~', R{p) =
CR(p)CT e RY>*F and T = (11, 1y,--- ,11)7 € R” is the vector of injected cur-
rents. The veetor 7 is in the sequel called the current pattern. Equation {3.52)
implies that the dependence between the eleetrode potentials and the currents is
linear. The matrix R{p) is called the resistivity matrix.

If there are more than one current pattern «, 5 and 7 can be written in matrix
form

af  of of gL B B
oy od ok B3 53 e BE
o = . r 6: - . - il
Lo 1 !
AN On N Br—1 Bi—1 - By

[11 [12 If;

o oz o It

g = =1 . . ,
g N
[}J [% [}f

where £ is the number of the current patterns. For example, if the adjacent current
pattern is used the matrix of the current patterns 7 € R¥*£ is

_ = OO
OO O

1 0
-1 1
0 -1
I=al o o

o
o
—
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where ¢ is the amplitude of the injeeted currents. When £ current patterns are
used U” takes the form

U% Ulz Uli

giopg2 ...y

gh—| % F 1 (3.54)
D . UE
Ué U?J Uéi

where j'th (j = 1,..., £) column inecludes the potentials on the electrodes corre-
sponding to ’th current pattern.

For the static reconstruetion voltages U that would ecorrespond the actual mea-
surements are needed. Denote the matrix of measurement patterns by M, anal-
ogously to the matrix of current patterns 7. The matrix M indicates between
which eleetrodes the voltages are measured. For example in the case of adjacent
voltage measurements M is equal to matrix 7 in (3.53), with ¢ = 1. Thus, the
voltages U are obtained by multiplying U” by the transpose of the matrix of the
measurement patterns M

U=MU"=MTcpT, M e REXE (3.55)

An alternative formulation for the solution of the complete eleetrode model
with the finite element method can be found in [79].
In EIT, the matrix A is a sparse symmetric positive definite matrix, so the
Cholesky factorization
A=R'R, (3.56)

where R is a general upper-triangular matrix, can be done. Matrix R is called
the Cholesky factor of A. Using permutation, in which the rows and/or columns
are interchanged, the matrix which have a sparser Cholesky factor than A can
be obtained. The sparser the matrix is the faster the set of equation (3.43) is to
solve. For the EIT forward problem the existing Matlab [36] routines can be used.
Furthermore, the matrix A is positive-definite symmetric matrix which means that
# can solved using conjugate gradient method (see section 2.4.2).

In the equations {3.46-3.48) integrals over the discretized elements (tetrahe-
dron) and over the electrodes (unions of triangles) e, have to be computed. The
conductivity o is assumed to be constant in each element. These constants are
the parameters that are to be estimated in the KEIT problem. In the following
two sections computation of these integrals using linear and second order basis
functions are discussed. More details have been shown in [103].

3.2.3 Integration with linear basis functions

The heart of the integration over the tetrahedron is a mapping which relates the
actual element (global element) to an element of more regular shape and with axes
in a more convenient position. This element is called the local {or the master)
element. A schematic picture of the mapping in the linear case between the local
and the global elements is shown in Fig. 3.2 [12, 35, 34].
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3,¥2 22

gy 2

Figure 3.2: The mapping F between a global element 1 and a local element

£y in three dimensions.

Using this kind of mapping the following transformation

/ o(z,9,2) = / (g0 F)(E,7,7)] 75| (3.57)
B FOI

can be exploited to compute the integrals over the tetrahedron. In equation {3.57)
{go F) = g(F(£,n,v)) is the composite function of F and g, |Jr| is the absolute
value of the determinant of the Jacobian Jg and F'is an element-specific mapping
of the form

4
F(&my) =Y @il ), v, 2) (3.58)
=1

when the first order basis functions ¢;(€,n,v) are used. In equation (3.58)
{x;,9:,2;) are the nodes of the global element, and the functions ¢;(¢,n,v) are
the basis functions in the local element £y. These local basis functions are formed
so that the ith basis function takes the value 1 in ith node and zero at each of the
others and outside the element Fy as explained in Section 3.2. The linear basis
funetions are of form

ei€my) = 1-€-—n—9 (3.59)
w2(&my) = € (3.60)
w3l&my) = 7 (3.61)
wilmy) = - (3.62)

With these transformations all the integrals over the global elements can be calcu-
lated as integrals over the local element. In the equation (3.46) the integral over
the tetrahedron can be written with the formula (3.57) in the form

/ UV(,D;e) . thge) dx dy dz
JE,

. [3 (Ve Vel o F)|Jp| de di dy
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p /E (Vo) o F) - (Vo o F)) |Jp|dé dn dy | (3.63)

where goge) denotes the basis function of the global element. The gradients of the
basis functions that are needed in the integrations can be computed with the aid
of the chain rule of differentiation. For saving the computational time the integral
{3.63) can be written in the matrix form so that the gradients of all basis functions
corresponding to each element can be computed at the same time. For all basis
funetions the integral takes the form

O’/E {({VNgo F'Y - (VN.o F)) |Jp|d€dndy . (3.64)

where
No=] o o o of |, (3.65)

In [103] it has been shown the the integral (3.64) can also be written in form

o /E (Y L) (D) L) | T dE diydy (3.66)

where
o1 Bps  Ops  Ops
9€ ¢ ¢ ¢
_ o1 ez Ops  Ops
L= I I I I ’ (367)
9p1  Bp2 oz gy
3y 3y 3y 3y

where ¢; = ¢;(€,17,7). When linear basis function are used the matrices Jr and L
do not depend on local coordinates (€, 5,v). The integral of the equation (3.66) can
be difficult to compute when the higher order basis functions are used. Therefore,
a numerical integration scheme (Gaussian quadrature) is utilized and the integral
is approximated with the finite sum [35]

[ aten) de dndy = 3 Waglém) (3.68)

g
Eo i=1

The weighting coefficients W; and the integration points &;, %; and «; are shown
in the Table 3.1 [19].

In equations {3.46-3.47) the surface integrals over the electrodes e, is needed.
The mesh is constructed so that the electrodes correspond to (a union of) some
element faces and therefore the surface integrals are over some faces of the tetra-
hedron. In the integration over the face of the element the transformation

/ o(z,y,7) = / (g0 FYE 0 F x 0,F|lde dy (3.69)
J K1 4 Kg

where J; refers to differentiation with respect to &, J, to differentiation with
respect to 57 and || - || denotes the used norm. The basis functions and the mapping
Fin {3.69) can be constructed from (3.58) by setting v = 0.
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Table 3.1: The weighting coefficients W; of the numerical integration scheme
{3.68) and the integration points &;, %; and 4;, & = 0.58541020 and 3=0.13819660,

n denotes the number of integration points.

i & | v | W
EEENEN RN
n=4 | 1|8 | 8| P i

2|l o | BB i

3|18 || p i

4188 5

Cq.9323)

3,¥2 22

409424
gy 2

Figure 3.3: The mapping ¥ between a global element K1 and a local element

K¢ in three dimensions.

The latter integral of the equation (3.46) can be computed as

/ ¢ ds = /K (D7) 0 F)Em) || 0 F x 8, F || dé dn
" 6[ " 0

= / (01 o FY(E, (0 o F)Y(E,m) || F x 0,F || dE dn

= [ eemesten |0 x o, | e (370
or all the products of the basis functions at the same time
/ NIN,ds
Jeg
= [ NTEMNEn || 0F x 0,F || dEdn . (8.71)

JKq
Respectively, the integral of the equation (3.47) can be formulated as

/ o9 ds = / (0 0 F)(E,m) | 0cF x 0,F || dé dy

v €y f{g
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Table 3.2: The weighting coefficients W; of the Radau’s rule {3.74) and the

integration points 5}, 7; and ;.

| & | | WS
SRR
n=3]1]%2]0 <
[N O
212013079
310 5 5
n—7 100 &
25|10
3010 &
610 % %
g
Tlslala
- /K il€m) | OcF x ,F || dedyp . (3.72)
e
For all the basis functions
/NedS
Je,
= N, n) || OcF x 0, F || d€dn . (3.73)
J Kyp

Hence the surface integrals of the global basis functions over the global elements
are converted to the surface integrals of the local basis functions over the local
element. Radau’s rule is used for the numerical integration of the equations (3.71)
and (3.73) [35]

/K Ge mydedy = 3" Wigl&, i) (3.74)
Y i=1

The weighting coefficients W; and the integration points & and 7; are shown in
the Table 3.2 [35].

3.2.4 Integration with second order basis functions

In the quadratic case there would be six more nodes between the vertices of the
elements and in addition the global element could be curve sided. In this case the
additional 6 nodes are located in the middle of each edge of the local element Fjy
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when the basis functions of the local element are [35]

el&ny) = (29— 1) (3.75)
eny) = (26-1)¢ (3.76)
es(&ny) = (2n-1)n (3.77)
ea(§my) = (2y—1)1y (3.78)
@es(&my) = 4Lq (3.79)
(&, my) = 4€n (3.80)
er{&my) = Ang (3.81)
es(&,my) = 4vg (3.82)
©ol&my) = ALy (3.83)
o0l ) = Ay (3.84)

where

g=1-¢-n—7.
When the second order basis functions ¢;(€, 5, y) are used the mapping F' is of the
form

10
i=1

Formally the computation of the integrals with second order basis functions equals
to the case with linear basis functions. However, computation of the gradients is
more complicated with second order basis functions and the matrices Jz and L
depend on local coordinates (£, ,v) [103].

