

This book is destined to become a primary reference for just about anyone

involved in the development of interactive products of almost any kind. It

addresses both the design process and design principles and goes beyond

traditional usability to address all aspects of the user experience. The authors

have distilled two careers’ worth of research, practice and teaching into a

concise, practical and comprehensive guide for anyone involved in designing for

the user experience of interactive products.—Deborah J. Mayhew, Deborah J.

Mayhew & Associates

The UX Book covers the methods and guidelines for interaction design and

evaluation that have been shown to be the most valuable to students and

professionals. The students in my classes have been enthusiastic about the

previous versions of this text that they used. This book will benefit anyone who

wants to learn the right way to create high quality user experiences. Like good

user interfaces, this text has been refined through multiple iterations and

feedback with actual users (in this case, feedback from students and faculty who

used earlier versions of the book in classes), and this is evident in the final

result.— Brad A. Myers, Professor, Human-Computer Interaction Institute,

School of Computer Science, Carnegie Mellon University

The UX Book takes on a big challenge: a comprehensive overview of what it

takes to design great user experiences. Hartson and Pyla combine theory with

practical techniques: you leave the book knowing not just what to do, but why it’s

important.—Whitney Quesenbery, WQusability, author, Global UX: Design and

research in a connected world

Intentionally left as blank

The UX Book
Process and Guidelines for Ensuring

a Quality User Experience

Intentionally left as blank

The UX Book
Process and Guidelines for Ensuring

a Quality User Experience

REX HARTSON

PARDHA S. PYLA

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO
Morgan Kaufmann is an imprint of Elsevier

Acquiring Editor: Rachel Roumeliotis
Development Editor: David Bevans
Project Manager: André Cuello
Designer: Joanne Blank
Cover Designer: Colin David Campbell of Bloomberg L.P.

Morgan Kaufmann is an imprint of Elsevier
225 Wyman Street, Waltham, MA 02451, USA

2012 Elsevier, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or any information storage and
retrieval system, without permission in writing from the publisher. Details on how to seek permission,
further information about the Publisher’s permissions policies and our arrangements with
organizations such as the Copyright Clearance Center and the Copyright Licensing Agency,
can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by
the Publisher (other than as may be noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and
experience broaden our understanding, changes in research methods or professional practices,
may become necessary. Practitioners and researchers must always rely on their own experience and
knowledge in evaluating and using any information or methods described herein. In using such
information ormethods they should bemindful of their own safety and the safety of others, including
parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors,
assume any liability for any injury and/or damage to persons or property as a matter of products
liability, negligence or otherwise, or from any use or operation of any methods, products,
instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data
Application submitted

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 978-0-12-385241-0

Printed in the United States of America
12 13 14 10 9 8 7 6 5 4 3 2 1

For information on all MK publications visit our website at www.mkp.com

“Don’t panic!”1

1Douglas Adams, The Hitchhiker’s Guide to the Galaxy

Intentionally left as blank

Preface

GOALS FOR THIS BOOK

Our main goal for this book is simple: to help readers learn how to create and

refine interaction designs that ensure a quality user experience (UX). A good

user interface is like an electric light: when it works, nobody notices it. (We used

to be able to use the telephone as a similar example, but now multifunction

cell phones with all kinds of modalities have thrown that example under the

bus.) A good user interface seems obvious, but what is not obvious is how to

design it so that it facilitates a good user experience. Thus, this book addresses

both what constitutes a positive user experience and the process by which it

can be ensured.

Books need to be designed too, which means establishing user (reader)

experience goals, requirements, user role (audience) definitions, and the like.

Our goals for the reader experience include ensuring that:

n the book is easy to read

n the material is easy to learn

n the material is easy to apply

n the material is useful to students and practitioners

n the reader experience is at least a little bit fun

Our goals for the book content include:

n expanding the concept of traditional usability to a broader notion of user experience

n providing a hands-on, practical guide to best practices and established principles in a

UX lifecycle

n describing a pragmatic process built on an iterative evaluation-centered UX lifecycle

template for managing the overall development effort

n expanding the traditional role of design in the iterative lifecycle to embrace design

thinking and ideation to address the new characteristics embodied within user

experience

n providing interaction design guidelines, including in-depth discussion of affordances

and other foundational concepts

n facilitating an understanding of key interaction design creation and refinement

activities, such as:

n contextual inquiry to understand user work that the design is to support

n contextual analysis to make sense of the raw contextual inquiry data

n requirements extraction

n design-informing modeling

n conceptual and detailed design

n establishing user experience goals, metrics, and targets

n building rapid prototypes

n performing formative user experience evaluation

n iterative interaction design refinement.

n describing alternative agile UX development methods

n providing pointers on how to get started with these ideas in your own

work environment

Our goals for scope of coverage include:

n depth of understanding—detailed information about different aspects of the UX

process (like having an expert accompanying the reader)

n breadth of understanding—as comprehensive as space permits

n range of application—the process and the design infrastructure and vocabulary,

including guidelines, are not just for GUIs and the Web but for all kinds of interaction

styles and devices, including ATMs, refrigerators, road signs, ubiquitous computing,

embedded computing, and everyday things.

As we were wrapping up this book, the following quote from Liam Bannon

(2011) came to our attention:

Some years ago, HCI researcher Panu Korhonen of Nokia outlined to me how HCI is

changing, as follows: In the early days the Nokia HCI people were told “Please evaluate our

user interface, and make it easy to use.” That gave way to “Please help us design this user

interface so that it is easy to use.” That, in turn, led to a request: “Please help us find what

the users really need so that we know how to design this user interface.” And now, the

engineers are pleading with us: “Look at this area of life, and find us something interesting!”

This, in a nutshell, tells a story of how HCI has moved from evaluation of interfaces through

design of systems and into general sense-making of our world.

x PREFACE

We were struck by this expressive statement of past, present, and future

directions of the field of HCI. It was our goal in this book to embrace this scope

of historical roots, the changing perspectives of thought, and future design

directions.

USABILITY IS STILL IMPORTANT

The study of usability, a key component of ensuring a quality user experience, is

still an essential part of the broad and multidisciplinary field of human–

computer interaction. It is about getting our users past the technology and

focusing on getting things done for work. In other words, it is about designing

the technology as an extension of human capabilities to accomplish something

and to be as transparent as possible in the process.

A simple example can help boost this oft-unexplained imperative, “make it

transparent,” into more than a nice platitude. Consider the simple task of

writing with pencil and paper. The writer’s focus is all about capturing

expressions to convey content and meaning. Much mental energy can be

directed toward organizing the thoughts and finding the right words to express

them. No thought at all should be necessary toward the writing tools, the pencil

and paper, or computer-based word processor. These tools are simply an

extension of the writer. Until, that is, the occurrence of a breakdown, something

that causes an attention shift from the task to the tools.

Perhaps the pencil lead breaks or a glitch occurs in the word processor

software. The writer must turn attention away from the writing and think about

how to get the software to work, making the tool that was transparent to the

writer in the writing task become the focus of a breakdown recovery task

(Heidegger, 1962; Weller & Hartson, 1992). Similarly, interaction designs that

cause usability breakdowns for users turn attention away from the task to the

computer and the user interface.

BUT USER EXPERIENCE IS MORE THAN USABILITY

As our discipline evolves and matures, more and more technology companies

are embracing the principles of usability engineering, investing in sophisticated

usability labs and personnel to “do usability.” As these efforts are becoming

effective at ensuring a certain level of usability in the products, leveling the field

on that front, new factors have emerged to distinguish the different competing

products.

xiPREFACE

While usability is essential to making technology transparent, in these days

of extreme competition among different products and greater consumer

awareness, that is not sufficient. Thus, while usability engineering is still a

foundation for what we do in this book, it does not stop there. Because the focus

is still on designing for the human rather than focusing on technology, “user-

centered design” is still a good description. We now use a new term to express a

concern beyond just usability: “user experience.”

The concept of user experience conjures a broader image of what users come

away with, inviting comparisons with theatre (Quesenbery, 2005), updating the

old acronyms—for example, WYXIWYG, What You eXperience Is What You Get

(Lee, Kim, & Billinghurst, 2005)—and spawning conferences—for example,

DUX, Designing for User Experience. We will see that, in addition to traditional

usability attributes, user experience entails social and cultural interaction,

value-sensitive design, and emotional impact—how the interaction experience

includes “joy of use,” fun, and aesthetics.

A PRACTICAL APPROACH

This book takes a practical, applied, hands-on approach, based on the

application of established and emerging practices, principles, and proven

methods to ensure a quality user experience. The process is about practice,

drawing on the creative concepts of design exploration and visioning to make

designs that appeal to the emotions of users, while also drawing on engineering

concepts of cost-effectiveness—making things as good as the resources permit,

but not necessarily perfect.

The heart of the book is an iterative and evaluation-centered UX lifecycle

template, called the Wheel, for interaction design in Part I: Process. Lifecycle

activities are supported by specific methods and techniques spelled out in

Chapters 3 through 19, illustrated with examples and exercises for you to apply

yourself. The process is complemented by a framework of principles and

guidelines in Part II: Design Infrastructure and Guidelines for getting the right

content into the product. And, throughout, we try to keep our eye on the prize,

the pragmatics of making it all work in your development environment.

ORDER OF THE MATERIAL

We faced the question of whether to present the process first or the design

infrastructure material. We chose to start with the process because the process

contains development activities that should precede design. We could just as

xii PREFACE

well have started with the design infrastructure chapters, especially the

interaction design guidelines, and you can read it in that order, too.

One important reason for covering the process first is a practical

consideration in the classroom. In our experience, we have found it effective to

teach process first so that students can get going immediately on their

semester-long team project. Perhaps their designs might be a little better if

they had the guidelines first, but we find that it does not matter, as their projects

are about learning the process, not making the best designs. Later, when we

do get into the design guidelines, the students appreciate it more because

they have a process structure for where it all goes.

Use the Index
Use the index! We have tried to keep the text free of inter-section references. So,

if you see a term you do not understand, use the index to find out where it is

defined and discussed.

OUR AUDIENCE

This book is not a survey of human–computer interaction, usability, or user

experience. Nor is it about human–computer interaction research. It is a

how-to-do-it handbook, field guide, and textbook for students aspiring to be

practitioners and practitioners aspiring to be better. The approach is practical,

not formal or theoretical. Some references are made to the related science, but

they are usually to provide context to the practice and are not necessarily

elaborated.

Anyone involved in, or wishing to learn more about, creating interaction

designs to ensure a quality user experience will benefit from this book. It is

appropriate for a broad spectrum of readers, including all kinds of practitioners—

interaction designers, graphic designers, usability analysts, software engineers,

programmers, systems analysts, software quality-assurance specialists, human

factors engineers, cognitive psychologists, cosmic psychics, trainers, technical

writers, documentation specialists, marketing personnel, and project managers.

Practitioners in any of these areas will find the hands-on approach of this book

to be valuable and can focus mainly on the how-to-do-it parts.

Researchers in human–computer interaction will also find useful information

about the current state of user interaction design and guidelines in the field.

Software engineers will find this book easy to read and apply because it relates

interaction design processes to those in software engineering.

xiiiPREFACE

Academic readers include teachers or instructors and students. The

perspectives of student and practitioner are very similar; both have the goal

of learning, only in slightly different settings and perhaps with different

motivations and expectations.

We have made a special effort to support teachers and instructors for use in a

college or university course at the undergraduate or graduate level. We are

especially mindful that many of our teacher/instructor readers might be faced

with teaching this material for the first time or without much background of

their own. We have included, especially in the separate instructor’s guide, much

material to help them get started.

In addition to the material for course content, we have compiled a wide

range of pedagogical and administrative support materials, for example, a

comprehensive set of course notes, suggested course calendar, sample syllabi,

project assignments, and even sample course Web pages. The exercises are

adapted easily for classroom use in an ongoing, semester-long set of in-class

activities to design, prototype, and evaluate an interaction design. As instructors

gain the experience with the course, we expect they will tailor thematerials, style,

and content to the needs of their own particular setting.

We also speak to our audiences in terms of their backgrounds and needs. We

want those working to develop large domain-complex systems in large-scale

projects to have a sufficiently robust process for those jobs. We also want to

address young “UXers” who might think the full process is overly heavy and

engineering-like. We offer multiple avenues to lighter-weight processes. For

many parts of the full process we offer abridged approaches.

In addition, we have added a chapter on rapid evaluation techniques and a

chapter on agile UX methods, paralleling the agile software engineering

processes in the literature. But we want these readers to understand that the

abridged and agile processes they might use for product and small system

development are grounded in full and robust processes used to develop systems

with complex domains. Even if one always takes the abridged or agile path, it

helps to appreciate the full process, to understand what is being abridged. Also,

no matter what part of this book you need, you will find it valuable to see it set in

a larger context.

Some readers will want to emphasize contextual inquiry, whereas others will

want to focus on design. Although many of the process chapters have an

engineering flavor, the design chapter takes on themore “designerly” essence of

design thinking, sketching, and ideation. Others yet will want the heaviest

coverage on evaluation of all kinds, as that is the “payoff” activity. We take the

xiv PREFACE

approach that the broadest coverage will reach the needs of the broadest of

audiences. Each reader can customize the way of reading the book, deciding

which parts are of interest and ignoring and skipping over any parts that are not.

INCREASING MATURITY OF THE DISCIPLINE AND
AUDIENCE

We are approaching two decades since the first usability engineering process

books, such as Nielsen (1993), Hix and Hartson (1993), and Mayhew (1999),

and human–computer interaction as a discipline has since evolved andmatured

considerably. We have seen the World Wide Web mature to become a stock

medium of commerce. The mobile communications revolution keeps users

connected to one another at all times. New interaction techniques emerge and

become commonplace overnight to make the users’ information literally a

“touch” away.

Despite all these technological advances, the need for a quality user

experience remains paramount. If anything, the importance of ensuring a

positive user experience keeps increasing. Given the pervasive information

overload, combined with the expectation that everyone is computer savvy, the

onus on designing for a quality user experience is even more critical these days.

Among all these advances, many of the concepts of existing design and

development paradigms are more or less unchanged, but emerging new

paradigms are stretching our understanding and definition of our primary

mandate—to create an interaction design that will lead to a quality user

experience. Approaches to accomplish this mandate have evolved from

engineering-oriented roots in the early 1990s to more design-driven

techniques today.

Although much has been added to the literature about parts of the

interaction development process, the process is still unknown to many and

misunderstood by many and its value is unrecognized by many. For example,

many still believe it is just about “usability testing.”

Since our first book (Hix & Hartson, 1993), we have conducted many short

courses and university courses on this material, working with literally hundreds

of students and user experience practitioners at dozens of locations in business,

industry, and government. We have learned quite a bit more about what works

and what does not.

It is clear that, in this same period of time, the level of sophistication among

our audiences has increased enormously. At the beginning we always had to

xvPREFACE

assume that most people in our classes had no user experience background, had

never heard of user experience specialists, and, in fact, needed some motivation

to believe in the value of user experience. As time went on, we had to adjust the

short course to audiences that required no motivation and audiences

increasingly knowledgeable about the need for quality user experience and what

was required to achieve it. We started getting user experience specialists in the

class—self-taught and graduates of other user experience courses.

WHAT WE DO NOT COVER

Although we have attempted a broad scope of topics, it is not possible to include

everything inonebook,nor is itwise toattempt it.Weapologize ifyourfavoritetopic

is excluded, but we had to draw the line somewhere. Further, many of these

additional topicsare sobroad in themselves that theycannotbecoveredadequately

in a section or chapter here; each could (and most do) fill a book of their own.

Among the topics not included are:

n Accessibility and the American Disabilities Act (ADA)

n Internationalization and cultural differences

n Ergonomic health issues, such as repetitive stress injury

n Specific HCI application areas, such as societal challenges, healthcare systems, help

systems, training, and designing for elders or other special user populations

n Special areas of interaction such as virtual environments or 3D interaction

Additionally, our extensive discussions of evaluation, such as usability testing,

are focused on formative evaluation, evaluation used to iteratively improve

interaction designs. Tutorials on performing summative evaluation (to assess a

level of performance with statistically significant results) are beyond our scope.

ABOUT THE EXERCISES

The Exercises Are an Integral Part of the Course Structure
A Ticket Kiosk System is used as an ongoing user interaction development

example for the application of material in examples throughout the book. It

provides the “bones” upon which you, the reader or student, can build the flesh

of your own design for quality user experience. In its use of hands-on exercises

based on the Ticket Kiosk System, the book is somewhat like a workbook. After

xvi PREFACE

each main topic, you get to apply the new material immediately, learning the

practical techniques by active engagement in their application.

Take Them in Order
As explained earlier, we could have interchanged Part I and Part II; either part

can be read first. Beyond this option, the book is designed mainly for sequential

reading. Each process chapter and each design infrastructure chapter build on

the previous ones and add a new piece to the overall puzzle. Because thematerial

is cumulative, we want you to be comfortable with the material from one chapter

before proceeding to the next. Similarly, each exercise builds on what you

learned and accomplished in the previous stages—just as in a real-world project.

For some exercises, especially the one in which you build a rapid prototype,

you may want to spread the work over a couple of days rather than the couple of

hours indicated. Obviously, the more time you spend working on the exercises,

the more you will understand and appreciate the techniques they are designed

to teach.

Do the Exercises in a Group if You Can
Developing a good interaction design is almost always a collaborative effort, not

performed in a vacuum by a single individual. Working through the exercises

with at least one other interested person will enhance your understanding and

learning of thematerials greatly. In fact, the exercises are written for small teams

because most of these activities involve multiple roles. You will get the most out

of the exercises if you can work in a team of three to five people.

The teamwork will help you understand the kinds of communication,

interaction, and negotiation that take place in creating and refining an

interaction design. If you can season the experience by including a software

developer with responsibility for software architecture and implementation,

many new communication needs will become apparent.

Students
If you are a student in a course, the best way to do the exercises is to do them in

teams, as in-class exercises. The instructor can observe and comment on your

progress, and you can share your “lessons learned” with other teams.

Practitioners: Get buy-in to do the exercises at work
If you are a practitioner or aspiring practitioner trying to learn this material in

the context of your regular work, the best way of all is an intensive short course

with team exercises and projects. Alternatively, if you have a small interaction

xviiPREFACE

design team in your work group, perhaps a team that expects to work together

on a real project, and your work environment allows, set aside some time (say,

two hours every Friday afternoon) for the team exercises. To justify the extra

overhead to pull this off, you will probably have to convince your project

manager of the value added. Depending on whether yourmanager is alreadyUX

literate, your justification may have to start with a selling job for the value of a

quality user experience (see Chapter 23).

Individuals
Do not let the lack of a team stop you from doing the exercises. Try to find at

least one other person with whom you can work or, if necessary, get what you can

from the exercises on your own. Although it would be easy to let yourself skip the

exercises, we urge you to do as much on each of them as your time permits.

PROJECTS

Students
Beyond the exercises, more involved team projects are essential in a course on

development for a quality user experience. The course behind this book is, and

always has been, a learn-by-doing course—both as a university course and in all

of our short courses for business and industry.

In addition to the small-scale, ongoing example application used by teams as a

series of in-class activities in conjunction with the book exercises, we cannot

emphasize enough the importance of a substantial semester-long team project

outside of class, using a real client from the community—a local company, store,

or organization that needs some kind of interactive software application

designed. The client stands to get some free consulting and even a system

prototype in exchange for serving as the project client.

Instructors: See the instructor’s guide for many details on how to organize

and conduct these larger team projects. The possibilities for project applications

are boundless; we have had students develop interaction designs for all kinds of

applications: electronic mail, an interactive Monopoly game, a personnel

records system, interactive Yellow Pages, a process control system, a circuit

design package, a bar-tending aid, an interactive shopping cart, a fast-food

ordering system, and so on.

Practitioners
As a way of getting started in transferring this material to your real work

environment, you and your existing small team can select a low-risk project. You

or your co-workers may already be familiar and even experienced with some of

xviii PREFACE

those activities and may even already be doing some of them in your

development environment. By making them part of a more complete and

informed development lifecycle, you can integrate what you know with new

concepts presented in the book.

For example, many development teams use rapid prototyping. Nonetheless,

many teams do not know how to make a low-fidelity prototype (as opposed to

one programmed on a computer) or do not know what to do with such a

prototype once they have one. Many teams bring in users and have them try out

the interaction design, but teams often do not know what data are most

important to collect during user sessions and do not know the most effective

analyses to perform once they have collected those data. Many do not know

about the most effective ways to use evaluation data to get the best design

improvements for the money. And very few developers know about measurable

user experience targets—what they are, how to establish them, and how to use

them to help improve the user experience of an interaction design and to

manage the process. We hope this book will help you answer such questions.

ORIGINS OF THE BOOK

Real-World Experience
Although we have been researchers in human–computer interaction, we both

have been also teachers and practitioners who have successfully used the

techniques described in this book for real-world development projects, and we

know of dozens, if not hundreds, of organizations that are applying this material

successfully.

One of us (RH) has been teaching this material for 30 years in both a

university setting and a short course delivered to hundreds of practitioners in

business, industry, government, and military organizations. Obviously a much

broader audience can be reached by a book than can be taught in person, which

is why we have written this book. Because this book is rooted in those courses, the

material has been evaluated iteratively and refined carefully through many

presentations over a large number of years.

Research and Literature
In the Department of Computer Science at Virginia Tech, we (RH and

colleagues) established one of the pioneering research programs in

human–computer interaction back in 1979. Over the years, our work has had

the following two important themes.

xixPREFACE

• Getting usability, and now UX, right in an interaction design requires an effective

development process integrated within larger software and systems development

processes.

• The whole point of work in this discipline, including research, is to serve effective

practical application in the field.

The first point implies that human–computer interaction and designing for

user experience have strong connections to software and systems engineering.

Difficulties arise if human–computer interaction is treated only as a psychology

or human factors problem or if it is treated as only a computer science problem.

Many people who enter the HCI area from computer science do not bring to the

job an appreciation of human factors and the users. Many people who work in

human factors or cognitive psychology do not bring an appreciation for

problems and constraints of the software engineering world.

The development of high-quality user interaction designs depends on

cooperation between the roles of design and implementation. The goals of

much of our work in the past decade have been to help (1) bridge the gap

between the interaction design world and the software implementation world

and (2) forge the necessary connections between UX and software engineering

lifecycles.

The second defining theme of our work over the past years has been

technology exchange between academia and the real world—getting new

concepts out into the real world and bringing fresh ideas from the field of praxis

back to the drawing boards of academia. Ideas from the labs of academia are just

curiosities until they are put into practice, tested and refined in the face of real

needs, constraints, and limitations of a real-world working environment.

Because this book is primarily for practitioners, however, it is not formal and

academic. As a result, it contains fewer references to the literature than would a

research-oriented book. Nonetheless, essential references have been included;

after all, practitioners like to read the literature, too. The work of others is

acknowledged through the references and in the acknowledgments.

AROUSING THE DESIGN “STICKLER” IN YOU

We are passionate about user experience, and we hope this enthusiasm will take

hold within you, too. As an analogy, Eats, Shoots, & Leaves: The Zero Tolerance

Approach to Punctuation by Lynn Truss (2003) is a delightful book entirely about

punctuation—imagine! If her book rings bells for you, it can arouse what she

xx PREFACE

calls your inner punctuation stickler. You will become particular and demanding

about proper punctuation.

With this book, we hope to arouse your inner design stickler. We could think

of no happier outcome in our readers than to have examples of poor interaction

designs and correspondingly dreadful user experiences trigger in you a ghastly

private emotional response and a passionate desire to do something about it.

This book is for those who design for users who interact with almost any kind

of device. The book is especially dedicated to those in the field who get “hooked

on UX,” those who really care about the user experience, the user experience

“sticklers” who cannot enter an elevator without analyzing the design of the

controls.

FURTHER INFORMATION ON OUR WEBSITE

Despite the large size of this book, we had more material than we could fit into

the chapters so we have posted a large number of blog entries about additional

but related topics, organized by chapter. See this blog on our Website at

TheUXBook.com. At this site you will also find additional readings for many of

the topics covered in the book.

ABOUT THE AUTHORS

Rex Hartson is a pioneer researcher, teacher, and practitioner–consultant in

HCI and UX. He is the founding faculty member of HCI (in 1979) in the

Department of Computer Science at Virginia Tech. With Deborah Hix, he was

co-author of one of the first books to emphasize the usability engineering

process, Developing User Interfaces: Ensuring Usability Through Product & Process.

Hartson has been principal investigator or co-PI at Virginia Tech on a large

number of research grants and has published many journal articles, conference

papers, and book chapters. He has presented many tutorials, invited lectures,

workshops, seminars, and international talks. He was editor or coeditor for

Advances in Human–Computer Interaction, Volumes 1–4, Ablex Publishing Co.,

Norwood, New Jersey. His HCI practice is grounded in over 30 years of

consulting and user experience engineering training for dozens of clients in

business, industry, government, and the military.

Pardha S. Pyla is a Senior User Experience Specialist and Lead Interaction

Designer for Mobile Platforms at Bloomberg LP. Before that he was a researcher

and a UX consultant. As an adjunct faculty member in the Department of

xxiPREFACE

Computer Science at Virginia Tech he worked on user experience

methodologies and taught graduate and undergraduate courses in HCI and

software engineering. He is a pioneering researcher in the area of bridging the

gaps between software engineering and UX engineering lifecycle processes.

xxii PREFACE

Acknowledgments

I (RH) must begin with a note of gratitude to my wife, Rieky Keeris, who

provided me with a happy environment and encouragement while writing this

book. While not trained in user experience, she playfully engages a well-honed

natural sense of design and usability with respect to such artifacts as elevators,

kitchens, doors, airplanes, entertainment controls, and road signs that we

encounter in our travels over the world. You might find me in a lot of different

places but, if you want to find my heart, you have to look for wherever

Rieky is.

I (PP) owe a debt of gratitude to my parents and my brother for all their

love and encouragement. They put up with my long periods of absence from

family events and visits as I worked on this book. I must also thank my brother,

Hari, for being my best friend and a constant source of support as I worked on

this book.

We are happy to express our appreciation to Debby Hix, for a careeer-long

span of collegial interaction. We also acknowledge several other individuals with

whom we’ve had a long-term professional association and friendship at Virginia

Tech, including Roger Ehrich, Bob and Bev Williges, Tonya Smith-Jackson, and

Woodrow Winchester. Similarly we are grateful for our collaboration and

friendship with these other people who are or were associated with the

Department of Computer Science: Ed Fox, John Kelso, Sean Arthur, Mary Beth

Rosson, and Joe Gabbard. We are also grateful to Deborah Tatar and Steve

Harrison of the Center for Human-Computer Interaction at Virginia Tech

for steering us to consider more seriously the design thinking paradigm

of HCI.

We are indebted to Brad Myers of Carnegie Mellon University for the use of

ideas, words, examples, and figures in the contextual inquiry and modeling

chapters. Brad was instrumental in the evolution of the material in this book

through his patient adoption of and detailed feedback from early and

incomplete trial versions.

In addition, we wish to thank Janet Davis of Grinnell College for her adoption

of an early draft of this book and for her detailed and insightful feedback.

Thanks also to Jon Meads of Usability Architects, Inc. for help with ideas for

the chapter on agile UX methods and to John Zimmerman of CMU for

suggesting alternative graphical representations of some of the models.

Additionally, one paragraph of Chapter 4 was approved by Fred Pelton.

SusanWyche helped with discussions and introduced us to Akshay Sharma, in

the Virginia Tech Department of Industrial Design. Very special thanks to

Akshay for giving us personal access to the operations of the Department of

Industrial Design and to his approach to teaching ideation and sketching.

Akshay also gave us access to photograph the ideation studio and working

environment there, including students at work and the sketches and prototypes

they produced. And finally our thanks for the many photographs and sketches

provided by Akshay to include as figures in design chapters.

It is with pleasure we acknowledge the positive influence of Jim Foley, Dennis

Wixon, and Ben Shneiderman, with whom friendship goes back decades and

transcends professional relationships.

We thank Whitney Quesenbery for discussions of key ideas and

encouragement to keep writing. Thanks also to George Casaday for many

discussions over a long-term friendship.We would like to acknowledge Elizabeth

Buie for a long and fruitful working relationship and for helpful discussions

about various topics in the book. And wemust mention Bill Buxton, a friend and

colleague who was a major influence on the material about sketching and

ideation.

We are grateful for the diligence and professionalism of the many, many

reviewers over the writing lifecycle, for amazingly valuable suggestions that have

helped make the book much better than what it started out to be. Especially to

Teri O’Connell and Deborah J. Mayhew for going well beyond the call of duty in

detailed manuscript reviews.

We wish to thank the Department of Computer Science at Virginia Tech for

all the support and encouragement.

Among those former students especially appreciated for volunteering untold

hours of fruitful discussions are Terence Andre, Steve Belz, and Faith McCreary.

I (RH) enjoyed my time working with you three and I appreciate what you

contributed to our discussions, studies, and insights.

Susan Keenan, one of my (RH) first Ph.D. students in HCI, was the one

who started the User Action Framework (UAF) work. Jose (Charlie) Castillo

and Linda van Rens are two special friends and former research

collaborators.

We wish to thank all the HCI students, including Jon Howarth and Miranda

Capra, we have had the pleasure of working with over the years. Our discussions

xxiv ACKNOWLEDGMENTS

about research and practice with Jon and Miranda have contributed

considerably to this book. We extend our appreciation to Tejinder Judge for

her extensive help with studies exploring contextual inquiry and contextual

analysis.

We also acknowledge all the students in classes where early drafts of this book

were tested for their feedback and suggestions.

We also wish to acknowledge Mara Guimarães da Silva for very dedicated,

generous, and conscientious help in gathering and formatting the references in

this book.

Special thanks to Colin David Campbell of Bloomberg L.P. for the design of

the book cover and many diagrams in the book.

Thanks to Mathilde Bekker and Wolmet Barendregt for discussions during

my (RH) visits to Technische Universiteit Eindhoven (TU/e) in the

Netherlands.

Many thanks to Phil Gray and all the other nice people in the Department of

Computing Science at the University of Glasgow for hosting my (RH) wonderful

sabbatical in 1989. Special thanks to Steve Draper, Department of Psychology,

University of Glasgow, for providing a comfortable and congenial place to live

while I was there in 1989. And thanks to Dan Olson for good memories of doing

contextual studies on the Isle of Mull.

And thanks to Jeri Baker, the director of the ONE Spirit organization

(www.nativeprogress.org), who has put up with my (RH) absence from my post

in helping her with that organization while working on this book.

It is not possible to name everyone who has contributed to or influenced

our work, professionally or personally, and it is risky to try. We have interacted

with a lot of people over the years whose inputs

have benefitted us in the writing. If you feel that

we have missed an acknowledgement to you, we

apologize; please know that we appreciate you

nonetheless. Our thanks go out to you anonymous

contributors.

Finally, we thank the students for the fun we

have had with them at Usability Day parties and at

dinners and picnics at Hartveld. In particular, we

thank Terence Andre for creating the UAF hat,

used at many meetings, and Miranda Capra for

baking a UAF cake for one of our famous Fourth

of July parties.

xxvACKNOWLEDGMENTS

Finally, we are grateful for all the support from André Cuello, Dave Bevans,

Steve Elliot, and all the others at Morgan Kauffman. It has been a pleasure to

work with this organization.

xxvi ACKNOWLEDGMENTS

Guiding Principles for the UX
Practitioner

Be goal-directed.

Don’t be dogmatic; use your common sense.

Context is everything.

The answer to most questions is “it depends.”

It’s about the people.

Everything should be evaluated in its own way.

Improvise, adapt, and overcome.

