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Hypothesis Testing

Motivation

» Hypothesis testing is one of the most important concepts in statistics

= You want to verify that your data is statistically significant and that the result
did not just happen by chance (unlikely)



Hypothesis Testing

Motivation

= We will use data analysis to obtain information about probability
distributions of particular relevance

How probabilities are distributed a set of possible events



Hypothesis Testing

MY NEW
BUSINESS IS A
TOTAL FLOP!

REMEMRBER Understand
WHAT I TOLD YOU... your
...DO RESEARCH! hypotheses!

The role of research in decision making



Motivation: Importance of Hypothesis Testing

= Evidence-Based Decision Making: Hypothesis testing allows researchers and
decision makers to base their conclusions on solid statistical evidence




Hypothesis Testing

Motivation: Importance of Hypothesis Testing

= Validation of Scientific Results: Hypothesis testing helps determine whether
observed results are statistically significant or can be explained by chance

= This is fundamental!



Hypothesis Testing

Motivation: Importance of Hypothesis Testing

= Quality Control and Processes: Hypothesis tests are used to guarantee the
quality of products and processes (industry, for example)

» Help identify significant deviations from quality standards and take corrective
action



Hypothesis Testing

Motivation: Importance of Hypothesis Testing

= Comparison of Groups and Variables: Hypothesis testing allows you to
compare groups of data or variables to determine whether there are

significant differences between them
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Hypothesis Testing

Motivation: Importance of Hypothesis Testing

= Research Quality Assurance: Hypothesis testing helps ensure that research
results are reliable, replicable and transparent

= [tis important to follow a systematic and statistical procedure



Hypothesis Testing

Motivation

* In summary, hypothesis testing is fundamental in many areas, helping to
support decisions, validate findings, identify statistical relationships and
contribute to the advancement of knowledge and practice in research



Hypothesis Testing

Statistical Inference

» Sampled data sets will be used to infer properties of the original populations

= This is the goal of statistical inference



Hypothesis Testing

Statistical Inference

= Statistical Inference allows researchers to make conclusions about a
population based on evidence from a sample

X -
Population




Statistical Inference

Producing Data

Exploratory Data
Analysis

Population —

 Dpata

Probability



Statistical Inference

= Statistical inference involves two main types of inference:

» Population Parameter Estimation
» Hypothesis Testing

Sampling

Population < Sample

Inference
u,o,p X,S, T



Hypothesis Testing

Statistical Inference

= Population Parameter Estimation: This is the process of estimating the
unknown values (parameters) of a population based on a representative

sample

» Point Estimation: This involves calculating a single value, usually the
mean or proportion, based on the sample data

= Confidence Interval estimation: This involves creating an interval that
contains the population parameter with a specified confidence level.



Hypothesis Testing

Statistical Inference

= Hypothesis Testing

= This involves formulating nul
calculating test statistics, anc

and alternative hypotheses, collecting data,
evaluating statistical evidence to determine

whether the null hypothesis s

nould be rejected



(@)
S
=

©
=

-

®)
%

®

O
O



Hypothesis Testing

Hypothesis Testing

» Hypothesis Testing is a type of statistical analysis in which you put your
assumptions about a population parameter to the test



We expect the
sample mean to be
equal to the
population mean.




What is your SCIENTIFIC
HYPOTHESIS?
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Hypothesis Testing

What is Scientific Hypothesis?
» |t is an attempt to answer a scientific question or explain an observed
phenomenon based on available evidence and prior knowledge

= A scientific hypothesis is one of the initial steps of the scientific method and is
tested through experimentation and data analysis



Hypothesis Testing

Steps to Hypothesis Testing

Step 1: Defining the hypotheses

Step 2: Set the criteria for a decision (level of significance)
Step 3: Data collection (experimental trials)

Step 4: Statistic test

Step 5: Make a decision




Hypothesis Testing

Step 1. Defining Hypothesis

Null Hypothesis

= The null hypothesis, denoted by H,, is the hypothesis that we want to test
and states that there is no effect, difference or association between
variables in the population (Hy: u = 120 ; Hy: iy = Uy)

= An experiment is frequently designed to assess whether a given null
hypothesis of interest can be rejected (or nullified)