3.3 Infinite elements

Unbounded domain appear in a wide variety of practical engineering problems. In
this section two different infinite element methods are described in 1D. The first
one is based on choosing of the shape functions [8] and the second one on mapped
infinite elements [61, 90, 118]. Convergence analysis of the infinite elements of the
type Tin where n is greater or equal to 1 is discussed in [25].

3.3.1 Infinite elements based on choosing of the basis functions

In choosing a basis function for an element which extends to infinity there are two
requirements to satisfy. First, the basis function should be realistic and second,
it should lead to the integrations over the element domain which are finite [8].
The basis functions can be chosen based on Lagrange polynomials multiplied by
exponential decay. If there are n nodes in the infinite element, the first n—1 having
finite ¢ coordinates and the n’th being infinitely distant, a set of basis functions
@w; is defined for s =1,...,n— 1
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n—1
- t—t
j=lg# >

This is comparable with the eonventional Lagrange polynomial M;

M, = ﬁ (}j}__;) (3.87)

g=1,4#1 >

In equation (3.86) I determines the rate of the exponential deecay. If ¢, is
required it can be found from

n—1
n=1-Y 1. (359
i=1

Basis functions for the infinite element are shown in Fig. 3.4.

Figure 3.4: The basis functions for infinite element with two different values for

L. Thenodes arets = 1 and 4 = % and the basis functions @2 = 26(17”/}4(%—?5),

3
g =231ty and o5 =1 — {02 + pa).

3.3.2 Mapped infinite elements

Mapped infinite elements are based on a simple mapping technique that applies
to both the modelling of the geometry and the field variables (solution of the
partial differential equation) [61],]90]. Let us consider the one-dimensional case
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shown in Fig. 3.6 in whiech the infinite element ranging from node 1 to node 3
{at infinity) through node 2 is mapped onto the local element defined by the loeal
coordinate system —1 < £ < 1. Point 43 in global coordinates is called the pole
of the transformation and is positioned arbitrarily, with the only restriction that,
onee it is positioned, the location of node 2 is defined by

ty =2t — tg . (3.89)

The mapping from the local to the global coordinates is obtained by means of the
standard finite element method for isoparametric elements

Flg)=t= ZMé(g)fé (3.90)

where the summation extends over the finite nodes only and the mapping functions
are

—2¢
M S — 3.91
o = = (3.91)
1+¢€
M. = —. 3.92
A (3.92)
From these relations it follows that in global coordinates the positions ¢ = 1,2, 00
correspond to the points &€ = —1,0,1. The mapping functions M; and M, are

plotted in Fig. 3.7.

The requirement that the mapping must be independent of the choice of coor-
dinate system necessitates that M(£) + My(€) = 1 [61]. Standard basis functions
in local system of coordinates for the three-node element —1 < & < 1 are

(&) = -1 (39
@a(6) = 1-¢° (3.94)
es(8) = &€+ (3.95)

and the solution » can be interpolated using these basis functions

w€) = D w6 = 28— D + (1 Ehua + 56E+ Dus (3.96)
i=1

where u; is the value of the solution at the ¢’th node. Let us solve £ from the

equation {3.90) .
5 —
=y =—= 3.97
£=¢) Y- (3.97)

Whena=1% —¢ =¢ —igand r=%—#; as in Fig. 3.6

th = att (3.98)
T = a—1t1+1 {3.99)
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are obtained. When the equations (3.98) and (3.99) are inserted in the equation
{(3.97)

a+it —1
S 3.100
3 a1 ( )
t—t —a+25—2
— S (3.101)
"
t—t +a—2
_ tz-thita-za (3.102)
"
9
- -z (3.103)
"
2
- 1-Z (3.104)

,
Substituting (3.104) in (3.96) gives the unknown «(€) in terms of the global coor-
dinate, r, as follows

2a a?

a
u(l — 7) = w3 + (—uy + dus — 3@53); + (2u1 — 4us + 2@53)?'—2 . (3.105)

Thus the decay of the {approximative) solution is of the form %2

If the linear element {nodes -1 and 1, @1 = % - %ﬁ, w2 = % + %5) is chosen to
be a 1D local element the solution «(£) of the differential equation is

1 1 1 1
Let us insert the equation {3.104) in the equation (3.106) to obtain
2
u(l — Ta) = g + (ug — ug)g (3.107)

As it can be seen, if the linear element is used the decay of the (approximative)

solution Is of the form %

3.3.3 Positioning of poles (i)

The geometry and the unknown variable expansions involved in the mapped in-
finite element technique are both referred to the same point or a set of points
termed the pole(s). Therefore the geometric and the physical characteristics of
the problem must both be taken into account when positioning the pole(s). The
reference pole must be exterior to the infinite element. Also the element faces in
higher dimensions extending to infinity must be either of parallel or of a diverging
type and in no case should these be of a converging type, since convergence would
lead to overlapping of elements and non-uniqueness of mapping. It is also essential
to explore the effect of shifting of the pole position to improve the decay charac-
teristics. To ensure continuity across the transition boundary between finite and
infinite elements, the number and location of the connecting nodes must coincide.
The results for the different pole positions of the previous example are presented
in Fig. 3.8
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3.3.4 Infinite element methods in EIT

In many cases the objeet to be imaged is so large that extending the computational
domain to cover the whole object would lead extremely large dimensional systems
of equations in the FEM. For this reason, the computational domain usually covers
only a part of the object. However, cutting of the domain causes errors in the
computed potentials sinee the electrie field also spreads outside the domain. The
problem due to eutting effect can be significantly reduced by using the infinite
elements [9] in the computation.

When using infinite elements the object is assumed to extend to infinity in some
direction(s) The decay of the potentials along some axis can be approximated with
infinite elements. In this thesis the separable infinite elements have been used for
the modelling of the far field behavior. This method is suitable only in situations
in which the object to be imaged is symmetric along one axis and the domain is
assumed to extend to infinity along this axis. The separable infinite elements would
be the most suitable in the industrial applications sinee the long pipes to be imaged
are cylindrical. In medicine the infinite element approach might be applicable in
the imaging of the human leg or thorax which are almost symmetrical. In these
situations the voltages may decay enough so that the infinite elements can be used.

Let us assume that the shape functions of the 3D infinite elements are separable

A (,D'(&T,y,z) ,(:{:,y,z) c Ql
K { @i(x,y) ¢£(Z) ,(x,y,z) €y (3108)

wi(x,y) are the basis functions of the 2D element, ¢;{z) are the basis functions
of the 1D element, £2; is a domain of the finite elements and €29 is a domain of
the infinite elements. In {2y, the integration over the 3D element in the equation
{3.46) can be written in the form

[ I @2 Vel )l dedy
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= [ @) (G g g )7 di dy s

- 0692,y 060,y \ o 97N o,
B /E{{( Oz ’ Oy ’O)d)j () +10.9, G A (@ 9)
(e) 2 (e) . (e)
{(8%&8; )y)’ 8503»8; )?J)’O) ge)( )+ (0 0, g 82( )) <e)(1 y)l} dz dy dz

_ 86 (2,9) o), 06 y) (o, P8 ye
= /E{(8—¢ ()8—y¢j (&), —5—vi (@)

(€. (€.
.(3%8(1,9) ©,y, 2% (2,9) §6)<Z)’8¢a( 2 o, y))} da dy dz

z ! ’ Oy

o {e) z, o (?) T,y o {e) z, o (?) T,y . .
:/ ( i (zy) Oy (zy) | Opi (2.y) Opy (2.) 6 ()65 (=) dardy dz
B

Oz dx Oy oy

8 () §pl®
N / b5 ( ) §b8( z) ge)(l y)@;)(x’y) drdydz
» z

- /w () - VolO(a,0) dzdy/¢<e> 16 (2) dz
+ /V¢§e)(2)’v¢§e)(2) / @, )0 (@, ) da dy (3.109)
S B

where K is the 2D element and S is the 1D element (see Fig. 3.9). The integrals
over the global elements (K, S) in equation {3.109) can be replaced by integrals
over the local elements (Kg, Sp).

/ Vel () - Vol e, y) da dy / $()z) de

+

/ Vo2 Ve (2 d / A7, 9)el (w,y) dudy

/ (T8 Lale,m)T ((Jpz)fl%(&??))l«]ﬁldgdﬂ/ b (VbW r [ dy
J Ky 7/ Sg

+ [5 ((Jg’l)71Lj(7))T((J§’1)711{45(7))]%@1ld’Y/ ©i(€,m)erl&, M Jr, | dE dn

J Ko

The integrals over the 2D elements in the equation (3.109) can be calculated by
using mapping method. The Jacobian matrix can be obtained from

I = L€, m) Xy (3.110)

where Xo are the nodes of the 2D global element. The basis functions ¢; are



3.3 Infinite elements 69

obtained from the 3D basis functions {3.75-3.84) by setting v =0

1 Ops  Jps Jps Jys  Fys
Lg,n) = { as &5 a5 85 8L éﬁ 1 (3.111)
On On On On On On
{—2+4§+4n 4¢ —1 0 4—4n—8¢ 4y —4n (3.112)
—2 4+ 4€ + 49 0 49 —1 —4¢ 46 4 —46 -8y |V

Note that the subscripts of the basis functions are different from the ones in {3.75-
3.84).