Intentionally left as blank

Contents

PREFACE ix

ACKNOWLEDGMENTS xxiii

GUIDING PRINCIPLES FOR THE UX PRACTITIONER xxvii

Chapter 1: Introduction 1

1.1 Ubiquitous interaction 1

1.2 Emerging desire for usability 7

1.3 From usability to user experience 9

1.4 Emotional impact as part of the user experience 24

1.5 User experience needs a business case 33

1.6 Roots of usability 36

Chapter 2: The Wheel: A Lifecycle Template 47

2.1 Introduction 47

2.2 A UX process lifecycle template 53

2.3 Choosing a process instance for your project 60

2.4 The system complexity space 64

2.5 Meet the user interface team 73

2.6 Scope of UX presence within the team 75

2.7 More about UX lifecycles 75

Chapter 3: Contextual Inquiry: Eliciting Work Activity Data 87

3.1 Introduction 87

3.2 The system concept statement 96

3.3 User work activity data gathering 98

3.4 Look for emotional aspects of work practice 120

3.5 Abridged contextual inquiry process 120

3.6 Data-driven vs. model-driven inquiry 121

3.7 History 125

Chapter 4: Contextual Analysis: Consolidating and Interpreting Work Activity Data 129

4.1 Introduction 129

4.2 Organizing concepts: work roles and flow model 132

4.3 Creating and managing work activity notes 136

4.4 Constructing your work activity affinity diagram (WAAD) 144

4.5 Abridged contextual analysis process 157

4.6 History of affinity diagrams 159

Chapter 5: Extracting Interaction Design Requirements 161

5.1 Introduction 161

5.2 Needs and requirements: first span of the bridge 163

5.3 Formal requirements extraction 165

5.4 Abridged methods for requirements extraction 178

Chapter 6: Constructing Design-Informing Models 181

6.1 Introduction 181

6.2 Design-informing models: second span of the bridge 181

6.3 Some general “how to” suggestions 184

6.4 A New example domain: slideshow presentations 186

6.5 User models 187

6.6 Usage models 209

6.7 Work environment models 235

6.8 Barrier summaries 242

6.9 Model consolidation 244

6.10 Protecting your sources 246

6.11 Abridged methods for design-informing models extraction 246

6.12 Roots of essential use cases in software use cases 248

Chapter 7: Design Thinking, Ideation, and Sketching 251

7.1 Introduction 251

7.2 Design paradigms 253

7.3 Design thinking 259

7.4 Design perspectives 261

7.5 User personas 264

7.6 Ideation 274

7.7 Sketching 284

7.8 More about phenomenology 291

Chapter 8: Mental Models and Conceptual Design 299

8.1 Introduction 299

8.2 Mental models 299

8.3 Conceptual design 305

8.4 Storyboards 316

xxx CONTENTS

8.5 Design influencing user behavior 324

8.6 Design for embodied interaction 328

8.7 Ubiquitous and situated interaction 331

Chapter 9: Design Production 333

9.1 Introduction 333

9.2 Macro view of lifecycle iterations for design 334

9.3 Intermediate design 337

9.4 Detailed design 339

9.5 Wireframes 340

9.6 Maintain a custom style guide 348

9.7 Interaction design specifications 350

9.8 More about participatory design 352

Chapter 10: UX Goals, Metrics, and Targets 359

10.1 Introduction 359

10.2 UX goals 361

10.3 UX target tables 362

10.4 Work roles, user classes, and UX goals 363

10.5 UX measures 364

10.6 Measuring instruments 365

10.7 UX metrics 378

10.8 Baseline level 381

10.9 Target level 381

10.10 Setting levels 382

10.11 Observed results 386

10.12 Practical tips and cautions for creating UX targets 386

10.13 How UX targets help manage the user experience

engineering process 388

10.14 An abridged approach to UX goals, metrics, and targets 389

Chapter 11: Prototyping 391

11.1 Introduction 391

11.2 Depth and breadth of a prototype 393

11.3 Fidelity of prototypes 395

11.4 Interactivity of prototypes 398

11.5 Choosing the right breadth, depth, level of fidelity, and amount

of interactivity 402

11.6 Paper prototypes 407

11.7 Advantages of and cautions about using prototypes 418

11.8 Prototypes in transition to the product 420

11.9 Software tools for prototyping 422

xxxiCONTENTS

Chapter 12: UX Evaluation Introduction 427

12.1 Introduction 427

12.2 Formative vs. summative evaluation 429

12.3 Types of formative and informal summative evaluation methods 432

12.4 Types of evaluation data 435

12.5 Some data collection techniques 436

12.6 Variations in formative evaluation results 464

Chapter 13: Rapid Evaluation Methods 467

13.1 Introduction 467

13.2 Design walkthroughs and reviews 469

13.3 UX Inspection 470

13.4 Heuristic evaluation, a UX inspection method 472

13.5 Our practical approach to UX Inspection 479

13.6 Do UX Evaluation rite 484

13.7 Quasi-empirical UX evaluation 487

13.8 Questionnaires 490

13.9 Specialized rapid UX evaluation methods 490

13.10 More about “discount” UX engineering methods 492

Chapter 14: Rigorous Empirical Evaluation: Preparation 503

14.1 Introduction 503

14.2 Plan for rigorous empirical UX evaluation 504

14.3 Team roles for rigorous evaluation 506

14.4 Prepare an effective range of tasks 508

14.5 Select and adapt evaluation method and data collection techniques 509

14.6 Select participants 511

14.7 Recruit participants 513

14.8 Prepare for participants 516

14.9 Do final pilot testing: fix your wobbly wheels 528

14.10 More about determining the right number of participants 529

Chapter 15: Rigorous Empirical Evaluation: Running the Session 537

15.1 Introduction 537

15.2 Preliminaries with participants 537

15.3 Protocol issues 539

15.4 Generating and collecting quantitative UX data 543

15.5 Generating and collecting qualitative UX data 545

15.6 Generating and collecting emotional impact data 548

15.7 Generating and collecting phenomenological evaluation data 550

15.8 Wrapping up an evaluation session 552

15.9 The humaine project 553

xxxii CONTENTS

Chapter 16: Rigorous Empirical Evaluation: Analysis 555

16.1 Introduction 555

16.2 Informal summative (quantitative) data analysis 556

16.3 Analysis of subjective questionnaire data 561

16.4 Formative (qualitative) data analysis 561

16.5 Cost-importance analysis: prioritizing problems to fix 576

16.6 Feedback to process 589

16.7 Lessons from the field 590

Chapter 17: Evaluation Reporting 593

17.1 Introduction 593

17.2 Reporting informal summative results 595

17.3 Reporting qualitative formative results 597

17.4 Formative reporting content 599

17.5 Formative reporting audience, needs, goals,

and context of use 601

Chapter 18: Wrapping up Evaluation UX 611

18.1 Goal-directed UX evaluation 611

18.2 Choose your UX evaluation methods 612

18.3 Focus on the essentials 615

18.4 Parting thoughts: be flexible and avoid dogma during

UX evaluation 616

18.5 Connecting back to the lifecycle 618

Chapter 19: UX Methods for Agile Development 619

19.1 Introduction 619

19.2 Basics of agile SE methods 620

19.3 Drawbacks of agile SE methods from the UX perspective 625

19.4 What is needed on the UX side 626

19.5 Problems to anticipate 633

19.6 A synthesized approach to integrating UX 634

Chapter 20: Affordances Demystified 643

20.1 What are affordances? 643

20.2 A little background 644

20.3 Four kinds of affordances in UX design 646

20.4 Affordances in interaction design 650

20.5 False cognitive affordances misinform and mislead 655

20.6 User-created affordances as a wake-up call to designers 657

20.7 Emotional affordances 660

xxxiiiCONTENTS

Chapter 21: The Interaction Cycle and the User Action Framework 663

21.1 Introduction 663

21.2 The interaction cycle 664

21.3 The user action framework—adding a structured knowledge

base to the interaction cycle 674

21.4 Interaction cycle and user action framework content categories 675

21.5 Role of affordances within the UAF 685

21.6 Practical value of UAF 686

Chapter 22: UX Design Guidelines 689

22.1 Introduction 689

22.2 Using and interpreting design guidelines 695

22.3 Human memory limitations 696

22.4 Selected UX design guidelines and examples 702

22.5 Planning 703

22.6 Translation 708

22.7 Physical actions 761

22.8 Outcomes 768

22.9 Assessment 773

22.10 Overall 789

22.11 Conclusions 801

Chapter 23: Connections with Software Engineering 803

23.1 Introduction 803

23.2 Locus of influence in an organization 806

23.3 Which scenario is right for you? 811

23.4 Foundations for success in SE–UX development 812

23.5 The challenge of connecting SE and UX 818

23.6 The ripple model to connect SE and UX 824

23.7 Conclusions 827

Chapter 24: Making It Work in the Real World 831

24.1 Putting it to work as a new practitioner 831

24.2 Be a smart UX practitioner 838

24.3 UX professionalism 839

24.4 Cost-justifying UX 840

24.5 UX within your organization 848

24.6 Parting words 861

REFERENCES 863

EXERCISES 887

INDEX 905

xxxiv CONTENTS

CHAPTER

Introduction 1
Fine art and pizza delivery, what we do falls neatly in between.

– David Letterman

Objectives

After reading this chapter, you will:

1. Recognize the pervasiveness of computing in our lives

2. Be cognizant of the changing nature of computing and interaction and the need to

design for it

3. Understand the traditional concept of usability and its roots

4. Have a working definition of user experience, what it is and is not

5. Understand the components of user experience, especially emotional impact

6. Recognize the importance of articulating a business case for user experience

1.1 UBIQUITOUS INTERACTION

1.1.1 Desktops, Graphical User Interfaces, and the Web
Are Still Here and Growing
The “old-fashioned” desktop, laptop, and network-based computing systems are

alive and well and seem to be everywhere, an expanding presence in our lives.

And domain-complex systems are still the bread and butter of many business,

industry, and government operations. Most businesses are, sometimes

precariously, dependent on these well-established kinds of computing. Web

addresses are commonplace in advertisements on television and in magazines.

The foreseeable future is still full of tasks associated with “doing computing,” for

example, word processing, database management, storing and retrieving

information, spreadsheet management. Although it is exciting to think about all

the new computing systems and interaction styles, we will need to use processes

for creating and refining basic computing applications and interaction styles for

years to come.

1.1.2 The Changing Concept of Computing
That said, computing has now gone well beyond desktop and laptop computers,

well beyond graphical user interfaces and the Web; computing has become far

more ubiquitous (Weiser, 1991). Computer systems are being worn by people

and embedded within appliances, homes, offices, stereos and entertainment

systems, vehicles, and roads. Computation and interaction are also finding their

way into walls, furniture, and objects we carry (briefcases, purses, wallets, wrist

watches, PDAs, cellphones). In the 2Wear project (Lalis, Karypidis, & Savidis,

2005), mobile computing elements are combined in different ways by short-

distance wireless communication so that system behavior and functionality

adapt to different user devices and different usage locations. The eGadget

project (Kameas & Mavrommati, 2005) similarly features self-reconfiguring

artifacts, each with its own sensing, processing, and communication abilities.

Sometimes, when these devices can be strapped on one’s wrist or in some way

attached to a person’s clothing, for example, embedded in a shoe, they are

called wearable computers. In a project at MIT, volunteer soldiers were

instrumented with sensors that could be worn as part of their clothing, to

monitor heart rate, body temperature, and other parameters, to detect the onset

of hypothermia (Zieniewicz et al., 2002).

“Smart-its” (Gellersen, 2005) are embedded devices containing

microprocessors, sensors, actuators, and wireless communication to offer

additional functionality to everyday physical world artifacts that we all “interact”

with as we use them in familiar human activities. A simple example is a set of car

keys that help us track them so we can find them if they are lost.

Another example of embedding computing artifacts involves uniquely

tagging everyday objects such as milk and groceries using inexpensive machine-

readable identifiers. It is then possible to detect changes in those artifacts

automatically. For example, using this technology it is possible to remotely poll a

refrigerator using amobile phone to determine what items need to be picked up

from the grocery store on the way home (Ye & Qiu, 2003). In a project at MIT

that is exactly what happened, or at least was envisioned: shoes were

instrumented so that, as the wearer gets the milk out for breakfast in the

morning, sensors note that the milk is getting low. Approaching the grocery

store on the way home, the system speaks via a tiny earphone, reminding of the

need to pick up some milk (Schmandt, 1995).

Most of the user–computer interaction attendant to this ubiquitous computing

in everyday contexts is taking place without keyboards, mice, or monitors. As

Cooper (2004) says, youdonotneed a traditional user interface tohave interaction.

Practical applications in business already reveal the almost unlimited

potential for commercial application. Gershman and Fano (2005) cite an

2 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

example of a smart railcar that can keep track of and report on its own location,

state of repair, whether it is loaded or empty, and its routing, billing, and security

status (including aspects affecting homeland security). Imagine the promise this

shows for improved efficiency and cost savings over the mostly manual and

error-prone methods currently used to keep track of railroad cars.

Proof-of-concept applications in research labs are making possible what was

science fiction only a few years ago. Work at the MITMedia Lab (Paradiso, 2005),

based on the earlier “Smart Matter” initiative at Xerox PARC, employs sensate

media (Paradiso, Lifton, & Broxton, 2004) arranged as surfaces tiled with dense

sensor networks, in the manner of biological skin, containing multimodal

receptors and sensors. The goal is to use this kind of embedded and distributed

computing to emulate living, sensitive tissue in applications such as robotics,

telemedicine, and prosthetics. Their Tribble (Tactile Reactive Interface Built By

Linked Elements) is an interesting testbed using a spherical structure of these

nodes that can sense pressure, temperature, sound, illumination, and tactile

stimulations and can respond with sound, vibration, and light.

More and more applications that were in research labs are now moving into

commercial adoption. For example, robots in more specialized applications

than just housecleaning or babysitting are gaining in numbers (Scholtz, 2005).

There are robotic applications for healthcare rehabilitation, including systems

to encourage severely disabled children to interact with their environment

(Lathan, Brisben, & Safos, 2005), robotic products to assist the elderly (Forlizzi,

2005), robots as laboratory hosts and museum docents (Sidner & Lee, 2005),

robot devices for urban search and rescue (Murphy, 2005), and, of course,

robotic rover vehicles for unmanned space missions (Hamner et al., 2005).

1.1.3 The Changing Concept of Interaction
Sitting in front of a desktop or laptop usually conveys a feeling of “doing

computing” to users. Users are aware of interacting with a computer and

interaction is purposeful: for exchanging information, for getting work done,

for learning, for play or entertainment, or just for exploring.

When we drive a car we are using the car’s built-in computer andmaybe even a

GPS, but we do not think of ourselves as “doing computing.” Tscheligi (2005)

paraphrases MarkWeiser: “the world is not a desktop.” Perhaps themost notable

and most recognizable (by the public) example of interaction away from the

desktop is seen in mobile communications. With an obviously enormous market

potential, mobile communications are perhaps the fastest growing area of

ubiquitous computing with personal devices and also represent one of the most

intense areas of designing for a quality user experience (Clubb, 2007; Kangas &

Kinnunen, 2005; Macdonald, 2004; Venkatesh, Ramesh, & Massey, 2003).

3INTRODUCTION

Designing for a Quality User Experience in
3D Applications

Doug A. Bowman, Department of Computer Science, Virginia Tech

Motion controls. Freehand gestures. “Natural” user interfaces. They go by many names, but interfaces involving

physical interaction in 3D space are cropping up everywhere these days. Instead of pressing buttons or pushing on

joysticks, gamers are swinging their arms, jumping up and down, or leaning their whole bodies to play in 3D virtual

worlds. Instead of using a remote control, people are making mid-air gestures to control the components of their home

theaters. Instead of looking for restaurants on a 2D map, mobile phone users look at augmented views of the real

world through their phone’s cameras. All this 3D interaction is certainly very cool, but does it necessarily make

interfaces more “natural” or usable? How should we design 3D interaction to ensure a quality user experience?

Three-dimensional user interfaces (3D UIs) are very much an open field of research; there is much we do not yet

know. What I am going to review here are a few of the major things we have learned over the last couple of decades

of research in this area. For a comprehensive introduction to the field of 3D UIs, see the book 3D User Interfaces:

Theory and Practice (Addison-Wesley, 2005).

As you might expect, 3D UIs that replicate an action that people do in the real world can be very successful. We

call these “natural” or “high-fidelity” 3D UIs. For example, using physical turning and walking movements

(measured by a position tracking system) to change your view of the virtual world is easy to comprehend and results

in high levels of spatial understanding. Swinging your arms to make your character swing a virtual golf club is fun

and engaging, requiring no special expertise. But natural 3D interaction has its limitations, as well. It can be difficult

to reproduce exactly the action people use in the real world, resulting in misunderstanding. An experienced golfer

might expect a slight twitch of the wrists at impact to cause the ball to draw from right to left, but it is unlikely that

the interface designer included this in the technique. In fact, if an extremely realistic golf swing technique were

developed, it probably would not be very fun for most players—I personally would only hit the ball 50 yards much

of the time!

Another limitation of natural 3D interaction is that the user is constrained to things they can do in the real world.

This leads to our second guideline, which is that “magic” 3D interaction can allow users to perform many tasks more

quickly and effectively. It is a virtual world, after all, so why restrict ourselves to only real-world abilities? Magic

techniques can be used to enhance our physical abilities (e.g., a person can pick up a 10-story building and place it

somewhere else in the virtual city), our perceptual abilities (e.g., we can give the user “X-ray vision” like Superman so

she can see what is on the other side of the wall), and even our cognitive abilities (e.g., the system can provide

instructions to users to help them navigate through a complicated 3D world).

While we do not want to constrain the user’s abilities in a 3D UI, we do want to provide constraints that help

the user to interact more easily and effectively. For example, in an application for interior designers, even though

we could allow users to place furniture anywhere in 3D space, it only makes sense to have furniture sitting upright

on the floor. Therefore, 3D manipulation techniques in this case should only allow the user to control three

parameters: 2D position on the floor and rotation around the vertical axis. Many 3D input devices are inherently

underconstrained because they allow the user to move them freely in 3D space and do not remain in place when the

user lets go. Helpful constraints can be added to the system with the use of haptic feedback, which can be passive

(e.g., using a physical piece of plastic to provide a surface for 2D input) or active (based on a force feedback display,

such as the Sensable Phantom).

If appropriate constraints are not provided, users not only become less precise, they may also become fatigued

(imagine how tired your arm would feel if you tried to sketch 3D shapes in mid-air for 15 minutes). So the last

guideline I want to highlight is to design for user comfort. In many computer interfaces, physical comfort is not a major

issue, but 3D interaction usually involves large-scale physical movements and the use of many parts of the body (not

just the hand and fingers). What is more, 3D UIs for virtual reality often involve big, surrounding 3D displays that can

make users feel dizzy or even nauseated. As a result, 3D UI designers have to take special care to design interfaces

that keep users feeling as comfortable as possible. For example, manipulation techniques should allow users to

interact with their arms propped against their bodies or a physical surface. 3D UIs should avoid rapid movements

through the virtual world or unnatural rotations of the view that can make people feel sick. And if stereoscopic

displays are used, keeping virtual objects at a comfortable distance can help avoid eye strain.

Well-designed 3D UIs can make for an engaging, enjoyable, and productive user experience. Knowing the

foundational principles of human–computer interaction and UX design is a great start, but using 3D-specific results

and guidelines such as these will help ensure that your 3D interaction is a success.

As an aside, it is interesting that even the way these devices are presented

to the public reveals underlying attitudes and perspectives with respect to

user-centeredness. For example, among the synonyms for the device,

“cellphone” refers to their current implementation technology, while “mobile

phone” refers to a user capability.

Interaction, however, is doingmore than just reappearing in different devices

such as we see in Web access via mobile phone. Weiser (1991) said “. . . the most

profound technologies are those that disappear.” Russell, Streitz, and Winograd

(2005) also talk about the disappearing computer—not computers that are

departing or ceasing to exist, but disappearing in the sense of becoming

unobtrusive and unremarkable. They use the example of electric motors, which

are part of many machines we use daily, yet we almost never think about electric

motors per se. They talk about “making computers disappear into the walls and

interstices of our living and working spaces.”

When this happens, it is sometimes called “ambient intelligence,” the goal of

considerable research and development aimed at the home living environment.

In the HomeLab of Philips Research in the Netherlands (Markopoulos et al.,

2005), researchers believe “that ambient intelligence technology will mediate,

User Experience

User experience is the

totality of the effect or

effects felt by a user as a

result of interaction with,

and the usage context of,

a system, device, or

product, including the

influence of usability,

usefulness, and emotional

impact during interaction,

and savoring the memory

after interaction.

"Interaction with" is

broad and embraces

seeing, touching, and

thinking about the system

or product, including

admiring it and its

presentation before any

physical interaction.

permeate, and become an inseparable common of our everyday social

interactions at work or at leisure.”

In these embedded systems, of course, the computer only seems to disappear.

The computer is still there somewhere and in some form, and the challenge is to

design the interaction so that the computer remains invisible or unobtrusive

and interaction appears to be with the artifacts, such as the walls, directly. So,

with embedded computing, certainly the need for a quality user experience does

not disappear. Imagine embedded computing with a design that leads to poor

usability; users will be clueless and will not have even the familiar menus and

icons to find their way!

Even interaction via olfactory senses, that is, aromatic output is suggested for

human–computer interaction (HCI)(Kaye, 2004), based on the claim that the

sense of smell, well used in ordinary daily life, is a human sense underused

in HCI.

So far, our changing concepts of interaction have involved at least some kind of

computation element, even if it is embedded electronic devices that do very

specialized computation. Given the many different definitions of “interaction” in

the HCI literature, we turned to the English definition of the word: mutual or

reciprocal action, effect, or influence, as adapted from Dictionary.com. So, interaction

involves an exchange, but is definitely not limited to computer systems.

In the realm of user experience, this concept of mutual effect implies that

interaction must be considered within a context or environment shared

between system and user. User input, if accepted by the system, causes a

change in the internal system state and both user and system can cause changes

in the external world, for example, move a mechanical part or adjust another

system.

The user’s part of interaction is often expressed through explicit user actions,

used to direct the interaction toward a goal. A user-related input to a system in

his or her environment can also be extracted or sensed by the environment,

without a deliberate or conscious action by the user. For example, a “smart wall,” a

wall with ambient intelligence, can proactively extract inputs it needs from a

user by sensing the user’s presence and identifying the user with something like

radio-frequency identification technology instead of just responding to a user’s

input actions. It is still user–system interaction, only the system is controlling the

inputs. Here the dictionary definition given earlier, relating technology to an

effect or influence, definitely makes sense, with “action” being only part of that

definition.

The systemcan also extract other inputs, absent anyusers, by sensing them in the

state of its own environment, for example, a high-temperature warning sensor. It

Usefulness

Usefulness is the

component of user

experience to which

system functionality gives

the ability to use the

system or product to

accomplish the goals of

work (or play).

Functionality

Functionality is power to

dowork (or play) seated in

the non-user-interface

computational features

and capabilities.

Emotional Impact

Emotional impact is the

affective componentof user

experience that influences

user feelings. Emotional

impact includes such effects

as pleasure, fun, joy of use,

aesthetics, desirability,

pleasure, novelty,

originality, sensations,

coolness, engagement,

novelty, and appeal and can

involve deeper emotional

factors such as self-

expression, self-identity, a

feeling of contribution to

theworld, and pride of

ownership.

Usability

Usability is the pragmatic

component of user

experience, including

effectiveness, efficiency,

productivity, ease-of-use,

learnability, retainability,

and the pragmatic aspects

of user satisfaction.

6 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

may thenact to change its own internal state and,possibly, its external environment,

for example, to adjust the temperature lower, without involving a user. This kind of

automated system operation probably does not come under the aegis of human–

machine interaction, although such a system would surely also involve human

interaction for start-up, setting parameters, and other overall controls.

As another example of how our concept of interaction is intended to be very

inclusive, consider road or highway signage. A road sign is like a computer

message or user interface label in that it helps users (drivers) know what to do. In

response, drivers take (driving) actions within the larger highway system.Most of

the material in this book can be considered to be about interaction much more

general than traditional HCI, including human–machine interaction, for

example, with telephones, and ATMs, and even human–world interaction, such

as interacting to navigate the structure of a museum.

1.2 EMERGING DESIRE FOR USABILITY

In the distant past, computer usage was esoteric, conducted mostly by a core of

technically oriented users who were not only willing to accept the challenge of

overcoming poor usability, but who sometimes welcomed it as a barrier to

protect the craft from uninitiated “outsiders.” Poor usability was good for the

mystique, not to mention job security.

Sometimes, even more recently, we have what Cooper (2004, p. 26) calls

“dancing bear” software. It is where a great idea triumphs over poor design. It is

about having features just so good users cannot do without it, even if it has a

terrible interaction design. Just having a bear that can dance leads one to overlook

the fact that it cannotdance verywell.Users are so grateful tohave the functionality

that they are willing to work around an interaction design that fell out of the ugly

tree andhit every branchon theway down. Success despite poor interactiondesign

canbeused as a justification for resisting change andkeeping thebaddesign ideas:

“We have been doing it that way, our product is selling phenomenally, and our

users love it.” Think of how much better it could be with a good design.

As more people began to use computers, the general public and the press

were generally slow to realize that we all can demand a better user experience.

Statements of misplaced blame fail to inform or educate the public about the

role of user experience in design. For example, the failure of voting machines in

Florida was blamed by the press on improperly trained poll workers and

confused voters. No one publicly asked the question why it takes so much

training to operate a simple ballot machine or why citizens experienced with

voting were confused with this system.

7INTRODUCTION

We are now seeing comments by people about usability of everyday situations.

The very first three paragraphs of The Long Dark Tea-Time of the Soul (Adams,

1990, pp. 1–2) by one of our favorite authors, Douglas Adams (decidedly not a

user experience specialist), open with this amazingly perspicacious observation

on design of most airports:

It can hardly be a coincidence that no language on earth has ever produced the

expression “As pretty as an airport.”

Airports are ugly. Some are very ugly. Some attain a degree of ugliness that can only

be the result of a special effort. This ugliness arises because airports are full of

people who are tired, cross, and have just discovered that their luggage has landed

in Murmansk (Murmansk airport is the only known exception to this otherwise

infallible rule), and architects have on thewhole tried to reflect this in their designs.

They have sought to highlight the tiredness and crossness motif with brutal

shapes and nerve-jangling colors, tomake effortless the business of separating the

traveler forever from his or her luggage or loved ones, to confuse the traveler with

arrows that appear to point at the windows, distant tie racks, or the current

position of Ursa Minor in the night sky, and wherever possible to expose the

plumbing on the grounds that it is functional, and conceal the location of the

departure gates, presumably on the grounds that they are not.

Poor designs can indeed look so bad to users that they are forced to assume they

could not be that bad unless it was deliberate, as this character in Douglas Adams’

novel did. And that is only half the story when you consider designs that look

beautiful but are totally unusable. In contrast, we want to use technology to learn

things, to be entertained, to connect with others, and to do good in the world. In

technologynow, people look beyond sheer functionality or evenusability tobeauty,

emotional satisfaction, meaning in what they do, and for intellectual gratification.

To many, one of the most significant motivations for the field of user

experience is a concern about software product quality. Unfortunately, the

software industry does little to dispel concerns about quality. For example,

consider this “warranty,” taken verbatim from a software product and typical of

what we get with most software we buy:

This software is provided without warranty of any kind. Themanufacturer does not

warrant that the functions contained in the software will meet your requirements,

or that the operation of the software will be uninterrupted or error-free, or that

defects in the software will be corrected.

8 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Does this not seem to say: “We do not do a good job. We do not care. And you

cannot do anything about it.”? Who would buy any other kind of consumer

product, a TV or a car, with this kind of “warranty”? So why have we put up with

this in software products?

Disastrous system development case studies give much more depth to

motivating the need for usability and user experience. Marcus and Gasperini

(2006) tell of an emergency-response system developed for the San Jose (CA)

Police Department, a mobile, in-vehicle communication system for dispatchers

and officers in cars. The police had a good working system that they had

perfected and customized through years of use, but the underlying technology

was too old. Unfortunately, the committee appointed to gather requirements

did not include police officers and their focus was on functionality and cost, not

usability. No user focus groups or contextual inquiry were considered and, not

surprisingly, the mobile response functions and tasks were addressed minimally

in requirements.

The resulting system had serious flaws; key information was missing while

unneeded information was highlighted. Layouts were confusing and labeling

was inconsistent—the typical list you would expect from an early user experience

evaluation, only this was in the final system. Officer users were confused and

performed poorly to the point of creating risks to their safety in the field.

The lack of feedback channels from initial users precluded fixing problems in

subsequent versions. Extensive training was prescribed but could not be given

due to cost. In the end, a very expensive new system had led to life-threatening

perils for officer users, the situation became highly politicized, emotions ran

high, and lawsuits were threatened. Much more money had to be spent in an

attempt to fix major problems after the fact. This is a clear story of how a failure

to take a user experience-oriented and user-centered approach to design led to

truly extensive and awful consequences. A process to ensure a quality user

experience that may seem to complicate things upfront can benefit everyone—

customers, users, UX practitioners, designers, marketing people, and the

public—in the long run.

1.3 FROM USABILITY TO USER EXPERIENCE

1.3.1 The Traditional Concept of Usability
Human–computer interaction is what happens when a human user and a

computer system, in the broadest sense, get together to accomplish something.

Usability is that aspect of HCI devoted to ensuring that human–computer

interaction is, among other things, effective, efficient, and satisfying for the

Contextual Inquiry

Contextual inquiry is an

early systemor product UX

lifecycle activity to gather

detailed descriptions of

customer or user work

practice for the purpose of

understanding work

activities and underlying

rationale. The goal of

contextual inquiry is to

improve work practice

and construct and/or

improve system designs to

support it. Contextual

inquiry includes both

interviews of customers

and users and

observations of work

practice occurring in its

real-world context.

9INTRODUCTION

user. So usability1 includes characteristics such as ease of use, productivity,

efficiency, effectiveness, learnability, retainability, and user satisfaction

(ISO 9241-11, 1997).

1.3.2 Misconceptions about Usability
While usability is becoming more and more an established part of the

technology world, some misconceptions and mischaracterizations still linger.

First, usability is not what some people used to call “dummy proofing.” While it

might have been mildly cute the first time it was used, this term is insulting and

demeaning to users and designers alike. Similarly, usability is not equivalent to

being “user-friendly.” This is a misdirected term; to say that it is about

friendliness trivializes the scope of the interaction design process and discounts

the importance of user performance in terms of user productivity, etc. As users,

we are not looking for amiability; we need an efficient, effective, safe, and maybe

aesthetic and fun tool that helps us reach our goals.

To many not familiar with the field, “doing usability” is sometimes thought of

as equivalent to usability testing. While usability evaluation plays a very

important part, maybe even a starring role, in interaction design, it is by no

means all there is in the interaction design creation and refinement process, as

we will see in this book.

Finally, another popular misconception about usability has to do with visual

appeal. We know of cases where upper management said something to the effect

that “after the software is built, I want the usability people tomake it look pretty.”

While visual design is an integral and important part of usability, it is not the only

part of interaction design.

1.3.3 The Expanding Concept of Quality in Our Designs
The field of interaction design has grown slowly, and our concept of what

constitutes quality in our designs has expanded from an engineering focus on

user performance under the aegis of usability into what is now widely known as

user experience. As with most new concepts, it takes a while for even those who

embrace the concept to agree on its definition (Dagstuhl, 2010).

Within the evolution of a growing field it is natural to see aspirations for

considerable breadth. For example, Thomas and McCredie (2002) call for “new

usability” to account for “new design requirements such as ambience or

attention.” At a CHI 2007 Special Interest Group (SIG) meeting (Huh et al.,

1Also sometimes referred to as “pragmatic quality” or “ergonomic quality” (Hassenzahl et al., 2000) and

includes such attributes as simplicity and controllability.

10 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

2007), the discussion focused on “investigating a variety of approaches (beyond

usability) such as user experience, aesthetic interaction, ambiguity, slow

technology,2 and various ways to understand the social, cultural, and other

contextual aspects of our world.”

1.3.4 Is Not Emotional Impact What We Have Been Calling
User Satisfaction?
Some say the emphasis on these emotional factors is nothing new—after all,

user satisfaction, a traditional subjective measure of usability, has always been a

part of the concept of traditional usability shared by most people, including the

ISO 9241-11 standard definition. Also, user satisfaction questionnaires are

about how users feel, or at least about their opinions. As Hazzenzahl et al. (2000)

point out, at least in practice and as reflected in most usability questionnaires,

this kind of user satisfaction has been thought of as a result of how users

experience usability and usefulness.

As a result, these user satisfaction questionnaires have elicited responses that

are more intellectual responses than emotional ones; they have not traditionally

includedmuch about what we call emotional impact.3 We as a profession did not

focus on those aspects as much as we did on objective user performance

measures such as efficiency and error counts. Technology and design have

evolved from being just productivity-enhancing tools to more personal, social,

and intimate facets of our lives. Accordingly, we need amuch broader definition

of what constitutes quality in our designs and quality in the user experience

those designs beget.

1.3.5 Functionality Is Important, but a Quality User
Experience Can Be Even More So
All other things being equal, a product that affords a better user experience

often outsells ones with even more functionality. For example, take the

Blackberry; once a market leader in smartphones but now outclassed by the

iPhone, a later entrant into the market with less functional capabilities. There

are many factors governing the relative market share of each product, but given

comparably capable products, user experience is arguably the most important.