Hypothesis Testing

Step 1. Defining Hypothesis

Null Hypothesis

= This is a starting point so that we can decision making

-
hhhhh

= [nitially, we state that the null hypothesis is true



Hypothesis Testing

Step 1. Defining Hypothesis
Alternative Hypothesis

= We compare H, against a competing alternative hypothesis (H;)

= |et's test whether the value of a population parameter is smaller, larger, or
different from the value stated in the null hypothesis (Hi:u #
120 ; Hy: py > o)

» [tis denoted by H,



Lady Tasting Tea

n of Experiments

By

R. A. Fisher, Sc.D., F.R.S.
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Hypothesis Testing

Lady Tasting Tea

Rothamsted Agricultural Experiment Station

Box, J. F. (1980). RA Fisher and the design of experiments, 1922-1926. The American Statistician, 34(1), 1-7.



Lady Tasting Tea




Hypothesis Testing

Lady Tasting Tea

Who were the people involved?

Blanche Muriel




Hypothesis Testing

Lady Tasting Tea

The null hypothesis (Hy): The lady cannot distinguish between two types of
cups of tea with milk

The alternative hypothesis (H;): The lady can distinguish between two types
of cups of tea with milk



Hypothesis Testing

Lady Tasting Tea

How to test? @@
0%

R

A

4 cups with the tea a E i Q

added before the milk

and 4 cups with the tea E E g Q
added after the milk




Hypothesis Testing

Lady Tasting Tea

What is the probability of the lady getting all 8 cups right, considering the null
hypothesis true?

70

8 8! EBxTx6x5H
Cga) =

:41}{4124::{3}{2}::1:

1
_— j— : ':1:.""
- x 100 = 1,43%

The calculated probability value (1.43%) corresponds to p-value



Hypothesis Testing

Hy: Smoking does not cause lung cancer

Correlation is not
causation!

Ronald Fisher (1890-1962)



Hypothesis Testing

Step 2: Set the criteria for a decision

Level of significance

= To set the criteria for a decision, we state the level of significance for a test
» The probability of rejecting the null hypothesis when it is true

= Remember that choosing the significance level is a decision that must be
made before carrying out hypothesis testing



Step 3: Data collection (experimental trials)

Be careful when collecting data!



Hypothesis Testing

Step 4. Statistic test

= A statistical test is a procedure that uses sample data to make decisions
about a population

» The value of the test statistic is used to make a decision regarding the null
hypothesis



Hypothesis Testing

Step 4. Statistic test

= Choosing the appropriate statistical test depends on the nature of the data
and the research question

» Furthermore, it is essential to understand the assumptions associated with
each test and correctly interpret the statistical results



Step 4. Statistic test

Hypothesis Test

Z - test Z-score

T - test T- score

ANOVA F - statistic
Chi-Square Test Chi-square statitsic

And others...



Hypothesis Testing

Step 5: Make decision

= \We use the value of the test statistic to make a decision about the null
hypothesis

» Based on the comparison between the test statistic and the critical value or
p-value



True or False?

The p-value is the probability of rejecting the null hypothesis when it
IS true

= This is the definition of a (significance level)



Hypothesis Testing

What is a p-value?
Definition
» p-value or "probability value"

* The p-value is the probability that the test statistic has an extreme value
relative to the observed value when the null hypothesis (Hy) is true

= [tis a function of the sample data (and also a random variable)

» The p-value is always obtained from a sample



Hypothesis Testing

What is a p-value?
H,: The coin is biased

What is the probability of flipping a coin 5 times and all 5 times it comes up tails?

1 5

It's a very small chance of
happening. But, it is possible.

This probability is the p-value




Hypothesis Testing

Don’t confuse!

» The p-value with the significance level !

» The significance level is the probability of rejecting the null hypothesis when
It is true

» The significance level must be chosen before performing the statistical
test



Hypothesis Testing

[ REPRODUCIBILITY

IN FOCUS II E

Statisticians issue
warning on Pvalues

Statement aims to halt missteps in the quest for certainty.

BY MONYA BAKER

isuse of the P value — a common
test for judging the strength of sci-
entific evidence — is contributing

to the number of research findings that cannot
be reproduced, the American Statistical Asso-
clation (ASA) warned on 8 March. The group
has taken the unusual step of issuing principles
to guide use of the Pvalue, which it says can-
not determine whether a hypothesis is true or
whether results are important.