If the - direction is assumed to extend to the infinity and mapped infinite
elements and %2 decay are used Jp, can be obtained as in the equation {3.110)
and

Liy) = [ 4500 4800 [ [y -4 2y] (3.113)
where ¢1(y) = $y(y—1) and ¢(y) = 1 —? are the basis functions of the 1D local
element whose nodes are —1,0, 1 {compare with the equations {3.93) and (3.94)).
The basis function for the local node 1 is not needed because the voltages in it are
assumed to be zero. This means that there is the homogeneous Dirichlet boundary
condition at infinity which also defines the ground potential. The condition {3.25)
is not used in this case.

If exponential decay is used the basis functions can be chosen as explained in
Section 3.3.1. In that case, the integrals (in v-direction) in the equation {3.109)
are computed over the global 1D elements from z; to infinity. The global elements
in z-direction are same in every element and therefore the integrals need to be
computed only for one element.
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Figure 3.5: The role of the parameter L for two different meshes. The mesh

which has been used is shown below the series of figures.
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0 1 2 node 3 at infinity
=== k t - = =2

Figure 3.6: Mapping between a local element and a global infinite element in

one dimension [61].

v

Figure 3.7: The mapping functions for the one dimensional infinite element.

My = Mi{§) = —2¢/{1 — &) and Mz = Mz(&) = (1 +£)/{1 - &).
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Figure 3.8: The role of the pole position. a) The position of the pole g = 0,
tg=2anda=1,b)tg=1,{3 =3 anda=1,¢){g =0,%; =4 and a = 2. The

mesh which has been used is shown below the figures.



3.3 Infinite elements

73

Ll
o) =
01 + (1/12,112)
Ko
0,0) (12,00 (1Y)
a)

Zy infinity

Figure 3.9: a) a local 2D element, b} a global 1D infinite element.



CHAPTER 1V

Inverse problem in EIT

In EIT the injected currents are known and the formed voltages can be measured.
The inverse problem is to determine the parameters o (eonduetivity distribution)
of the mathematical model. There have been many studies on the uniqueness
of the recovery of the conductivity inside an object based on the measurements
made on the boundary of the objeet also for the three-dimension case if conduc-
tivity distribution is isotropic [91, 16]. EIT inverse problem is both ill-posed and
nonlinear with respect to conductivity distribution. Furthermore, especially in
three-dimensional cases, the number of the parameters which has to be solved can
be huge, when the approaches which are effective for two-dimensional problems
are inappropriate.

In this thesis the inverse problem of EI'T is considered as an LS-problem. Since
the inverse problem is ill-posed, one has to consider minimization of the regularized
functional

F(p) = |Umeas — Ulp, z0)[13 + X Lalp — 013 (4.1)

where Upeas and U(p, zg) are the vectors of the measured and computed voltages
on the electrodes, A is the regularization parameter, p is estimated resistivity
distribution, p* is the prior for the solution and Lo is the regularization matrix.
In equation (4.1) zg is the contact impedance which is assumed to be known. See
[111, 33] for estimating the contact impedances simultaneously with the resistivity
distribution.

4.1 The Jacobian matrix in EIT

In EIT the parameter z in the Chapter 2 is the resistivity distribution g, A(z) are
the calculated voltages U(p, 20) in some distribution p and z measured potentials
Umeas- 1he Jacobian can be computed as follows. Assume, that the resistivity
distribution is piecewise constant, i.e.

N
2 Z PmXm (42)
m=1

74
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where N is number of the elements in FEM discretization and yx,, is the charac-
teristie funetion of the m’th element. Consider a matrix

C=(0 ¢C) (4.3)

where 0 € RE*N | The derivatives of the voltages U" = €7 on the electrodes with
respect to each p,, are wanted to be determined for the Jacobian matrix. By using
the equation (4.3) it can be obtained that U”* = €T = €8 where § = (o, B)7.
Now R
ouR  B(CH)

Opm  Opm (44)

is wanted to be computed. If measurement pattern M € R¥*¥ where K is the
number of measurements made, is used, the voltages on the electrodes become
U=MTU" = MTC8 = M6 and the derivative becomes

ou  a(Me) - 89

Opm  Opm Mapm ' %5
Consider the term %. From the equation (3.43) it can be obtained
—1
o8 _ A ) . (4.6)
B0, P
The right hand side of (4.6) can be expanded as
ALY L BA L, 0A

Since only the matrix B in A depends on p the derivative 8A4/8p,, can be computed
as

A 2B g
_ Fpom 4.8
Opm, ( 0 0 ) (18)
where
oB(4,7 1
Gd) —7/ Vi - Vo, dedydz, i,j =1,2,..., N . (4.9)
Opm Pin Jsupp(xm)

Here supp{xu) denotes the support of the function x,,,. Now the derivatives with
respect to the actual measurements become

ou ~ 0f

—_— — —_— Y 71_
Opm M8pm MA 8pm€
_aT A - N\T 8A
_ —INT s 4T _ —1 T
- (e o= (asi) g
= —yTﬁe (4.10)
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where v = ATMT e RNHE-DXE where K was the number of actual measure-
ments. The last steps are based on the fact that the matrix A is symmetric. In
{4.10) there are two separate potential distributions, & from the true injected cur-
rents and +y that is due to the measurement pattern M7 = (MTC)T. The matrix
obtained from the equation (4.10) is R¥*% where £ was the number of current
patterns (right hand sides). After reshaping the m’th column of the Jacobian
is obtained. The same procedure is carried out for each p,, to obtain the other
columns of J. Similar procedure to eompute the Jacobian has been utilized also
for example in optical tomography and is known as the adjoint differentiation [2].
The Jacobian matrix is of form

Ul aul U}l
Ip1 3p2 pm
auy  8uy . 3Uj5
Fp1 Fp2 Opm
L  dUL UL
Fp1 Fp2 Opm
J= 4.11
aut ouy  au? ( )
3p1 3pa 3P
ouy QU  B3UL
Fp1 dp2 Fpom
UE  oUL o UL
Fp1 dp2 Fpom

where 7 indicates the 7’th voltage measurement and % indicates the £’'th current
pattern in the notation U;? and M is the number of the elements in the finite
element mesh used in the inverse computations. .

When the zero columns and rows of the matrix 3‘9’% are utilized the m’th
column of the Jacobian can be obtained from
auh oB
= 1N, ) ——a, (4.12)
Opm, Opm,

where the notation (1 : N,:) refers to the part of the matrix v that includes the
first A rows and all columns.

From the equation {4.9) it can be seen that the matrix 5978 can be written of
form

0B . Jo Vo1 -Veidedy - [, Vi Vo dzdy
e : : (4.13)
" \Jo Ve Vexdzdy - f, Von - Voy dzdy
1
= —pTBgmd , {4.14)
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where Bgraq Is the matrix which ineludes the integrals of the terms Vo, - Vy; over
the element. As can be seen when iterative methods are used the matrix Bgraq is
needed to be computed only once, and this ean be done in advance.

4.2 The Hessian in EIT

Let us consider the term
i

9p;0pm
in the Hessian matrix. By using the formulation of the m’th column of the Jacobian
matrix it can be written

(4.15)

U B ( 8U)
9p;0pm Ip; \ Opm
B p) oI OA
o Opy RA M ) 3Pm9}

. T
—1 T
_ 8<A M) 8A9+<A71]\7[T) ( 82A 9+ 814%)
dp; Opm 8pi0pm  Opm Opy

- —1 o \NT 2
_ _MaA 8A8—<A*1MT) ( O*A 8AA1%)

9p; Opm OpiOpm  Opm Op;
= _M (—AlﬁAl) ﬁg
8;0;' 8tom

- \T [ OA OA 9%A
ATTMT A ——
’ ( ) (&% 9p; 89;-8%)
- N\NT[(OA GA OA OA G?A
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From the equations {4.8) and (4.9) it can be seen that
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(4.16)

so it can be written
92U _ o T%A*1 A 92A

T
— =2y - . 4.18
o0 2 00, B’ T Bpyopm (4-18)

In equation (4.18) the second derivatives 33 4_ are of the form

2
£500m

2 3B 3B
A b {ﬁ} 9 { el } _ | Toen 0 (4.19)
0p;0pm  Op; | Opm Gp; 0 0 0 0
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where

8%B(i, 7) 0 1 /
i ST VAN A (. Vi - Vo dady dz
Fp,;0pm dp; Pin Jsupp(xm) ’

{ 2 Vo, - Vosdedydz | if j=m

P2, Jsupp{xm) S 4.90
yuf gFm .20

U
0p;0pm
corresponding to all the measurements {/;. Thus, the matrices

€ R¥*L gives the components G;{j,m) of Hessians G
U
0p;0pm
computed corresponding to all combinations (4, m). Further, the Hessian V2F can

Now, the matrix

need to be

be computed using equation (2.35), where Ggr) = (7; as noticed above. Even if the
Hessian &; is symmetrie, the computation takes a lot of computer time.

4.3 Block form for computing VF

Both in steepest descent method and in nonlinear conjugate gradient method a
gradient of the minimized funetional has to be eomputed. With the choice Wy =1
the equation (2.126) gets the following form in the case of EIT

VF(pe) = —J{pr)" (Uneas — Ulpr, 20)) + N2 Walp — p*) (4.21)
= —Jp)Tb+ N Walpr — p*) (4.22)

where b = Upneas—U(ps, 20) € REEXL I practice the computation of the Jacobian
matrix J takes a lot of computer time in large dimensional problems. In addition,
in EIT the Jacobian matrix is also full. Multiplication of the large dimensional and
full matrix and vector b is also toilsome problem. Let us consider an approach to
steepest descent method in which the Jacobian matrix is not computed completely
and the multiplication J75 is done for one current injection at a time.