The iPod, iPhone, and iPad are products that represent cool high technology

2From the abstract of this workshop summary paper: slow technology [is] a design agenda for technology

aimed at reflection and moments of mental rest rather than efficiency in performance.
3Also sometimes referred to as hedonic quality (Schrepp, Held, & Laugwitz, 2006), perceived or experienced

hedonic quality (Hassenzahl, Beu, & Burmester, 2001), or emotional usability (Logan, 1994).

11INTRODUCTION

with excellent functionality but are also examples that show the market is now

not just about the features—it is about careful design for a quality user

experience as a gateway to that functionality.

Most users assume that they are getting correct and complete functional

capability in their software, but the interface is their only way to experience the

functionality. To users, the interaction experience is the system. And plain old

usability still plays a role here. Users have an effort threshold beyond which

they give up and are not able to access the desired functionality. Larry Marine

(1994) puts it this way: “If the users can’t use a feature, it effectively does not

exist.” He describes usability testing of a new version of a system and how users

commented that they wished they had a certain feature on the current system

and how frequently they would use it. But the current product already had that

feature and designers wondered why users would ask for something they

already had. The answer was clear: the users did not have it because it was not

accessible to them.

Another instructive example once again comes from Apple. When Apple

introduced the functionality for users to backup their data on the Macintosh

platform, a seemingly mundane and somewhat boring task for most of us,

they did so with a stellar interaction design. They introduced a cool fun

metaphor, that of a time machine (also the name of this feature) that users

can take to go “back in time” to retrieve files that were deleted or lost

accidently. The backup procedure itself was automated for the most part

and all the user needed to do was connect a backup medium to their Mac.

The interesting thing here is that Microsoft, Apple’s competitor, had backup

capabilities in their operating systems at least since Windows 95! However,

because of poor usability, most users did not know it existed and those of

us who did rarely used it. The effort software engineers spent to include the

feature in the application functionality was wasted, another cost of poor

usability.

Hassenzahl and Roto (2007) state the case for the difference between the

functional view of usability and the phenomenological view of emotional impact.

People have and use technical products because “they have things to do”; they

need to make phone calls, write documents, shop on-line, or search for

information. Hazzenzahl and Roto call these “do goals,” appropriately evaluated

by the usability and usefulness measures of their “pragmatic quality.” Human

users also have emotional and psychological needs, including needs involving

self-identity, relatedness to others, and being satisfied with life. These are “be

goals,” appropriately evaluated by the emotional impact and phenomenological

measures of their “hedonic quality.”

Phenomenological

Aspects of
Interaction

Phenomenological

aspects (deriving from

phenomenology, the

philosophical

examination of the

foundations of experience

and action) of interaction

are the cumulative effects

of emotional impact

considered over the long

term, where usage of

technology takes on a

presence in our lifestyles

and is used to make

meaning in our lives.

12 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

1.3.6 A Good User Experience Does Not Necessarily
Mean High-Tech or “Cool”
Often when a new cool and high-tech product is announced,

technology enthusiasts and the public alike are impressed and many

equate this product sizzle with amazing user experience. Much of the

world culture, except the dispossessed, who are excluded from the

mixed blessing of new technology, has come almost to worship high

technology just because it is so cool. But for actual users the reaction

can quickly shape-shift from amazement to annoyance to

abomination when a failed interaction design in the cool new device

becomes a barrier to its use. Clearly, while it is possible to harness new

technology to serve real usability, “cool” and high technology are not

intrinsic benefactors of a quality user experience.

As a case in point, in Figure 1-1 we show what was once a new

Microsoft packaging design for Vista4 and some Office products,

such as this one for Office Accounting Professional 2007.

As posted in a Windows Vista blog, the Microsoft designer proudly proclaims:

“With Windows Vista and 2007 Office system, we didn’t just redesign the software

packages themselves, but are also introducing new packaging for the two

products. The packaging has been completely revised and, we hope, foreshadows

the great experience that awaits you once you open it.” Later in the posting, it says,

“Designed to be user-friendly, the new packaging is a small, hard, plastic container

that’s designed to protect the software inside for life-long use. It provides a

convenient and attractive place for you to permanently store both discs and

documentation. The new design will provide the strength, dimensional stability

and impact resistance required when packaging software today. Our plan is to

extend this packaging style to other Microsoft products after the launch of

Windows Vista and 2007 Office system.”

Other follow-up postings by readers of that blog declare, “It looks really nice

and should really stand out on the shelves. Good job folks!” and “This looks

awesome, really.” And “Wow! I must say, I’m very, very impressed by this;

excellent job guys.” But these are reactions from people who have only seen a

picture of the packaging. The reaction from actual users might eventually cause

Microsoft to rethink their plan of switching to this as their “standard” packaging.

A glimpse of the same design from the user’s, in this case the opener’s, stance

can be seen in Joel Spolsky’s on-line column “Joel on Software” (Spolsky, 2007).

Figure 1-1

A new Microsoft software
packaging design.

4Now we are delighted to see an updated version of Vista: Windows 7, otherwise known as Hasta la Vista

(baby).

13INTRODUCTION

In an article entitled “Even the Office 2007 box has a learning curve,” Spolsky

says: “I simply could not figure out how to open the bizarre new packaging. It

represents a complete failure of industrial design; an utter ‘F’ in the school of

Donald Norman’s Design of Everyday Things. To be technical about it, it has no

true affordances and actually has some false affordances: visual clues as to how to

open it that turn out to be wrong.” And: “[This] is just the first of many ways that

Office 2007 and Vista’s gratuitous redesign of things that worked perfectly well

shows utter disregard for all the time you spent learning the previous versions.”

Postings elsewhere by actual users contained similar sentiments.

Looking at these boxes displayed in stores, some of them actually have small

instruction sheets on how to open the box taped on the outside. Upon closer

inspection, this box design is a victim of a case of false affordances (Chapter 20).

With what looked like hinges on one side, the box looked like a book, a shared

design convention, but would not open like one—a violation of using shared

conventions to explain an affordance. In our informal testing, several people with

advanced degrees in computer science had significant trouble opening the box.

Furthermore, the box was difficult to stack and wasteful of desk drawer space.

To give the benefit of doubt, we expect that Microsoft attempted to create an

extraordinary user experience, starting from the time a user lays eyes on the

software box in a store. However, the designer probably forgot that less box-savvy

people will have to use this complicated design with curves and hinges. Clearly,

even in just packaging, the best user experience requires a balance of

functionality, usability, aesthetics, branding, identity, and so on.

In addition to user experience not just being cool, it also is not just about

technology for technology’s sake. Many years ago our university changed its

phone system over to an all-digital exchange. At the time, the new phones

seemed cool and powerful; users heard all about the different kinds of things

they could do with call forwarding, paging, conference calls, and so on.

However, their initial enthusiasm for all this functionality faded quickly when

they saw the 90-page “summary” user manual; no one read it, and by now almost

everyone has lost it. No one ever saw or mentioned the presumably larger “full”

manual. Loss of enthusiasm turned to rebellion when the university sent out

word that they expected everyone to take a half-day training course on using this

new phone system. One of the faculty expressed the feeling of many, “I’ve been

using a telephone all my life and I certainly don’t need a training course about a

telephone now. All I want to do is make phone calls like I used to.”

When many complained to the communications services department, they

were actually told that they had a “low-end model” and that they might

appreciate the new phones better if they had a model with even more

14 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

functionality! Surely this is another case where the thing that will likely make the

least improvement in ease of use is adding new technology or functionality.

Years later, we still use these same phones almost exclusively for just making

and answering ordinary phone calls, and mostly ignore the other blinking lights

and arrays of buttons with intimidating labels. When they need to set up the

occasional conference call, they follow the button presses and sequences on a

label stuck on the bottom of the phone, and those steps were passed down by

word of mouth from other co-workers.

1.3.7 Design beyond Just Technology
In this book we consider technology as just one design context, a platform for

certain types of design. The design itself is the focus and the reader will feel

as much at home in a discussion about principles and guidelines for the design

of ATMs or highway signage as about design for high-tech user interfaces.

Design is about creating artifacts to satisfy a usage need in a language that can

facilitate a dialog between the creator of the artifact and the user. That artifact

can be anything from a computer system to an everyday object such as a

door knob.

So do not think of this book as being just about interaction design or design of

user interfaces for software systems. The interaction design creation and

refinement activities described herein apply more universally; they are about

design to support human activities—work and play in a context. The context does

not have to include software or even much technology. For example, what we say

here applies equally well to designing a kitchen for two people to cook together,

to the workflow of the DMV, or to the layout of an electronic voting machine.

1.3.8 Components of a User Experience
Let us start by declaring that the concept of usability has not beenmade obsolete

by the new notions of user experience. All of the performance- and productivity-

oriented usability factors, such as ease of use and learnability, are still very

important in most software systems and even in many commercial products.

Especially in the context of using systems associated with complex work

domains, it is just as important as ever for users to get work done efficiently and

effectively with minimum errors and frustration. The newer concept of user

experience still embodies all these implications of usability. Howmuch joy of use

would one get from a cool and neat-looking iPad design that was very clumsy and

awkward to use? Clearly there is an intertwining in that some of the joy of use can

come from extremely good ease of use.

15INTRODUCTION

The most basic reason for considering joy of use is the humanistic view that enjoyment is

fundamental to life.

– Hassenzahl, Beu, and Burmester5

As a result, we have expanded the scope of user experience to include:

n effects experienced due to usability factors

n effects experienced due to usefulness factors

n effects experienced due to emotional impact factors

On Designing for the “Visitor Experience”*

Dr. Deborah J. Mayhew, Consultant, Deborah J. Mayhew & Associates1

CEO, The Online User eXperience Institute2

Here I will adopt the definition of “user experience” proposed in this book, that is, it is something entirely in the

head of the user. As product designers, we do everything we can to design something that will result in a good user

experience for our target users. As moving from designing desktop software products to designing for Websites has

clarified, the user experience may be impacted by more design qualities than usability alone. As a Web user interface

designer, I use the term “visitor experience” and I recognize the need to address at least five different qualities of

Websites that will impact the experience of the site’s visitors:

n Utility

n Functional integrity

n Usability

n Persuasiveness

n Graphic design

These I define as follows.

Utility
It is easy to overlook utility as a quality of a Website design that will impact visitor experience, as it is perhaps the

most fundamental. The utility of a Website refers to the usefulness, importance, or interest of the site content (i.e., of

1http://drdeb.vineyard.net
2http://www.ouxinstitute.com

5Hassenzahl, M., Beu, A., & Burmester, M. (2001). Engineering joy. IEEE Software, 18(1), pp. 70–76.

16 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

the information, products, or services offered by the site) to the visitor. It is of course relative to any particular site

visitor—what is interesting or useful to you may not be to me. It is also a continuous quality, that is, some Websites

will feel more or less useful or interesting to me than others. For example, many Website visitors love to use social

networking sites such as YouTube or Facebook, whereas others find these a total waste of time. I will have no need

for a Website that sells carpenter’s tools, whereas my neighbor might visit and use that site on a regular basis. This

highlights an important fact for designers to keep in mind: that a single design will result in multiple visitor

experiences depending on variations in the Website visitors themselves. This is why it is always so important to design

for a target audience in particular, based on solid knowledge about that audience.

Functional Integrity
A Website’s functional integrity is simply the extent to which it works as intended. Websites may have “dead” links

that go nowhere, they may freeze or crash when certain operations are invoked, they may display incorrectly on some

browsers or browser versions, they may download unintended files, etc. A lack of functional integrity is the symptom

of buggy or incorrect—or even malicious—code. Functional integrity is also a continuous quality—some Websites may

only have a few insignificant bugs, others may be almost nonfunctional, and anything in between is possible. In

addition, a visitor using one browser or browser version may experience a Website’s functional integrity differently as

compared to a visitor using another browser.

Usability
Usability of course refers to how easy it is to learn (for first time and infrequent visitors) and/or use (for frequent

visitors) a Website. A site can have high utility and high functional integrity and still be very difficult to learn or

inefficient and tedious to use. For example, the Web you use to submit your tax returns may be implemented in

flawless code and be relevant to almost every adult with great potential for convenience and cost savings, but be

experienced by many visitors as unacceptably hard to learn or inefficient to use. Conversely, a site might feel very

usable, but not very useful to a given visitor or have low functional integrity. It might be very easy and intuitive to

figure out how to perform a task, but the site may consistently crash at a certain point in the task flow so that the task

can never be accomplished.

Persuasiveness
Persuasiveness refers to the extent to which the experience visitors have on a Website encourages and promotes

specific behaviors, which are referred to as “conversions.” What constitutes a conversion varies from site to site,

and even non-eCommerce sites may be promoting some type of conversion (e.g., newsletter signup, switching to

online tax filing, looking up and using medical information). But persuasiveness is a particularly important design

quality on an eCommerce Website, and the primary type of conversion in this case is a sale. So in the case of

eCommerce sites, persuasiveness refers mainly to the extent to which the visitor’s experience encourages and

promotes sales.

Two examples of persuasiveness involve the presence, quality, and location of two types of information:

vendor information (e.g., company name, physical address and contact information, company history,

testimonials of past customers, and the like) and product information (things such as product color, material, care

instructions, and the like). Visitors look for evidence that they can trust an online vendor, especially if they have never

heard of it before. Also, they are often unwilling to order a product if they cannot find all the information they need in

order to judge whether it will meet their needs. This is why many people will often look for a product on Amazon.com

first because it is a trusted vendor and usually provides comprehensive product information, including detailed reviews

by other customers. Note that a Website may be experienced as fully functional and highly usable in terms of task

completion and offer just what a visitor is looking for, but if it lacks key aspects of persuasiveness, such as adequate

vendor and product information, potential sales may be lost. This is not just a loss for the Website owner, it wastes the

time of the visitor and foils their goals as well, that is, it impacts their experience negatively.

Graphic Design
Finally, the “look and feel,” that is, the graphic design, of a Website can have a significant impact on the visitor

experience. The graphic design of a Website—primarily the ways colors, images, and other media are used—invoke

emotional reactions in visitors that may or may not contribute to the site’s goals. As with other aspects of design that

impact the visitor, each visitor’s reaction to a given graphic design may be different. You may be bored by soft pastel

colors while I may feel reassured and calmed by them. You may find a straightforward and simple graphic design

boring while to me it may feel professional and reassuring. I may be put off by sound and animation while you may

find it exciting and appealing.

While utility and functional integrity are fairly independent design qualities, the lines among usability,

persuasiveness, and graphic design are more blurred. Clearly usability and effective graphic design can contribute to

the experience of persuasiveness, and graphic design can contribute significantly to the experience of usability.

Nevertheless, it is useful to consider these design qualities separately in order to understand their importance and

apply them effectively during design.

Designing for a great visitor experience requires an interdisciplinary team of experts. The age-old profession of

market research is the relevant discipline to employ to achieve the quality of utility. Competent Web development

professionals are necessary to ensure functional integrity. Software and Web usability engineering is the expertise

needed to achieve usability. There is currently a small but growing field of experts with experience applying

marketing and persuasion psychology to eCommerce Web design. Finally, graphic design professionals specializing

in Website design provide the design skills and expertise in branding and target audience appeal that Websites need.

The real key here, beyond simply finding resources with the aforementioned skill sets, is to build an effective

interdisciplinary design team. Often professionals with these different backgrounds and skill sets are unfamiliar with

the other disciplines and how they can and must work together to design for an optimal visitor for a given target

audience. At the very least, Website stakeholders need product development team members respectful of the expertise

of others and with a willingness to learn to collaborate effectively to achieve the common goal of a design that results

in an optimized experience for intended Website visitors. Together, specialists in these different disciplines can have

the most positive impact on the success of Websites by applying their different bodies of knowledge to the site design

in a way that will invoke a positive visitor experience in the target audience.

*This essay is a modified excerpt from a chapter called “The Web UX Design Process—A Case Study” that I have written for the forthcoming

book Handbook of Human Factors in Web Design (2nd ed.) by Kim-Phuong L. Vu and Robert W. Proctor (Eds.), Taylor & Francis, 2011.

To illustrate the possible components of user experience, we borrow from

the domain of fine dining. The usefulness of a meal can be evaluated by

calculating the nutritional value, calories, and so on in comparison with the

technical nutritional needs of the diner’s body. The nutritional value of a

meal can be viewed objectively, but can also be felt by the user insofar as the

prospect of good nutrition can engender feelings of value added to the

experience.

Usefulness can also be reckoned, to some extent, with respect to the diner’s

immediate epicurean “requirements.” A bowl of chilled gefilte fish balls just

will not cut it for a gourmand with a taste for a hot, juicy steak. And, when that

steak is served, if it is tough and difficult to cut or chew, that will certainly

impact the usability of the dining “task.”

Of course, eating, especially for foodies, is a largely emotional experience.

Perhaps it starts with the pleasure of anticipation. The diners will also

experience a perception of and emotional response to the dining ambiance,

lighting, background music, and décor, as well as the quality of service and how

good the food tasted. The menu design and information about ingredients and

their sources contribute to the utility and the pleasure and value of the overall

experience. Part of the emotional impact analogous to the out-of-the-box

experience might include the aesthetics of food presentation, which sets the

tone for the rest of the dining experience.

1.3.9 User Experience Is (Mostly) Felt Internally by the User
Most in the field will agree that user experience, as the words imply, is the

totality of the effect or effects felt (experienced) internally by a user as a result of

interaction with, and the usage context of, a system, device, or product. Here,

we give the terms “interaction” and “usage” very broad interpretations, as we

will explain, including seeing, touching, and thinking about the system or

product, including admiring it and its presentation before any physical

interaction, the influence of usability, usefulness, and emotional impact

during physical interaction, and savoring the memory after interaction. For

our purposes, all of this is included in “interaction” and “usage context.”

But is user experience entirely felt internally by the user? What about

the performance-related parts of usability? Certainly the user experiences

and feels internally effects of performance-related parts of usability, such as

increased productivity. However, there are also externally observable

manifestations of usability, such as time on task, that represent a

component not necessarily felt internally by the user and not necessarily

19INTRODUCTION

related to emotion. The same holds for usefulness, too. If usability and

usefulness are parts of the user experience, and we feel it is useful to consider

them as such, then technically not all user experience is felt internally by the

user. It is nonetheless convenient to gloss over this exception and, as a general

rule, say that:

n usability and usefulness are components of user experience

n user experience is felt internally by the user

When we use the term “usability” by itself we usually are referring to the

pragmatic and non-emotional aspects of what the user experiences in usage,

including both objective performance measures and subjective opinion

measures, as well as, of course, qualitative data about usability problems. In

contrast, when we use the broader term “user experience” we usually are

referring to what the user does feel internally, including the effects of usability,

usefulness, and emotional impact.

1.3.10 User Experience Cannot Be Designed
A user experience cannot be designed, only experienced. You are not designing

or engineering or developing good usability or designing or engineering or

developing a good user experience. There is no usability or user experience

inside the design; they are relative to the user. Usability occurs within, or is

revealed within, the context of a particular usage by a particular user. The same

design but used in a different context—different usage and/or a different

user—could lead to a different user experience, including a different level of, or

kind of, usability.

We illustrate this concept with a non-computer example, the experience

of enjoying Belgian chocolates. Because the “designer” and producer of the

chocolates may have put the finest ingredients and best traditional

processes into the making of this product, it is not surprising that they claim

in their advertising a fine chocolate experience built into their confections.

However, by the reasoning in the previous paragraph, the user experience

resides within the consumer, not in the chocolates. That chocolate experience

includes anticipating the pleasure, beholding the dark beauty, smelling the

wonderful aromas, the deliberate and sensual consumption (the most

important part), the lingering bouquet and after-taste, and, finally, pleasurable

memories.

20 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

When this semantic detail is not observed and the chocolate is marketed

with claims such as “We have created your heavenly chocolate experience,”

everyone still understands. Similarly, no one but themost ardent stickler protests

whenBMWclaims “BMWhas designed and built your joy!” In this book, however,

we wish to be technically correct and consistent so we would have them say,

“We have created sweet treats to ensure your heavenly chocolate experience” or

“BMW has built an automobile designed to produce your ultimate driving

experience.”

To summarize our point in this section, in Figure 1-2 we illustrate how an

instance of user experience occurs dynamically in time within an instance of

interaction and the associated usage context between design and user. It is almost

like a chemical reaction that gives off a by-product, such as caloric6 or an extra

neutron.

Almost everything in this book depends on this simple, but enormously

important, notion of the user experience being the result of a user’s interaction

with, and usage context of, a design. Although the meaning of this diagram may

not be clear at this point in your reading, we hope that these concepts will unfold

as you go through this book.
Figure 1-2

User experience occurs
within interaction and
usage context.

6Introduced as the very substance of heat by Lavosier in the 1770s to debunk the phlogiston theory, but you

knew that.

21INTRODUCTION

1.3.11 Role of Branding, Marketing, and Corporate Culture
In some cases, the user experience goes even beyond the response to usability,

usefulness, and joy of use. There are times when social, cultural, marketing, and

political aspects, hardware choices, and the like can influence user experience.

Users can get wrapped up in the whole milieu of what the manufacturer stands

for, their political affiliations, how the product is marketed, and so on. What

image does the brand of a product stand for? Is it a brand that uses

environmentally sustainable manufacturing practices? Do they recycle?

Consequently, what does the fact that someone is using a product of that

particular brand say about them? These factors aremore difficult to define in the

abstract and more difficult to identify in the concrete.

Clearly these kinds of emotional responses are evoked by more than just

product design. For some companies, many of the factors that contribute to this

level of user experience may be part of the corporate DNA. For such companies,

a quality user experience can be a call to action that aligns all roles toward a

common mission, lived through their daily practice.

For example, consider the case of Apple. The culture of designing for

user experience is so deeply engrained in their corporate culture that everything

they produce has a stamp of tasteful elegance and spectacular design. This

kind of fanatic emphasis on quality user experience at Apple extends beyond

just the products they produce and even seeps into other areas of their company.

When they make an employment offer to a new employee, for example, the

package comes in a meticulously designed envelope that sets the stage for what

the company stands for (Slivka, 2009b).

Similarly, when Apple sent call center technical support employees a T-shirt

as a gift, it arrived in a carefully designed box with the T-shirt folded in a way that

inspires a sense of design emphasis (Slivka, 2009a). From the time one walks into

an Apple store to the sleek industrial design of the device, everything comes

together in one harmonious whole to ensure that users love the device. (NB: We

are agnostic in the PC vs. Mac religious wars, so please consider this objectively.)

And, again, it is all about design for the user experience. A New York Times article

(Hafner, 2007) extols the enchanting aura of Apple stores, “Not only has the

company made many of its stores feel like gathering places, but the bright lights

and equally bright acoustics create a buzz that makes customers feel more like

they are at an event than a retail store.” The goal of one new store in Manhattan

was to make it “the most personal store ever created.” This carefully designed

user experience has been very successful in generating sales, return visits, and

even tourist pilgrimages.

22 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

BMW embodies another corporate example of the importance of designing

for emotional impact as part of a company’s worldview. Themakers of BMW cars

have elevated the user experience to new heights in the industry. While this

manufacturer could stake their reputation on the engineering aspects of these

fine machines, instead their top claim to the world (BMW AG, 2010) is “Joy is

BMW!More driving pleasure.” And their follow-up statement really shows that it

is all about user experience: “What you make people feel is just as important as

what you make. And we make joy. Joy is why we built this company; joy is our

inspiration. At BMW, we don’t just make cars; we make joy.”

We mention emotional response in the user experience as part of a

corporate culture for completeness here, but it is beyond the scope of this book

to say how to build this kind of emotional ambiance surrounding the company

and the product. In this book we have to focus on the things we can do

something about with the guidelines and processes—and that is design, mainly

interaction design.

1.3.12 Why Have Such a Broad Definition?
Why do we want to include so much in our definitions of usage context and user

experience? We believe that the user experience can begin well before actual

usage. It can start as early as when the user beholds a system or product and

its packaging or presentation. It does not necessarily end with actual usage.

After usage, the pleasure, or displeasure, can persist in the user’s mind.

This perspective of what the user experiences about the product includes initial

awareness of the product, to seeing its advertising, to visiting the store, to

viewing it and buying it, to taking it out of the box, to using it, to talking with

others who have used it—in other words, it is about a broad cultural and

personal experience.

When we put forward this definition at conferences and workshops, sometimes

we get criticism that such breadthmakes it difficult to enforce, operationalize, and

take ownership of user experience-related practices and responsibilities in an

organization. But that is exactly the reasonwhy the definition needs to be broad: it

needs to implicitly recognize the need for multiple roles to work together, to

collaborate and communicate, and to work synergistically to ensure a quality user

experience. It frames the efforts toward designing for a user experience in an

interdisciplinary context, where everyone from hardware engineers, to visual

designers, to branding experts, to interaction designers need to collaborate and

coordinate their efforts to define and execute a shared design vision.

23INTRODUCTION

1.4 EMOTIONAL IMPACT AS PART OF THE USER
EXPERIENCE

The emotional aspects of user experience are just what the term implies. We are

talking about pleasure, fun, aesthetics, novelty, originality, sensations, and

experiential features—the affective parts of interaction. In particular, it is about

the emotional impact of interaction on the user.

Users are no longer satisfied with efficiency and effectiveness; they are also looking for

emotional satisfaction.

– Shih and Liu7

1.4.1 The Potential Breadth of Emotional Impact
Sometimes a user’s reaction to a system or product is extremely emotional, a user

experience with a deep, intimate, and personal emotional impact. At other times

a user might be mildly satisfied (or dissatisfied) or just a bit pleased. Not all user

experiences evoke throes of ecstasy, nor should they. Often just being well

satisfied without it rising to a personally emotional level is all a user can afford in

terms of emotional involvement with a software system.

But, of course, we all live for the moments when the user experience hits the

high end of emotional impact range when we experience amazingly cool

products (software systems almost never reach these heights). We are talking

about a product for which the user experience sets the product apart from the

rest in the hearts and minds of discriminating users. Have you ever had

something that you really loved to use? Something that had a beauty earned by its

amazingly beautiful design?

While other similar products may have an equally usable and useful design,

they just do not have that something extra that sparks a deep emotional chord of

affinity. The others do not have that indefinable something that transcends

form, function, usability, and usefulness, something that elevates the usage

experience to pure joy and pleasure, something akin to the appreciation of well-

crafted music or art.

Buxton (2007b, p. 127) relates an entertaining and enlightening story of his

experiences with personal orange juice squeezers, where subtle design

differences made enormous differences in his usage experience. He really likes

one above all the rest and the difference is something that, as Buxton (2007b,

p. 129) puts it, “sets a whole new standard of expectation or desire.” The

7Shih, Y.-H., & Liu, M. (2007). The Importance of Emotional Usability. Journal of Educational Technology

Usability, 36(2), pp. 203–218.

24 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

differences in the product are not necessarily something you can capture in a

diagram, specifications, or even photographs of the product. It is something you

have to experience; as Buxton again puts it, you “just can’t use it without a smile.”

But you can be sure that the difference is the result of deliberate and skillful

design.

There is an interesting story from General Motors about product passion. In

October 2010, the board of directors quietly discontinued the Pontiac car from

the GM line of brands. Of course, the direct cause was the transition through

bankruptcy, but the beginning of the end for Pontiac started 26 years earlier.

Before that, Pontiac had its own separate facilities for design, production, and

manufacturing with its own people. Owners and wannabe owners were

passionate about Pontiac cars and Pontiac employees had been devoted to the

brand. The brand had its own identity, personality, and cachet, not to mention

the notoriety from custom muscle cars such as the GTO and the Firebird

TransAm in Smokey and the Bandit.

In 1984, however, in its great corporate wisdom, GM lumped the Pontiac

works in with its other GM facilities. The economically based decision to merge

facilities meant no separate ideas for design and no special attention to

production. After that, there was really nothing to be devoted to and the passion

was lost. Many believe that decision led to the decline and eventual demise of

the brand.

So what constitutes real emotional impact in usage? While most of the

emotional impact factors are about pleasure, they can be about other kinds of

feelings too, including affective qualities such as love, hate, fear, mourning, and

reminiscing over shared memories. Applications where emotional impact is

important include social interaction (Dubberly & Pangaro, 2009; Rhee & Lee,

2009; Winchester, 2009) and interaction for cultural problem solving (Ann,

2009; Costabile, Ardito, & Lanzilotti, 2010; Jones, Winegarden, & Rogers, 2009;

Radoll, 2009; Savio, 2010).

Social and cultural interactions entail emotional aspects, such as

trustworthiness (especially important in e-commerce) and credibility. Design for

emotional impact can also be about supporting human compassion, for

example, in sites such as CaringBridge.org and CarePages.com.

Although there were earlier academic papers about emotion in the user

experience, Norman (2004) was one of the first to bring the topic to light on a

broad scale, relating it to his theme of everyday things. There are conferences

dedicated specifically to the topic, including the biennial Conference on Design

& Emotion, the goal of which is to foster a cross-disciplinary approach to design

and emotion. Also, the topic is definitely blossoming in the academic literature

25INTRODUCTION

(Hassenzahl, 2001; Shih & Liu, 2007). Boucher and Gaver (2006) introduce the

notion of ludic values, aimlessly playful qualities such as joy, surprise, delight,

excitement, fun, curiosity, play, and exploration.

Attractive things make people feel good

– Donald A. Norman8

Connections That Make “Spirit” a Part of UX

Elizabeth Buie, Luminanze Consulting

UX work speaks to the human spirit. Now, before you think I have gone all woo-woo on you, let me explain: By

“human spirit,” I mean the part of us that seeks connection with something larger than ourselves. This “something

larger” can be different things to different people or to the same people at different times and in different contexts. It

can be as mundane as nature, a cause, or being a parent; it can be as mystical as God/dess, the Universe, or even, if

we stretch it, the Force. It is whatever evokes in us a sense of deep connection, and the human spirit is the part of us

that feels this connection.

Let me illustrate with three stories from my own experience.

THE CONNECTEDNESS OF MUSIC

I sing in a group that performs Medieval and Renaissance polyphony—Catholic a capella music from the 13th to the

17th centuries. Now, I am not by any means traditionally religious (and I have never been Catholic), but this music just

speaks to me. The several independent voices in these songs weave in and out to create complex harmonies that are

deep, ethereal, and glorious.

For someone raised in the 20th century, learning this stuff is just plain hard. A month in advance of the first

rehearsal for each concert, our director sends out learning files in Musical Instrument Digital Interface (MIDI) format.

I import these files into music notation software, make my part a French horn played loudly, and make the other parts

different instruments played more softly. This allows me to pick out my part easily and in context. I save the results as

MP3s, load them onto my iPod, and play them in the car.

One morning I was driving to a client meeting, listening to my learning MP3s. The date was close enough to the

performance that I knew my melodic lines fairly well (if not the words) and was singing along. In the middle of the

Washington, DC rush hour (one of the worst in the United States), my spirit soared. I have since realized that the

8Norman, D. A. (2004). Emotional Design: Why We Love (Or Hate) Everyday Things. New York: Basic Books.

26 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

connection I felt that morning—that sense of oneness with everything around me—was part of my user experience of

these technologies . . . and so is the even deeper joy I feel when we perform this glorious music together for an

audience. Creating this experience involves three pieces of equipment (four, if you count the car) and three software

applications, and this soaring of spirit is part of my UX of all of them.

It is, in fact, for me their primary purpose.

THE DISCONNECTION OF ABSORPTION

The flip side is, of course, disconnection. These technologies can be absorbing and engrossing—to the point that if we

are not careful, they can create distance and disconnection between us and those we care about. For example, I spend

a lot of time in front of the computer, what with working mostly at home and not having a TV. I answer the phone

that is by my desk, and it is exceedingly difficult for me to tear myself away from the screen to attend properly to a

call. Most times I divide my attention somewhat, and I am sure my callers can tell.

My mother never seemed to take offense at this; she was proud of my work and always thought she was

interrupting something important. One evening some years ago, she called. After a few short minutes she asked, “Are

you on the computer?” I apologized and turned away from the screen; and we talked a brief while. I resolved to do

better.

Three days later, however, she had an auto accident. Although she eventually regained consciousness, she

had suffered a severe traumatic brain injury and was never her old self again. Seven months after the accident,

she died.

So my last conversation with my mother was colored by this disconnection. I do not feel guilty about it—I did

spend a lot of high-quality time with her in those months—but I do feel sad. And yet, I continue to find it inordinately

difficult not to divide my attention between the phone and the screen.

Disconnection, too, can be part of the UX of technology.

THE SERENDIPITY OF NEW PROJECTS

In the winter of 2011 I started working on a project that provides information and exercises to support sexual health in

cancer survivors. Two Websites—one for women and one for men—will supply the service. I conducted usability

testing on the women’s site which was still in beta and undergoing a clinical trial with cancer survivors, to see how

well it helped improve their sexual health. I’m optimistic that my findings and my recommendations for design change

will help both of these sites to improve their users’ lives.