This is the first time that the 177-year-old
ASA has made explicit recommendations on
such a foundational matter, says executive direc-
tor Ron Wasserstein. The society’s members had
become increasingly concerned that the Pvalue
was being misapplied, in ways that cast doubt on
statistics generally, he adds.

cannot indicate the importance of a finding;
for instance, a drug can have a statistically sig-
nificant effect on patients’ blood glucose levels
without having a therapeutic effect.

Glovanni Parmigiani, a biostatistician at the
Dana Farber Cancer Institute in Boston, Mas-
sachusetts, says that misunderstandings about
what information a P value provides often crop
up in textbooks and practice manuals, A course
correction is long overdue, he adds. "Surely if
this happened twenty years ago, biomedical
research could be in a better place now”

FRUSTRATION AEDUNDS

Criticism of the Pvalue is nothing new. In 2011,
researchers trying to raise awareness about false
positives gamed an analysis to reach a statisti-
cally significant finding: that listening to music
by the Beatles makes undergraduates younger

.1 T T o - mm ames wma

Baker, M. Statisticians issue warning on P values. Nature 531, 151 (2016).



Hypothesis Testing

Believe me..! P value greater than
0.05 indicates chance of your
drowning is not significant.

|
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How do we use and interpret p-values?

= We can compare a p-value with a predefined a

» |f p < a, we reject the null hypothesis H,

» |f p > a, we accept the null hypothesis H,



Hypothesis Testing
/-test

H, is not reject

Critical values for a nondirectional

(two-tailed) test with o = .05

H, is reject H is reject

Rejection region
o =.0250

Rejection region
o =.0250

Frequentist statistics: use of p-value and a as evidence to test a given hypothesis



Hypothesis Testing

The t statistic

= We will use the t-test as an example to understand several concepts of
hypothesis testing

= This will help our discussion of values of p and various testing problems

= [t will be useful when we deal with more complex linear models and other
tests in future classes

= Also known as Student's t-test



Hypothesis Testing

The t statistic

» The t- test is primarily used to compare the means of two groups or samples
and determine whether there Is a statistically significant difference between
them

X

¢ = U

S

n

Where X is the mean of the sample
p is the mean of population
s is the standart deviation
n is the number of observations



Hypothesis Testing

One sample t-test

= One sample t-test is used to determine whether the mean of a single
sample is statistically different from a reference value



Hypothesis Testing

One sample t-test

= You perform an experiment to evaluate the yield of the new genotype, with
n replicates

» Let yi, V5, Vs, ..., ¥y denote the observed values



Hypothesis Testing

One sample t-test

= Assume that the observed values y; are independently sampled from a
distribution with unknown mean u and variance g2

= We usually assume that y;~N (u, %), but for large n the sample mean is close
to a a Normal distribution even if the y; are not normally distributed



One sample t-test

» What hypothesis do we want to test?



One sample t-test

» What hypothesis do we want to test?

» Let uy be a predefined value of interest
= We want to test Hy: u = ug

» The alternative hypothesis (two-sided) is Hy: u # g



Hypothesis Testing

One sample t-test

= We can use the Student’s t-test for that purpose

» From the observed values, calculate the sample mean y and sample
variance s*

* |t can be shown that, under Hy, the statistic
X—u
TS
Jn

follows a t distribution with n -1 degrees of freedom




Hypothesis Testing

= | et’s Practice O1! &

1)0:
’r‘O?/
# Create a random data sample

# Define a reference value and and level of significance (mean that will be tested)

# Run the one-sample t-test
use the t.test( ) function

#Interpret your results



= | et’s Practice 01!

# Create a random data sample

sample <- c(22, 25, 28, 32, 27, 30, 33, 38, 31, 29)

# Define a reference value (average that will be tested)
reference_value =- 30

# Run the one-sample tT-test

result_test <- t.test(sample, mu = reference_value)
result_test

A L

One Sample t-test

data: sample
T = -0.20324, df = 9, p-value = 0.8435
alternative hypothesis: true mean is not equal to 30
95 percent confidence interwval:
26. 36082 33.03918
sample estimates:
mean of x
29.7




Hypothesis Testing

= | et’s Practice 02! &

» For example, we want to evaluate whether a newly obtained
genotype has the potential to be launched as a new cultivar on the
seed market

» Suppose further that farmers only accept genotypes with an
average yield of 4 t/ha




Hypothesis Testing
= Let’s Practice 02!