Consider the veetor J7b € RV>! which can be written in the form

S JG, Db,
JTy = : , (4.23)

S I N

where the notation b; refers to the #'th index of the vector b and J(¢,m) m =
1,...,N refers to the index of the matrix J in ¢’th row and m’th column. For
each index of the vector J7'b one column of the Jacobian matrix is needed. Let us
consider the m’th index of J7b. If the vector b is reshaped such that $* € R¥*£
and each column corresponds measurements with one current pattern as in (3.54)
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it can be seen that

LK £
SN oJGmb; = 3 TG - DK +1: K, m)T b (4.24)
i=1 i=1
£ T
= Z<—7(1:N,:)T8—Baj) b (4.25)
; Opm 7
=1
T T
AB
= =) [k 5.0 (4.26)
i\
£
AB
7=1 ”

where the notation J {{j — 1)K + 1 : j K, m) refers to the part of the Jacobian that
includes the rows which corresponds to the 3’th current pattern and m’th eolumn,
b;? refers to the column of b* that corresponds to the j'th current pattern and oy
refers to the column of « that corresponds to the j'th current pattern. Fach term
in summation (4.27) can be computed in parallel. The same procedure is carried

out for each column of the Jacobian (g,,) to obtain all the terms of the vector
JTh.

4.4 Alternative formulation for the Levenberg-Marquardt
method

When Gauss-Newton and Levenberg-Marquardt methods are used in EIT the large
dimensional matrix J7J € RV*N  where A/ is number of the parameters has to
be inverted. There is another formulation for the Levenberg-Marquardt method
in which the inverted matrix is of form J J7 . The dimension of the matrix J J© €
REKXLK where £ is number of the current patterns and K is number of the
measurements, is in many realistic 3D EIT problems considerably smaller than
the dimensions of the matrix J7.J.

Let us consider the search direction p; in Levenberg-Marquardt method
pi = (T Te + M D)™ I (Unneas — Ulpa, 20)) (4.28)

where J, = J{pz). Using the matrix inversion lemma (if B = XRY + A then
B l=AT7T A 'X(R' 4+ YA 'X) 1Y A™!) the equation (4.28) can be written
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in the form

s = AT+ TSI T I AL T T (Unneas — Ulpr, 20))

A A Y ng(Ak ed + T I P TA T T (Unneas — Ulpr, 20)

GLIE = AN IR T D) T T (Unneas — Ulpr, 20))

PP SR O/ EAETDNY SRt O /0 FAETD VY SIS N S OV A FRE D VN SR W
(Umeas — Ulpr, 20))

= N TEIIE + DT (T dE + M = T I (Uneas — Ulpr, 20))

= LI+ D) T (Uneas — Ulpr, 20)) (4.29)

The matrix inversion lemma can be used also in other regularizations in order to
be obtain new formulations for the algorithms.

P =

o
o
o
oo

4.5 Kaczmarz -method

There are also other methods that avoid the expense of inverting J7.J but has
faster convergence than the gradient based methods [3, 73]. When each iteration
step is obtained from the equation

prr1 = pi + o We(Unneas — Ulpr, 20)) {4.30)

the method is called as filtered back propagation and W, can be any positive
definite operator. The step parameter o is fixed in ordinary filtered back prop-
agation. However, the step parameter can be chosen by inexact line search, as
explained in 2.1.1. If W is chosen to be

Wy = (ST (4.31)
each iteration step is of form
pri1 = pi + oxdL (Jed ) HUnmeas — Ulp, 20)) - (4.32)

In EIT problem the Jacobian is ill-conditioned and therefore the regularization is
needed. One way to regularize the filtered back propagation method is to modify
the matrix W, so that [3]

P+l = P+ afsj;?(J&Jg + )\I)il(Umeas — Ulpg, z0)) - (4.33)
It can be seen that the modified version of the filtered back propagation method
{4.33) is of the form of Levenberg-Marquardt algorithm (4.29). The only difference
is that in Levenberg-Marquardt method the weight coefficient A is chosen in each
iteration step &£. Even though inverse of the matrix J&Jg’ is not as hard to compute

as inverse of the matrix Jgjg it takes a lot of computer time and storage. In
Kaczmarz method the matrix Wy is replaced with a simpler expression

(J;gyljg—:l)il 0 0

0 (J;.;’QJT )71 0
Wy = . R . , (4.34)

0 0 (Jg’,gjgjﬁ)fl
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where J;, ; indicates the block of the Jacobian witch corresponds the j'th current
pattern in &’th iteration step [74]. The iteration is done for each current pattern
separately. Disadvantage of the method is that the forward problem has to be
computed frequently for updating px

4.6 Extended Kalman filter

In the case that the resistivity distribution changes during the measurements the
inverse problem of EIT can be considered as a state estimation problem [102, 50].
The state estimation approach is based on so-called state-space representation

pry1 = Fipetw, (4.35)
Umeas,z - U(Pz) + v, (436)

where ¢ is the time index, p; € RM is the resistivity distribution at time ¢, M is
the number of the elements in the finite element mesh used in the inverse com-
putations. The equation {4.35) is called the state equation, and it desecribes the
time-dependence of the resistivity distribution. The matrix F} is called the state
transition matrix. Further, Upneas,: is the vector containing the voltage measure-
ments corresponding to current pattern that was applied at time £. This means
that the voltages are measured in parallel such that all measurements correspond-
ing to a single current pattern are made simultaneously. The veetor v; represents
the measurement errors and w; is called the state noise process. The equation
{4.35) is called the state evolution equation and equation (4.36) the observation
equation.
The state estimation problem is to compute the expectation

Pelkx — E{ptlUmeas,la sy Umeas,&} . (437)

The only computationally feasible approach to solve the state estimation problem
is to use recursive algorithms. In linear case the most common algorithms are
called Kaiman recursions. The task is to compute the optimal estimator for each
p: based on measurements Umneas i, & € Z{¢), where Z(#) denotes a subset of avail-
able measurements that are used to compute the estimates. The most common
recursive estimators of the state p; are called the Kalman predictor py;_; and
Kalman filter p;;. For general discussion of the state estimation problem, see e.g.
[1].

In nonlinear case the expectation cannot be written in recursive form. This
leads to the tedious computation which can be done for example with Monte Carlo
methods. However, suboptimal algorithms exist, for example extended Kalman
filter, which is of the form

Gy = Cppp JIICsy JE+Co) (4.38)
Cope = U—Gd))Cp,,_, (4.39)
prge = Pri—1 T GelUneas,s — Ulpge—1)) (4.40)
Cope = FiCs FF + Cu, (4.41)
peyi)e =  Fipye (4.42)
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where C,,, is the observation noise covariance matrix, C,,, is the state noise covari-
ance matrix, Cp,,_, Is the covariance of the estimation error p;; 1 = py — pyje—1,
U(psjs—1) is the caleulated voltages and J; = J{(py;—1) part of the Jacobian ma-
trix. In stationary case there is no evolution of the resistivity distribution and
the trivial choice F; = 7, where 7 the identity matrix {the random walk model)
is relevant. Also the state noise covariance matrix equals zero but for the compu-
tational reasons it is chosen to be €, = a1 in which a; is some small constant.
EIT inverse problem is ill-posed and therefore the regularization is needed. The
spatial regularization can be appended to the observation equation (4.36) using
the same strategy as in equation (2.100) corresponding to Tikhonov regularization
in stationay case. The state space representation of the dynamic (time-varying)
EIT problem, its solution with the Kalman filter and the associated spatial regu-
larization have been proposed earlier in [102, 50, 46, 107, 106] for 2D cases.

4.7 Regularization matrix

In this study the regularization matrix Lo

| oy
o] s

has been used. The matrices L; and L, approximate the directional derivatives in
the {z,¥) plane and in the z direction, respectively. The parameters oy and oy are
the regularization parameters. In L; we take into account ten nearest elements in
the horizontal plane and in L, two nearest elements from the vertical direction,
except on the bottom and on the top of the discretized image, where we take into
account only one nearest element. The chosen elements are weighted by the inverse
of the distances between the centers of the elements. Because the matrix L5 is of
difference type, the prior assumption that the solution is smooth is used. More
accurate priors can be used but quite often they lead to tedious computations [56].

The regularization parameters «; and oy have to be chosen based on some
criteria. Because the regularization parameter is connected to a priori assumptions
about the solution it should be chosen in a way that these prior assumptions are
taken into account [101]. In practice, the less noise the smaller parameter can be
used. In this thesis the regularization parameters were adjusted o posieriori by
visual examination.

4.8 Difference imaging

In difference imaging two different data sets are needed and the reconstruction
is based on voltage difference §U between these measurements. Because one is
interested in only the resistivity changes ép and the difference ép is assumed to be
small, it is adequate to solve only a linearized version of the problem. When the
Tikhonov regularization is used the solution can be obtained from the equation

Sp=(JT I+ LI Ly~ (JTsU) . (4.44)
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4.9 Starting point for iteration

In static imaging the reference data is not available as in the case of difference imag-
ing. Thus even in the case of one-step reconstruction the voltages corresponding
to the linearization distribution pg are needed to be calculated with great accu-
racy [103, 109]. If the original nonlinear problem is to be solved, the voltages
have to be computed in each iteration step. In this study iterative methods such
as Gauss-Newton, Steepest deseent, Conjugate gradient, Kaczmarz and Extended
Kalman filter have been used for the static reconstructions. In each method the
initial guess pg for the resistivity distribution has to be determined. In this study
a homogeneous estimate for the resistivity distribution has been used as pg. The
best homogeneous resistivity distribution can be computed in the following way.
It has been shown in [43] that for any homogeneous distribution p{z) = g € R the
voltages can be computed in the form

Ulp,z0) = pU(1,7) (4.45)

where 7 = %zo and zy € R” includes the contact impedances. If 7 is fixed to
some value, corresponding to a prior guess for p, the best homogeneous resistivity
distribution ppes; that minimizes the functional

|Umeas — PU(LT)”% (4.46)

can be solved using LS-estimation as described in Section 2.2 when observation
model H = U(1,7) and 6 = p. The solution is

Phbest — (HTH)ilgTUmeas (447)
from which the reference voltages for the first iteration step can be computed as
Ulpo, z0) = H prest (4.48)

Similar ideas in 2D have also been used in [57].