This project has special meaning for me. In fact, when the client told me what it was, I had to stop and catch my

breath.

Ten years earlier, you see, my husband had died of prostate cancer. Antonio and I had lived with this disease for

almost 10 years, and the hormone therapy that had worked so well against the cancer for several years had also

destroyed his libido. You can imagine what kind of challenges that brings to a relationship.

So this project has a deep special meaning for me. I feel a profound connection with this user population, even

though they are unaware of it. Most UX professionals can develop empathy with most user populations, but it is extra

special when you have lived the problems that your users face. It is too late, of course, for this program to help

Antonio and me, but I used my UX knowledge and skills to help make it easier for people in similar situations to

address their problems.

UX IS WORK OF THE SPIRIT

Like many UX professionals, I got into this field because I want to help make people’s lives better. Sure, I find the work

challenging and fascinating; if I did not, I probably would have found some other work. But for me the key is knowing

that what I do for a living matters. That it helps connect me with my users, my clients, and my best self. That it is

larger than myself.

Life is about connection, and UX is no different. I submit that our work needs to nurture our own spirit and those of

our users. Even when we are working on a product that has no obvious component of connection, we will serve our

users best if we keep the possibility present in our minds.

Maybe the best illustration of the difference between utilitarian product

usability and real user experience packed with emotional impact is

demonstrated by Buxton’s pictures of mountain bikes. He begins with a

beautiful picture, his Figure 32, of a Trek mountain bike, just sitting there

inviting you to take an exciting ride (Buxton, 2007b, pp. 98–99).

But the next picture, his Figure 33, is all about that exciting ride

(Buxton, 2007b, pp. 100–101). A spray of water conveys the fun and excitement

and maybe a little danger to get the blood and adrenaline pumping. In fact,

you can hardly see the bike itself in this picture, but you know it is how we got

here. The bike just sitting there is not really what you are buying; it is the

breathtaking thrill of screaming through rocks, mud, and water—that is the

user experience!

1.4.2 A Convincing Anecdote
David Pogue makes a convincing case for the role of emotional impact in user

experience using the example of the iPad. In hisNew York Times story he explains

why the iPad turned the personal devices industry upside down and started a

whole new class of devices. When the iPad came out, the critics dubbed it

“underwhelming,” “a disappointment,” and “a failure.” Why would anyone want

or need it?

Pogue admits that the critics were right from a utilitarian or rational

standpoint: “The iPad was superfluous. It filled no obvious need. If you

already had a touch-screen phone and a laptop, why on earth would you need an

iPad? It did seem like just a big iPod Touch” (Pogue). And yet, as he claims, the

iPad is the most successful personal electronic device ever, selling 15 million

in the first months. Why? It has little to do with rational, functional, and utility

appeal and has everything to do with emotional allure. It is about the personal

experience of holding it in your hand and manipulating finely crafted

objects on the screen.

1.4.3 Aesthetics and Affect
Zhang (2009) makes the case for aesthetics as part of an emotional or affective

(about feeling or emotion) interaction. The movement from functionality and

usability to aesthetics takes us from a utilitarian to an experiential orientation,

from a cognitive paradigm to an affective-centric paradigm (Norman, 2002,

2004; Zhang & Li, 2004, 2005).

Interaction design can “touch humans in sensible and holistic ways” (Zhang,

2009). The term aesthetics is used to describe a sense of pleasure or beauty,

including sensual perceptions (Wasserman, Rafaeli, & Kluger, 2000).

Zhang presents a theoretical linkage between aesthetics and affect.

Aesthetics, a branch of philosophy and often associated with art, is considered an

elusive and confusing concept (Lindgaard et al., 2006). A key issue in studies

regarding aesthetics is objectivity vs. subjectivity. The objective view is that

aesthetic quality is innate in the object or the design and is known by certain

features or characteristics regardless of how they are perceived. This means that

objective aesthetic qualities can be evaluated analytically.

The subjective view of aesthetics is that it depends on how they are perceived.

Aesthetics has different effects on different people and must be evaluated with

respect to users/people. It is all about perceived aesthetic quality.

However, operationally, things are still a bit fuzzy. It is difficult to state goals

for aesthetic design and there is no standard for measuring aesthetics: “. . .there

is a lack of agreement and a lack of confidence on how to measure aesthetics

related concepts” (Zhang, 2009). It is typical to think of one-dimensionalmetrics

for aesthetics, such as subjective ratings of visual appeal.

Lavie and Tractinsky (2004) draw a distinction between classical aesthetics—

defined by orderliness in clean, pleasant, and symmetrical designs—and

expressive aesthetics—defined by creativity, innovation, originality,

sophistication, and fascinating use of special effects.

29INTRODUCTION

In any case, it is agreed that the result of aesthetic design can be affect, in the

form of a mood, emotion, or feeling. The assessment of affect is tricky, mainly

relying on subjective assessment of an individual’s perception of the ability of an

object or design to change his or her affect.

Zhang is interested in the relationship between aesthetics and affect. In

particular how are the objective view and the subjective view connected with

respect to design? How can the aesthetics of a product or system evoke a change

in the person’s/user’s affect? Norman (2004) proposes a three-level processing

model for emotional design, making connection between aesthetics and

emotion explicitly:

n Visceral processing requires visceral design—about appearance and attractiveness,

appeals to “gut feeling”

n Behavioral processing requires behavioral design—about pleasure and effectiveness

(usability and performance)

n Reflective processing requires reflective design—about self-image, identity, personal

satisfaction, memories

Kim and Moon (1998) describe emotions, the immediate affective feelings

about a system, in seven dimensions:

n attractiveness

n symmetry

n sophistication

n trustworthiness

n awkwardness

n elegance

n simplicity

As Zhang notes, these dimensions are “non-basic” as compared to basic

emotions such as joy and anger and can be domain specific. They also seem a bit

arbitrary and could allow for quite a fewother alternatives. In the end, it is not clear

if, or how, these criteria can relate aesthetics in the design to affect in the users.

Zhang’s example convinces us that the relationship is, indeed, subjective and

that perceived aesthetic quality does determine affective reaction. She describes

a beautiful pop-up ad on the Internet, with pleasing images and music. And you

experience a feeling beyond just pleasantness. It gets your attention and

activates your mind. You have an affective reaction and perceived affective

quality is positive.

30 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Now consider exactly the same ad, still inherently beautiful and musical, but

because of other factors—for example, you are focusing on something else,

trying to solve a problem—the ad is irritating and annoying. You feel

distracted; your attention stolen away from the task at hand, and you try to

shut it out. You might even get a little angry if you cannot shut it out. The ad

has the same objective aesthetic quality but it has a different effect on your

affect. Your mind’s alert level is still high but you are annoyed; you have a

negative effect.

The point of Zhang’s example is that the same aesthetics can lead to different

user experiences depending on perceived, or subjective, aesthetic quality.

1.4.4 The Centrality of Context
Context has always been important in interpreting the meaning of usability in

any situation. Now, context is even more important, essential and central to the

meaning of emotional and phenomenological impact in situated usage.

As an example of how anticipated usage context influences how a product is

viewed, consider the Garmin GPSMAP 62st handheld GPS device. In Field and

Stream, a hunting magazine, an advertisement stresses an impressive list of

features and functionality, including such esoteric technology as “3-axis tilt-

compensated 100K topo mapping, Birds-Eye Satellite imagery, and quad helix

antenna.” The message for hunters is that it will get you to the right place at the

right time in support of the goals of hunting.

In contrast, in Backpacker magazine, apparently catering to the idea that the

typical backpacker is more interested in the enjoyment of the outdoors, while

the hunter is more mission oriented, an ad for the same device appeals strongly

to emotion. In a play on words that ties the human value of self-identity with

orienteering, Garmin puts presence in life style first: “Find yourself, then get

back.” It highlights emotional qualities such as comfort, cozy familiarity, and

companionship: “Like an old pair of boots and your favorite fleece, GPSMAP

62st is the ideal hiking companion.”

Because the resulting user experience for a product depends on how users

view the product and strongly on the usage context, designers have to work

hard. So, in general, there is no formula for creating an interaction design that

can be expected to lead to a specific kind of user experience. That is a factor

that adds much difficultly to designing for what we hope will be a quality

user experience. However, the more designers know about users and usage

context, the better they will be equipped to create a design that can lead to a

desired user experience.

Presence

Presence of a product is a

kind of relationship with

users in which the product

becomes a personally

meaningful part of their

lives.

31INTRODUCTION

1.4.5 What about Fun at Work?
Emotional impact factors such as fun, aesthetics, and joy of use are obviously

desirable in personal use of commercial products, but what about in task-

oriented work situations? Here usability and usefulness aspects of user

experience are obvious, but the need for emotional impact is not so clear.

It is easy to think that fun and enjoyment are just not a good match to

computer usage for work. Some, including most Vulcans, say that emotions

interfere with the efficiency and control needed for work.

But there is evidence that fun can help at work, too, to break monotony and to

increase interest and attention span, especially for repetitive and possibly boring

work, such as performed in call centers. Fun can enhance the appealingness of less

inherently challenging work, for example, clerical work or data entry, which can

increase performance and satisfaction (Hassenzahl, Beu, & Burmester, 2001). It is

easy to seehow funcan lead to job satisfactionandenjoymentof somekinds ofwork.

It is also obvious from the fact that emotional and rational behaviors play

complementary roles in our own lives that emotional aspects of interaction are

not necessarily detrimental to our reasoning processes for doing work. For

example, software for learning, which can otherwise be dull and boring, can be

spiced up with a dose of novelty, surprise, and spontaneity.

However, fun and usability can conflict in work situations; for example, less

boring means less predictable and less predictable usually goes against

traditional usability attributes, such as consistency and ease of learning (Carroll

& Thomas, 1988). Too simple can mean loss of attention, and consistency

can translate as boring. Fun requires a balance: not too simple or boring, but not

too challenging or frustrating.

Some work roles and jobs are not amenable at all to fun as part of the work

practice. Consider a job that is inherently challenging, that requires full

attention to the task, for example, air traffic control. It is essential for air traffic

controllers to have no-nonsense software tools that are efficient and effective.

Any distraction due to novelty or even slight barriers to performance due to

clever and “interesting” design features will be hated and could even be

dangerous. For this kind of work, task users often want less mental effort, more

predictable interaction paths, and more consistent behavior. They especially do

not want a system or software tool adding to the complexity.

Certainly the addition of a game-like feature is welcome in an application

designed primarily for fun or recreation, but imagine an air traffic controller

having to solve a fun little puzzle before the system gives access to the controls so

that the air traffic controller can help guide a plane heading for a mountain top

in the fog.

32 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

1.5 USER EXPERIENCE NEEDS A BUSINESS CASE

Ingenious by design; hassle-free connectivity

– On a Toshiba satellite receiver box

1.5.1 Is the Fuss over Usability or User Experience Real?
As practitioners in this field, one of the frequent challenges we face is getting

buy-in toward user experience processes from upper management and business

stakeholders. So what is the business case for UX?

That computer software of all kinds is in need of better design, including

better user interaction design, is indisputable. Mitch Kapor, the founder of

Lotus, has said publicly and repeatedly that “The lack of usability of software and

the poor design of programs are the secret shame of the industry” (Kapor, 1991,

1996). Those who know the industry agree. Poor user experience is an

uncontrolled source of overhead for companies using software, overhead due to

lost user productivity, the need for users to correct errors, data lost through

uncorrected errors, learning and training costs, and the costs of help desks and

field support.

Charlie Kreitzburg, founder of Cognetics Corporation, tells of chaos, waste,

and failure, which he attributes this sorry state of software development

primarily to software development practices that are “techno-centric rather than

user-centric.” He recommends the industry to “rethink current software design

practice to incorporate user-centered design” principles.

These critical assessments of the software industry are not based on personal

opinion alone but on large surveys conducted by groups with strong reputations

in the software industry. The Standish Group (Cobb, 1995; The Standish Group,

1994, 2001) surveyed 365 IT executive managers from companies of small,

medium, and large sizes and found that the lack of attention to user inputs is one

of the most important reasons why many software projects were unsuccessful.

This translated to costing corporations $80 billion a year.

Some estimate that the percentage of software projects that exceed their

budgets is higher than 60% (Lederer & Prasad, 1992). According to May (1998),

the average software development project is 187% over budget and 222%

behind schedule and implements only 61% of the specified features.

A posting by Computer World (Thibodeau, 2005) declared: “Badly designed

software is costing businesses millions of dollars annually because it’s difficult to

use, requires extensive training and support, and is so frustrating that many end

“UX”

“UX” is an almost

ubiquitous term that we

use to refer to most things

that have to do with

designing for a high

quality user experience. So

this means we will use

terms like the UX field, UX

work, a UX practitioner,

the UX team, the UX role,

UX design or UX design

process.

33INTRODUCTION

users underutilize applications, say IT officials at companies such as The Boeing

Co. and Fidelity Investments.” Keith Butler of Boeing said that usability issues

can add as much as 50% to the total cost of software ownership.

Such startling reports on the dismal performance of the software

development industry are not hard to find. Kwong, Healton, and Lancaster

(1998) cite (among others) the Gartner Group’s characterization that the state

of software development is chaos: “25% of software development efforts fail

outright. Another 60% produce a sub-standard product. In what other industry

would we tolerate such inefficiency? As Kreitzburg has put it, imagine if

25% of all bridges fell down or 25% of all airplanes crashed.”

1.5.2 No One Is Complaining and It Is Selling Like Hotcakes
It is easy to mistake other positive signs as indicators that a product has no user

experience problems. Managers often say, “This system has to be good; it’s

selling big time.” “I’m not hearing any complaints about the user interface.” This

is a more difficult case to make to managers because their usual indicators of

trouble with the product are not working. On closer inspection, it appears that a

system might be selling well because it is the only one of its kind or the strength

of its marketing department or advertising obscures the problems.

And, sometimes, project managers are the only ones who do not hear the user

experience complaints. Also, despite demands for an improved user experience,

some users simply will not complain.

If you wonder about the user experiences with your own product, but your

users are not complaining, here are some indicators to watch for, characteristics

of prime candidates for having problems with usability and user experience:

n Your users are accessing only a small portion of the overall functionality your

system offers

n There are a significant number of technical support calls about how to use a particular

feature in the product.

n There are requests for features that already exist in the product.

n Your competitor’s products are selling better even though your product has

more features.

This book can help you address these issues. It is designed for those who have

been struck by the importance of a good user interface and who want to find out

more about what a quality user experience means, how to ensure it, and how

to know when you have it. This book is especially aimed toward practitioners—

people who put theory into practice in a real-world development environment.

34 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

The methods and techniques described here can be used by anyone who is

involved in any part of the development of a user interaction design for a

user interface.

1.5.3 A Business Strategy: Training as a Substitute
for Usability in Design
“It might not be easy to use right off, but with training and practice, it will be a

very intuitive design.” Sounds silly and perverse, but that is what many people are

really saying when they suggest training as a way to fix usability problems.

Unfortunately, the following real-world example is representative of many.

A very large governmental organization serving the public sometimes

attempts to solve user experience problems by “instructional bulletins” sent to

all field users. These are real user experience problems that increase the time to

do tasks, introduce significant opportunities for errors, and require users to

remember these special-case instructions for each particular situation. Also,

these bulletins are issued only once and then their complicated contents

become the responsibility of the users, including those hired after they are

issued and, therefore, have never received them.

In one such case, the relevant situation arises when an applicant, a client

outside the organization, calls in on an 800 phone number. The call is answered

by an agent working for the organization, the actual system user, acting as an

information intermediary for the client/applicant. If the applicant requests

certain information, to which access is not allowed, the request is denied and

policy based on law requires that an explanatory written notice be sent via

regular mail.

Screens referred to in the “instructional bulletin” about this kind of

interaction are used to make a record of the request and the information denial

decision, and to automatically generate and send out the notice. The

opportunities for errors are abundant and the applicant will not receive the

legally required notice if the user, the agent using the computer, fails to follow

these instructions to the letter. We are told, without perceptible nodding or

winking, that most agents should understand the jargon. The essence of the

main part of the bulletin states:

The 800 Number LDNY System is a 2-screen process. It issues an electronic form

#101A, annotates the LPFW worksheet with a record of the closeout action, and

automatically purges the lead when the closeout expires based on data

propagated to the LPFW.However, the LDNY screenmust be completed properly

in order to propagate the current date to the REC field and “INFORMAL

35INTRODUCTION

DENIAL” to the REMARKS field on the LPFW screen. If this data is not

propagated to the LPFW, the applicant will not receive the notice. IMPORTANT: To

get the REC date and the REMARKS to propagate to the LPFW screen, you must

remember two things:

1. On page 2 of the LDNY, youmust answer YES to PRINTNOTICE, otherwise the

REC date and REMARKS will not propagate to the LPFW.

2. When you press ENTER on page 2 of the LDNY screen, you are returned to the

LPFP screen, a screen you have already completed. You must ENTER through

this screen. This will return you to the 800 Number screen. Do NOT use the

normal procedure of using the PF3 key to return to the 800 Number screen

because it will prevent the appropriate “INFORMAL DENIAL” from

propagating to REMARKS on the LPFW screen.

Will a user remember all this, say, a few months after it was released? Multiply

this situation by many other functions, forms, situations, and “instructional

bulletins” and you have a formula for massive scale errors, frustration, lost

productivity, and underserved clients. Training as a substitute for usability is an

ongoing per-user cost that often fails to meet the goals of increased productivity

and reduced risk, errors, and cost. The question that sticks in our minds is how

could someone send out this memo with a straight face? How could the memo

author not see the folly of the whole situation? Perhaps that person had been

part of the bureaucracy and the system for so long that he or she truly believed it

had to be that way because “this is how we have always done it.”

1.6 ROOTS OF USABILITY

It is a matter of debate exactly when computer usability was born. It was clearly

preceded by usability work for non-computer machines in industrial design and

human factors. We know that computer usability was a topic of interest to some

by the late 1970s and, by the early 1980s, conferences about the topic were being

established. No field exists in isolation and ours is no exception. Human–

computer interaction in general and usability in particular owe much of their

origin and development to influences from many other related fields.

Human factors is about making things work better for people. For example, think about

building a bridge: You use theory, good design practice, and engineering principles, but you

36 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

can’t really know if it will work. So you build it and have someone walk over it. Of course, if the

test fails, . . . well, that’s one of the reasons we have graduate students.

– Phyllis Reisner

From cognitive and behavioral psychology and psychometrics, concepts such

as usermodeling and user performancemetrics were adopted intoHCI.Much of

the predesign analysis, such as business process modeling, has its roots in the

field of systems engineering. Also, ideas such as software architectures that could

abstract the user interface and functional core concerns, rapid prototyping

tools, and software environments were borrowed from the discipline of

computer science (Hartson, 1998).

Our caveat to the reader: In this and similar sections on history and

related work at the end of most chapters, the coverage is by no means a survey of

the vast contributions on any particular topic. The topics and references

included are to be taken as examples. Please forgive any omission of your

favorite references and see other books on this topic for surveys that do justice.

1.6.1 A Discipline Coming of Age
Compared to venerable disciplines such as architecture or civil engineering,

computer science is an infant and human–computer interaction is still an

embryo. The oldest computer science departments are in their 40s or 50s, and

the PC has been around only about 30 years as of this writing. As is often the case,

evolution accelerates; it is safe to say that more major changes have occurred

within computer science in these 40 years than in civil engineering, for example,

in the past hundred or more years (Mowshowitz & Turoff, 2005). As young as it

is, HCI has experienced its own accelerated evolution.

Although work was being done on “human factors in computers” in the 1970s

and earlier, HCI was born at Virginia Tech and several other universities in the

late 1970s and 1980s and had been going on at IBM (Branscomb, 1981), the

National Bureau of Standards (now the National Institute of Standards and

Technology), and other scattered locations before that. This early work mainly

focused on specific topics such as ergonomics of hardware devices (CRT

terminals and keyboards), training, documentation (manuals), text editors, and

programming, with little general or theoretical work yet evolved.

Many believe that HCI did not coalesce into a fledgling discipline until the

CHI conferences began in Boston in 1983. But it probably began a couple of

years before with the “unofficial first CHI conferences” (Borman & Janda, 1986)

at theMay 1981 ACM/SIGSOC conference, called the Conference on Easier and

37INTRODUCTION

More Productive Use of Computer Systems, in Ann Arbor, Michigan, and the

March 1982 Conference on Human Factors in Computer Systems in

Gaithersburg, Maryland.

Also, who does not like cake and candles? So CHI (the conference)

celebrated its 25th birthday in 2007 (Marcus, 2007). Marcus says, “I can

remember in the mid-1980s when an HP staff member announced with

amazement that the amount of code for input-output treatment had finally

surpassed the amount of code that was devoted to actual data manipulation.

A watershed moment.” Watershed, indeed!

1.6.2 Human Factors and Industrial and Systems Engineering
Some people think that human factors got its start in “Taylorism,” an early

20th-century effort to structure and manage the processes for producing a

product efficiently. Through his principles of “scientific management,”

Frederick Winslow Taylor sought to define “best practices” of the time to reform

our inefficient and wasteful, even lazy, ways of operating private and government

enterprises and factories (Taylor, 1911). He is also known for helping formulate

a national imperative for increased industrial efficiency.

Later, U.S. Air Force officials became concerned with airplane crashes

experienced byWorldWar II pilots. In an effort to reduce cockpit errors by pilots

and to improve safety, engineers began to study critical incidents that may

have led to airplane crashes. Work by Fitts and Jones (1947) is the best known

in this regard. Then it grew into goals of improved production and safety in

control systems for other kinds of machines, such as power plants. Eventually it

has become part of the field of HCI, where it is concerned with critical incidents

during interaction by computer users. This is where we got our early emphasis

on simple user performance metrics (Tatar, Harrison, & Sengers, 2007).

According to Mark S. Sanders, as quoted by Christensen, Topmiller, and Gill

(1988), “human factors is that branch of science and technology that includes

what is known and theorized about human behavior and biological

characteristics that can be validly applied to the specification, design, evaluation,

operation, and maintenance of products and systems to enhance safe, effective,

and satisfying use by individuals, groups, and organizations.” Not far from our

definition of usability, eh?

When human factors entered the computer age, it made a good fit with the

emerging field of human–computer interaction. The focus on critical incidents

persisted, but now the focus was on problems in HCI.

38 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Human–computer interaction is clearly about human behavior and is used to

drive system design, and human performance is the measurable outcome in

using those systems (Bailey, 1996). As Bailey says, the human is themost complex

part of almost any system and the most likely cause of accident or system failure,

which is the reason why so much effort has gone into engineering for the

performance of the human component.

We agree with all but the conclusion that the human is the most likely

cause of errors or system failure; the whole point of human factors

engineering is to design the system to take into account the susceptibility

of the human for errors and to design the system to prevent them. So, our

take on it is that the human user is what he or she is, namely human, and

a design that does not take this into account is the most likely cause of errors

and failures.

It is said that human factors got its start with aircraft cockpit design in World

War II. The overarching assumption at that time was that humans could be trained

to fit a design, the extent of the fit directly proportional to the amount of training.

However, nomatter how extensive the training and irrespective of the amount of

flying experience, pilots were making dangerous mistakes while operating the

controls in the cockpit. Researchers were brought in to investigate what were

called “pilot errors.”

Early investigators such as Fitts and Jones (1947) interviewed scores of pilots

and started detecting design problems that ranged from lack of consistency

among different cockpit control layouts to placement of unrelated controls

together without visual or tactile differentiators to alert the pilots when wrong

controls were being operated. The reports of Fitts and Jones are among the very

earliest that recognized the causal connection between design flaws, rather than

human errors, and mishaps in user performance.

In one such instance, as the folklore goes (not a finding of Fitts and Jones),

pilots began bailing out at all the wrong times and for no apparent good reason.

It seems that an update by designers included switching the locations of the

ejection release and the throttle. When the finger of suspicion pointed at them,

the engineers were indignant; “there were good reasons to change the design; it

should have been designed that way in the first place. And pilots are very

intelligent, highly trained, and already had shown that they could adapt to the

changes.” However, it turned out that, when under stress, the pilots sometimes

involuntarily reverted to earlier learned behavior, and the result was an

untimely, embarrassing, and dangerous alley-oop maneuver noted for its

separation of pilot from plane.

39INTRODUCTION

In fact, the connection of human factors toHCI and usability is close; much of

the early HCI work was referred to as “human factors in software engineering”

(Gannon, 1979). In 1987 (Potosnak, 1987), for example, the place where human

factors fit into the software engineering process was stated as providing a

research base, models to predict human behavior, standards, principles,

methods for learning about users, techniques for creating and testing systems,

and tools for designing and evaluating designs.

Furthermore, many ideas and concepts from human factors laid the basis for

HCI techniques later on. For example, the idea of task analysis was first used by

human factors specialists in analyzing factory workers’ actions on an assembly

line. For many working in human factors engineering, themove to focus onHCI

was a natural and easy transition.

1.6.3 Psychology and Cognitive Science
In addition to the major influence of human factors and engineering, HCI

experienced a second wave of formative influence (Tatar, Harrison, & Sengers,

2007) from a special brand of cognitive science, beginning with Card, Moran,

and Newell (1983), offering the first theory within HCI.

Like human factors engineering, cognitive psychology has many connections

to the design for, and evaluation of, human performance, including cognition,

memory, perception, attention, sense and decision making, and human

behavioral characteristics and limitations, elements that clearly have a lot to do

with user experience. One difference is that psychology is more about the

human per se, whereas human factors engineering looks at the human as a

component in a larger system for which performance is to be optimized.

However, because of the influence of psychology on human factors and the fact

that most human factors practitioners then were trained in psychology, the field

was known at least for a while as occupational psychology.

Because the field of human factors is based on a foundation in psychology, so

are HCI and user experience. Perhaps the most fundamental contribution of

psychology to human–computer interaction is the standard bearer, Card,

Moran, and Newell (1983), which is still today an important foundational

reference.

The empiricism involved in statistical testing in human factors and HCI has

especially apparent common roots in psychology; see, for example, Reisner

(1977). Hammond, Gardiner, and Christie (1987) describe the role of cognitive

psychology in HCI to include observing human behavior, building models of

human information processing, inferring understanding of the same, and

scientific, or empirical, study of human acquisition, storage, and use of

40 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

knowledge/information. Cognitive psychology shares with human factors

engineering the goal of system operability and, when connected to HCI,

computer-based system operability.

Perhaps the most important application of psychology to HCI has been in the

area of modeling users as human information processors (Moran, 1981b;

Williges, 1982). Most human performance prediction models stem from Card,

Moran, and Newell’s Model Human Processor (1983), including the keystroke

level model (Card, Moran, & Newell, 1980), the command language grammar

(Moran, 1981a), the Goals, Operators, Methods, and Selections (GOMS)

family of models (Card, Moran, & Newell, 1983), cognitive complexity theory of

Kieras and Polson (1985), and programmable user models (Young, Green, &

Simon, 1989). In the earliest books, before “usability” was a common term,

“software psychology” was used to connect human factors and computers

(Shneiderman, 1980).

Carroll (1990) contributed significantly to the application of psychology to

HCI in fruitful ways. Carroll says, “. . . applied psychology in HCI has

characteristically been defined in terms of the methods and concepts basic

psychology can provide. This has not worked well.” He goes on to explain that

too much of the focus was on psychology and not enough on what it was being

applied to. He provides a framework for understanding the application of

psychology in the HCI domain.

As an interesting aside to the role of cognitive psychology in HCI, Digital

Equipment Corporation researchers (Whiteside et al., 1985; Whiteside&Wixon,

1985)made the case for developmental psychology as amore appropriatemodel

for interaction design than behavioral psychology and as a framework for

studying human–computer interaction. The behavioral model, which stresses

behavior modification by learning from stimulus–response feedback, leads to a

view in which the user adapts to the user interface. Training is invoked as

intervention to shape the user’s behavior. The user with “wrong” behavior is

importuned with error messages. Simply put, user behavior is driven by the

interaction design.

In contrast, developmental psychology stresses that surprisingly complex user

behavior springs from the person, not the design. The developmental view studies

“wrong” user behavior with an eye to adapting the design to prevent errors.

Differences between system operation and user expectations are opportunities to

improve the system. “User behavior is not wrong; rather it is a source of

information about the system’s deficiencies (Whiteside & Wixon, 1985, p. 38).”

Finally, as even more of an aside, Killam (1991) proffers the idea that

humanistic psychology, especially the work of Carl Rogers, Rogerian psychology

41INTRODUCTION

as it is called, is an area of psychology that has been applied unknowingly, if not

directly, to HCI. A client-centered approach to therapy, Rogerian psychology, as

in the developmental approach, avoided the normative, directive style of

prescribing “fixes” for the patient to adopt, instead listening to the patient’s

needs that must be met to affect healing.

The tenets of Rogerian psychology translate to some of our most well-known

guidelines for interaction design, including positive feedback to encourage,

especially at times when the user might be hesitant or unsure, and keeping the

locus of control with the user, for example, not having the system try to second-

guess the user’s intentions. In sum, the Rogerian approach leads to an

interaction design that provides an environment for users to find their own way

through the interaction rather than having to remember the “right way.”

As in the case of human factors engineering, many people moved into HCI

from psychology, especially cognitive psychology, as a natural extension of their

own field.

1.6.4 Task Analysis
Task analysis was being performed in human factors contexts long before HCI

came along (Meister, 1985; Miller, 1953). In order to design any system to

meet the needs of its users, designers must understand what tasks users will use

the system for and how those tasks will be performed (Diaper, 1989b). Because

tasksusingmachines involvemanipulationof system/deviceobjects suchas icons,

menus, buttons, and dialogue boxes in the case of user interfaces, tasks and

objectsmust be considered together indesign (Carroll, Kellogg,&Rosson, 1991).

The process of describing tasks (how users do things) and their relationships

is called task analysis and is used to drive design and to build predictive

models of user task performance. Much work was done in the 1980s and

1990s in the United Kingdom on developing task analysis to make it connect

to interaction design to support users, including task analysis for knowledge

description (Diaper, 1989a), the task action grammar (Payne & Green,

1986, 1989).

1.6.5 Theory
Much of the foundation for HCI has been closely related to theory in

psychology, asmuch of it derived from adaptations of psychological theory to the

human information processor known to HCI. Cognitive psychology (Barnard,

1993; Hammond, Gardiner, & Christie, 1987) and cognitive theory are the bases

for much of what we do—claims analysis (Carroll & Rosson, 1992), for example.

42 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

The theory of work activity (B�dker, 1989, 1991) is embodied in techniques such

as contextual inquiry.

Norman’s (1986) theory of action expresses, from a cognitive engineering

perspective, human task performance—the path from goals to intentions to

actions (inputs to the computer) back to perception and interpretation of

feedback to evaluation of whether the intentions and goals were approached or

met. The study of learning in HCI (Carroll, 1984; Draper & Barton, 1993) also

has obvious roots in cognitive theory. Fitts law (relating cursor travel time to

distance and size of target)(MacKenzie, 1992) is clearly connected to

kinesthetics and human performance.

As a prerequisite for task analysis and a significant legacy from cognitive

psychology, models of humans as cognitive information processors are used to

model and understand the full gamut of user cognition and physical actions

needed to interact with computers (Card, Moran, & Newell, 1983). The

command language grammar (Moran, 1981a) and the keystroke model (Card,

Moran, & Newell, 1980), which attempt to explain the nature and structure of

human–computer interaction, led directly to the Goals, Operators, Methods,

and Selection (GOMS) (Card, Moran, & Newell, 1983) model. GOMS-related

models, quantitative models combining task analysis and the human user as an

information processor, are concerned with predicting various measures of user

performance—most commonly task completion time based on physical actions

in error-free expert task performance.

Direct derivatives of GOMS include Natural GOMS Language (Kieras, 1988)

and cognitive complexity theory (Kieras & Polson, 1985; Lewis et al., 1990), the

latter of which is intended to represent the complexity of user interaction from

the user’s perspective. This technique represents an interface as the mapping

between the user’s job-task environment and the interaction device behavior.

GOMS-related techniques have been shown to be useful in discovering

certain kinds of usability problems early in the lifecycle, even before a prototype

has been constructed. Studies, for example, by Gray, et al. (1990), have

demonstrated a payoff in some kinds of applications where the savings of a

number of user actions, for example, keystrokes or mouse movements, can

improve user performance enough to have an economic impact, often due to

the repetitiveness of a task.

Carroll and Rosson’s task-artifact cycle (1992) elicits cognitive theories

implicit in design, treating them as claims by the designer. They propose an

iterative design cycle in which a scenario-based design representation depicts

artifacts in different situations of use. These artifacts are then analyzed to

43INTRODUCTION

capture design rationale via the extraction of claims (design tradeoffs), which

inform the design.