Test Hy: u = 4t/ha for the following observed yields (in t/ha):

35 43 33 5.7 44
33 46 48 47 38

= First, calculate mean, variance and standard deviation

= Next, calculate the t-statistic
#use the t.test( ) function

((

100



= First, calculate mean and variance

= yields <- c(3.5, 4.3, 3.3, 5.7, 4.4, 3.3, 4.6, 4.8, 4.7, 3.8)
S

= mean(yields)

[1] 4.24

B

= var(yields)

[1] 0.5915556

B

= sd(yields)

[1] 0.7691265



= Next, calculate the t-statistic

= #by equation t-test

= numerator «<- (mean(yields)-4)

> numerator

[1] 0.24

= denominator «<- (sd(yields)/sqgrt(1Q))
> denominator

[1] 0.2432192

> T_stat =- numerator/denominator

> T_Stat

[1] 0.9867644



Hypothesis Testing

= The pt( ) function in R is used to calculate the cumulative distribution function
of the Student's t-distribution

#pt(qg, df, lower.tail = TRUE)

= The abs( ) function is used to calculate the absolute value of a number, that is,
to obtain the positive value of a number

# abs( )

» The corresponding p-value

= 2%pt(abs(t_stat), df = 9, lower.tail = FALSE)
[1] 0.3495419



#or use the t.test( ) function

> T.test(yields, mu =4)
One Sample t-test

data: vyields
T = 0.98676, df = 9, p-value = 0, 3495
alternative hypothesis: true mean is not equal to 4
95 percent confidence interwval:
3.6898 4.7902
sample estimates:
mean of x
4.24




Hypothesis Testing

Two sample t-test

» The two-sample t-test, is used to determine whether the means of two
independent samples are statistically different from each other



Hypothesis Testing

Two sample t-test

= Assume that the observed values are independently sampled from
distributions with unknown means u; and u, for the two groups

= Assume a common unknown variance o

= Again, we commonly assume normality: y;;~N(py 62) and y,;~N(py 02)



= How can we define the Null Hypothesis?



* |n this case, we want to test Hy: 1y = Uy

= Or, equivalently, Hy: uyy —u, =0

» The alternative hypothesis (two-sided) is Hy: uy # U,



Hypothesis Testing

Considering equal variance

= We can now use the two-sample t-test

= From the observed values, calculate the sample means y; and y, for
groups one and two, respectively

= Similarly, calculate sample variances s? and s2

s2+5s2

* Then, obtain a pooled variance estimate: Sﬁ = =



Hypothesis Testing

= |t can be shown that, under H, the statistic

follows a tdistribution with 2n — 2 degrees of freedom






Hypothesis Testing

" | et’s Practice 03!

# Create two random data sample (Group A and Group B)

# Run the two-sample t-test
use the t.test( ) function

#Interpret your results



= | et’s Practice 03!

# Sample data for Group A and Group B
group_a <- c(25, 30, 35, 40, 45)

group_b =<- c(20, 28, 32, 38, 42)

# Perform a two-sample t-test
T_test_result =- t.test{group_a, group_b)
T_test_result

LA U R U

welch Two sample t-test

data: group_a and group_b
T = 0.57417, df = 7.9436, p-value = 0.5817

alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:

-0.063636 15.063636

sample estimates:
mean of x mean of vy

35 32




Hypothesis Testing

= Let’s Practice 04! ffob?/o:

» Suppose you want to compare the growth rate of two strains of a given
bacteria

= You carry out a lab experiment and measure the colony sizes
after two days of growth




Hypothesis Testing
= | et’s Practice 04! - ,
To 0

» For each group, you measure the size of n independent colonies

» Let y11,V12, -+, Y1 denote the observed values for the first group, while values
V21, Va2, -, Vo represent the measured colony sizes for the second group



Hypothesis Testing

» | et’s Practice 04!