CHAPTER V

Numerical studies

In this chapter two numerical simulations with different geometries are presented.
In section 5.1 results of comparison between different iterative reconstruetion
methods are shown. Cylindrical tank geometry is used in this study. In sec-
tion 5.2 the model trunecation problem is studied with infinite elements in long
pipe geometry.

5.1 Comparison of iterative reconstruction methods

The proposed approaches were evaluated with a numerical simulation. When
comparing different methods, it is important to notice that when the minimized
functional is fixed {fixed prior), different iterative methods should converge to
the same solution. Indeed, the solution obtained with Gauss-Newton, conjugate
gradient and steepest descent method are equal in this study. The aim of this
study is thus not to compare the quality of the reconstructions. Instead, the main
interest in this study is to compare the efficiency and the computer storage in
different methods. However, some of the compared methods, such as Kaczmarz
and Extended Kalman filter iterations, do not converge to the same solution due
to different priors associated with those methods.

5.1.1 Simulated measurements

As a numerical test phantom a cylindrical tank with 48 electrodes, 16 electrodes
in three planes was used, see Fig. 5.1. The radius of the tank was 15 ecm and
height was 20 cm. To study the efficiency of the different reconstruction methods,
a simulated resistivity distribution shown in Fig. 5.2 was used. In the sequel this
distribution is referred to as true distribution. The simulated data was computed in
a mesh of 6180 tetrahedral elements and 1434 nodes and the resistivity distribution
was represented in piecewise linear basis. The tetrahedral elements formed five
layers, height of each layer being 4 cm. The cut surfaces in Fig. 5.2 are taken from
the middle of each layer. As the figure indicates, there were two inhomogeneities
inside the cylinder, differing from the constant background resistivity of 300 2em.

84
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Figure 5.1: An example of the finite element mesh used in the calculations. The

red-faced elements are located under the electrodes.

The resistivity of the lower inhomogeneity was 100 Qcm in the first element layer
from the bottom, increasing linearly to the background value 300 Qcm inside the
second layer. The resistivity of the upper inhomogeneity was 500 flcm in two
uppermost element layers, decreasing linearly to the background value 300 £2em
inside the third layer.

There are numerous possibilities to inject current and measure voltages in
three dimensions. The quality of the images depends on the data collection strat-
egy [15, 64, 48, 49]. The more independent data is obtained, the better the spatial
resolution can be. In this study, only in-plane current injection and voltage mea-
surements between adjacent in-plane electrodes have been used. For each current
injection the voltages were measured on the remaining pairs of electrodes from each
electrode plane. The voltage measurements from the current carrying electrodes
were not used in the reconstructions and therefore 2160 voltage measurements
were obtained. The reason for neglecting the voltages corresponding to the cur-
rent carrying electrodes is that improper knowledge of the contact impedances in
the real case may cause high errors in modeling those measurements [33].

Voltage observations were computed by applying the FEM to 3D complete
electrode model. Since the resistivity is now represented in linear basis, the com-
putation of the integrals in FEM scheme slightly differs from the computation in
the case of constant basis in Section 3.2. However, the modification is straightfor-
ward.

Zero-mean Gaussian observation noise was added to the computed voltages.
The observation noise consisted of two parts. The standard deviation (std) of the
first part was 0.01% of the maximum voltage. The second part was inhomogeneous
white noise, each component of the noise vector having std 1% of the value of the
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Figure 5.2: True resistivity distribution.

corresponding observation.

In the inverse computations 2060 parameters such that one parameter corre-
sponds the union of three tetrahedral elements (wedge element) and the first order
FEM basis have been used. The voltages U(p, 20) in static imaging were com-
puted with the first order FEM basis in mesh of 6180 tetrahedral elements and
1434 nodes and the resistivity distribution was presented in piecewise constant
basis.

5.1.2 Iterative reconstructions
GAUSS-NEWTON RECONSTRUCTION

Gauss-Newton reconstruction was computed using the algorithm (2.124). The
Jacoblan matrix J was constructed using the adjoint differentiation explained in
Section 4.1. The best homogeneous estimate for the resistivity distribution (see
Section 4.9) was used as both the initial guess pg and the prior distribution g*. The
welghting matrix W was chosen to be an identity matrix 7, and the regularization
matrix Lo corresponding to smoothness prior was constructed as explained in
Section 4.7.

Inexact line search was used with Gauss-Newton algorithm. As mentioned in
Section 2.1.1, in cases when functionals to be minimized are quadratic, an effective
way to choose the step parameter o is to compute the value of the functional (4.1)
with few different choices of oz and then find the optimal o by fitting a quadratic
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funetion to the computed values. Aceceptable range for the step parameter was
chosen so that negative values for the resistivities were not allowed. Quadratic
funetion was fitted to four points that were chosen adaptively inside the range of
acceptable step parameters.

Gauss-Newton algorithm converged in ten iteration steps. The final iterate is
visualized in Fig. 5.3. The absolute values of the inhomogeneities are well recov-
ered. In Fig. 5.3 also one step reconstruction is visualized. Inhomogeneities are
already loeated well by using one step reconstruction but resistivity values are far
from the real values especially in ease of the inhomogeneity with the resistivity
500Qem. When choosing the weight of the regularization, compromise between
aceuracy of the absolute values and the level of image noise was made. Naturally,
when the weight of the regularization corresponding to smoothness is high, the
reconstructions are smooth, and the values of the inhomogeneities are close to
background resistivity. On the other hand, use of too weak regularization results
in noisy images. In this study the regularization parameter was adjusted by visual
examination, because the traditional methods for choosing the regularization pa-
rameter are not suitable in the case of EIT. It is worth to notice, however, that in
the real ease the use of visual examination is not possible, since the true resistivity
distribution is unknown. The question of choosing the regularization parameters
in different types of inverse problems is a topie of on-going research. The aim
of this study is not to consider this topic. Instead, the aim is to compare the
efficiency and computational storage of different optimization methods applied to
minimization problems with predetermined priors.

NONLINEAR CONJUGATE GRADIENT RECONSTRUCTION

Nonlinear conjugate gradient reconstruction was computed using the Algorithm 3
in Section 2.4.3. Scalar ;41 was chosen as in Polak-Ribiere method. Gradient
of the minimized functional was computed in block form explained in Section 4.3.
The functional to be minimized was the same as in Gauss-Newton reconstruetion.

Nonlinear conjugate gradient algorithm converged in 260 iteration steps when
inexact line search was used. The step parameter was chosen in the same way
as in case of Gauss-Newton method. As expected, the iteration converged to
the same solution as in the case of Gauss-Newton method. The final iterate is
visualized in Fig. 5.4. The estimate after 30 iterations is also shown in Fig. 5.4.
Inhomogeneities in this iterate are already located well but the resistivity values
are still far from the real values. The restarting explained in Section 2.4.3 was
tested but it did not increase the convergence rate substantially.

STEEPEST DESCENT RECONSTRUCTION

Steepest descent reconstruction was computed using the algorithm (2.11). Gra-
dient of the minimized functional was computed in block form as in the case of
conjugate gradient method. The functional to be minimized was the same as in
Gauss-Newton reconstruction. Convergence rate of the steepest descent method is
slow even when the inexact line search for choosing the step parameter described
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Figure 5.3: Gauss-Newton reconstruction after the first iteration step (left) and

10 iteration steps {right)

earlier was used. After 4 000 steps the iteration was not converged yet. However,
the iterate was already close to the final iterates of Gauss-Newton and Conjugate
gradient algorithms. The iterate after 4 000 steps is visualized in Fig. 5.5.

KACZMARZ RECONSTRUCTION

The functional to be minimized in Kaczmarz method is
F(p) = |Utneas — U{p, 20)1I3 (5.1)

Kaczmarsz reconstruction was computed using the algorithm (4.33). Jacobian ma-
trix J was computed for each current pattern separately as in case of conjugate
gradient method and steepest descent method. Inexact line search was performed
after each current pattern. Because the functional (5.1) does not inelude any prior
information for the resistivity distribution, the solution is unstable. The solution
is thus stabilized by cutting the iteration after chosen number of iteration steps.
Fig. 5.6 represents the iterates after 53 steps and 3 steps. Here the number of
iteration steps refers to the number of the repetitions of the iteration (4.33) cor-
responding to all current injections. The order of the injections in the iteration
{4.33) was chosen randomly. This procedure improves the performance of the it-
eration because, loosely speaking, the sensitivity of the measurements covers the
domain more rapidly.
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Figure 5.4: Conjugate gradient reconstructions after 30 iteration steps (left)

and 260 iteration steps {right).