1.6.6 Formal Methods
While not theory per se, formal methods have been the object of some interest

and attention for supporting both theory and practice in HCI (Harrison &

Thimbleby, 1990). The objectives of formal methods—precise, well-defined

notations and mathematical models—in HCI are similar to those in software

engineering. Formal design specifications can be reasoned about and analyzed

for various properties, such as correctness and consistency. Formal

specifications also have the potential to be translated automatically into

prototypes or software implementation.

1.6.7 Human Work Activity and Ethnography
Work activity theory (B�dker, 1991; Ehn, 1990) has had a continuing and deep

impact onHCI theory and practice. Originating in Russia andGermany and now

flourishing in Scandinavia, where it has been, interestingly, related to the labor

movement, this view of design based on work practice situated in a worker’s own

complete environment has been synthesized into several related mainstream

HCI topics.

A natural progression from work activity theory to a practical tool for

gathering design requirements driven by work practice in context has led to the

eclectic inclusion in some HCI practices of ethnography, an investigative field

rooted in anthropology (LeCompte & Preissle, 1993). Indeed, the conflux of

work activity theory and ethnographic techniques was refined by many pioneers

of this new direction of requirements inquiry and emerged as contextual design

in the style of Beyer and Holtzblatt (1998).

1.6.8 Computer Science: Interactive Graphics, Devices,
and Interaction Techniques
In parallel to, but quite different from, the human factors, psychology, and

ethnography we have been describing, several related threads were appearing in

the literature and practice on the computer science side of the HCI equation.

This work on graphics, interaction styles, software tools, dialogue management

systems, programming language translation, and interface “widgets” was

essential in opening the way to practical programming techniques for bringing

interaction designs to life on computers.

The origin of computer graphics is frequently attributed to pioneers such as

Ivan Sutherland (1963, 1964) and solidified by masters such as Foley and

44 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

colleagues (Foley & Van Dam, 1982; Foley et al., 1990; Foley & Wallace, 1974)

and Newman (1968). For an insightful account of the relationship of graphics to

HCI, see Grudin (2006).

The 1980s and 1990s saw a burgeoning of hardware and software

developments to support the now familiar point-and-click style of interaction,

including the Xerox Star (Smith et al., 1989) and the Lisa and Macintosh by

Apple. This work was a rich amalgam of interaction techniques, interaction

styles, user interface software tools, “dialogue management systems,” and user

interface programming environments.

“An interaction technique is a way of using a physical input/output device to

perform a generic task in a human-computer dialogue” (Foley et al., 1990). A

very similar term, interaction style, has evolved to denote the behavior of a user

and an interaction object, for example, a push button or pull-downmenu, within

the context of task performance (Hartson, 1998). In practice, the notion of an

interaction technique includes the concept of interaction style plus full

consideration of internal machine behavior and software aspects.

In the context of an interaction technique, an interaction object and its

supporting software is often referred to as a “widget.” Libraries of widgets,

software that supports programming of graphical user interfaces, are an

outgrowth of operating system device handler routines used to process user

input–output in the now ancient and impoverished interaction style of

line-oriented, character-cell, text-only, “glass teletype” terminal interaction.

Early graphics packages took interaction beyond text to direct manipulation of

graphical objects, eventually leading to new concepts in displays and cursor

tracking. No longer tied to just a keyboard or even just a keyboard and mouse,

many unusual (then, and some still now) interaction techniques arose (Buxton,

1986; Hinckley et al., 1994; Jacob, 1993).

Myers led the field in user interface software tools of all kinds (Myers, 1989a,

1989b, 1992, 1993, 1995; Myers, Hudson, & Pausch, 2000), and Olsen is known

for his work in treating the linguistic structure of human–computer dialogue

from a formal computing language perspective as a means for translating the

language of interaction into executable program code (Olsen, 1983).

So many people contributed to the work on User Interface Management

Systems (UIMS) that it is impossible to even begin to recognize them all. Buxton

and colleagues (1983) were among the earliest thinkers in this area. Others we

remember are Brad Myers, Dan Olsen, Mark Green, and our researchers at

Virginia Tech. Much of this kind of work was reported in the ACM Symposium

onUser Interface Software and Technology (UIST), a conference specifically for

the software-user-interface connection.

45INTRODUCTION

The commercial world followed suit and we worked through quite a number

of proposed “standard” interaction styles, such asOSFMotif (TheOpenGroup).

Developers had to choose from those available mainly because the styles were

tied closely to software tools for generating the programming code for

interaction designs using the devices and interaction styles of these approaches.

Standardization, to some extent, of these interactive graphical interaction

techniques led to the widgets of today’s GUI platforms and corresponding style

guides intended for ensuring compliance to a style, but sometimes thought of

mistakenly as usability guides.

This growth of graphics and devices made possible one of the major

breakthroughs in interaction styles—direct manipulation (Shneiderman, 1983;

Hutchins, Hollan, & Norman, 1986)—changing the basic paradigm of

interaction with computers. Direct manipulation allows opportunistic and

incremental task planning. Users can try something and see what happens,

exploring many avenues for interactive problem solving.

1.6.9 Software Engineering
Perhaps the closest kin of usability engineering, or interaction development, on

the computer science side is the somewhat older discipline of software

engineering. The development lifecycles of both these disciplines have similar

and complementary structure in a development project with similar kinds of

activities, such as requirements engineering, design, and evaluation. However,

for the most part, these terms have different philosophical underpinnings and

meanings in the two disciplines.

In an ideal world, one would expect close connections between these two

lifecycles as they operate in parallel during development of a unified interactive

system. For example, when usability engineers see the need for a new task, it is

important to communicate that need to the software engineers in a timely

manner so that they can create necessary functional modules to support

that task.

However, in reality, these two roles typically do not communicate with one

another until the very end when actual implementation starts. This is often too

late, as many interaction design concerns have serious software architectural

implications. One of the reasons for this apparent lack of connections between

the two lifecycles is because of how these two disciplines grew: without either one

strongly influencing the other. In fact, barring a few exceptions, the software

engineering and usability engineering researchers and practitioners havemostly

ignored one another over the years. We discuss this important topic of

connecting with the software engineering lifecycle (Chapter 23).

46 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

CHAPTER

The Wheel: A Lifecycle
Template 2

He believed in love; he was married many times.

– Fred, on iteration

Objectives

After reading this chapter, you will:

1. Understand the concept of a UX lifecycle process and the need for it

2. Understand the “Wheel” UX lifecycle abstraction template

3. Appreciate the need for choosing a process instance for your own project

4. Understand how to identify project parameters and map them to process

choices

5. Understand the process choice tradeoffs based on system type, domain complexity,

and interaction complexity within the system complexity space

6. Know the key team roles in the UX process for producing interactive products

2.1 INTRODUCTION

The iterative, evaluation-centered UX lifecycle template described in this

chapter sets the stage for the whole interaction design process part of this book.

It is a map of all the choices for activities to create and refine a design that will

lead to a quality user experience. These activities are where all the work products

are created, including versions of the product or system being developed.

2.1.1 Flying without a Process
To set the stage, consider this all too common scenario for a misbegotten

approach to interaction lifecycle activities within an interactive software

development project (with many thanks to our good friend Lucy Nowell of

Battelle Pacific Northwest Laboratories):

Lifecycle

A lifecycle is a structured

framework consisting of a

series of stages and

corresponding activities—

such as analysis, design,

implementation, and

evaluation—that

characterize the course of

evolution of, in this

context, the full evolution

of an interaction design or

a complete system or

product.

Iterative Process

An iterative process is one

in which all or part is

repeated for the purpose

of exploring, fixing, or

refining a design or the

work product of any other

lifecycle activity. It is the

“wash, rinse, and repeat”

characteristic of HCI.

About 25% into the project schedule, the user experience specialist is contacted

and brought in to do some screen designs. “Where is the task analysis?” “TheWhat?”

“Ok, you have done contextual inquiry and analysis and you have requirements, right?”

“Oh, yes, lots of requirements lists—we pride ourselves in gathering and

documenting all the necessary functionality beforehand.” “Ummm . . ., Ok, do you

have any usage scenarios?” “Uh, well, we’ve got a bunch of O-O use cases.”

At this point the user experience specialist has the privilege of working overtime to

getup to speedbyporing through functional requirements documents and trying to

create some usage scenarios. When the scenarios are sent out to prospective users, it

is revealed that this is the first time anyone has asked them anything about the new

system. The result is a deluge of feedback (“That’s not how we do it!”) and tons of

changes suggested for the requirements (“Hey, what about this?”), including lots of

brand new requirements. A very different view of the target system is emerging!

This is a critical point formanagement. If they are lucky or smart and there is time

(a small percentage of projects), they decide to go back and do the upfront work

necessary to understand the work activities and needs of users and customers.

They dig into the context of real work, and users get involved in the process,

helping to write usage scenarios. The requirements soon reflect real usage needs

closely enough to drive a useful and fairly major redesign.

If they are not lucky or smart or do not have the time (a large percentage of

product development projects), they will ignore all the commotion from users

and plow ahead, confidence unshaken. The group continues on its chosen

“clueless but never in doubt” path to produce yet another piece of shelfware. This

project cannot be saved by any amount of testing, iteration, field support, or

maintenance effort.

It is easy to fall into this kind of scenario in your projects. None of us are fond

of the ending of this scenario. This kind of scenario is not necessarily anyone’s

fault; it is just about awareness of a guiding UX process that might help avoid

this ending.

2.1.2 The Concept of Process

Calibration: What process means to us and others
To most people, including us:

n the term “process” connotes a set of activities and techniques

n the term “lifecycle” suggests a skeleton structure on which you can hang specific

process activities, imbuing them with temporal relationships

48 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Fine distinctions are unnecessary here, so we use the terms “process,”

“lifecycle,” and “lifecycle process” more or less interchangeably. Here we

introduce a lifecycle template, a skeleton representation of a basic lifecycle that

you get to tailor to your needs by instantiating it for each project.

In your instantiation you get to determine your own process, choosing which

activities to do and which techniques to use in doing them, as well as how much

and how often to do each activity, and (perhaps most importantly) when to stop.

Here, and in the other process chapters (Chapters 3 through 19), we offer

guidelines on how to make these decisions.

What is a process?
A process is a guiding structure that helps both novices and experts deal with the

complex details of a project. Process acts as scaffolding, especially for novice

practitioners, to ensure that they are on track to a quality product and on the

path to becoming experts. Process acts as a checklist for experts to make sure

they do not miss any important aspects of the problem in the heat of

productivity. A process helps designers answer questions such as “Where are we

now?” and “What can/should we do next?”

A process brings to the table organizational memory from similar previous

efforts by incorporating lessons learned in the past. In other words, process

provides a repeatable formula to create a quality product. Process also alleviates

risk by externalizing the state of development for observation, measurement,

analysis, and control—otherwise, communication among the project roles about

what they are doing is difficult because they do not have a shared concept of what

they should be doing.

Why do we need a process?
Following a process is the solution recognized by software engineering folks long

ago and something in which they invest enormous resources (Paulk et al., 1993)

in defining, verifying, and following. On the UX side, Wixon and Whiteside

were way ahead of their time while at Digital Equipment Corp in the 1980s and

put it this way (Wixon & Whiteside, 1985), as quoted in Macleod et al. (1997):

Building usability into a system requires more than knowledge of what is good.

It requiresmore than an empiricalmethod for discovering problems and solutions.

It requires more than support from upper management and an openness on the

part of all system developers. It even requires more thanmoney and time. Building

usability into a product requires an explicit engineering process. That engineering

process is not logically different than any other engineering process. It involves

empirical definition, specification of levels to be achieved, appropriate methods,

49THE WHEEL : A L I FECYCLE TEMPLATE

early delivery of a functional system, and the willingness to change that system.

Together these principles convert usability from a “last minute add on” to an

integral part of product development. Only when usability engineering is as much

part of software development as scheduling can we expect to regularly produce

products in which usability is more than an advertising claim.

Without guidance from an interaction design process, practitioners are

forced to make it up as they go along. If this sounds familiar to you, you are not

alone. An approach without a process will be idiosyncratic; practitioners will

emphasize their own favorite process activities while other important process

activities fall through the cracks. What they do is dictated and limited by their

own experience. They will try to apply the activities and techniques they know as

much as possible; they have hammers and everything looks like nails.

As Holtzblatt (1999) puts it, following a process for product development can

work against “the relentless drive of an organization to ship ‘something’ by a given

date.” Other excuses for not following a proven approach included “we do not

have time todo thewholemethod, sowedonot do any of it,” “it doesnot fit well with

our existing methods, that we are used to,” “can our designers really be trained to

do this?,” and “do these methods transfer well to real-world project groups?” In this

and the coming chapters, we hope that we can shed some light on answers.

A process is not necessarily rigid
Remember that a process does not necessarily imply a rigid structure or even a

linear one. A process can be as lightweight or heavyweight as appropriate. In

other words, even an incremental and iterative lifecycle approach in the software

engineering world (such as an Agile methodology) is still a process.

Lest it still sounds inflexible, we should add that experts with lots of

experience can interpret a process and take appropriate shortcuts and other

creative liberties with it—and we encourage that throughout the book.

2.1.3 Influences on Our Lifecycle Process
The lifecycle process described in this book is based on insight that grew

out of the adaptation and extension of several existing UX and software

methodologies over many years. The methods that most significantly guided

our creation of our own lifecycle template are:

n the Waterfall (Royce, 1970) software engineering lifecycle

n the Spiral Model (Boehm, 1988) of software engineering

50 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

n Mayhew’s usability engineering lifecycle (Mayhew, 1999b)

n the Star lifecycle of usability engineering (Hartson & Hix, 1989)

n the Wheel (Helms et al., 2006) lifecycle concept

n the LUCID framework of interaction design (Kreitzberg, 2008)

Web User Experience Design within the Usability
Engineering Lifecycle1

Dr. Deborah J. Mayhew, Consultant, Deborah J. Mayhew & Associates 2

CEO, The Online User eXperience Institute3

Within the software usability lifecycle I describe in my book The Usability Engineering Lifecycle (Morgan Kaufmann

Publishers, 1999) is a phase consisting of a structured top-down iterative approach to software user interface design.

Design is driven by requirements data from a requirements analysis phase. The overall design phase is divided into

three levels of design as follows, with slight wording changes made here to reflect Website user experience (UX)

design in particular. Each level includes an iterative process of design, mock-up, and evaluation, which is not

addressed here.

Level 1

n Information architecture

n Conceptual model design

Level 2

n Page design standards

Level 3

n Detailed UX design

The rationale behind a top-down approach to UX design is that it is more efficient and effective to address distinct

sets of design issues independently of one another, and in a specific order, that is, from the highest level to the most

detailed level. Because the design tasks address issues that are fairly independent of one another, focusing on one level

of design at a time forces designers to address all UX design issues explicitly and consciously. It ensures efficiency in that

1This essay is a modified excerpt from a chapter called “The Web UX Design Process—A Case Study” that I have written for the forthcoming

book Handbook of Human Factors in Web Design (2nd ed.) by Kim-Phuong L. Vu and Robert W. Proctor (Eds.), Taylor & Francis, 2011. That

chapter includes a rich case study of the top-down design process within the usability engineering lifecycle, which in turn is fully documented

in The Usability Engineering Lifecycle by D. Mayhew, Morgan Kaufmann Publishers, 1999.
3 (http://drdeb.vineyard.net)
3(http://www.ouxinstitute.com)

51THE WHEEL : A L I FECYCLE TEMPLATE

lower level details are not revisited and reworked constantly as higher level design issues are addressed and reworked

randomly. Each level of design builds on the design decisions at higher levels, which may have already been validated

through iterative evaluation.

The top level in the top-down process for Web UX design includes two design foci, the first of which is

information architecture design. The information architecture is a specification of the navigational structure of the

Website. It does not involve any visual design.

Designers must design information architectures in a way that streamlines site visitor navigation across and within

tasks and exploits the capabilities of automation (to enhance ease of use), while at the same time preserving familiar

structures that tap into visitors’ current mental models of their tasks.

While it may seem difficult at first to separate navigational/structural issues from visual design issues, it is

productive to learn to do so for at least three reasons. First, the two really are independent. For example, you can have

valid and supportive information architecture and then fail to present it clearly through an effective visual design.

Second, different skill sets are relevant to information architecture design as opposed to visual design. In particular,

usability and persuasion skills are paramount to achieving optimal information architecture design, while in addition,

graphic design skills are necessary to achieve effective appeal, atmosphere, tone, and branding, as well as help realize

and support many usability and persuasion goals.

Third, the navigational structure (i.e., information architecture) is platform independent, whereas visual and

behavioral design options will depend very much on the chosen platform. For example, a given information

architecture may specify a hierarchical menu structure of categories and subcategories of products. Current Web

platforms (i.e., browsers, browser versions, plug-ins) allow drop-down menus much like a traditional “GUI” menu bar

structure as an option for presenting second (and even third) level navigational choices, whereas earlier browsers did

not, requiring instead that different levels in a menu hierarchy be presented as sequences of pages with embedded

links.

In conceptual model design, still within Level 1, the focus is still on navigation, but high-level design standards

for presenting the information architecture visually are generated. Neither page content nor page design standards

(i.e., visual presentation of page content) are addressed during this design task.

A good conceptual model design eliminates the need for the commonly seen “Site Map” page on Websites, that is,

the user interface itself reveals the overall site structure at all times and makes it clear where you currently are in it,

how you got there, and where you can go from there. A familiar example of how to achieve this is to provide a left-

hand nav bar that displays an expandable/contractible set of hierarchical page links. Within this structure, the link to

the current page can be cued by some sort of highlight and be inactive.

Visibility and clarity of the information architecture are large parts of what we want to achieve in Website

conceptual model design. However, another key goal in a conceptual model design for a Website is persuasion. Also,

we want the graphic design to be aesthetically appealing as well as appropriate to the business, to create a particular

atmosphere designed to attract the target audience, and to provide strong branding.

In Level 2, page design standards, a second set of standards for the Website is generated for visually presenting

and interacting with page content. This new set of standards is designed in the context of both the information

architecture and the conceptual model design standards that have already been generated and (in some cases) validated.

Page design standards for a Website would typically include standards that would cover the consistent use and

presentation of such things as content headers and subheaders, forms design, use of color cues, and the like. They might

include a set of templates illustrating content layout standards for different categories of pages (e.g., fill-in forms,

information-only pages, product description pages, pop-up dialog boxes). Consistency in the way all these things are

applied in the design will again—just as it does in the case of conceptual model design standards— facilitate greatly the

process of learning and remembering how to use the site. This is particularly important on Websites that will be used

primarily by casual and discretionary users, as is the case with many eCommerce and other types of sites.

The standards documented during the conceptual model design and page design standards tasks, as well as the

information architecture design, will dictate the detailed UX design of a large percentage of a site’s functionality.

Level 3, detailed UX design, is thus largely a matter of correctly and consistently applying standards already defined

and validated to the actual detailed design of all pages and pop-up windows across the site.

However, there will always be unique details here and there across pages to which no particular established

standard applies. These must still be designed, and designed well. Also, these design decisions should be driven by

requirements data and evaluated.

In my 30 years of software user interface design I have found a top-down approach to user interface design to be

most effective and efficient as a design process within the overall usability engineering lifecycle.

2.2 A UX PROCESS LIFECYCLE TEMPLATE

In Figure 2-1 we depict a basic abstract picture of activities for almost any kind of

design, a cycle of the four elemental UX activities—Analyze, Design, Implement,

and Evaluate—that we refer to generically as analysis, design, implementation,

and evaluation. These four activities apply whether you are working with an

architectural design, a hardware design, or a new car concept.

In the context of interaction design and UX, this abstract cycle translates to

our UX lifecycle template of Figure 2-2, which we call the Wheel.

In our lifecycle concept, specific to a UX process, analysis translates

to understanding user work and needs. Design

translates to creating conceptual design and

determining interaction behavior and look and

feel. Implementation translates to prototyping,

and evaluation translates to ways to see if our

design is on track to meet user needs and

requirements.

In a larger system view, implementation

includes a final production of hardware and

software, including the user interface.

However, in our UX lifecycle template,

Figure 2-1

Universal abstract activity
cycle of Analyze, Design,
Implement, and Evaluate.

implementation is limited to the interaction design component and

prototyping is the design manifestation we use for evaluation before it is

finalized for production.

The evaluation activity shown in Figure 2-2 includes both rigorous and

rapid evaluation methods for refining interaction designs. Beyond that

evaluation activity, the entire lifecycle is evaluation centered in the sense

that the results of potentially every activity in the lifecycle are evaluated in

some way, by testing, inspecting, analyzing, and taking it back to the customers

and users.

The entire lifecycle, especially the prototyping and evaluation activities, is

supplemented and guided by UX goals, metrics, and targets, as described in

Chapter 10.

Figure 2-2

The Wheel: A lifecycle
template illustrating the
process part of this book.

54 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

As you will see, this is not a lifecycle that must be followed arbitrarily, normust

any particular activity, sub-activity, or iteration be performed—this is just a

template showing all the possibilities. Each of these activities and many of the more

specific sub-activities correspond to one or more process-oriented chapters,

among Chapters 3 through 19, of this book.

2.2.1 Lifecycle Terminology
Each of the four UX process activities in Figure 2-2 can have sub-activities, the

major ways to do the basic activities. As an example, for the analysis activity,

possible sub-activities include contextual inquiry (Chapter 3), contextual

analysis (Chapter 4), requirements extraction (Chapter 5), and contextual data

modeling (Chapter 6).

A method is a general approach to carrying out an activity or sub-activity.

For example, lab-based evaluation (Chapters 12 and 14 through 17) is a method

for the evaluation activity. A technique is a specific practice applied within a

method. For example, the “think-aloud” technique is a data collection

technique that can be used within the lab-based evaluation method for the

evaluation activity.

2.2.2 UX Process Activities

Analyze: Understanding the business domain, user work,
and user needs
The left-most of the four basic activity boxes in Figure 2-2 represents the analysis

process activity. Among the many possible sub-activities to support analysis are

contextual inquiry (Chapter 3) and contextual analysis (Chapter 4) for studying

customer and user work practice in situ, from which we can infer user needs for a

new system design.

Extracting requirements (Chapter 5) from contextual data is another analysis

sub-activity. The requirements, if you choose to use them, are interaction design

requirements, inputs driving the design process and helping to determine its

features and the look, feel, and behavior of the interaction design. These

requirements are used as a checklist to ensure that they are covered in the

design, even before any UX evaluation.

Finally, synthesizing design-informing models is yet another possible analysis

sub-activity. Design-informing models (Chapter 6) are abstractions of different

dimensions of the work activity and design space. If you choose to use them,

these include models describing how work gets done, how different roles in the

work domain interact, the artifacts that are created, and so on.

Think Aloud
Technique

The think aloud technique

is a qualitative data

collection technique in

which user participants

verbally externalize their

thoughts about their

interaction experience,

including their motives,

rationale, and perceptions

of UX problems. By this

method, participants give

the evaluator access to an

understanding of their

thinking about the task

and the interaction

design.

55THE WHEEL : A L I FECYCLE TEMPLATE

Design: Creating conceptual design, interaction behavior,
and look and feel
The upper-most box in Figure 2-2 represents the process activity for design,

including redesign for the next version. Among the possible sub-activities to

support design are design ideation and sketching (Chapter 7), where the team

does creative design thinking, brainstorming, and sketching of new design ideas.

Design ideation leads to the representation of mental models, conceptual

design, and design storyboards. During the exploration of large numbers of

design candidates, it can include physical mockups of product design ideas.

Design production is a design sub-activity involving the details of applying

requirements, design-informing models, and envisioned design-informing

models to drive and inform the emerging interaction design. Design production

entails prototyping and iteration of the conceptual design, intermediate

designs, and detailed designs.

Prototype: Realizing design alternatives
The right-most of the four basic activity boxes in Figure 2-2 represents the

prototyping process activity. Prototype building is often done in parallel with,

and in conjunction with, design. As designs evolve in designers’ minds, they

produce various kinds of prototypes as external design representations. Because

prototypes are made for many different purposes, there are many kinds of

prototypes, including horizontal, vertical, T, and local. Prototypes are made

at many different levels of fidelity, including low fidelity (especially paper

prototypes), medium fidelity, and high fidelity (programmed functional

prototypes), and “visual comps” for pixel-perfect look and feel.

Evaluate: Verifying and refining the interaction design
The process activity box at the bottomof Figure 2-2 represents theUX evaluation to

refine an interaction design. For evaluation to refine, you can employ rapid

evaluation methods (Chapter 13) or fully rigorous methods (Chapters 12 and 14

through17).ThisevaluationiswhereweseeifweachievedtheUXtargetsandmetrics

to ensure that the design “meets usability and business goals” (ISO 13407, 1999).

2.2.3 Flow among UX Process Activities

Flow not always orderly
The depiction of UX process activities in distinct boxes, as in Figure 2-2, is a

convenientway tohighlight eachactivity fordiscussionand formapping to chapters

in this book.Theseprocess activities, however, donot inpracticehave suchclear-cut

boundaries; there can be significant overlap. For example, most of the boxes have

T Prototype

In a “T” prototype much

of the design is realized at

a shallow level (the

horizontal top of the T),

but a fewparts are done in

depth (the vertical part of

the T). A “T” prototype

combines the advantages

of both horizontal and

vertical, offering a good

compromise for system

evaluation.

Local Prototype

A local prototype

represents the small area

where horizontal and

vertical slices intersect. A

local prototype, with

depth and breadth both

limited, is used to evaluate

design alternatives for a

particular isolated

interaction detail.

Vertical Prototype

A vertical prototype

contains as much depth of

functionality as possible in

the current stage of the

project, but only for a

narrow breadth of

features.

Horizontal
Prototype

A horizontal prototype is

very broad in the features

it incorporates, but offers

less depth in its coverage

of functionality.

56 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Chapter 8

Chapter 9

Chapter 11

Chapter 10

their own kind of evaluation, if only to evaluate the transition criterion at the exit

point of each activity in the decision whether to iterate or move on.

Similarly, prototyping appears in many forms in other boxes, too. For

example, the design activity entails lots of different kinds of prototypes,

including sketches, which can be thought of as a kind of quick and dirty

prototype to support rapid and frequent design idea exploration. In this same

vein there can be a little design occurring within the analysis activity, and so on.

Managing the process with activity transition criteria
The primary objective of the overall lifecycle process is to keep moving forward

and eventually to complete the design process and make the transition to

production. However, for the work in a project to flow among the UX process

activities, the team must be able to decide:

n when to leave an activity

n where to go after any given activity

n when to revisit a previous process activity

n when to stop making transitions and proceed to production

The answers depend on the transition criterion at the end of each process

activity. There is no formula for determining transition criteria; they are

generally based on whether designers have met the goals and objectives for the

current iteration of that activity. Therefore, it is the job of the team, especially

the project manager, to articulate those goals as transition criterion for each

process activity and to decide when they are met.

For example, in the analysis activity, designers must ask themselves if they

have acquired enough understanding of the work domain and user needs, usage

context, workflow, and so on. Another component of any transition criterion is

based on whether you have adequate resources remaining to continue.

Resources limits, especially time and budget, can trump any other criteria for

stopping a process activity or terminating the whole process, regardless of

meeting goals and objectives.

Note in Figure 2-2 that the transition criterion coming out of eachUXprocess

activity box is amultipath exit point with three options: move forward to the next

process activity, iterate some more within the current activity, or move back to a

previous process activity.

The decision of where to go next after a given process activity depends on the

assessed quality of the product and/or work products of the current activity and

a determination of what next activity is most appropriate. For example, after an

initial prototyping activity, a usability inspectionmight indicate that the design is

57THE WHEEL : A L I FECYCLE TEMPLATE

ready for prototyping at a higher fidelity or that it is necessary to go back to

design to fix discovered problems.

Knowingwhenyouneed inter-activity iterationdependsonwhether youneed to

pickupmore information todrive or inform thedesign.When someof your inputs

are missing or not quite right, you must revisit the corresponding process activity.

However, this kind of inter-activity iteration does not mean you have to redo the

whole activity; you just need to do a little additional work to get what you need.

Knowing when to stop iteration and proceed to production lies in a key

process management mechanism. When UX targets (Chapter 10), often based

on evaluation of user performance or satisfaction, have been employed in your

process, project managers can compare evaluation results with target values and

decide when to stop iterating (Genov, 2005).

Why do we even need iteration?
Iteration is a little like the doctrine of original sin in interaction design: Most interaction

designs are born bad and the design teams spent the rest of their lifecycles in an iterative

struggle for redemption.

– Ford Perfect

Some people may question the need for iteration. Is not that just for novice

designers who cannot get it right the first time? What about expert designers

carefully applying complete knowledge of design guidelines and style standards?

For any nontrivial interaction design, the UX process must be, and always will

need to be, iterative. The design domain is so vast and complex that there are

essentially infinite design choices along many dimensions, affected by large

numbers of contextual variables.

To be sure, expert designers can create a good starting point, but because it

is fundamentally impossible to get it all just right the first time, we need to

use the artillery approach (Figure 2-3): Ready, Fire, Aim. We need to fire off

our best shot, see how it missed the mark, and make corrections to home in

on the target.

Iteration is not enough
The road to wisdom? Well, it’s plain and simple to express: Err and err and

err again but less and less and less.

– Piet Hein, Danish poet

So, if we must always iterate, is there any motivation for trying hard

to get the first design right? Why not avoid the effort upfront and

let this marvel of iteration evolve it into perfection? Again, the

Figure 2-3

Iteration: Ready, fire, aim.

58 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

answer is easy. You cannot just test your way to a quality user experience, you

have to design for it. Iterative testing and redesign alone will not necessarily get

you to a good design at the end of the day.

As Wyatt Earp once said, “Take an extra second to aim.” Large interactive

systems take a lot of time and money to develop; you might as well put

a little more into it up front to make it right. Without an honest and

earnest upfront analysis and design effort, the process tilts too heavily toward just

evaluation and becomes a unidimensional diagnostic-oriented process.

To use a truly geeky example, consider a program traversing an

n-dimensional surface, seeking a solution to a numerical analysis problem. If the

search starts with the wrong “seed” or initial point (i.e., an initial solution that is

too far from the actual solution), the algorithm might stop at a local optimum

that is in a part of the search space, such as a saddle point, so remote from the

optimal solution, if there is one, that you can never migrate out by any amount of

iteration to get at a much better globally optimal solution. Similarly, in iterative

interaction design, you can home in on the best details of a less-than-best

design—honing a paring knife when you really need a butcher knife. Fixing the

details of the bad design may never reveal the path to a completely new and

better overall design.

So, the answer is about balance of all four process activities of Figure 2-1—

analyze, design, implement, and evaluate—for a given amount of resources.

Start iteration early
The earlier the interaction design iteration begins, the better; there is no time to

steer the ship when it is close to the dock. But the software implementation does

not have to keep up with this iteration; instead we use interaction design

prototypes, and there is no reason any production code should be committed to

the interaction design until late in its lifecycle. Nevertheless, because the two

roles cannot work in isolation, the software engineering people should be aware

of the progression of the interaction design to ensure that their software

architecture and design can support the interaction features on the user

interface when it does come time to implement.

Typically, early cycles of iteration are devoted to establishing the basic

underlying essentials of the design, including look and feel, and behavior,

before getting into design details and their refinement. Project managers need

to allow time for this explicitly in the schedule. It is an investment that pays

generous dividends on everything that happens after that.

The rest of the process-related part of this book is mainly about iterating the

activities in the diagram of Figure 2-2, plus a few other things in important

supporting roles.

59THE WHEEL : A L I FECYCLE TEMPLATE

2.2.4 Lifecycle Streams
Wemostly talk about complete lifecycles, where there is a clear-cut start and end

to the project and where the design ideas are hatched creatively out of the

imaginations of the designers. In reality that is often not the case. Often the

“lifecycle” for a product never really starts or stops; it just goes on forever (or at

least seems to) through multiple versions. Operating systems, such as Mac OS X

and Microsoft Windows, are good examples.

The lifecycle is more of a continuous stream of reusing and, hopefully,

improving ideas, designs, and deliverables or work products. In such cases the

project can be heavily constrained by previously existing versions, code, and

documentation. The need for stability and an orderly progression across

versions makes it almost impossible to avoid the kind of inertia that works

against new designs and radical rethinking. It is important for UX practitioners

to make the case for at least the most important changes, changes that

contribute to an eventual design evolution toward user experience

improvement.

2.3 CHOOSING A PROCESS INSTANCE FOR
YOUR PROJECT

Increasingly, the need to rush products to market to beat the competition is

shortening development schedules and increasing the number of product

versions and updates. Web applications must be developed in “Internet time.”