» Test Hy: u; = U, for the following observed colony sizes (cm)

Obtain the sample means
Calculate sample variances and the pooled estimate
Calculate the t statistic

And assess its p —value

&
1o Do
Group 1 Group 2
0.4 0.7 1.2 1.0
0.9 0.3 0.7 0.8
0.9 0.8 1.6 1.2
0.8 1.2 0.9 0.7
0.3 1.3 1.0 04
0.5 0.3 0.9 0.8
0.5 0.9 1.6 1.5




= QObtain the sample means

colonies_1 =- (0.4, 0.7, 0.9, 0.3, 0.9,
] Q0

- 3 0.8,
+ 0.8, 1.2, 0.3, 1.3, 0.5, 0

.3, 0.5, 0.9)

colonies_2 <- ¢(1.2, 1, 0.7, 0.8, 1.6, 1.2, 0.9,

-
+
-
-
+ + 0.7, 1, 0.4, 0.9, 0.8, 1.6, 1.5)
=

> mean{colonies_1)

[1] 0.7
b

> mean({colonies_2)
[1] 1.021429



» (Calculate sample variances and the pooled estimate

> var(colonies_1)

[1] 0.1076923

=

= var({colonies_2)

[1] 0.1295055

=

> mediavariancia =- (var{colonies_1) + var{colonies_2)})/2
= mediavariancia

[1] 0.1185989

=

= (pooled_var <- (var{colonies_1) + var(colonies_2))/2)
[1] ©0.1185989



= (Calculate the t statistic:

= (mean_diff <- mean{colonies_1) - mean(colonies_2))
[1] -0.3214286

=

= (t_stat <- mean_diff/sqrt(pooled_var * 2/14))

[1] -2.46941



Hypothesis Testing

= And assess its p —value

= 2 % pt(abs(t_stat), df = 26, lower.tail = FALSE)
[1] 0.02041979

» |f p < a, we reject the null hypothesis H,
= |f p> a, we accept the null hypothesis H,



Hypothesis Testing

#or use the t.test( ) function

> T.test({colonies_1, colonies_2, wvar.equal = TRUE)
Two Sample t-test

data: colonies 1 and colonies 2
T = -2.4694, df = 26, p-value = 0.02042
alternative hypothesis: true difference in means is not equal to O
95 percent confidence interwval:

-0. 38898477 -0.053387237

sample estimates:

mean of x mean of vy

0.700000 1.021429




Hypothesis Testing
Considerations about the t-test

#Notes

= We can test hypotheses such as Hy: u > g (one-tailed tests)

» There are modifications to the t-test when sample sizes and/or variances
are different

= There are also appropriate t-tests for paired samples
= Paired samples are obtained from the same group of individuals or objects
in two different conditions



Hypothesis Testing

Paired Samples t-test: Repeated Experiments

» The paired samples t-test is used to compare the means of two related
measurements that have been collected in pairs

= To assess the change in a continuous outcome across time or within-subjects
across two observations



Hypothesis Testing

= |et’s Practice! c ,
To 0

= Consider evaluating plant growth (plant height) before and after nitrogen
addition (n=10)

= Create the dataframe
= Visualize the data

= Perform the paired sample t-test
#use the argument paired = TRUE

= Demonstrate the histogram



= | et’s Practice!

= (Create the dataframe

# Create dataframe
data =- data.frame(
Number = 1:10,
height_plantsl = c{120, 122, 118, 125, 130, 128, 123, 126, 119, 121),
height_plants2 = c(115, 121, 117, 124, 125, 126, 122, 125, 118, 120)
)



Paired Samples t-test: Repeated Experiments

= \isualize the data

= # visualize the data
= print{data)
Number height_plantsl height_plants2

1 1 120 115
2 2 122 121
3 3 118 117
4 4 125 124
3 3 130 129
o 6 128 126
7 7 123 122
8 8 126 125
9 9 119 118
10 10 121 120



Hypothesis Testing

Paired Samples t-test: Repeated Experiments

» Perform the paired sample t-test

= # Perform the t-test for paired samples
= result_test =- t.test(dataftheight_plantsl, datafheight_plants2, paired = TRUE)
= print(result_teste)

Paired t-test

data: datatheight_plantsl and datafheight_plants2
|t = 3.737, df = 9, p-value = 0.004647 |
alternacive NypoLnesis: Ltrue mean difierence 15 not egual to O

95 percent confidence interwval:
0. 5920007 2.4079993
sample estimates:
mean difference
1.5




Paired Samples t-test: Repeated Experiments

= Demonstrate the histogram

> hist(t_stat) Histogram of t_stat

05
|

04

Density
0.3

02

0.1

0.0




Hypothesis Testing

No hypothesis test is 100% certain. Because the test is based on probabilities,
there is always a chance of making an incorrect conclusion