EXTENDED KALMAN FILTER RECONSTRUCTION

Extended Kalman filter reconstruction was computed using the equations {4.38-
4.42). Since extended Kalman filter was applied to the stationary case the evolu-
tion matrix was chosen to be #; = I. The state noise covariance matrix C,, = 021
where o, was 0.01% of the best homogeneous estimate pg for resistivity distribu-
tion. This implies that the recursion allows small changes in resistivity distribu-
tions between consecutive current injections. The covariance of the initial state
was Cﬁow = a%[ where oy was 2% of pg. The observation noise covariance matrix
was C,, = 021 where the o, was 0.01% of the maximum voltage.

Spatial regularization was included in the iteration as explained in Section
4.6. The spatial prior was the same as in Gauss-Newton, conjugate gradient and
steepest descent methods. The drawback of using spatial regularization with ex-
tended Kalman filter is that the storage needs and the computation time increase
considerably.

The iteration (4.38-4.42) was repeated five times. The reconstructions were
also computed by using mixed order for the current patterns, as in the case of
Kaczmarz iteration. The estimates after five iterations both with and without
mixing the order of injections are shown in Fig. 5.7. When order of injections was
mixed the reconstruction was improved.
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i

Figure 5.5: Steepest descent reconstruction.

5.1.3 Discussion of the results

In Table 5.1 the comparison between the proposed approaches is shown. The
quality of different estimates have been evaluated by computing the error norm
defined as

| A i
6:7/9@9_,0) de (5.2)

where p is the true distribution, p is the estimate and V is the volume of 2. When
comparing different methods, note that only in Gauss-Newton, Conjugate gradient
and Steepest descent reconstructions the functional to be minimized is same. As
assumed, the solutions obtained with these methods are same. The convergence
rate of the Gauss-Newton method is the best {Fig. 5.8) but it requires memory
storage far more than the other methods. Inexact line search has remarkable
impact for convergence rate in the cases of the conjugate gradient (Fig. 5.9) and
steepest descent methods, whereas in Gauss-Newton method it did not affect the
convergence rate significantly (Fig. 5.10). As Fig. 5.9 indicates, in the beginning
of the iteration the optimal values of the step parameter oy >> 1.

In this test case the Gauss-Newton iteration required shortest time for con-
vergence. However, the memory demand in Gauss-Newton method was five times
bigger than in the cases of Conjugate gradient and Steepest descent methods.
The cases in which the computer storage is limited, and Gauss-Newton method
cannot be used, the Conjugate gradient method is preferable to Steepest descent
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Figure 5.6: Kaczmarz reconstructions. Left: reconstruction after 3 iteration

steps Right: reconstruction after 53 iteration steps.

method, because of significantly shorter computational time. Furthermore, if one
is satisfied with qualitative images, not necessarily absolute values, the Gauss-
Newton and Conjugate gradient methods already give feasible solutions after a
few iterations.

Kaczmarz and Extended Kalman filter iterations do not converge to the same
solution due to different priors associated. As mentioned above, the memory
need for Fxtended Kalman filter with spatial regularization is huge. Changing
the order of current injections improved the quality of the estimate considerably.
The memory need of the Kaczmarz iteration is smallest. However, the problem
in Kaczmarz method arises from the instability of the solution. In order to get
feasible solutions one should know when to stop the iteration.

In this study it was observed that the convergence of the resistivity value of
100€2cm was faster than that of the resistivity value of 500§2em. This can be clearly
seen in Fig. 5.11 for the three different methods for the maximum and minimum
resistivity values of the reconstructions. The final values of the maximum and min-
imum resistivities depend a lot on the prior used. This feature can be explained by
investigating the sensitivity of the measurements to different types of changes in
resistivity distribution. For this purpose a following test was performed. Multiple
targets with equal sized cylindrical inhomogeneities with varying resistivities were
constructed. The EIT observations were calculated for different targets. Fig. 5.12
represents the norm of the difference ¢ between the voltages corresponding to a
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Figure 5.7: Extended Kalman filter reconstructions. The estimates after five
iterations without (left) and with {right) mixing the order of injections.
Table 5.1: Comparison of different optimization methods. The error norm e is
defined in equation {5.2), F = F{p) is the minimized functional, and the memory
need is expressed in Megabytes. CG is abbreviation for conjugate gradient.
Method Iteration steps e F{1077) | Memory need
Gauss-Newton 10 10.3296 1.5704 41.3230
Nonlinear CG 260 10.3170 1.5704 8.1984
- restarting ¢=0.3 247 10.3169 1.5704 8.1984
Steepest descent 4 000 9.8946 1.5722 8.1654
Kaczmarz 3 11.1960 0.1760 72177
53 15.0810 0.1280 7.2177
Extended Kalman filter 5 13.2600 5.4685 144.8100
- changed order 5 10.6812 2.9110 144.8100

homogeneous distribution and the voltages corresponding to targets with inho-
mogeneities with different resistivities. The background resistivity in the target
cases and the homogeneous distribution were 300 2ecm. Obviously negative changes
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Figure 5.8: Comparison of the convergence rates. Value of functional F{p) in

first 30 iteration steps for different optimization methods.

in resistivity of inhomogeneity cause remarkably bigger changes in voltage obser-
vations. That is the measurements are more sensitive for negative changes in
resistivity. Thus, in this case the problem of finding resistive inhomogeneities is
more ill-posed than the problem of finding conductive inhomogeneities. For this
reason the prior has more impact on the resistive target than on the conductive
one in our example case.

5.2 Infinite elements
5.2.1 Effect of the model truncation

In areal 3D situation the whole domain to be imaged, e.g. a human body, should be
discretized for the computations. However, far from the current carrying electrodes
the voltages and the currents are diminished so much that the model can be
truncated. Now the question is, how does the model truncation effect on the
image reconstruction and how far from the current carrying electrodes should the
domain be discretized.

In 3D EIT, when the model is fruncated the boundary condition that the
component of the current density in normal direction {Neumann) is zero on the
boundary is normally used. However, as it can be seen e.g. from the Fig. 5.14 a)
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Figure 5.9: Convergence of the Conjugate gradient iteration with inexact line

search and with two fixed step parameters.
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Figure 5.10: Convergence of the Gauss-Newton iteration with inexact line search

and with standard choice ap = 1.
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Figure 5.11: Convergences of the maximum and minimum resistivity values of
the reconstructions during the iterations. Above left: extended Kalman filter
method, above right: conjugate gradient method, below: Gauss-Newton method.

The dashed lines mark the true minimum and maximum values.

the voltage gradient in z-direction is not zero until after 50 em from the current
carrying electrodes when the whole domain {(a eylinder) is 100 em high. This means
that there is current flow in the vertical, z-direction, and the homogeneous Neu-
mann boundary condition is not valid. The voltages in Fig. 5.14 were computed
for homogenous target.

Before studying effects of the model truncation on the reconstructed images,
the sensitivities with respect to the distance from the electrode planes were studied.
Here target is still assumed to be homogeneous.

First the norms of the columns of the Jacobian J (sensitivities) were compared
in order to see how far from the electrode planes is the level in which all the norms
of J are smaller than the minimum norm (“smallest sensitivity”) in the region
of interest. The region of interest was assumed to include the domain from the
bottom to 14 cm, see Fig. 5.16, when the whole domain was 32 cm in z-direction.
The result is shown plotted in Fig. 5.13. It tells that in this case the level is at 24
em from the bottom of the cylinder {12 em above the uppermost electrode plane)
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Figure 5.12: Norm of the difference € between the voltages corresponding to a

homogeneous target and the targets with inhomogeneity having resistivity p
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>
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Figure 5.13: The norms of the columns of the Jacobian out of the region of
interest in different heights of the cylinder {plotted with ’0’). Each column of o’s
correspond to one element layer in the mesh, i.e., all the elements have the same
height in z-direction. Also shown is the minimum column norm of the Jacobian

from the region of interest, plotted with dashed line {- -).
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where all the sensitivities are smaller than the smallest one in the region of interest.
There are quite large differences between the sensitivities on each layer {columns
of 0’s in the Fig. 5.13). This is clear since the elements near the boundary of the
cylinder have bigger sensitivity than the elements near the center. Similar results
to these shown here were obtained from the cylindrical phantom studies, see [83].

The effect of the model truncation is clearly seen in Fig. 5.14. In Fig. 5.14 a)
the first current injection from the first electrode plane was used. The different
model truncation situations (different heights of the cylindrical mesh) were tested
and the corresponding voltages compared to the voltages of the “true” situation in
which the height of the eylinder was 100 em. As the model is truneated at z = 32
cm, the difference in the voltages is not enormously large. As the voltages are
computed in a smaller cylinder, the difference increases rapidly. Similarly when
electrodes on the uppermost electrode plane are used for the eurrent injection, the
errors are fairly large when the model is truncated just above the corresponding
electrode plane, Fig. 5.14 b). The errors on the electrode voltages in the same
situations are shown in Table 5.2. As it can be seen when the model is truncated
at 32 em the error is negligible but, for example, when the truncation is made at
z=14 em, the error is big enough to affect on the reconstructed image. However,
when the mesh of 32 em is used the number of nodes is more than twice the
number of nodes of the 14 em mesh. This can be seen in Table 5.3. The relative
errors in the computed reference voltages U(pq, zg) are computed as F = || Upeas —

Ul po, z0)ll2/ | Urneas ||2-

Gulling plane z=100 cn

Gulling plane z=100 cn
~ — —  Gulling plane z=32 cm Rt
~ — ~  CGullng plane z=32 cm
-------- Gulling plane z=18 cm E o8l

Gulling plane z=18 cm

— - Culling plane z=14 cm

So7f B > — — - Culling plane z=14 cm

Figure 5.14: Voltages U as a function of height z when different height of tank

has been used with a) Ist current injection and b) 33rd current injection.