Ponderous processes and methods are abandoned in favor of lightweight, agile,

and flexible approaches intended to be more responsive to the market-driven

need for short product versioning cycles. Abridged methods notwithstanding,

however, knowledge of the rigorous UX process is an essential foundation for all

UX practitioners and it is important for understanding what is being abridged or

made agile in choices for the shorter methods.

The lifecycle process diagram in Figure 2-2 is responsive to the need for many

different kinds ofUXprocesses. Because it is a template, youmust instantiate it for

each project by choosing the parts that best suit your project parameters. To

support each of these activities, the team can pick from a variety of sub-activities,

methods, techniques, and the level of rigor and completeness with which these

activities are carried out. The resulting instantiation can be a heavyweight,

rigorous, and complete process or a lightweight, rapid, and “just enough” process.

That choice of process can always be a point of contention—between

academics and practitioners, between sponsor/customer and project team, and

60 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

among team members within a project. Some say “we always do contextual

inquiry” (substitute any UX process activity); they value a thorough process,

even if it can sometimes be costly and impractical. Others say “we never do

contextual inquiry (or whatever process activity); we just do not have the time”;

they value doing it all as fast as possible, even if it can sometimes result in a

lower quality product, with the idea of improving the quality in later

production releases.

Much has been written about powerful and thorough processes andmuch has

been written about their lightweight and agile counterparts. So how do we talk

about UX design processes and make any sense?

2.3.1 Project Parameters: Inputs to Process Choices
In reality there are as many variations of processes as there are projects. How do

you decide how much process is right for you? How do you decide the kinds of

process to choose to match your project conditions? What guidance is there to

help you decide? There are no set rules for making these choices. Each factor is

an influence and they all come together to contribute to the choice. The

lifecycle template in this chapter and the guidelines for its instantiation are a

framework within which to choose the process best for you.

Among the many possible factors you could consider in choosing a process to

instantiate the lifecycle template are:

n risk tolerance

n project goals

n project resources

n type of system being designed

n development organizational culture

n stage of progress within project

One of biggest goal-related factors is risk and the level of aversion to risk in a

given project. The less tolerance for risks—of things going wrong, of features or

requirements being missing, or not meeting the needs of users—the more need

for rigor and completeness in the process.

Budget and schedule are obvious examples of the kinds of resource

limitations that could hinder your process choices. Another important kind of

resource is person power. How many people do you have, what project team

roles can they fill, and what skills do they bring to the project? Are the types

of people you have and are their strengths a good match for this type of

project?

61THE WHEEL : A L I FECYCLE TEMPLATE

Practitioners with extensive experience and maturity are likely to need less of

some formal aspects of the rigorous process, such as thorough contextual

inquiry or detailed UX goals and targets. For these experienced practitioners,

following the process in detail does not add much to what they can accomplish

using their already internalized knowledge and honed intuition.

For example, an expert chef has much of his process internalized in his head

and does not need to follow a recipe (a kind of process). But even an expert chef

needs a recipe for an unfamiliar dish. The recipe helps off-load cognitive

complexity so that the chef can focus on the cooking task, one step at a time.

Another project parameter has to do with the demands due to the type of

system being designed. Clearly you would not use anything like the same

lifecycle to design a personal mp3 music player as you would for a new air traffic

control system for the FAA.

Sometimes the organization self-selects the kind of processes it will use based

on its own tradition and culture, including how they have operated in the past.

For example, the organization’s market position and the urgency to rush a

product to market can dictate the kind of process they must use.

Also, certain kinds of organizations have their culture so deeply built in that it

pre-determines the kinds of projects they can take on. For example, if your

organization is an innovation consulting firm such as IDEO, your natural

process tools will be predisposed toward ideation and sketching. If your

organization is a government contractor, such as Northrup-Grumman, your

natural process tools will lean more toward a rigorous lifecycle.

Somewhat orthogonal to and overlaid upon the other project parameters is

the current stage of progress within the project for which you must choose

activities, methods, and techniques. All projects will go through different stages

over time. Regardless of process choices based on other project parameters, the

appropriateness of a level of rigor and various choices of UX methods and

techniques for process activities will change as a project evolves through

various stages.

For example, early stages might demand a strong focus on contextual

inquiry and analysis but very little on evaluation. Later stages will have an

emphasis on evaluation for design refinement. As the stage of progress keeps

changing over time, it means that the need to choose a level of rigor and the

methods and techniques based on the stage of product evolution is ongoing. As

an example, to evaluate an early conceptual design you might choose a quick

design review using a walkthrough and later you might choose UX inspection

of a low-fidelity prototype or lab-based testing to evaluate a high-fidelity

prototype.

62 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

2.3.2 Process Parameters: Outputs of Process Choices
Process parameters or process choices include a spectrum from fully rigorous

UX processes (Chapters 3 through 17) through rapid and so-called discount

methods. Choices also can bemade from among a large variety of data collection

techniques. Finally, an agile UX process is available as an alternative choice for

the entire lifecycle process, a process in which you do a little of each activity at a

time in a kind of spiral approach.

2.3.3 Mapping Project Parameters to Process Choices
To summarize, in Figure 2-4 we show the mapping from project parameters to

process parameter choices. While there are some general guidelines for making

these mapping choices, fine-tuning is the job of project teams, especially the

project manager. Much of it is intuitive and straightforward.

In the process chapters of this book, we present a set of rather rigorous

process activities, but we want the reader to understand that we know about

Figure 2-4

Mapping project
parameters to process
parameter choices.

63THE WHEEL : A L I FECYCLE TEMPLATE

real-world constraints within tight development schedules. So, everywhere in

this book, it should be understood that we encourage you to tailor your own

process to each new project, picking and choosing process activities and

techniques for doing them, fitting the process to your needs and constraints.

2.3.4 Choose Wisely
A real-world Web-based B2B software product company in San Francisco had a

well-established customer base for their large complex suite of tools. At some

point they made major revisions to the product design as part of normal growth

of functionality and market focus. Operating under at least what they perceived

as extreme pressure to get it to the market in “Internet time,” they released the

new version too fast.

The concept was sound, but the design was not well thought through and the

resulting poor usability led to a very bad user experience. Because their

customers had invested heavily in their original product, they had a somewhat

captive market. By and large, users were resilient and grumbled but adapted.

However, their reputation for user experience with the product was changing

for the worse and new customer business was lagging, finally forcing the

company to go back and completely change the design for improved user

experience. The immediate reaction from established customers and users was

one of betrayal. They had invested the time and energy in adapting to the bad

design and now the company changed it on them—again.

Although the new design was better, existing users were mostly concerned at

this point about having a new learning curve blocking their productivity once

again. This was definitely a defining case of taking longer to do it right vs. taking

less time to do it wrong and then taking even longer to fix it. By not using an

effective UX process, the company had quickly managed to alienate both their

existing and future customer bases. The lesson: If you live by Internet time, you

can also crash and burn in Internet time!

2.4 THE SYSTEM COMPLEXITY SPACE

One of the things that makes it difficult to define a process for system design is

that there is a spectrum of types of systems or products to be developed,

distinguished mainly by complexity, each needing a somewhat different process

and approach. In the next few sections we look at what is entailed in

understanding this spectrum of system types.

64 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Some systems are a combination of types and some are borderline cases.

System or product types overlap and have fuzzy boundaries within the system

complexity space. While there undoubtedly are other different ways to partition

the space, this approach serves our purpose.

In Figure 2-5 we show such a “system complexity space” defined by the

dimensions of interaction complexity and domain complexity. Interaction

complexity, represented on the vertical axis, is about the intricacy or

elaborateness of user actions, including cognitive density, necessary to

accomplish tasks with the system.

Low interaction complexity usually corresponds to smaller tasks that are

generally easy to do on the system, such as ordering flowers from aWebsite. High

interaction complexity is usually associated with larger and more difficult tasks,

often requiring special skills or training, such asmanipulating a color image with

Adobe Photoshop.

On the horizontal axis in Figure 2-5 we show work domain complexity,

which is about the degree of intricacy and the technical nature of the

corresponding field of work. Convoluted and elaborate mechanisms for how

parts of the system work and communicate within the ecology of the system

contribute to domain complexity.

Figure 2-5

Example systems within the
system complexity space
(interaction complexity vs.
domain complexity).

MUTTS

MUTTS is the acronym for

Middleburg University

Ticket Transaction Service,

our running example for

most of the process

chapters.

Photoshop,
Lightroom, and
Aperture

Photoshop, Lightroom,

and Aperture are high-

functionality software

applications for managing

and processing large

collections of images and

photographs.

65THE WHEEL : A L I FECYCLE TEMPLATE

The work in domain-complex systems is often mediated and collaborative,

with numerous “hand-offs” in a complicated workflow containing multiple

dependencies and communication channels, along with compliance rules,

regulations, and exceptions in the way work cases are handled. Examples of

complex work domains include management of arcane financial instruments

such as credit default swaps, geological fault analysis for earthquake prediction,

and healthcare systems.

Low work domain complexity means that the way the system works within its

ecology is relatively simple. Examples of work domains with low complexity

include that same Website for buying flowers and a simple calendar

management application.

2.4.1 The Influence of System Type on Process Choice
The location of the system or product you are designing within the system

complexity space can have a major influence on process choices about the right

level of rigor and the right techniques to apply. To describe the criteria UX

designers can use to make the call, we look at characteristics of the four

quadrants of the system complexity space in Figure 2-5.

As we move along the diagonal through this space from lower left

to upper right, going from simple systems to complex systems, there is

(as a generalization) a gradation of required rigor and fidelity in the

corresponding processes. The quadrants are discussed in the following

subsections.

Complex interaction, complex work domain
In the upper right-hand quadrant of Figure 2-5 we show the interaction-complex

and domain-complex systems, which are usually large and complicated. An

example of a complex interaction is an air traffic controller deciding the landing

orders for an incoming airliner. An air traffic control system also has enormous

domain complexity, with workflow and collaboration among a large number of

work roles and user types. Another defining example for this quadrant is a large

system for the Social Security Administration.

Systems appearing in this quadrant are often associated with the greatest

need to manage risk. Such projects will usually entail doing all the process

activity boxes in detail, along with lots of iteration. These are the development

projects with the greatest compliance requirements, the most weight given to

traceability, and the highest importance of error avoidance.

66 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

For example, in mission-critical systems, such as for air traffic control or for

military weapons control, there is great user pressure for error avoidance. When

you cannot get these things wrong and the cost of failure is unacceptable, you

need the most rigorous process, the full process spelled out in great detail in

Chapters 3 through 18.

Because of their sheer size and need for rigorous processes, domain-complex

and interaction-complex systems are typically among the most difficult and

expensive to design and develop. A decidedly engineering approach to formal

requirements can be very important to help designers touch all the bases and fill

in all the blanks so that no functions or features are forgotten.

This is the kind of system for which design is most likely to need full lab-based

user experience evaluation and iteration to produce a well-considered and

coherent overall design. This is about the design of serious systems; this sector

within the system complexity space has little, if anything, to do with emotional

impact factors such as aesthetics, fun, or joy of use.

For large domain-complex systems, such as military weapons systems, you are

most likely to encounter resistance to innovation. Radical designs are not always

welcome; conformity can be thought more important. User and operators, in

some cases, commit operations to habit and perform tasks with learned behavior

even if there are better ways. This might be an opportunity for you to champion

change and fight against the “this is not how we do it” syndrome, but you must

approach this campaign with caution.

Gaming applications can be in this quadrant but they also can span both axes

throughout the space.

Usability Engineering for Bioinformatics:
Decoding Biologists’ and Bioinformaticians’
Work Sequences

Deborah Hix and Joe Gabbard, Virginia Bioinformatics Institute and Department of Computer Science,

Virginia Tech

Over a collective four decades in usability engineering (UE), we have worked in a broad variety of application

domains including military (e.g., decision support systems, situational awareness applications), government (e.g.,

Social Security Administration), and commercial (e.g., software and hardware companies). The realm of bioinformatics

67THE WHEEL : A L I FECYCLE TEMPLATE

is as complicated as any other single domain we have encountered. This is at least in part because of its fast-changing

nature, the current explosion of genomic and related data, the complexity of the field itself, and the technology

backgrounds and attitudes of biologists and bioinformaticians.

When we began working in the Virginia Bioinformatics Institute (VBI) at Virginia Tech, approximately 8 years ago,

there was almost no knowledge of the existence of usability engineering, never mind any structured use of it in

developing complex bioinformatics applications. During this time, we have seen a slight increase in UE efforts in this

field, but many (with the exception of large government-funded) Web-based interfaces still look like they were created

by graduate students!—a nonoptimal situation in a world of increasingly interactive and sophisticated Web interfaces

and apps.

Designing and evaluating user interfaces for biologists and bioinformaticians are challenging in part due to the

increasing availability of inexpensive genome sequencing technology, resulting in an explosion of data—in volume,

complexity, and heterogeneity. Today at the lab workbench, biologists have access to a staggering flow of data of

unprecedented breadth, depth, and quantity.

Further, biologists rarely use a single tool to accomplish a given task; they frequently move data across applications

and tools using, for example, desktop-based applications (such as Excel) as well as Web-based resources (such as

NCBI’s BLAST). So, by necessity, a single technology source or tool or app cannot support their workflow, as their

workflow is typically accomplished across multiple applications, Websites, and/or tools. This situation emphasizes the

importance of good contextual/domain analysis and design in the UE process.

We have also seen that applications and Websites for biologists and bioinformaticians often need to support a

broad variety of multiple work threads for an extensive variety of user classes. That is, the bioinformatics field

intersects many specialized disciplines, and as a result, there are numerous types of user classes, each performing

varied and mutually exclusive tasks. Moreover, users in this field often solve the same problem using different

approaches, increasing the number of possible workflows (including specific data and tools needed) for each task. A

single huge online data repository could have more than half a dozen (or even many more) very different user classes,

all with different use cases and specific work flows. This situation emphasizes the importance of good user profiles in

the UE process.

Finally, biologists are not necessarily early adopters of information technology. They are well versed in cutting-

edge biology, but not cutting-edge computer technology. Many have, of necessity, done their own specialized

application or Website development, becoming “expert enough” in tools such as scripting and Perl. This is also

changing; biologists are relying less on programming- or scripting-savvy approaches. The more advanced their

tools and analysis needs get, the more biologists rely on someone else’s bioinformatics or software development

skills to meet their needs. In today’s Web 2.0 application space, most biologists want Web-based applications

that support performance of very complicated user tasks without having to do (or oversee) scripting or

programming themselves.

When we began in this field all those years ago, we had several approaches to introducing and promoting

acceptance of UE activities into a VBI world devoid—and unaware—of them. These included immersion, “starting

small,” and education.

We made sure our offices were colocated with the group (of biologists and software developers) with which we

were working so that we could immerse ourselves and be ever present with them. Otherwise, we might have been

viewed as “a priest with a parachute,” flying in to “bless” what they had done, but having little or no substantive

input to either process or product. We carefully chose a small part of the UE process to perform on a small part of

our product, a Web repository named PAThosystems Resource Integration Center (PATRIC), funded by the National

Institutes of Health (patric.vbi.vt.edu). Choosing what part of the product with which to begin, UE should be based

on a feature or function that is very important, of high visibility, and/or of high utility to users; preferably something

with a “wow” factor that will make a splash. Choosing what small part of the process with which to begin should also

be based on factors such as availability of appropriate users with whom to work (these may be very difficult to

come by early on in an environment that has little or no UE in place, such as VBI) and current state of development

of the product.

Our first substantive small UE activity was an expert evaluation (or expert inspection) of an existing in-house

product that was being used to inform development of PATRIC. We chose this knowing we did not have a readily

available pool of users for either domain analysis activities or a lab-based formative evaluation and that an expert

evaluation did not need them. We were extremely careful in how we wrote our expert evaluation report so as not to

alienate software engineers, who, to date, had designed all VBI user interfaces, with little or no interaction with users.

During this time, we began to cultivate a PATRIC user group of appropriate biologists and bioinformaticians, and

moved on to structured interviews and focus group-like sessions that would lead to domain analysis and user profiles.

In addition to getting us much-needed information for UE, these sessions also helped expose users and developers to

the UE process in a nonthreatening way. After several months, we were able to develop wireframe mockups and

present them to some of our initial users, plus other stakeholders who had not been involved in domain analysis. For

these earliest formative evaluations, we engaged both in-house users and remote users; for remote users, we used

desktop-sharing software to present wireframes and semiworking prototypes to elicit feedback. In addition to this

carefully chosen progression of UE activities, we had cooperative management who agreed to provide education; every

member of the PATRIC team was required to take a 3-day intensive short course on UE.

Finally, we found that patience and persistence were nontechnical but key ingredients in this progression! It took

many months to slowly and carefully insert UE practices into the PATRIC software development environment. When

we encountered roadblocks, both passive aggressive and outright aggressive, we would regroup, figure out a different

way to proceed, and continue moving forward. We promoted our “success stories” among the group and tried to

make everyone feel continually and substantively involved in the process. We had a major breakthrough when, one

day, our meeting discussion turned to some topic specifically related to user interface design, and the lead software

engineer looked directly at us and announced, “That is Debby and Joe’s problem!” They finally got it!

Simple interaction, complex work domain
In the lower right-hand quadrant of Figure 2-5 we show interaction-simple and

domain-complex systems. In this quadrant, user tasks are relatively simple and

easy to understand. The key effort for users in this quadrant is understanding the

domain and its often esoteric work practice. Once that is understood, the

interaction is relatively straightforward for users. Tax preparation software for

average households is a good example because the underlying domain is

complex but the data entry into forms can be simplified to a step-by-step process.

In the UX process, interaction simplicity means that less attention to tasks

descriptions is needed, but the domain complexity calls for more attention to

contextual inquiry and analysis, modeling, and requirements for insight into

internal system complexity and workflow among multiple work roles. Physical

modeling and the social model of Chapter 6 become more important to gain

access to the essentials of how people and information interact within the system.

Simple interaction, simple work domain
The simplest quadrant is in the lower left-hand corner of Figure 2-5, where both

interaction and work domain are simplest. This quadrant contains smaller

Websites, certain interactive applications, and commercial products. Just

because this is the simple-simple quadrant, however, does not mean that the

products are simple; the products of this quadrant can be very sophisticated.

Although emotional impact factors do not apply to every system or product in

this quadrant, this sector within the system complexity space has the most to do

with emotional impact factors such as aesthetics or fun or joy of use. This

quadrant also represents projects that are design driven, where theUXprocess is

all about design rather than user research or user models.

There is an abundance of relatively simple systems in the world. Some, but

not all, commercial software products are domain-simple and interaction-

simple, at least relative to large systems of other types. An example, shown in

Figure 2-5, is a Website for ordering flowers. Interaction with this Website is

very simple; just one main task involving a few choices and the job is done.

Work domain complexity of a Website for buying flowers is also relatively

simple because it involves only one user at a time and the workflow is

almost trivial.

Because of the simplicity in the work domain and interaction in this quadrant,

good choices for a UX process lean toward agile approaches with a focus on

design and special rapid methods for evaluation. That translates to a low level of

rigor; leaving out some process activities altogether and using lightweight or

specialized techniques for others.

The best designers for expert users in this case might be “dual experts,”

experts in HCI/UX and in the work domain. An example is a designer of Adobe

Lightroom who is also deeply involved in photography as a personal hobby.

This quadrant is also where you will see innovative commercial product

development, such as for an iPhone or a personal mp3 music player, and

corresponding emotional impact issues and, where appropriate (e.g., for an

Phenomenological

Aspects of
Interaction

Phenomenological

aspects (deriving from

phenomenology, the

philosophical

examination of the

foundations of experience

and action) of interaction

are the cumulative effects

of emotional impact

considered over the long

term, where usage of

technology takes on a

presence in our lifestyles

and is used to make

meaning in our lives.

70 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

mp3 personal music player but not for a florist’s Website), phenomenological

aspects of interaction.

These products represent the least need for a complete rigorous lifecycle

process. Designers of systems in this quadrant need not expend resources on

upfront user research and analysis or requirements gathering. They can forego

most of the modeling of Chapter 6 except, perhaps, specific inquiry about users

and their activities, with a special interest in user personas.

Although commercial product design certainly can benefit from thorough

contextual inquiry, for example, some successful products were essentially

“invented” first and then marketed. The Apple iPad is a good example; the

designers did not begin within a field study of existing usage patterns. They

dreamed up a product that was so good that people who thought they would

never be interested in such a product ended up fervently coveting one.

Projects in this quadrant are far less engineering oriented; design will be

based almost entirely on a design-thinking approach. Designers are free to focus

on imaginative design thinking, ideation, and sketching to make the user

experience the best it can be. Processes for this type of system are usually faced

with low risks, which means designers can put innovation over conformity—for

example, the iPod over previous music players—and are free to envision

radically new design ideas.

Early prototyping will center on multiple and disposable sketches for

exploring design ideas. Later, low-fidelity prototypes will include paper

prototypes and physical mockups. Subsequent evaluation will be about using

rapid methods to get the conceptual design right and not being very concerned

with user performance or usability problems.

Complex interaction, simple work domain
In the upper left-hand quadrant of Figure 2-5 we show interaction-complex

and domain-simple systems. It is typical of an interaction-complex system to

have a large volume of functionality resulting in a large number and broad

scope of complex user tasks. A digital watch is an example. Its interaction

complexity stems from a large variety of modal settings using overloaded and

unlabeled push buttons. The domain, however, is still simple, being about

“what time is it?” Workflow is trivial; there is one work role and a simple

system ecology.

Attention in this quadrant is needed for interaction design—myriad tasks,

screen layouts, user actions, even metaphors. Rigorous formative evaluation is

needed for conceptual design and detailed interaction. The focus of modeling

will be on tasks—task structure and task interaction models—and perhaps the

System Ecology

System ecology is the

context provided by the

surrounding parts of the

world with which it

interacts.

Task Structure
Model

A task structure model is a

hierarchical

decomposition of tasks

and sub-tasks showing

what tasks are to be

supported and the

relationships among

them.

Task Interaction
Model

A task interactionmodel is

a step-by-step description,

including task goals,

intentions, triggers, and

user actions.

71THE WHEEL : A L I FECYCLE TEMPLATE

artifact model, but not much attention will be given to work roles, workflow, or

most of the other models of Chapter 6.

For simple work domains, regardless of interaction complexity, contextual

inquiry and contextual analysis rarely result in learning something totally new

that can make a difference in informing design. Rather, even more than for a

simple interaction case, complex interaction requires a focus on ideation and

sketching, as well as attention to emotional impact factors.

The commercial product perspective within the system
complexity space
“Commercial products” is a good label for the area that spans the left-hand side

of the system complexity space diagram in Figure 2-5, where you find relatively

low domain complexity but variable interaction complexity. The more

interaction complexity, the more sophisticated users can be.

Gradations within the system complexity space
Many systems and design projects fall across quadrants within the system

complexity space. Websites, for example, can belong to multiple quadrants,

depending on whether they are for an intranet system for a large organization, a

very large e-commerce site, or just a small site for sharing photographs. Products

such as a printer or a camera are low in domain complexity but can havemedium

interaction complexity.

One good illustration of complexity vs. process rigor is seen in systems for

managing libraries, shown in the middle of the work domain complexity scale of

Figure2-5,near thebottom.Typical library systemshave low interactioncomplexity

because the scope of tasks and activities for any oneuser is fairly circumscribed and

straightforward and the complexity of any one user task is low. Therefore, for a

library system, for example, you do not need to model tasks too much.

However, a full library system has considerable domain complexity. The work

practice of library systems can be esoteric and most UX designers will not be

knowledgeable in this work domain. For example, special training is needed to

handle the surprisingly important smalldetails incatalogingprocedures.Therefore,

a rigorous approach to contextual inquiry and analysis may be warranted.

Because of the high work domain complexity, there is a need for thorough

contextual data modeling to explain how things work in that domain. As an

example, the overall workflow entails book records connected in a network,

including cataloguing, circulation tracking, searching, and physical shelf

location. A full flow model may be necessary to understand the flow of

information among the subsystems.

Artifact Model

An artifact model is a

representation of how

tangible elements

(physical or electronic) are

used and structured in the

business process flow of

doing the work.

72 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Healthcare systems are another example of projects that cross system

complexity space quadrants. Large healthcare systems that integrate medical

instrumentation, health record databases, and patient accounting are another

example of systems with somewhat complex work domains.

The healthcare domain is also saddled with more than its share of regulation,

paperwork, and compliance issues, plus legal and ethical requirements—all of

which lead to high work domain complexity, but not as high as air traffic control,

for example. Machines in a patient’s room have a fairly broad scope of tasks and

activities, giving them relatively high interaction complexity.

We refer to the system complexity space throughout the rest of the process

chapters in discussions about howmuch process is needed. For simplicity we will

often state it as a tradeoff between systems with complex work domains, which

need the full rigorous UX process and systems with relatively simple work

domains, which need less rigor but perhaps more attention to design thinking

and emotional impact.

Since simple work domains correspond roughly to the left-hand side of the

system complexity space of Figure 2-5, where most commercial products are

found, we will often use the term “commercial products” as a contrast to the

complex domain systems, even though it is sometimes possible for a commercial

product to have some complexity in the work or play domain.

2.5 MEET THE USER INTERFACE TEAM

Whatever you are, be a good one.

– Abraham Lincoln

One early stage activity in all interactive software projects is building the UX team.

Someone,usually theprojectmanager,must identify thenecessary roles andmatch

them up with available individuals. Especially in small projects, the different roles

are not necessarily filled with different people; you just need to maintain the

distinction and remember which role is involved in which context and discussion.

In addition to the software engineering roles, here we are mainly concerned

with roles on the UX team. Roles we can envision include the following:

n User researcher: involved with contextual inquiry and other work domain

analysis activities. You may also need other roles even more specialized,

such as a social anthropologist to perform in-depth ethnographic field studies.

n Users, user representatives, customers, and subject matter experts: used as

information sources in contextual inquiry and throughout the lifecycle.

73THE WHEEL : A L I FECYCLE TEMPLATE

n User interaction designer: involved with ideation and sketching, conceptual and

detailed design, and low-fidelity prototyping activities.

n UX analyst or evaluator: involved in planning and performing UX evaluations,

analyzing UX problems, and suggesting redesign solutions.

n Visual/graphic designer: involved in designing look and feel and branding and

helping interaction designers with visual aspects of designs.

n Technical writer: involved in documentation, help system design, and language

aspects of interaction designs.

n Interactive prototype programmer: involved in programming interactive high-

fidelity UX design prototypes.

n UX manager: someone with overall responsibility for the UX process.

Some of these roles are shown with respect to the lifecycle activities in

Figure 2-6.

Figure 2-6

Example UX team roles in
the context of the Wheel
lifecycle template.

74 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Often terms for team roles are used loosely and with overlap. For example,

“UX engineer” or “UX practitioner” are catch-all terms for someone who does

contextual analysis, design, and evaluation on the UX side.

As a further consideration, in many projects, team composition is not static

over the whole project. For example, people may come and go when their special

talents are required, and it is not unusual for the team to get smaller near the end

of the lifecycle. Often near the end of the version or release cycle, much of project

team gets reassigned and disappears and you get a possibly new andmuch smaller

one, with a much shorter remaining lifecycle.

2.6 SCOPE OF UX PRESENCE WITHIN THE TEAM

In the early days of usability it was often assumed that a usability practitioner was

needed only in small doses and only at certain crossroads within the project

schedule, resulting in a rough and frustrating life for the usability person in the

trenches. In project environments, they were treated as temp workers with narrow

purviews and meager responsibilities, getting no real authority or respect.

Software developers grudgingly let the usability practitioner, who was

probably a human factors engineer, look at their designs more or less after they

were done. Because they were not a bona fide part of the project, they played a

secondary role, something like a “priest in a parachute”: The human factors

engineer dropped down into the middle of a project and stayed just long

enough to give it a blessing. Anything more than a few minor changes and a

blessing was, of course, unacceptable at this point because the design had

progressed too far for significant changes.

2.7 MORE ABOUT UX LIFECYCLES

Just as a lifecycle concept did not always exist in the software development

world, the need for a separate development lifecycle for the interaction design has

not always been recognized. Moreover, once a lifecycle concept was introduced, it

took time for the idea to be accepted, as it had done for software in prior decades.

TheHix andHartson book (1993) was one of the first to emphasize a separate

lifecycle concept for interaction design. Among early calls to arms in this

evolutionary struggle to establish acceptance of a disciplined usability process

were pleas by Curtis and Hefley (1992). They argued that “interface

engineering,” as they called it, required an engineering discipline just like any

75THE WHEEL : A L I FECYCLE TEMPLATE

other: “All engineering disciplines, including interface engineering, require the

definition of a rigorous development process.”

Hefley and friends followed this up with a CHI ’96 workshop asking the

question, User-centered design principles: How far have they been

industrialized? (McClelland, Taylor, & Hefley, 1996). They concluded that the

field was, indeed, evolving toward acceptance, but that there was still a lack of

understanding of the interaction design process and a shortage of skills to carry

it out. Raising awareness within management and marketing roles in the

software world was a priority. Mayhew (1999b) helped solidify the concept with

practitioners through a pioneering tour de force handbook-style codification of

lifecycle activities and deliverables.

Usability engineering as a term and as a concept was coming into existence in

the early 1990s. In his celebratory 1996 retrospective, Butler (1996) attributed

the actual coining of the term “usability engineering” to John Bennett in the

1980s. Here, Butler provided a review of the discipline’s state of the art as it

began to mature after the first 10 years and argued for a need to integrate

usability engineering using a “comprehensive integrated approach to

application development.”

Nielsen (1992b) had already been talking about the increasing importance of

computer–user interfaces and theneed tomake themusable byusing “a systematic

usability effort using established methods.” He proposed a usability engineering

model that included fundamental usability tenets such as “know thy user” and

advocated an iterative refinement of the interaction design.

This model proposed different phases of the UX lifecycle: pre-design, design,

and post-design with corresponding activities such as understanding overall

work context, understanding intended users, setting usability goals, and

undertaking iterative testing. Nielsen (1993) later elaborated these ideas into

one of the first usability engineering textbooks.

Whitney Quesenbery (2005) describes how the ISO 13407 standard (1999)

reflected the “general industry approach to UCD” at the time. It describes four

principles of user-centered design, including “active involvement of customers

(or those who speak for them),” but apparently did not speak for the users

directly.

This standard also made a strong point in favor of not just the principle of

using an iterative cycle, but of the need to plan to allow time for iteration in

practice. In its central focus on process, the standard prescribes five process

activities, starting with planning for UCD, followed by an iterative cycle of

specifying context of use, specifying requirements, producing design solutions,

and evaluating designs, as seen in Figure 2-7.

76 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Despite the name user-centered design, this cycle does not give much focus to

design as a separate activity, but rolls it in with implementation in the “produce

design solutions” box. Nonetheless, the ISO standards were timely and gave a

real boost to the credentials of UCD processes to follow.

2.7.1 Much More Than Usability Testing: The Need
for a Broad Lifecycle Process
As usability slowly emerged as a goal, thinking about methods to achieve it was

at first slow to follow. Everyone vaguely knew you had to involve users somehow,

that it helped to follow a style guide, and that you definitely had to do

usability testing. Armed with just enough of this knowledge to be dangerous,

the budding new usability specialists plunged in, not knowing enough to

know what they did not know. But to be effective, especially cost-effective, our

heroes needed help in using the right technique at the right time and place.

Without an established lifecycle concept to follow, those concerned with user

experience were coming upwith their own, often narrow, views of user experience

methods: “silverbullet” theories thatdeclareall youhave todoiscontextual inquiry,

just test a lot, do everything to “empower users,” be object oriented, and so on.

Figure 2-7

Lifecycle diagram from
the ISO 13407
standard, adapted with
permission.

77THE WHEEL : A L I FECYCLE TEMPLATE

The most broadly fashionable of these uni-dimensional schemes was to

equate the entire process with testing, setting usability in a purely diagnostic

frame of reference. In response, participants in the CHI ’96 workshop

mentioned in the previous section felt it important to make the point: “Usability

testing and evaluation make contributions to product quality, but testing

alone does not guarantee quality.” They contended that approaches using only

post hoc testing should be expanded to incorporate other UCD activities

into earlier parts of the UX process.

Outside the usability world of the time, acceptance was even more sluggish.

It took time for interaction design to be recognized by others as a full

discipline with its own rigorous lifecycle process. And it was often the software

engineering people who were most resistant; oh, how soon we forget our own

history! In the days when “structured programming” was just becoming the

fashion (Stevens, Myers, & Constantine, 1974), development groups (often

one or two programmers) without a process were often suspicious about the

value added by a “process” that deflected some of the time and effort from pure

programming to design and testing, etc.