Hypothesis Testing

Hypothesis Testing

= Possible errors associated with hypothesis testing

Declared non-significant Declared significant
(Hp not rejected) (Hy rejected)

Hy is true Correct Decision
Hpy is non-true




Hypothesis Testing
Declared non-significant Declared significant
(Hy not rejected) (H, rejected)
Hy is true Correct Decision

Hy is non-true Correct Decision




Hypothesis Testing

Types of Error

Declared non-significant Declared significant
(Hy not rejected) (H, rejected)
Hy is true Correct Decision Type | error
Hy is non-true Correct Decision

Type | error: When the null hypothesis (Hy) is true and you reject it

= Called a "false positive" or "false discovery”
= The probability of type | error is denoted as a

= For example, if you choose a significance level of 0.05 for a test, that means there is a 5%
chance of making a Type | error by rejecting Hy when it is true



Hypothesis Testing

Types of Error

Declared non-significant Declared significant
(Hy not rejected) (Hy rejected)
Hy is true Correct Decision Type | error
Hy is non-true Type Il error Correct Decision

Type Il error: When you accept the null hypothesis (H,) when it is false

» Called a "false negative”
* The probability of type Il error is denoted as B

= Power of the test: 1 -8

= The probability of correctly rejecting Hy when it is false



Hypothesis Testing

Types of Error

Generally, you can reduce type | error by increasing (up) the significance
level, but this will increase (up) type Il error

AR

O




Hypothesis Testing

Types of Error

= Resume
Declared non-significant Declared significant
(Hy not rejected) (Hy rejected)
Hy is true Correct Decision Correct Decision
Hy is non-true Type |l error True positive

Type | error: false positive
Type Il error: false negative




Types of Error

When the null
hypothesis (Hy) is
true and you reject it

When you accept the
null hypothesis (Hy)
when it is false




Types of Error

Probability Density
0015 0020 0025 0030

0.010

0.005

0,000

&0 a0 100 120 140 160 180

Adapted from http://stats.stackexchange.com/questions/7402/



Types of Error

Probability Density
0015 0020 Q0025 0030
|

0.010

The probability
of type | error is
denoted as a

0.005

0,000

Adapted from http://stats.stackexchange.com/questions/7402/



Types of Error

Probability Density
0015 0020 0025 Q030

0.010

The probability
of type Il error is
denoted as B

0,005

0.000

Adapted from http://stats.stackexchange.com/questions/7402/



Types of Error

g

8

° The probability

8 of correctly
i e rejecting H,
%‘ z when it is false
E k=
£

0.010

0.005

0.000

Adapted from http://stats.stackexchange.com/questions/7402/



Hypothesis Testing

Multiple Comparison Test

= When we have multiple alternative hypotheses, we refer to it as Multiple
Testing

» |tis important to test multiple hypotheses is to control Type | error



Hypothesis Testing

Multiple Comparison Test

9 /7 A'AN -
VAVAYY W H'ANwW
7 S QWN/ A VAN
o G/ AN/ .

Each test has possible Type | and Type Il errors, and there are many possible ways to
combine them. The probability of a Type | error grows with the number of tests




Hypothesis Testing

Multiple Comparison Test

* Now suppose we perform m independent hypothesis tests, each
at a significance level a

= What is the probability of at least one false positive (Type | error) ?



Hypothesis Testing
Multiple Comparison Test

curve(1-({1-0.01)Ax, x1im = c(0,1000))
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The false positive curve is smaller for 1% than for 5%



Multiple Comparison Test

Furve{l—{l—ﬂ.ﬂS]ﬁx, Xx1im = c({0,1000))

= O ]

=. O

L

O _

L

U §

— O

]

- _
S
O

0 200 400 600 800 1000

X

The false positive curve



Hypothesis Testing

Multiple Comparison Test

» The probability of no false positives in m independent tests is given by

(1-a)
a = 5%
1—a=95%

This means that there is a 95% probability of not making a type | error (false
positive) when rejecting the null hypothesis



Hypothesis Testing

Multiple Comparison Test

= Familywise Error Rate - FWER is a statistical that controls the global type | error
in a family of tests 1 — (1 — a)™

m is the total number hypotheses tested

]| 200
Humber of tests



Hypothesis Testing

Multiple Comparison Test

= |t is important to consider the Familywise Error Rate (FWER) when performing
multiple comparisons because the chances of making a Type | error for a series
of comparisons is greater than the error rate for a separate comparison.