In the static image reconstruction it is important to have as accurate forward
solution (voltages on the electrodes) as possible. This, however, would necessitate
the use of large meshes in order to avoid the above mentioned truncation error. To
overcome this problem it is possible to use “long” elements in the mesh, starting
e.g. from the furthermost current carrying electrodes or by using infinite elements
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g

el. 13

Figure 5.15: Positions of the electrodes {el.) and the point, where the decay of
the voltages have been studied with different values of z, in 2 — % -plane.

Figure 5.16: Mesh with equal size elements from the bottom to 14 ¢m and

“long” elements from 14 c¢m to 32 cm.

Table 5.2: Errors { ) in voltages on the electrodes when different heights of the

meshes have been used.

height of the mesh E
14 cm 0.1117
18 em 0.0274
32 em 0.0008
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Table 5.3: Number of the elements and nodes in the meshes with different

heights.
height of the mesh | # of elements | # of nodes
14 em 1848 3135
18 em 2376 3971
32 em 4224 6897
100 em 13200 21109
infinite 1936 3344

Table 5.4: Errors (£) in voltages on the electrodes, when different heights of
“long” elements have been used. z; is the position where the “long” element

starts from and z; is end of the “long” element.

type of element Zs — Ze B
“long” element 14 em-32cem | 0.0156
“long” element 14 em - 50 em | 0.0371
“long” element 14 em - 100 em | 0.0680
“long” separable element | 14 ¢cm - 32 em | 0.0060
“long” separable element | 14 ecm - 50 em | 0.0193
“long” separable element | 14 cm - 100 em | 0.0474

as explained in Section 3.3.4. These approaches were studied by computing the
voltages on the electrodes using separable infinite elements, “long” elements and
separable “long” elements. As a “long” element a 3D wedge element shown in
Appendix I was used.

In Table 5.4, errors in voltages on the electrodes with “long” elements are
shown. A mesh with “long” elements means that there is one element layer in the
mesh whose elements reach from 14 cm to 32 em (or to 50 cm or 100 cm) as shown
in Fig. 5.16. In the separable “long” element -case the solution was assumed to
be separable in z,y- and z-directions. In the z-direction these elements reached

Table 5.5: Errors in voltages on the electrodes, when separable infinite elements

have been used.

decay error
%2 0.0017
exponential | 0.0009
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from 14 em to 32 em (50 em, 100 em).

T T T T T T T T T T T T T T T T T T
ol
ol
5%
o
-2} 4 o1}
4 -02 FER solulian wlh mesh of equal
—04f ———  FEMsolulion wilh mesh of equal size elements ® size elements
*
B 503
-06f % % % %  FEMsolulion wihlong elemenls from 14 cmlo %% % & FEM solulion wih long elements
32 em 04 from 14 cm 1032 em
o8| -0
-06
-k
0 10 20 30 10 50 60 70 80 9 100 0 10 20 30 10 50 60 70 80 9 100
2 (em) 2 (em)

Figure 5.17: Voltages U as a function of height 2z when “long” elements with

second order basis functions have been used with a) Ist current injection and b)

33rd current injection.
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Figure 5.18: Voltages U as a function of height z when “long” elements with

second order basis functions have been used with a) 1st current injection and b)

33rd current injection.

In static reconstruction it is important to have as accurate a forward model
and also as accurate a numerical method as possible. The accuracy of the forward

solver (FEM in this study) depends on the mesh density and “quality”.

The

quality of the mesh J has been defined as the mean of Q; = 3R, (T})/ Rous(T7),
where Ry (1) is the radius of the inscribed sphere and Roy:(7}) is the radius of the
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Figure 5.19: Voltages U as a function of height 2 when “long” elements with
second order basis functions have been used with a) Ist current injection and b)

33rd current injection.

circumseribed sphere in the tetrahedron T; [60]. For an ideal tetrahedron @Q; = 1.
More study about the quality of the meshes used in EIT can be found in [103]. As
can be seen from the Table 5.4, if separable “long” elements are used the errors are
smaller because the elements are not as ill-conditioned as regular “long” elements
{tetrahedral). In Fig. 5.17—5.19, the differences between the true voltages and the
voltages computed by using “long” elements with the second order basis functions
are shown. The same effect can also be seen in the voltage curves. If the stretched
element is too long the results become worse due to the ill-conditioning problem.
On the other hand, if the “long” element is truncated near the electrodes, the
voltages are incorrect due to the truncation.

The disadvantages of using “long” elements can be somewhat overcome by
using infinite elements in the truncation boundary. The results of using infinite
elements with 1/r? decay {mapped infinite elements) and exponential decay are
shown in Table 5.5 and the errors in the nodal voltages in the exponential decay
-case in Figs. 5.21 and 5.20. The exponential decay represents the decay of
the voltages better and therefore the errors are smaller than with 1/r? decay.
The smallest error in the voltages on the electrodes was obtained when z;=14cm,
zo=15 cm and L = 5 (see Fig. 5.21). When z;=14em, zo=16 cmand L. = 7, as in
Fig. 5.20, the error on the electrodes was 0.0023. If the voltages on the electrodes
are wanted to be as accurate as possible the error will increase in the upper part
of the domain, away from the electrodes.

5.2.2 Errors in the reconstructions

Before the actual image reconstructions, effects of the model fruncation on the
solutions were studied in homogeneous situations with different mesh sizes. In the
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Figure 5.20: Voltages U as a function of height z when separable infinite ele-
ments with exponential decay have been used with a) Ist current injection and

b} 33rd current injection.

first tests the voltage measurements were simulated in the homogeneous cylinder
of height 32 em. From the Fig. 5.22 it can be seen that when the reference
voltages are computed in too “small” a mesh (height 18 em) the reconstructed
resistivity values are smaller than the true values near the truncation boundary.
If the reference voltages are computed in too “long” a mesh (height 50 em), Fig.
5.23, the resistivity values are bigger than the true values near the truncation
boundary.

The error caused by assuming that the domain extends to infinity was studied
by simulating the measured voltages in the cylinders of heights 50 cm and 100
cm. The error in the voltages that are computed with infinite elements decreases
when the actual height of the domain increases, which can be seen in the Figs.
5.24-5.25. 'This is because the potentials have decayed almost to zero which is the
assumption when infinite elements are used. However, even if the domain is 100
cm long, the maximum error in the reconstructed resistivities was about 13 %.

To study the effects of the model truncation on image reconstruction, a sim-
ulated resistivity distribution shown in Fig. 5.26 was used. The height of the
cylindrical object was 32 cm and diameter 30 em. Inside the cylinder there were
two different targets whose position with respect to the cylinder can be seen in
Fig. 5.26. The resistivity of the upper target was 500 {2cm and the resistivity of
the lower 100 £2em. The background value was 300 Qcm.

The results when the reference voltages were computed with different mesh
sizes are shown in Fig. 5.27-5.29. In the Fig. 5.27, the Jacobian was computed in
the same size of the mesh as the measured voltages (=32 cm). Also the reference
voltages were computed in real dimensions. For the reconstruction only seven
element layers from the bottom were used {from the bottom to 14 cm). In the Fig.
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Figure 5.21: Voltages U as a function of height z when separable infinite ele-

ments with exponential decay have been used with a) Ist current injection and

b} 33rd current injection.

Plane 1 Plane 2 Plane 3

Plane 5 Plane 6 Plane

Plane 4

7

Figure 5.22: The static reconstruction from simulated homogeneous resistivity

distribution {300 Qcm). Plane 1 is on the bottom of the cylinder and plane 7

is the first layer above the uppermost electrode plane. The Jacobian has been

calculated in same size of the mesh as the measured voltages {z=32 cm) and the

reference voltages in the mesh of 18 cm with equal size finite elements and second

order basis functions.
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Plane 1 Plane 2 Plane 3 Plane 4

Plane 5 Plane 6 Plane 7

Figure 5.23: The static reconstruction from simulated homogeneous resistivity
distribution {300 Q2cm). The Jacobian has been calculated in the same size of the
mesh as the measured voltages (=32 cm) and the reference voltages in the mesh

of 50 em with equal size finite elements and second order basis functions.

5.28 the reference voltages were computed in the mesh of 18 em and in Fig. 5.29 in
the mesh of 14 em. As it can be seen, when the reference voltages were computed
in the mesh whose height was 18 cm the lower target can be seen. Upper in the
cylinder the error caused by the truncation is so big that the upper target can not
be discerned. When the reference voltages were computed in the 14 cm mesh, the
target on the bottom was hardly discernible. When the Jacobian was calculated
in a truncated mesh (the reference was computed in the 32 em mesh) the error
is more pronounced near the truncation plane as can be seen in Fig. 5.30. The
upper target can not be seen at all.

In Fig 5.31, the reference voltages were computed with separable infinite ele-
ments when 2z = 14 cm, 2z, = 15 cm and L=5. One problem with infinite elements
is the inaccuracy of the solution at the beginning of the infinite elements. Similar
results have also been found in [90]. Effect of this inaccuracy can be seen in Fig.
5.31. It is hard to see the upper target because of the error in the middle of the
image. At 32 cm the voltages do not decayed to zero and that causes error as well.
The error caused when using “long” elements can be seen in Fig. 5.32.
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Plane 1 Plane 2

Plane 5 Plane 6 Plane 7

Figure 5.24: The static reconstruction from simulated homogeneous resistivity
distribution {300 Qem). The Jacobian has been calculated in the same size of
the mesh as the measured voltages {z=50 c¢m) and the reference voltages with

separable infinite elements.