And so it is with interaction design, and this time it is often the software

engineers and project managers who are resisting more structure (and,

therefore, more perceived overhead and cost) in parts of the overall interactive

system development process not thought to contribute directly to the output of

program code.

2.7.2 Fundamental Activities Involved in Building Anything
In the simplest sense, the two fundamental activities involved in (i.e., a process

for) creating and building something, be it a house or a software product, are

almost always the same: design and implementation. If the complexity of the task

at hand is simple, say building a sand castle at the beach, it is possible to

undertake design and implementation simultaneously, with minimal process,

on the fly and in the head.

However, as complexity increases, each of these activities needs explicit

attention and thought, leading to a more defined process. For example, in

remodeling one’s kitchen, some “design” activities, such as sketches for the new

layout and configurations of appliances and countertops, are required before

“implementing” the new kitchen.

While you have to do requirements and needs analyses for your own kitchen

remodeling so that you do not end up with bells and whistles that you do not

really need or use, it is even more important if you are remodeling a kitchen for

78 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

someone else. You need this added process step to make sure what is being built

matches the requirements.

As complexity of the target system or product increases, so does the need for

additional steps inyourprocess tomanage that complexity. Ifweare, say, buildinga

house instead of a kitchen, more steps are needed in the process, including

consideration of “platform constraints” such as municipal regulations,

geographical constraints such as the location of water lines, and, perhaps more

importantly, adefinedprocess tomanage thecomplexityofmultiple roles involved

in the whole undertaking.

2.7.3 Parallel Streams of Software and Interaction
Process Activities
To begin on common ground, we start with a reference point within the

discipline of software engineering. Just as we discussed in the previous section,

perhaps one of the most fundamental software engineering principles is the

distinction between software design and software implementation, as shown in

Figure 2-8.

Instead of having programmers “designing” on the fly during implementation,

proper softwareengineeringmethods require softwaredesign first (aftercapturing

requirements, of course), and the resulting design specifications are given to the

programmers for implementation.Thenprogrammers, possibly adifferentperson

or group, follow the design as documented in the specifications to implement the

software.

The programmer who creates the software code to implement the design is in

the best position to spot incorrect or missing parts of the specification.

For example, while coding a “case statement,” the programmer may notice if the

specification for one of the cases is missing. At this point, the programmer

has two choices: (1) save time by filling in missing parts or correcting erroneous

parts of the specifications by using best judgment and experience or (2) take

the extra time to send the specifications back to designers for amendments.

The first choice is tempting, especially if the schedule is tight, but the

implementer has not necessarily been privy to all the

prior meetings of designers about rationale, goals,

design principles, and so on and may not get it right. In

addition, design additions or changes made by the

implementer are usually undocumented. The code

written to correct the design becomes a software time

bomb, later leading to a bug that can be almost

impossible to find. As a result, conventional software

Figure 2-8

Distinction between
software design and
implementation.

79THE WHEEL : A L I FECYCLE TEMPLATE

engineering wisdom requires feeding back the faulty specifications to the

designers for correction and iteration back to the implementers.

Adding inquiry, requirements, and modeling plus functionality design at the

beginning and testing at the end to the boxes of Figure 2-8 gives the picture of

software development workflow shown in Figure 2-9.

Systems analysis involves a high-level study of the intended system, including

concerns from all disciplines associated with the product. For example, if the

project is to design software to manage a nuclear power plant, the systems

analysis activity will include study of all component subsystems ranging from

safety to software to physical plant to environmental impact.

At this stage, the key subsystems are identified and their high-level

interactions specified. In the remainder of this chapter we focus on interactive

software systems only and limit the discussion to creation and refinement of

interaction design and the development of its software.

Design in the work domain, or application domain, in the second box

from the left (Figure 2-9), is the place where the real contents of the system

are crafted. If the program is a software support tool for bridge building,

for example, this is where all the specialized subject matter knowledge

about civil engineering, over-constrained pin joints, strength of materials,

and so on is brought to bear. The software design is where algorithms,

data structures, calling structures, and so on are created to represent the

work design in software.

The analogous activities for user interface (this time, including the user

interface software) development are shown in Figure 2-10.

Connecting the processes together and adding rapid prototyping, to get the

big picture, we get the overall development workflow diagram of Figure 2-11.
Figure 2-9

Software development
workflow diagram.

80 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Immediately noticeable is the lack of vertical connections, which points out

the need for improved communication between the lifecycles for functional

software and for the user interface component of the overall system. There

is an absolute lack of formal methods to integrate these two lifecycles. This is a

big hole in the practice of both sides of the picture. In practice, this

communication is important to project success and all parties do their best to

carry it out, relying mainly on informal channels.

The means for achieving this communication vary widely, depending on

project management abilities, the size of the project, and so on. For small

projects, a capable manager with a hands-on management style can function

effectively as a conduit of communication between the two work domains.

Larger projects, where it is impossible for one person to keep it all in his or her

head, need a more structured inter-domain communication mechanism

(Chapter 23).

2.7.4 Iteration for Interaction Design Refinement
Can Be Very Lightweight
Figure 2-11 offers a good backdrop to the discussion of iteration within the UX

lifecycle for interaction design. Management and software people often strongly

resist the general idea of iteration, repetitively going back over process activities.

Some teammembers worry that they can barely afford the time and resources to

produce a system once, let alone iterate the process multiple times. This fear is

due to a misconception about the nature of iteration in the overall diagram of

Figure 2-11, probably because the concept has not been well explained.

In fact, if everything in the diagram of Figure 2-11 were iterated, it would be

prohibitively burdensome and laborious. The key to understanding this kind of

Figure 2-10

Analogous user interface
development workflow.

81THE WHEEL : A L I FECYCLE TEMPLATE

iterationneeded for design refinement is in realizing that it does notmean iterating

thewhole process, doing everything all over again. Instead it is about only a selective

part (seeFigure2-12)of theoverall process, just enough to identify and fix themajor

UX problems.

Iterating this small sub-process is far from ponderous and costly; in fact, it:

n is only a very small and very lightweight iteration

n does not have to be expensive because it involves only a very small part of the

overall process

Figure 2-11

Overall interactive system
development workflow
diagram.

82 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

n can occur early in the overall

lifecycle when design changes cost

little

n can have minimal impact on

schedule because it can be done in

parallel with many other parts

(especially the software engineer-

ing parts) of the overall project

lifecycle

These are strong reasons why

iteration to refine interaction designs

can be cost-effective and can lead to a

high-quality user experience without

being a burden to the overall software

and system development budget and

schedule.

The perceptive reader will see that

we have come full circle; the process

in Figure 2-12 is a variation of the

Wheel lifecycle template of Figure 2-2.

You will know more about what goes on in each part of this diagram as you go

through the rest of the process part of this book (Chapters 3 through 19).

Figure 2-12

The small lightweight sub-
process to be iterated for the
interaction design.

83THE WHEEL : A L I FECYCLE TEMPLATE

Intentionally left as blank

The Pre-Design Part of the
UX Lifecycle

Here is an overview of how contextual inquiry, contextual analysis, needs and

requirements extraction, and modeling lead up to design:

n Contextual inquiry (Chapter 3), is an empirical process to elicit and gather user work

activity data.

n Contextual analysis (Chapter 4) is an inductive (bottom-up) process to organize,

consolidate, and interpret the user work activity data in the next chapter.

n Chapter 5 is about a deductive analytic process for extracting needs and requirements.

n Chapter 6 is about a synthesis of various design-informing models, such as task

descriptions, scenarios, and work models.

n Chapters 7, 8, and 9 are about design, an integrative process aided by the contextual data

and their offspring, needs, requirements, and models.

The parts of the figure are not completely separable like this but, for the

book, we break it up a bit to “chunk” it for easier digestion.

86 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

CHAPTER

Contextual Inquiry: Eliciting
Work Activity Data 3

I don’t build a house without predicting the end of the present social order. Every building is

a missionary1. . . It’s their duty to understand, to appreciate, and conform insofar as possible

to the idea of the house. (Lubow, 2009)

– Frank Lloyd Wright, 1938

Objectives

After reading this chapter, you will:

1. Understand the concepts of work, work practice, and work domain

2. Understand the need to study users’ work activities in the context of their work practice

3. Be prepared to write a clear and concise product or system concept statement for

your envisioned system

4. Know how to prepare for undertaking user research activities

5. Be ready to conduct user research by meeting with customers and potential users to

gather contextual data

6. Understand the history and roots of contextual inquiry

7. Appreciate the difference between data-driven and model-driven inquiry

3.1 INTRODUCTION

3.1.1 You Are Here
We begin each process chapter with a “you are here” picture of the chapter

topic in the context of our overall Wheel lifecycle template; see Figure 3-1.

The process begins with understanding user work and needs by “getting your

nose in the customer’s tent.” To understand the users’ activities in the context of

1The term “missionary” referred to his commitment to educate his customers about their own needs. While

he aimed to serve his clients’ needs, he felt he was the only authority on determining those needs.

their current work practice (or play practice), using any currently existing system

or product, we do contextual inquiry (this chapter) and contextual analysis

(Chapter 4). Sometimes contextual inquiry and contextual analysis are

collectively called contextual studies or “user research.”

3.1.2 A True Story
In southwest Virginia, somewhat remote from urban centers, when the first-time

computer-based touchscreen voting machines were used, we heard that quite

a few voters had difficulty in using them. Although an official gave instructions

as people entered one particular voting area, a school gymnasium, he did it

in a confusing way.

One of the voters in line was an elderly woman with poor eyesight, obvious

from her thick eyeglasses. As she entered the voting booth, one could just

imagine her leaning her head down very close to the screen, struggling to read

the words, even though the font was reasonably large.

Her voice was heard floating above her voting booth, as she gave some

unsolicited user feedback. She was saying that she had trouble distinguishing the

colors (the screen was in primary colors: red, green, and blue). A member of

another major gender nearby said aloud to himself, as if to answer the woman,

Figure 3-1

You are here; in the
contextual inquiry chapter,
within understanding user
work and needs in the
context of the overall Wheel
lifecycle template.

Work

Work is the set of activities

that people undertake to

accomplish goals. Some of

these activities involve

system or product usage.

This concept includes play,

if play, rather than work

per se, is the goal of the

user.

Work Domain

The entire context of work

and work practice in the

target enterprise or other

targetusageenvironment.

88 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

that he thought there was an option to set the screen to black and white. But

oddly, no one actually told this, if it was true, to the woman.

In time, the woman emerged with a huge smile, proclaiming victory over the

evil machine. She then immediately wanted to tell everyone how the design

should be improved. Remember, this is an elderly woman who probably knew

nothing about technology or user experience but who is quite naturally willing

to offer valuable user feedback.

It was easy to imagine a scenario in which the supervisors of the voting process

quickly flocked about the voter and duly took notes, pledging to pass this

important information on to the higher-ups who could influence the next

design. But as you might guess, she was roundly humored and ignored. Call us

superstitious, but that is just bad UX ju ju.

There are a few things to note in this story. First, the feedback was rich,

detailed, and informative about design. This level of feedback was possible only

because it occurred in real usage and real context.

Second, this woman represented a particular type of user belonging to a

specific age group and had some associated visual limitations. She was also

naturally articulate in describing her usage experience, which is somewhat

uncommon in public situations.

So what does this have to do with contextual inquiry? If you do contextual

inquiry in a real environment like this, you might get lucky and find rich user

data. It is certain however that, if you do not do contextual inquiry, you will never

get this kind of information about situated usage.

3.1.3 Understanding Other People’s Work Practice
This chapter is where you collect data about the work domain and user’s work

activities. This is not about “requirements” in the traditional sense but is about

the difficult task of understanding user’s work in context and understanding

what it would take in a system design to support and improve the user’s work

practice and work effectiveness.

Why should a team whose goal is to design a new system for a customer be all

that interested in work practice? The answer is that you want to be able to create

a design that is a fit for the work process, which may not be the same as what

the designers think will fit.

So, if you must understand something about what the users do, why not just

ask them? Who knows their work better than the users themselves? Many

customers, including those in large and complex organizations,may wonder why

you want to look at their work. “Just ask us anything about it; we have been doing

it for years and know it like the back of our hands.”

Work Activity

A work activity is

comprised of sensory,

cognitive, and physical

actions made by users in

the course of carrying out

the work practice.

Contextual Inquiry

Contextual inquiry is an

early systemor product UX

lifecycle activity to gather

detailed descriptions of

customer or user work

practice for the purpose of

understanding work

activities and underlying

rationale. The goal of

contextual inquiry is to

improve work practice

and construct and/or

improve system designs to

support it. Contextual

inquiry includes both

interviews of customers

and users and

observations of work

practice occurring in its

real-world context.

Work Practice

Work practice is the

pattern of established

actions, approaches,

routines, conventions, and

procedures followed and

observed in the customary

performance of a

particular job to carry out

the operations of an

enterprise. Work practice

often involves learned

skills, decision making,

and physical actions and

can be based on tradition,

ritualized and habituated.

89CONTEXTUAL INQUIRY : EL IC IT ING WORK ACT IV ITY DATA

The answer is that what they “know” about their work practice is often biased

with their own assumptions about existing tools and systems and is mostly

shaped by the limitations and idiosyncrasies of these tools and practices. It is not

easy for users consciously to describe what they do, especially in work that has

been internalized. Humans are notoriously unreliable about this.

Also, each user has a different perspective of how the broader work domain

functions. Knowledge of the full picture is distributed over numerous people.

What they know about their work is like what the seven blind men “know” about

an elephant.

Why not just gather requirements from multiple users and build a design

solution to fit them all? You want an integrated design that fits into the “fabric” of

your customer’s operations, not just “point solutions” to specific problems of

individual users. This can only be achieved by a design driven by contextual data,

not just opinions or negotiation of a list of features.

That is why contextual inquiry has taken on importance in the UX process. It

takes real effort to learn about other people’s work, which is usually unfamiliar,

especially the details. It can be difficult to untangle the web of clues revealed by

observation of work.

Even surface observables can be complex, and themost important details that

drive the work are usually hidden beneath the surface: the intentions, strategies,

motivations, and policies. People creatively solve and work around their

problems, making their barriers and problems less visible to them and to

outsiders studying the work.

Because it is so difficult to understand user needs, much upfront time is wasted

in typical projects in arguments, discussions, and conjectures about what the

user wants or needs based on anecdotes, opinions, experience, etc. The processes

of contextual inquiry and analysis remove the necessity for these discussions

because the team ends up knowing exactly what users do, need, and think.

3.1.4 Not the Same as Task Analysis or a Marketing Survey
Oftentimes people might say, “We already do that. We do task analysis and

marketing surveys.” While task analysis does identify tasks, it does not give

enough insight into situations where tasks were interwoven or where users

needed to move seamlessly from one task to another within the work context.

Task analyses also do not work well in discovering or describing opportunistic

or situated task performance. Paying attention to context in task analysis is what

led us to contextual inquiry and analysis.

Similarly, you cannot substitute market research for contextual inquiry. They

are just two different kinds of analysis and you may need both. Marketing data

Task Analysis

Task analysis is the

investigation and

deconstruction of units of

work. It is the process of

representing the structure

of these units plus

describing how they are

performed, including

goals, steps, and actions.

90 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

are about sales and can identify the kinds of products and even features

customers want, but do not lead to any understanding about how people work or

how to design for them. Customer/user data about work in context are what lead

to design.

3.1.5 The Concepts of Work, Work Practice, and Work
Domain
We use the term “work” to refer to the usage activities (including play) to achieve

goals within a given domain. It is what people do to accomplish these goals. In

most cases, use of the term “work” will be obvious, for example, using a CAD/

CAM application to design an automobile.

“Work practice” is how people do their work. Work practice includes all

activities, procedures, traditions, customs, and protocols associated with doing

the work, usually as a result of the organizational goals, user skills, knowledge,

and social interaction on the job. The context of this kind of work often includes

some manual activities in association with some interactive activities.

If we are talking about the context of using a product, such as a consumer

software product, then the “work” and “work activities” include all activities users

are involved in while using that product. If the product is, say, a word processor,

it is easy to see its usage to compose a document as work.

If the product is something like a game or a portable music player, we still

refer to all activities a user undertakes while playing games or being entertained

with music as “work” and “work activities.” Even though the usage activities

are play rather than work, we have to design for them in essentially the same

way, albeit with different objectives.

Similarly we call the complete context of the work practice, including the

usage context of an associated system or product, the work activity domain or

simply the work domain. The work domain contains the all-important context,

without which you cannot understand the work.

3.1.6 Observing and Interviewing in Situ: What They Say
vs. What They Do
Okay, so we agree that we have to learn about customer/user work, but why

not stay in our own offices, where we have a good working environment and lots

of logistical support, such as secretaries for note-taking and transcription, and

spacious comfortable conference rooms? The answer is that you cannot

get all the information you need by talking with users outside their work context,

which only accesses domain knowledge “in the head.” Observing users and

asking users to talk about their work activities as they are doing them in their

91CONTEXTUAL INQUIRY : EL IC IT ING WORK ACT IV ITY DATA

own work context get them to speak

from what they are doing,

accessing domain knowledge

situated “in the world” (see

Figure 3-2).

Even when occurring in situ, in

the user’s own work environment,

asking or interviewing alone is not

enough. When gathering data in

contextual inquiry, be sure

to look beyond the descriptions

of how things work, what is

commonly believed, and what is

told about the same. Observe the “ground truth”—the actual work practice,

problems, issues, and work context. It is especially important to notice

workarounds created by users when the intended system support or work practice

does not support real needs.

Contextual inquiry in human–computer interaction (HCI) derives from

ethnography, a branch of anthropology that focuses on the study and systematic

description of various human cultures. In an article describing the transition

from ethnography to contextual design, Simonsen and Kensing (1997) explain

why interviews as an exclusive data-gathering technique are insufficient:

“A major point in ethnographically-inspired approaches is that work is a socially

organized activity where the actual behavior differs from how it is described

by those who do it.” You need to observe and determine for yourself how the

work in question is actually done.

Just as interviewing users is not enough to uncover their unmet needs,

observation without interviewing also has its potential downsides. First, if you use

observation as an exclusive data-gathering technique, you could miss some

important points. For example, an important problem or issue simply might not

come up during any given period of observation (Dearden & Wright, 1997).

Second, observation itself can affect user behavior. This is the famous

“measurement effect”2 adapted to observation of people. The very act of

observation can cause people to change the behavior being observed.

For example, when a person is subjected to new or increased attention, for

example, being observed during task performance, the “Hawthorne effect”

Figure 3-2

Observation and
interviewing for contextual
data collection.

2Study of the problem of measurement in quantum mechanics has shown that measurement of any object

involves interactions between the measuring apparatus and that object that inevitably affect it in some

way. �Wikipedia.com

92 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

(Dickson & Roethlisberger, 1966) can produce a temporary increase of

performance due to their awareness of being observed and perceived

expectations of high performance. Diaper (1989) points this out as a natural

human reaction. Simply put, when users are being observed, they tend to act like

they think you want them to. When we are observed at work, we all want to do

our best and be appreciated.

3.1.7 The SnakeLight, an Example of How Understanding
Work Practice Paid Off
Here is an anecdotal example about why it helps to understand how your users

do their activities and how they use products and systems. This example of the

effectiveness of in situ contextual inquiry comes to us from the seemingly

mundane arena of consumer flashlights. In the mid-1990s, Black & Decker was

considering getting into handheld lighting devices, but did not want to join the

crowded field of ordinary consumer flashlights.

So, to get new ideas, some designers followed real flashlight users around.

They observed people using flashlights in real usage situations and discovered

the need for a feature that was never mentioned during the usual brainstorming

among engineers and designers or in focus groups of consumers. Over half of

the people they observed during actual usage under car hoods, under kitchen

sinks, and in closets and attics said that some kind of hands-free usage would be

desirable.

They made a flashlight that could be bent and formed and that can stand

up by itself. Overnight the “SnakeLight” was the product with the largest

production volume in Black & Decker history, despite being larger, heavier, and

more expensive than other flashlights on the market (Giesecke et al., 2011).

3.1.8 Are We Gathering Data on an Existing System
or a New System?
When gathering data and thinking about designs for a new system, analysts and

designers can be strongly biased toward thinking about only the new system.

Students sometimesask, “Shouldwebemodeling theexistingway theydo itoras it

would bedonewith thenew system?”This is askingwhether to domodeling in the

problemdomainor the solutiondomain, thework domainor thedesigndomain.

At the end of the day, the answer might well be “both,” but the point of this

particular discussion is that it must start with the existing way. Everything we do

in contextual inquiry and contextual analysis in this chapter and the next is

about the existing way, the existing system, and the existing work practice. Often

team members get to thinking about design too early and the whole thing

93CONTEXTUAL INQUIRY : EL IC IT ING WORK ACT IV ITY DATA

becomes about the new system before they have learned what they need to

about work practice using the existing system.

In order for all this to work, then, there must be an existing system

(automated, manual, or in-between), and the proposed new system would

then somehow be an improvement. But what about brand new ideas, you

ask, innovations so new that no such system yet exists? Our answer may be

surprising: that situation happens so rarely that we are going to go out on a limb

and say that there is always some existing system in place. Maybe it is just a manual

system, but there must be an existing system or there cannot be existing

work practice.

For example, many people consider the iPod to be a really innovative

invention, but (thinking about its usage context) it is (mainly) a system for

playingmusic (and/or videos). Looking at work activities and not devices, we see

that people have been playing music for a long time. The iPod is another in a

series of progressively sophisticated devices for doing that “work” activity,

starting with the phonograph invented by Thomas Edison, or even possibly

earlier ways to reproduce “recorded” sound.

If no one had ever recorded sound in any way prior to the first phonograph,

then there could not have been an “existing system” on which to conduct

contextual inquiry. But this kind of invention is extremely rare, a pure innovative

moment. In any case, anything that happens in sound reproduction after that

can be considered follow-on development and its use can be studied in

contextual inquiry.

3.1.9 Introducing an Application for Examples
As a running example to illustrate the ideas in the text, we use a public ticket

sales system for selling tickets for entertainment and other events. Occasionally,

when necessary, we will provide other specific examples.

The existing system: The Middleburg University Ticket
Transaction Service
Middleburg, a small town in middle America, is home to Middleburg

University, a state university that operates a service called the Middleburg

University Ticket Transaction Service (MUTTS). MUTTS has operated

successfully for several years as a central campus ticket office where people

buy tickets from a ticket seller for entertainment events, including concerts,

plays, and special presentations by public speakers. Through this office

MUTTS makes arrangements with event sponsors and sells tickets to various

customers.

94 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

The current business process suffers from numerous drawbacks:

n All customers have to go to one location to buy tickets in person.

n MUTTS has partnered with Tickets4ever.com as a national online tickets distribution

platform. However, Tickets4ever.com suffers from low reliability and has a reputation

for poor user experience.

n Current operation of MUTTS involves multiple systems that do not work together

very well.

n The rapid hiring of ticket sellers to meet periodic high demand is hampered by

university and state hiring policies.

Organizational context of the existing system
The desire to expand the business coincides with a number of other dynamics

currently affecting MUTTS and Middleburg University.

n The supervisor of MUTTS wishes to expand revenue-generating activities.

n To leverage their increasing national academic and athletic prominence, the university

is seeking a comprehensive customized solution that includes integration of tickets

for athletic events (currently tickets to athletic events are managed by an entirely

different department).

n By including tickets for athletic events that generate significant revenue, MUTTS will

have access to resources to support their expansion.

n The university is undergoing a strategic initiative for unified branding across all its

departments and activities. The university administration is receptive to creative design

solutions for MUTTS to support this branding effort.

The proposed new system: The Ticket Kiosk System
The Middleburg University Ticket Transaction Service (MUTTS) wants to

expand its scope and expand to more locations, but it is expensive to rent space

in business buildings around town and the kind of very small space it needs is

rarely available. Therefore, the administrators of MUTTS and the Middleburg

University administration have decided to switch the business from the ticket

window to kiosks, which can be placed in many more locations across campus

and around town.

Middleburg is home to a large public university and has reliable and well-used

public transportation provided by its bus system operated byMiddleburg Bus, Inc.

There are several bus stops, including the library and the shopping mall, where

there is space to add a kiosk for a reasonable leasing fee to the bus company.

95CONTEXTUAL INQUIRY : EL IC IT ING WORK ACT IV ITY DATA

A number of these bus stops seem good locations for kiosks; buses come and

go every few minutes. Some of the major stops are almost like small bus stations

with good-sized crowds getting on and off buses.

In addition to an expected increase in sales, there will be cost savings in that

a kiosk requires no personnel at the sales outlets. The working title for the

new system is Ticket Kiosk System, pending recommendations from our design

team. The Ticket Kiosk System will have a completely new business model for the

retail ticket operation.

3.2 THE SYSTEM CONCEPT STATEMENT

A system concept statement is a concise descriptive summary of the envisioned

system or product stating an initial system vision or mandate; in short, it is a

mission statement for the project. A system (or product) concept statement

is where it all starts, even before contextual inquiry. We include it in this

chapter because it describes an initial system vision or mandate that will drive

and guide contextual inquiry. Before aUX team can conduct contextual inquiry,

which will lead to requirements and design for the envisioned system, there has

to be a system concept.

Rarely does a project team conceptualize a new system, except possibly in a

“skunk-works” kind of project or within a small invention-oriented organization.

The system concept is usually well established before it gets to the user

experience people or the software engineering people, usually by upper

management and/or marketing people. A clear statement of this concept is

important because it acts as a baseline for reality checks and product scope and

as something to point to in the middle of later heated design discussions.

n A system concept statement is typically 100 to 150 words in length.

n It is a mission statement for a system to explain the system to outsiders and to help set

focus and scope for system development internally.

n Writing a good system concept statement is not easy.

n The amount of attention given per word is high. A system concept statement is not just

written; it is iterated and refined to make it as clear and specific as possible.

An effective system concept statement answers at least the following

questions:

n What is the system name?

n Who are the system users?

96 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

n What will the system do?

n What problem(s) will the system solve? (You need to be broad here to include business

objectives.)

n What is the design vision and what are the emotional impact goals? In other words, what

experience will the system provide to the user? This factor is especially important if

the system is a commercial product.

The audience for the system concept statement is broader than that of most

other deliverables in our process and includes high-level management,

marketing, the board of directors, stockholders, and even the general public.

Example: System Concept Statement for the
Ticket Kiosk System
Here is an example of a system concept statement that we wrote for the Ticket

Kiosk System.

The Ticket Kiosk System will replace the old ticket retail system, the Middleburg

University Ticket Transaction Service, by providing 24-hour-a-day distributed

kiosk service to the general public. This service includes access to comprehensive

event information and the capability to rapidly purchase tickets for local events

such as concerts, movies, and the performing arts.

The new system includes a significant expansion of scope to include ticket

distribution for the entire MU athletic program. Transportation tickets will also

be available, along with directions and parking information for specific venues.

Compared to conventional ticket outlets, the Ticket Kiosk System will reduce

waiting time and offer far more extensive information about events. A focus on

innovative design will enhance the MU public profile while Fostering the spirit of

being part of the MU community and offering the customer a Beaming

interaction experience. (139 words)

This statement can surely be tightened up and will evolve as we proceed with

the project. For example, “far more extensive information about events” can be

made more specific by saying “extensive information including images, movie

clips, and reviews about events.” Also, at this time we did not mention security and

privacy, important concerns that are later pointed out by potential users. Similarly,

the point about “focus on innovative design” can bemademore specific by saying

“the goal of innovative design is to reinvent the experience of interacting with a

kiosk by providing an engaging and enjoyable transaction experience.”

97CONTEXTUAL INQUIRY : EL IC IT ING WORK ACT IV ITY DATA

Usually a system concept statement will be accompanied by a broader system

vision statement from marketing to help get a project started in the right

direction. None of this yet has the benefit of information from customers or

potential users. However, we do envision the customer being able to find event

information, select events to buy tickets for, select seats, purchase tickets, print

tickets, and get information and tickets for transportation while enjoying the

overall experience interacting with the kiosk.

Upon interacting with the customers and users, some of our objectives

in this system concept statement will be adjusted and assumptions

corrected.

NB: All exercises are in Appendix E, near the end of the book.

3.3 USER WORK ACTIVITY DATA GATHERING

Much of the material in this chapter comes from the contextual design material

existing in the literature. We do not try to reproduce these entire processes in

this book, as those topics already appear in books of their own, with credit to

their respective authors. What we do here is draw on these processes, adapting

them to establish our own frame of reference and integrating them into the

context of other requirements-related activities.

We gratefully acknowledge the sources from which we have adapted this

material, mainly Contextual Design (Beyer & Holtzblatt, 1998) and Rapid

Contextual Design (Holtzblatt, Wendell, & Wood, 2005). Other work we have

drawn upon and which we acknowledge include Constantine and Lockwood

(1999). A CHI Conference paper by Hewlett-Packard people (Curtis et al., 1999)

contributed to our understanding by spelling out an excellent large-scale

example of the application of contextual design.

To do your user work activity data gathering you will:

n prepare and conduct field visits to the customer/user work environment, where the

system being designed will be used

n observe and interview users while they work

n inquire into the structure of the users’ own work practice

n learn about how people do the work your system is to be designed to support

n take copious, detailed notes, raw user work activity data, on the observations and

interviews

In these early chapters we are generally taking the perspective of domain-

complex systems because it is the more “general” case. We will describe several

Exercise

See Exercise 3-1, System

Concept Statement for a

System of Your Choice

98 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

methods and techniques that have proven successful, but you should be creative

and open to including whatever techniques suit the needs of the moment.

This means that you might want to use focus groups, for example, if you

think they will be useful in eliciting a revealing conversation about more

complex issues.

The goals of contextual inquiry are the same in both perspectives

(domain-complex systems vs. interaction-complex consumer products), and

most of the steps we describe apply to, or can easily be adapted for, the product

perspective. Where appropriate, we will offer descriptions of how the process

might differ for the product user perspective.

3.3.1 Before the Visit: Preparation for the Domain-Complex
System Perspective

Learn about your customer organization before the visit
Preparation for the visit means doing upfront planning, including addressing

issues such as these about the customer:

n For work activities situated in the context of a system with a complex work

domain, get a feel for the customer’s organizational policies and ethos by

looking at their online presence—for example, Website, participation in social

networks.

n Know and understand the vocabulary and technical terms of the work domain and the

users.

n Learn about the competition.

n Learn about the culture of the work domain in general—for example, conservative

financial domain vs. laid-back art domain.

n Be prepared to realize that there will be differences in perspectives between managers

and users.

n Investigate the current system (or practices) and its history by looking at the company’s

existing and previous products. If they are software products, it is often possible to

download trial versions of the software from the company’s Website to get familiar with

design history and themes.

Learn about the domain
While designing for complex and esoteric domains, working first with

subject matter experts helps shorten the actual contextual inquiry process by

giving you a deeper understanding of the domain, albeit from a non-user

perspective. Your contextual inquiry process can now include validating this

understanding. In cases where time and resources are at a premium (not an

Domain-Complex
Systems

Domain-complex systems

are systems with high

degree of intricacy and

technical content in the

corresponding field of

work. Often,

characterized by

convoluted and elaborate

mechanisms for how parts

of the system work and

communicate, they

usually have complicated

workflow containing

multiple dependencies

and communication

channels. Examples

include an air traffic

control system and a

system for analyzing

seismic data for oil

exploration.

99CONTEXTUAL INQUIRY : EL IC IT ING WORK ACT IV ITY DATA

insignificant portion of projects in the real world), you may just have to make

do with just interviewing a few subject matter experts instead of observing

real users in context.

Issues about your team
In addition, there are issues to address about your team:

n Decide how many people to send on the visits.

n Decide who should go on each visit, for example, user experience people, other team

members, documentation folks.

n Set your own limits on the number of visits and number of team members involved,

depending on your budget and schedule.

n Plan the interview and observation strategy (who in the team does what).

Your visit-group size can depend on how many are on your initial project

team, the number of different user roles you can identify, the size of the project

overall, the budget, and even your project management style. Practitioners

report taking as many as two to eight or more people on visits, but three to four

seems to be typical.

A multidisciplinary team is more likely to capture all necessary data and

more likely to make the best sense of data during subsequent analysis. We have

found using two people per interview appealing; one to talk and one to take

notes.