Multiple Comparison Test

» We need to use some strategy to control the occurrence of false
positives (type | error) in multiple tests

= There are some ways to control false positives in a statistical test



Hypothesis Testing

Bonferroni Correction

» The Bonferroni test is a statistical procedure used to control false positives
(type | error) when you perform multiple comparisons tests



Hypothesis Testing

Bonferroni Correction

The Bonferroni Method

= For n hypothesis tests with a significance level (@)

= |tis possible to control the global type | error rate (known as Familywise Error
Rate - FWER)

» Each test is individually compared with a value of a* = %

= a”is the adjusted significance level for each individual test
= «isthe global significance level chosen to control type | error
" misthe total number of tests performed



Hypothesis Testing
Bonferroni Correction

» 1 — a: probability that a type | error will not occur on a test
* (1 —a)™ probability of not having a type | error in m tests
» Note that we are assuming that the m tests are independent

* Then,1—a*" =1 —-a)™
a*=1—-(1—-a)™



Hypothesis Testing

Bonferroni Correction

= Example:
m = 14
a = 0.05

What is the probability of at least one false positive in the 14 tests?
a*=1—-(1—-a)™

Response: a* = 0.51



Hypothesis Testing

Bonferroni Correction

Terms

» When m is large, the Bonferroni correction may be overly conservative

» For example, for m = 30000 and a= 0.05, the value of a* for individual
tests is:

L, a 0.05
& T T 30000

= 1.67e~° = 0.00000167
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False Discovery Rate

False Discovery Rate (FDR)

» Proposed as an alternative to control type | error

= An alternative to the Bonferroni correction is the False Discovery Rate
= Allows an acceptable false positive ratio

= More flexible and adaptable way than Bonferroni correction

= The Benjamini-Hochberg method is the most common method for
controlling FDR



False Discovery Rate

= Calculate the p-values for each hypothesis test

= Sort the p-values in ascending order

» For each p-value, calculate the FDR



Hypothesis Testing

False Discovery Rate

False Discovery Rate (FDR): The Benjamini-Hochberg method

FDR =

(m/N) * p
i

m is the number of rejected tests with p-value less than or equal to p
N is the total number of tests

p is the current p-value being considered
i is the position of the p-value in the ordered list



Hypothesis Testing

False Discovery Rate
False Discovery Rate (FDR): The Benjamini-Hochberg method

» Define a FDR criterion, usually a value between 0.05 (5%) and 0.10 (10%)

» |dentify all p-values that have an FDR less than or equal to the FDR
criterion
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Multiple Testing: False Discovery Rate

False Discovery Rate (FDR): The Benjamini-Hochberg method

» The Benjamini-Hochberg Procedure is a powerful tool that decreases the
False Discovery Rate

» The Benjamini-Hochberg Procedure also helps you to avoid Type | errors
(false positives)!



Hypothesis Testing

Example

False Discovery Rate (FDR): The Benjamini-Hochberg method

= Perform your hypothesis tests and calculate the p-values
» Suppose you have a list of p-values in a vector called p-values
» Order the p-values in ascending order

#use p.adjust function



Example

# p_values 1list
p_values =- ¢(0.02, 0.03, 0.05, 0.07, 0.1, 0.01)

p_values

# Order the p-values in ascending order
p_values_order <- sort(p_values)
p_values_order

# Calculate adjusted FDR using the BH method
fdr_asjusted <- p.adjust(p_values_order, method = "BH")
fdr_asjusted



Example

> # p_values list

= p_values <- c(0.02, 0.03, 0.05, 0.07, 0.1, 0.01)
= p_values

[1] 0.02 0.03 0.05 0.07 0.10 0.01

= # Order the p-values in ascending order

= p_values_order =- sort{p_values)

= p_values_order

[1] 0.01 0.02 0.03 .05 0.07 0.10

= # Calculate adjusted FDR using the BH method

= fdr_asjusted <- p.adjust{p_values_order, method = "BH")
= fdr_asjusted

[1] 0.060 0.060 0.060 0.075 0.084 0.100

» That s, they are the FDR values adjusted for each p-value
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