Plane 1 Plane 2 Plane 3 Plane 4

Plane 5 Plane 6 Plane 7

Figure 5.25: The static reconstruction from simulated homogeneous resistivity
distribution {300 Qcm, z=100 cm). The Jacobian has been calculated in the mesh

of 50 ¢cm and the reference voltages with separable infinite elements.
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Figure 5.26: Simulated resistivity distribution a) from above, b) from the side.

Plane 2

Plane 5 Plane 6 Plane 7

Figure 5.27: The static reconstruction from simulated resistivity distribution.
The Jacobian and the reference voltages have been computed in same size of the

mesh as the measured voltages {z=32 cm).
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Plane 1 Plane 2 Plane 3 Plane 4

Plane 5 Plane 6 Plane 7

Figure 5.28: The static reconstruction from simulated resistivity distribution.
The Jacobian has been computed in same size of the mesh as the measured

voltages {z=32 cm) and the reference voltages in mesh of 18 cm.

Plane 1 Plane 2 Plane 3 Plane 4

Plane 5 Plane 6 Plane 7

Figure 5.29: The static reconstruction from simulated resistivity distribution.
The Jacobian has been computed in same size of the mesh as the measured

voltages {z=32 c¢m) and the reference voltages in mesh of 14 cm.
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Plane 1 Plane 2 Plane 3 Plane 4

Plane 5 Plane 6 Plane 7

Figure 5.30: The static reconstruction from simulated resistivity distribution.
The Jacobian has been calculated in mesh of 14 cm and the reference voltages in

same size of the mesh as the measured voltages {2=32 cm).

Plane 1 Plane 2 Plane 3 Plane 4

Plane 5 Plane 6 Plane 7

Figure 5.31: The static reconstruction from simulated resistivity distribution.
The Jacobian has been calculated in same size of the mesh as the measured
voltages {z=32 c¢m) and the reference voltages with separable infinite elements,
z1 = 14 ¢m, zz = 15 cm and L=5. The resistivities of the lower and the upper

target were 100 Qlcm and 500 (e, respectively. Background value was 300 Qicm.
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Plane 1 Plane 2 Plane 3 Plane 4

Plane 5 Plane 6 Plane 7

Figure 5.32: The static reconstruction from simulated resistivity distribution.
The Jacobian has been calculated in same size of the mesh as the measured
voltages {z=32 cm) and the reference voltages with separable “long” elements
from 14 c¢cm to 32 cm. Resistivity of the lower target was 100 {icm and the

resistivity of the upper target was 500 {lcm. Background value was 300 Qlcm.



CHAPTER VI

Conclusions

In this work 3D reconstruetion methods for EIT have been proposed. The method
is based on the finite element approximation for the complete electrode model. The
proposed approaches do not impose any restrictions on the geometry of the object
{boundary) or the geometry of the targets. For the model truncation problem,
“extended” finite element methods were also introduced.

Static images were reconstructed with the proposed approaches using a nu-
merical simulation. The aim of the study was not to compare the quality of the
reconstructions or find the optimal priors for the problem to be minimized. In-
stead, the main interest was to compare the efficiency and the computer storage in
different methods cases in which the absolute values of the resistivity distribution
are of interest.

It was found that Gauss-Newton, conjugate gradient and steepest descent
methods converged to the same solution because the functional to be minimized
is same in these methods. Convergence of Gauss-Newton method is the most effi-
cient of the three because the curvature information provided by the Hessian is also
taken into account. However, the memory demand in Gauss-Newton method is
much bigger than in the cases of Conjugate gradient and Steepest descent methods
which may limit the use of the Gauss-Newton method in cases of large dimensional
problems. Memory need of Conjugate gradient and Steepest descent methods is
small and these methods are suitable especially for large dimensional problems.
Convergence rate of steepest descent method is poor but it can be enhanced re-
markably by using inexact line search. Conjugate gradient method is preferable
to steepest descent method because of significantly shorter computational time
which can be further reduced by using inexact line search. In nonlinear conjugate
gradient method the search directions are not as optimal as search directions in
the case of Gauss-Newton method and therefore more iteration steps are needed
for the convergence. However, it has to be noticed that if absolute resistivity
values are not needed and only qualitative images are wanted, the number of the
iteration steps which are needed for the reconstruction is remarkably smaller. Also
in the proposed block-nonlinear conjugate-gradient method the gradients needed
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for the search direction ean be computed in separate bloeks. This reduces fur-
ther the need of storage in the ecomputation and allows parallelization and the
computational time can be further reduced.

When Kaezmarz and Bxtended Kalman filter iterations are compared with
Gauss-Newton, Conjugate gradient and Steepest descent methods, it is important
to notice that they do not converge to the same solution due to different priors
associated. Fxtended Kalman filter is a proper reconstruction method also in sta-
tionary situation. One weakness in this method is that the memory need with
spatial regularization is huge. Finding less memory demanding ways of incorpo-
rating spatial regularization into the state estimation scheme in EIT is a topic of
on-going research. Changing the order of current injections improved the quality
of the extended Kalman filter estimates considerably. The memory need of the
Kaczmarz iteration is smallest comparing to the other proposed reconstruetion
methods. However, the problem in Kaczmarz method arises from the instability
of the solution. In order to get feasible solutions one should know when to cut the
iteration.

It was found that obtaining the absolute resistivity values requires more than
one iteration steps. Also the priors have significant effect on final resistivity values
of the reconstruction. If the iterative reconstruction methods and more accurate
priors are used the absolute resistivity values obtained with EIT from human
subjects could be used for example in inverse EEG and ECG problems, in which the
internal current sources are estimated. The use of resistivity estimates is believed
to improve the accuracy of the source localization [77]. In human experiments the
problem is that the boundary shape is rarely known. However, this problem can
be solved in many ways. MRI or CT images from which the boundary shape could
be extracted could be utilized. Many commercial systems have been developed
for external boundary shape reconstruction. These are usually based on laser and
digital camera techniques, see for example PROFA [21].

If static images of humans are required the boundary conditions on the “cutting
planes”, that is, the termination boundary of the FEM mesh, should be carefully
considered. The obvious approach would be to extend the computations well
beyond the furthest electrode planes. Then the current flow across the termination
boundary would be insignificant, which in turn would justify the use of Neumann
boundary conditions {g8u/8n = 0) on these boundaries. However, this approach
means that the number of parameters increases significantly and that the geometry
of the object should be possible to model also well outside the principal regions
of interest. It was found that in order to make the error of the voltages on the
electrodes fairly small, the mesh should be extended as far as twice the radius of
the cylinder.

In this work, the model truncation problem was studied with separable infinite
elements, “long” finite elements and separable “long” elements. It was found that
approximately the same accuracy can be obtained by using infinite elements as by
using a mesh whose height is twice the radius of the cylinder. The advantage of
infinite elements is that the number of nodes needed is only half of that needed
in the big mesh {see Table 5.3). Hence it does not take so much time to calculate
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the voltages for the static reconstruetions. For example, with Matlab the time
needed for computations with the mesh of 6897 nodes (height of 32 em) was four
times that needed when the infinite elements were used (3344 nodes). However,
there are certain difficulties in using infinite elements, for example, choosing the
decay function. There are also adjustable parameters, the values of which can be
difficult to find in praectice. It was also found that there are inaccuracies in the
solution {potentials) at the beginning of the infinite elements. When the infinite
elements were utilized in the image reconstruction, there was an artifact in the
center of the image due to the mismatch in the forward solution. The error was
almost as big as that when “long” separable elements were used. This is beeause
a mesh of 32 em was used as a test case. If the object to be imaged was longer,
the error with infinite elements would be smaller than that when “long” elements
are used.

In testing the infinite elements, a cylindrical volume which was assumed to
be {almost) unbounded in one direction was considered. The idea that the
three-dimensional basis funetions are separable was used and therefore the one-
dimensional infinite elements can be used also in 3D. This approach is suitable
only in situations in whieh the object to be imaged is cylindrieal and the voltages
decay only in one direction. When more complicated geometries are used, the
separable basis functions cannot be utilized.

In static imaging when real measurements are used, the accuracy requirement
of the computed potentials on the electrodes that correspond to the (initial) dis-
tribution pg is very high. It was found that in certain cases the required accuracy
can be obtained with relatively sparse finite element mesh when the second order
basis functions are used [103, 108, 108]. The modelling of the curved shapes, such
as organs, is also easier with these functions because the shapes of the elements
can be curved as well. In principle, the required accuracy could also be obtained
with the first order basis but this would necessitate the construction of another
much denser mesh. This other mesh should match the same anatomical structures
as the mesh used in the inverse computations. Since mesh generation is one of the
most cumbersome tasks in the method, the use of the second order basis yields an
important benefit.
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APPENDIX |

Basis functions for 3D wedge element

Figure A.l: Three-dimensional infinite element where nodes X }130, X};l, X}lpz,

o
XF, X — oo when vi0, 711, 712, 712, 714, V15 — o0

The nodes X p of a three-dimension wedge-shaped element as in Fig. A.1 are
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A. Basis functions for 3D wedge element
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The basis functions are

where
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