Lining up the right customer and user people
Among the things to do to prepare for a site visit for contextual inquiry, you

should:

n Select and contact appropriate users or customer management and administrative

people to:

n explain the need for a visit

n explain the purpose of the visit (to learn about their work activities)

n explain your approach (for them actually to do the work while you are there to

observe)

n obtain permission to observe and/or interview users at work

n build rapport and trust, for example, promise personal and corporate confidentiality

n discuss timing—which kinds of users are doing what and when?

n set scope: explain that you want to see the broadest representation of users and work

activities, focusing on the most important and most representative tasks they do

100 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

n establish or negotiate various parameters, such as how long you will/can be there (it

can be up to several intense weeks for data gathering), how often to visit (it can be up

to every other day), how long for the average interview (a couple of hoursmaximum),

and the maximum number of interviews per visit (as an example, four to six)

n Select and contact appropriate support people (determined by themanagement people

you talk with) within the customer organization to arrange logistics for the visits.

n Select and contact appropriate people to meet, observe, and interview: customers, users

(who do the work in question), especially frequent users, managers; aim for the broadest

variety, cover as many usage roles as possible, plan visits to multiple sites if they exist.

This latter item, selecting the people to meet, observe, and interview, is

especially important. Your fieldwork should include all work roles, selected

other stakeholders who impact work directly or indirectly, and (depending on

the project) possibly grand-customers (customers of the customer) outside the

user’s organization. You want the broadest possible sources to build a holistic

and multi-perspective picture of the contextual data.

Get access to “key” people
For projects in a domain-complex system context, you might also be told by your

customer that users of the system in question are scarce and generally unavailable.

For example, management might resist giving access to key people because they

are busy and “bothering” them would cost the organization time and money.

If you sense reluctance to give access to users, you need to step up and make

the case; establish the necessity for gathering requirements that will work and

the necessity for firmly basing requirements on an understanding of existing

work activities. Then explain how this extra work upfront will reduce long-term

costs of reworking everything if analysts do not get the right requirements.

Ask for just a couple of hours with key users. Persevere.

At the other end of the spectrum, for consumer software, such as shrink-wrap

word processors, users abound and you can recruit users to interview via a “help

wanted” ad posted in the local grocery store.

Do not interview only direct users. Find out about the needs and frustrations

of indirect users served by agents or intermediaries. And do not forgetmanagers.

Here is a quote from a team that we worked with on a project, “It was eye-opening

to talk with the managers. Managers are really demanding and they have

different kinds of requirements from those of the users, and they see things from

a totally different viewpoint than the other users.”

Sometimes you may have access to the users for only a small period of time

and therefore cannot observe them doing work. In such cases, you can ask them

101CONTEXTUAL INQUIRY : EL IC IT ING WORK ACT IV ITY DATA

to walk you through their typical day. You must work extra hard to ask about

exceptions, special cases, and so on. This approach suffers from many of the

problems we described earlier regarding not observing users in context but at

least provides some insights into user’s work.

What if you cannot find real users?
In the worst case, that is, when you have no access to real users (this has

happened in our consulting and work experience), the last resort is to talk to

user proxies. User proxies can be business experts or consultants who are

familiar with the user’s work.

This approach suffers from many disadvantages and often results in hearing

about high-level functional needs and crude approximations of what a broad

class of users need in the system. The accounts of such proxies are often tainted

by their own opinions and views of the work domain. They also suffer from

serious omissions and simplifications of often nuanced and complex user work

activities.

Setting up the right conditions
The environment, the people, and the context of the interview should be as

close a match to the usual working location and working conditions as possible.

We once found ourselves being ushered into a conference room for an

interview because, as the employer put it, “it is much quieter and less

distracting here.”

The employer had even arranged for time off fromwork for the worker so that

he could focus his complete attention on the interview. But, of course, the

conference room was not anything like the real work context and could not

possibly have served as a useful source of information about the work context.

We had to convince them to move the whole thing back into the active

workplace.

Make sure that the observations and interviews are conducted without undue

political and managerial influences. You want to create the right conditions for

observation and interviews, conditions in which users feel comfortable in telling

the “real” story of the everyday work practice. We once had to deal with the

supervisor of a person we wanted to interview because the supervisor insisted on

being present during the interview. His reason was that it was a rare opportunity

to learn more about what his workers did and how.

However, we also suspected that the supervisor did not want the employee to

be complaining to strangers about working conditions or the organization.

However, from the worker’s view, having a supervisor present looked a lot like an

102 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

opportunity for the supervisor to evaluate the user’s job performance. It meant

not being able to be open and candid about much of anything. Instead, the

employee would have to pay very close attention to doing the job and not saying

anything that could be interpreted in a way that could be used against him.

It would be anything but a sample of everyday work practice.

How many interviewees at a time?
It might work out that, via a group interview, multiple users can work together

and produce data not accessible through a single user. However, group

interviews can also mask individual thoughts. Each user may have a very

different view of how things work and what the problems are, but these

differences can be sublimated in an unconscious effort to reach “consensus.”

Additionally, group dynamics may be influenced by hidden agendas and

turf battles.

Preparing your initial questions
Script your initial interview questions to get you off to a good start. There is

no real secret to the initial questions; you ask them to tell you and to show you

how they do their work. What actions do they take, with whom do they interact,

and with what do they interact? Ask them to demonstrate what they do and to

narrate it with stories of what works, what does not work, how things can go

wrong, and so on.

We found that instead of asking them generally “What do you do here?” it is

sometimes more helpful to ask them to walk us though what their work

specifically entailed the day before and if that was typical. This kind of a specific

probing gives them an easy point of reference to make their descriptions

concrete.

Before the visit: Preparation for the product perspective
While the aforementioned guidelines for preparing a visit in a domain-complex

system context generally also apply to a product perspective, there are a

few differences. For one, the context of work in a product design perspective

is usually much narrower and simpler than that in an entire organization.

This is primarily because organizations contain numerous and often widely

different roles, each contributing to a part of the overall work that gets

accomplished.

In contrast, the work activities within a product design context are usually

centered on a single user in a single role. To observe the full range of usage

patterns by a single user of a product, you usually have to observe their usage

103CONTEXTUAL INQUIRY : EL IC IT ING WORK ACT IV ITY DATA

over a long time. In other words, to do this kind of contextual inquiry, instead of

observing several users in a work role for a relatively short time, you have to

“shadow” single users over a longer time.

For example, the work, or play, activities associated with a portable music

player system sometimes include searching for and listening to music. At other

times the same user is trying to manage music collections. Even in cases where

the design needs to supportmultiple users, say the user’s family, the complexity of

the interaction among different roles is usually much lower in the product

perspective, and often more homogeneous than in a domain-complex system

perspective.

Where do we start with our contextual inquiry process for such products? The

best place to start is by understanding the complete usage context of this kind of

product, including desirable features and limitations.

We also have to ask about things such as branding, reputation, and

competition in this product segment. To find unbiased information about these

issues, instead of looking online for the customer’s organizational policies and

culture, we need to look for user groups or blogs about using this kind of

product and check out reviews for similar products.

Do some initial brainstorming to see what kinds of user communities are

primary targets for this product segment. College students? Soccer moms?

Amateur photographers? Then think of good places to meet people in these

user classes. If necessary, use marketing firms that specialize in recruiting

specific target populations.

Cross-Cultural User-Experience Design

Mr. Aaron Marcus, President, and Principal Designer/Analyst, Aaron Marcus

and Associates, Inc. (AMþA)

Modern technology and commerce permit global distribution of products and services to increasingly diverse

users who exist within different cultures. Culture affects every aspect of tool and sign making. Culture-centered

design of user experiences seems “inevitable.” Designers/analysts are aware of culture, but may not be informed

of specific dimensions by which cultures can be described and measured.

Websites are one set of examples; they are immediately accessible by people worldwide and offer design

challenges of “localization” that go beyond translation (Marcus and Gould, 2000). Some years ago, Jordanian

Website Arabia.On.Line used English for North American and European visitors, but the layout read right to left as

in Arabic because the local designers were too influenced by their own culture.

104 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Localization goes beyond languages and translation. If one were to examine the home page of Yahoo.com

in English and Maktoob.com, one of the Arabic world’s most popular portals in Arabic, one would find not

only language differences, but differences in color, imagery, organization, and topics of primary interest. There

may be geographic, historical, political, aesthetic, and language differences.

Small-scale communities with preferred jargon, signs, and rituals can constitute a “cultural group.” This definition is

different from traditional definitions of culture that more typically refer to longstanding historical differences established

over many generations and centuries. The modern cultural group may be considered more a social group or “lifestyle

group,” including affinity groups, social groups, and geographically dispersed groups communicating through the

Internet. Today, “digital natives” vs “digital immigrants” may constitute significant differences in “culture.”

The challenge for business is how to account for different user experiences that are culturally differentiated in

a cost-effective manner. Developers may need to rely on market and user data to achieve short-term success and

to avoid wasting money and time on too many variations. Paying attention to culture models and culture

dimensions can assist.

CULTURE MODELS AND CULTURE DIMENSIONS

Analysts have written about culture for many decades. Geert Hofstede’s (1997) cultural dimensions are well

known and well established, although controversial for some anthropologists and ethnographers. Hofstede

examined IBM employees in more than 50 countries during 1978–1983 and was able to gather data and analyze it

in a statistically valid method. His definition of culture (in his model, each country has one dominant culture)

concerns patterns of thinking, feeling, and acting that are “programmed” by a particular group in their children by

the time they reach pubescence. The differences of culture manifest themselves in specific rituals, symbols,

heroes/heroines, and values. Hofstede’s five dimensions of culture are the following:

Power-distance: High vs low—differences between powerful people in the society and others

Collectivism vs individualism: being raised in a group and owing allegiance, or not

Femininity vs masculinity: roles that different sexes play within the society

Uncertainty avoidance: High vs low—the degree of discomfort about things not known

Long-term orientation vs short-term orientation: Confucian values of perseverance, virtue, etc., or other values.

For each culture dimension, Hofstede noted differences of attitudes toward work, family, and education.

CAUTIONS, CONSIDERATIONS, AND FUTURE DEVELOPMENTS

Although Hofstede’s model is well established, and many studies have been based on it, there are also criticisms of the

model:

n Old data, pre-postmodern (no emphasis on media, sociology of culture, politics of culture)

n Corporate subjects only, not farmers or other laborers

n Assumes one culture per country

n Assumes fixed, unchanging relationships

n Gender roles, definitions debatable

n Seems too general, stereotypical

Studies have shown that even the concept of usability may be biased. A study published in CHI 2009

Proceedings (Frandsen-Thorlacius et al., 2009) showed that Chinese users found fun and visual appeal to be

related more closely to usability than for Danish users.

At the very least, awareness of culture models and culture dimensions enlarges the scope of issues. For

example, these models challenge the professions of UI development to think about appropriate metaphors for different

cultures, user profiles that are culture sensitive, differing mental models, and their influence on performance, not only

preference, alternate navigation strategies, evaluation techniques, attitude toward emotions, etc. An additional

challenge is introducing culture considerations into corporate and organization frameworks for product/service

development and into centers of user-centered design. There are additional sources of insight into UX and culture, each

of which has formulated models and seven plus or minus two dimensions. Each of these gives rise to further issues and

interactions with culture: persuasion, trust, intelligence, personality, emotion, and cognition.

With the rise of India and China as sources of software and hardware production, innovation, and consumption, it

becomes more obvious that computer-mediated communication and interaction occur in a context of culture. It is inevitable

that user-experience development must account for cultural differences and similarities. Models, methods, and tools do

exist, but many research issues lie ahead. Future development of tools, templates, and treasure chests of patterns will

provide a body of knowledge in the future for more humane, cultured design of computer-based artifacts.

References

Hofstede, G. (1997). Cultures and Organizations: Software of the Mind. New York: McGraw-Hill.

Frandsen-Thorlacius, O., Hornbæk, K., Hertzum, M., & Clemmensen, T. (2009). Non-Universal Usability? A Survey of How

Usability Is Understood by Chinese and Danish Users. In Proc., CHI 2009 (pp. 41–50). 6 April 2009, Boston, MA.

Marcus, A., & Gould, E. W. (2000). Crosscurrents: Cultural Dimensions and Global Web User-Interface Design. Interac-

tions, ACM Publisher, 7(4), 32–46. www.acm.org.

Anticipating modeling needs in contextual inquiry: Create
contextual data “bins”
There is a spectrum of approaches to contextual data collection from

data driven to model driven. We draw on the best of both but lean toward

the model-driven approach. A data-driven approach operates without any

presuppositions about what data will be observed. There are no predefined

data categories to give hints about what kind of data to expect. The data-

driven approach simply relies on data encountered to guide the process of

Data Bin

A data bin is a temporary

repository—for example,

a labeled pile of notes on a

table—to hold data—raw

contextual data at first

and, later, synthesized

work activity notes. Each

bin corresponds to a

different data category or

contextual data topic.

data gathering and subsequent analysis. Whatever arises in contextual

inquiry observations and interviews will define the whole process.

Alternatively, a model-driven contextual inquiry process means that

instead of just gathering relevant data as you encounter it in observations and

interviews, you use your experience to help guide your data collection. In

particular, you use the known general categories of design-informing models

(Chapter 6) as a guide for kinds of data to watch for, looking forward to the data

needs of modeling so that at least some of your data collection in contextual

inquiry can be guided by these future needs.

From your knowledge you will have a good idea of which models will be

needed for your project and what kind of data will be needed for your

models. Using this knowledge, you create some initial “bins” for data

categories and models into which you can start putting your contextual data,

in whatever form it has at this point. A bin is a temporary place to hold data

in a given category. As you collect data, you will think of other categories to

add more bins.

For example, we will cover construction of what we call a physical model

(Chapter 6), which includes a diagram of the physical layout of the working

environment. So, if a physical model is relevant to your project, then you will

need to make a sketch and/or take photos of the physical layout, where

equipment is located, and so on while you are still on-site doing contextual

inquiry. In order to meet those modeling needs later, you will also need to take

notes about the physical layout and any problems or barriers it imposes on the

work flow and work practice.

In the next chapter we will extend and complete the creation of bins for

sorting and organizing your data in contextual analysis.

3.3.2 During the Visit: Collecting User Work Activity Data
in the Domain-Complex System Perspective

When you first arrive
Begin your first field visit by meeting the manager, administrator, or

supervisor through whom you arranged the visit. Continue with the building

of trust and rapport that you started previously. Make it clear that you are

doing this for the purpose of helping make a better design. It is a big

advantage if, at the beginning, you can briefly meet all customer personnel who

will be involved so that you can get everyone off to the same start by giving the

overview of your goals and approach, explaining what will happen during your

visits and why.

Data-Driven
Inquiry

Data-driven inquiry is led

entirely by the work

activity data as it presents

itself, forestalling any

influence from the

analyst’s own knowledge,

experience, or

expectations. The idea is to

avoid biases in data

collection.

Model-Driven
Inquiry

In model-driven inquiry,

contextual data gathering

is informed by knowledge

and expectations from

experience, intelligent

conjecture, and

knowledge of similar

systems and situations.

The idea is to be more

efficient by using what

you know, but it comes at

the risk of missing data

due to biases.

107CONTEXTUAL INQUIRY : EL IC IT ING WORK ACT IV ITY DATA

Remember the goal
Often in field visits for “talking with our users,” people ask users what they want

or need. In a contextual inquiry, we do not ask users what they want or need. We

observe and interview users in their own work context about how they do their

work as they are doing the work that later will be supported by the system you

hope to design.

And, by all means, do not forget that we are on a quest for a quality user

experience. The techniques of contextual inquiry and contextual analysis

will not necessarily take care of searching out the special aspects of user

experience; you have to be tuned to it. So be especially aware of user stories

about particularly good or bad usage experiences and ferret out the reasons,

both in design and in usage context, that contribute to those experiences.

Establish trust and rapport
The interviews with users should also start with trust building and establishing

rapport. Help them understand that you have to ask many questions and “get

in their face” about the work. Interviewing skills are learned; observe users

doing their work and askmany questions about why they do something, how they

do certain things, how they handle certain cases, and get them to tell specific

stories about their work and how they feel about the work and the way it is

done in the existing environment. Follow them around; do not miss a part of the

work activity by staying behind if they have to move as part of their work.

Form partnerships with users
In most consulting situations the person who comes in from outside the

customer organization is considered the “expert,” but it is quite the opposite in

contextual inquiry. The user is the expert in the domain of work practice and

you are the observer trying to understand what is happening.

The process works best if you can form a partnership with each user in which

you are co-investigators. Invite the user into the inquiry process where you can

work together in close cooperation. You need to establish an equitable

relationship with the user to support information exchange through a dialog.

As the observations and interviews proceed you can feed the partnership by

sharing control of the process, using open-ended questions that invite users to

talk, for example, what are you doing? Is that what you expect? Why are you

doing that? Be a good listener and let the user lead the conversation. Pay

attention to nonverbal communication.

108 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Task data from observation and interview
One of the most important kinds of contextual data to collect is task data.

You will need this to build your task structure models and task interaction

models in Chapter 6. This is where a combination of observation and interview

can work especially well. Get task-related data by observing actual sessions of

users doing their own work in their own work context.

At the same time, you will interview the users, but asking only about the

task they are doing, not about possible tasks or tasks that other users do.

The interview component is used to interpret and assign meaning to what is

observed. To have necessary data for task models later, ask questions to clarify

anything not obvious in what you observe. Ask questions about the purposes

and rationale for each task and each important step; why do they do certain

actions?

On the observation side of things, be sure to notice the triggers for tasks

and steps; what happens to cause them to initiate each task or step? For example,

an incoming phone call leads to filling out an order form.

Learn about your users’ task barriers by observing tasks being performed and

by think-aloud verbal explanation of underlying information about the tasks,

such as task goals. Notice hesitations, problems, and errors that get in the way of

successful, easy, and satisfying task or step completion. Probe for what was

expected and reasons why it did not turn out well. You will need these answers to

model barriers in the upcoming analysis and modeling.

It takes a certain skill to key in on occurrences of critical information in

the flow of observation and interviews. With practice, you will acquire an

awareness and ability to detect, discern, and discriminate the wheat from the

chaff of the flow.

The output of this process is raw user work activity data in the form of lengthy

observation and interview notes or transcripts of recorded sessions.

Recording video
Video recording is an effective way of comprehensively capturing raw contextual

data where conditions and resources permit. Video recording can help you

capture important nonverbal communication cues in contextual data.

However, factors such as the time and effort to produce and review the

recordings can weigh against the use of video recording in contextual inquiry

data collection. Confidentiality, privacy, and other such concerns can also

preclude the use of video.

109CONTEXTUAL INQUIRY : EL IC IT ING WORK ACT IV ITY DATA

In addition, video recording can interfere with a close user relationship. The

feeling that what they say is permanently captured may prevent them from being

forthcoming. Theymay not be toowilling to say something negative about existing

work practice or complain about policies at work. Informal note taking, however,

can provide a more intimate conversational experience that may encourage

honest expression. Despite all these possible barriers, video clips can provide

convincing evidence, when linked to the contextual notes, that an issue is real.

Note taking
Regardless of whether you use video or audio recordings of observation and

interview sessions, you should consider note taking your primary source of

usable raw data. Manual paper note writing may be the most commonly used

contextual inquiry data collection technique used in the real world. It is

unintrusive, not intimidating to the user, and fits most naturally into what

should be amore or less low-key interaction with the user. Alternatively, a laptop

is acceptable for note taking, if you can do it inconspicuously.

When taking notes, you must incorporate some scheme that preserves

information about the source of each note. We recommend that you use:

n quotations marks to denote what a user says

n plain text to describe observations of what users do

n parentheses to delimit your own interpretations

A small handheld digital audio recorder used inconspicuously, but not trying

to be covert, might be beneficial to augment note taking, especially when things

are moving fast. One way to use audio recording is as the audio equivalent of

written notes.

In this mode, after hearing user comments or observing user behavior, you

dictate a short summary into the recorder, much as a medical doctor dictates

summaries for patient charts during daily rounds. This mode of operation has

the additional benefit that if the user can hear you paraphrase and summarize

the situation, it is a chance to correct any misconceptions.

Use a numbering system to identify each point in data
It is important to use a numbering system to identify uniquely each note, each

point in the raw data, or each sequence in a video or audio recording or

transcript. This last item is necessary to provide a way to reference each note.

Later, in analysis, each conclusionmust be linked to the associated raw data note

or else it cannot be treated as authentic. Some of the ways to tag your raw data for

reference in analysis include the following:

110 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

n If you record sessions, you can use video frame numbers or time codes on the recording

as identifiers of sequences and points in raw data.

n If you record sessions, you definitely should assign line numbers to the transcripts, just as

it is done for legal documents.

n If you take manual notes, each note should be tagged with a note identification number

tied to the person or persons who are the data source.

How to proceed
Record raw data by expressing it in the user’s voice. Because these data are raw, it

makes sense to express points in the interview transcripts generally as they

occurred during the interview, which would usually be by using the words of the

user. For example, the statement: “I like to add an extra egg when Imake a cake”

naturally reflects the fact that a user is speaking. If you record your interviews,

the transcripts will mostly appear as the exact words of the user anyway.

Switching to an expression such as “the user likes to add an extra egg when

baking a cake” unnecessarily introduces an analyst flavor that is not useful this

early in the process. Moreover, the user’s voice describes much closely the user’s

experience, and subtle use of adjectives and expressions can provide clues on

designing for enhancing that experience.

It is your job to capture data about the user’s work. Do not expect users

necessarily to tell you what they want or need; this is just about how they

work and how they feel about it. Your team will deduce needs later, after

they understand the work. Also, do not expect users to do design, although

they might occasionally suggest something they would like to see in the

system.

n Be a listener; in most cases you should not offer your opinions about what users might

need.

n Do not lead the user or introduce your own perspectives.

n Do not expect every user to have the same view of the work domain and the work; ask

questions about the differences and find ways to combine to get the “truth.”

n Capture the details as they occur; do not wait and try to remember it later.

n Be an effective data ferret or detective. Follow leads and discover, extract, “tease out” and

collect “clues.” Be ready to adapt, modify, explore, and branch out.

Part of being a good detective, the latter point above, is being willing to

deviate from a script when appropriate. Be prepared to follow leads and clues

and take the interview and observations where you need to go, tailoring

questions tomeet the goal of learning all you can about their work practice, work

environment, and work issues and concerns.

111CONTEXTUAL INQUIRY : EL IC IT ING WORK ACT IV ITY DATA

As an example of following leads, this is a real story told by a team doing a

project for one of our classes. The client was in retail sales and the conversation

of the interview had centered on that concept, including serving their

customers, making the sale transaction, and recording it.

However, during this conversation the word “inventory” was mentioned once,

in the context of point-of-sale data capture. No one had asked about inventory,

so no one had mentioned it until now.

Our good ethnographic detectives, recognizing an entree to another area of

work activities, pounced on that word and pursued a new train of thought. What

about inventory? What role does it play in your point-of-sale data capture?

Where does it go from there? How is it used and for what? How do you use

inventory data to keep from running out of stock on items in demand? Who

orders new stock and how?Once an order is sent, how do you keep track of it so it

does not fall through the cracks? What happens when the new stock is

delivered? How do you know when it arrives? Who works in receiving and

what do they do? How do you handle partial shipments?

As an example of dialogue that violates the point above about not introducing

your own perspectives, consider this user comment: “I want privacy when

I am buying tickets.” You might be tempted to say: “You mean, when you are

looking foreventsandbuying tickets, youdonotwantotherpeople in line toknow

what you are doing?” Towhich the usermight respond: “Yes, that is what Imean.”

A better way to handle the user’s comment here would have beenwith a follow-up

question such as “Can you elaborate what you mean by wanting privacy?”

Pay attention to information needs of users
As you talk with users in the work roles, try to identify their information needs in

the context of the work activities and tasks, as they do their jobs in the work

domain. Do the current work practices and the current software systems provide

information needed by users to do their jobs? Is the needed information

provided at the time it is needed and in the form it is needed? And beware of

“information-flooding screens.”

When designers do not know what users need, they often fall back on the

unjustifiable excuse that the users themselves will know what they need. These

designers then create designs that display all information available or all the

information users might need, in an “information flooding screen,” and let the

users sort it out. The designer’s assumption is that all the information needed is

presented—the “it is all there” syndrome—and the users are in the best position

to know which parts are needed for which functions/tasks and what format is

best for the job. This is a thinly veiled copout for not doing the necessary upfront

analysis to inform the design.

112 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

What about design ideas that crop up?
Contextual inquiry isnot aboutdesign, but youdonotwant to lose anygood ideas,

so you shouldmake note of design ideas from users as they come up and then get

back to asking about work practice. It is normal for users to suggest design ideas,

often very specific and sometimes not very practical. It is the interviewer’s

responsibility to take note of these suggestions, but to ask more questions to

connect themback to work practice. Ask “why?”How does that suggestion fit into

your workflow? What part of your work leads to a need for this?

What about analyst and designer ideas that crop up?
Similarly, make note of design ideas from your own team and tag them as such.

Just as with users, it is normal for analysts to get design ideas during interviews

or during subsequent analysis activities.

Because such suggestions can introduceanalyst bias intowhat is supposed tobe

all aboutuser data, “righteous” analystsmaywant to ignore them.But even analyst

ideas generated in the action of contextual inquiry are real data and it would be a

shame to lose them. So to include analyst anddesigner data in contextual inquiry,

we suggest getting user confirmation by asking about these ideas and keeping

clear the source; be sure to label or tag such notes as analyst ideas.

Questions not to ask
Do not expect you can ask customers and users for direct answers to the

questions that will lead you straight to design. Remember that contextual

inquiry is often called the process for discovering what users cannot tell you. In

his “column” on the User Interface Engineering Website, Jared Spool (2010)

advises us about three specific questions not to ask customers or users during

field visits. We summarize the three no-no questions here:

n Do not ask about the future; do not ask users what they would do in a given

circumstance. The answer will probably not reflect the reality of what they might do if

in the same situation but all alone at work or at home.

n Do not ask for design advice, how they would design a given feature. Users are

not designers and do not usually have a design-thinking mind-set. You are likely to

get off-the-wall answers that will not fit in with the rest of your design; although

their idea might work in the present situation, it might not fit other usage conditions.

n Do not ask a question by trying to state what you think is their rationale. You just put

ideas in their heads and they might give answers they think you want. Users often do

not think about their usage in terms of a logical rationale for each action.

113CONTEXTUAL INQUIRY : EL IC IT ING WORK ACT IV ITY DATA

Collect work artifacts
During site visits collect as many samples of work artifacts, such as paper forms,

templates, work orders, and other paperwork, as you can. Work artifacts include

not just paperwork, but all items used in the work practice and photos of the same.

For example, consider the keys to a customer’s car in an auto repair

facility. First, theymay beput in an envelopewith theworkorder, so themechanic

has the keys when needed. After repairs, the keys are hung on a peg board,

separate from the repair order until the invoice is presented to the customer and

the bill is paid. Artifacts include physical or electronic entities that users create,

retrieve, use or reference within a task, and/or pass on to another person in the

work domain. This passing of artifacts should also show up in the flow model.

Example: Work Artifacts from a Local Restaurant
One of the project teams in our user experience class designed a system to

support a more efficient workflow for taking and filling food orders in a local

restaurant, part of a regional chain. As part of their contextual inquiry, they

gathered a set of paper work artifacts, including manually created order forms

and “guest checks,” shown in Figure 3-3.

Theseartifacts aregreat conversationalpropsaswe interview thedifferent roles

thatuse them.Theyprovideavenues fordiscussiongiven the fact that almost every

restaurant uses these artifacts over and over again.What are things that work with

this kind of artifact for order taking? What are some breakdowns? How does a

person’s handwriting impact this part of the work activity?What is the interaction

like between the wait staff and the restaurant’s guests?

Other forms of data collection
Other kinds of contextual data are also essential in representing work context,

including:

n Copious digital pictures of the physical environment, devices, people at work, and

anything else to convey work activities and context visually. Respect the privacy of the

people and ask for permission when appropriate.

n On-the-fly diagrams of workflow, roles, and relationships; have people there check them

for agreement.

n On-the-fly sketches of the physical layout, floor plans (not necessary to be to scale),

locations of people, furniture, equipment, communications connections, etc.

n Quantitative data—for example, howmany people do this job, how long do they typically

work before getting a break, or how many widgets per hour do they assemble on the

average?

114 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Wrap it up
Do not overstay your welcome. Be efficient, get what you need, and get out of

their way. Limit interviews to no more than two hours each; everyone is tired

after that much concentrated work. At the end, youmay wish to give interviewees

something as a thank you. Although cash is always welcome, sometimes

employers will not like you to pay their employees since in principle they are

already being paid for being there. In these cases a “premium gift” is

appropriate, such as a T-shirt or coffee mug inscribed with something catchy

about the situation.

3.3.3 During the Visit: Collecting User Work Activity
Data in the Product Perspective
Roles of users will be different with commercial products. In most cases, work in

a domain-complex system context is performed by people in roles that make up

the organization, which we will be calling “work roles.” In the setting of a system

Figure 3-3

Examples of work artifacts
gathered from a local
restaurant.

115CONTEXTUAL INQUIRY : EL IC IT ING WORK ACT IV ITY DATA

with a complex work domain, a work role is defined and distinguished by a

corresponding job title or work assignment representing an area of work

responsibility. For a commercial product, a work role may just be the user.

Usage location will also be different for commercial products. The work or

play by individual users of commercial products is not usually connected to an

organization. This kind of work or play happens wherever the product is used.

For example, if the product is a camera, theworkhappens prettymuch anywhere.

The challenge therefore is being able to collect work activity data as it

happens, in the context and location in which it happens, without influencing

the user’s behavior. What are the things users do when taking a photograph?

With whom do they interact? What do they think about? What concerns and

challenges do they have while taking pictures? What are the barriers to, or

inconveniences in, doing it the way they want to?

Emotional impact and phenomenological aspects are more prominent with

commercial products. A product such as a digital camera is much more likely to

generate a strong emotional component within the user experience and even an

emotional attachment to the device. What does it mean to the user emotionally

to have a compact camera handy at all times?

A product like a digital camera also has more of a chance to be the object of

long-term phenomenological acceptance into one’s life and lifestyle. The more

people carry the camera with them everywhere they go, the stronger the

phenomenological aspects of their usage.

What does the camera’s brand mean to people who carry it? How about the

style and form of the device and how it intersects with the user’s personality and

attire? What emotions do the scratches and wearing of edges in an old camera

invoke? What memories do they bring to mind? Does the user associate the

camera with good times and vacations, being out taking photos with all his or her

worries left behind? What does it mean to get one as a gift from someone? What

about reuse and sustainability? How can we design the camera to facilitate

sharing among friends and social networks?

You may have to observe longer-term usage. It usually takes longer to address

these emotional and phenomenological factors in contextual inquiry because

you cannot just visit once and ask some questions. You must look at long-term

usage patterns, where people learn new ways of usage over time.

Example: User Data Gathering for MUTTS
We performed contextual inquiry sessions, interviewing MUTTS employees and

customers. We had three analysts separately interviewing several groups of one

or two users at a time and came up with a fairly rich set of raw data transcripts.

Work Role

A work role is defined and

distinguished by a

corresponding job title or

work assignment

representing a set of work

responsibilities. A work role

usually involves system

usage, but some work roles

can be external to the

organization being studied.

Phenomenological
Aspects of
Interaction

Phenomenological aspects

(deriving from

phenomenology, the

philosophical examination

of the foundations of

experience and action) of

interaction are the

cumulative effects of

emotional impact

considered over the long

term, where usage of

technology takes on a

presence in our lifestyles

and is used to make

meaning in our lives.

MUTTS

MUTTS is the acronym for

Middleburg University

Ticket Transaction Service,

our running example for

most of the process

chapters.

116 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

At the end, we also expanded the inquiry by asking customers about experience

with other kiosks they might have used.

In most examples throughout this book, we cannot include all the details and

you would not want us to. We therefore call on the reader for a kind of dramatic

suspension of disbelief. The point of these examples is that it is not about

content, especially completeness, which we deliberately abstracted to reduce the

clutter of details. It is about simple illustrations of the process.

For simplicity, in most of our examples we will focus on MUTTS customers,

whom we interviewed in the context of using the ticket office. Here are

paraphrased excerpts from a typical session with a MUTTS customer:

Q: We want to begin with some questions about your usage of the ticket service, MUTTS.What

do you do for a living? Tell us about your typical day.

A: I have a 9 to 5 job as a lab technician in SmythHall. However, I often have to work later than

5PM to get the job done.

Q: So do you use MUTTS to buy tickets for entertainment?

A: I work long hours and, at the end of the day, I usually do not have the energy to go

to MUTTS for entertainment tickets. Because this is the only MUTTS location, I cannot

buy tickets during normal working hours, but the MUTTS window is not open

after 7PM.

Q: How often and for what have you used the MUTTS service?

A: I use MUTTS about once a month for tickets, usually for events on the same weekend.

Q: What kinds of events do you buy tickets for?

A: Mostly concerts and movies.

Q: Describe the ticket buying experience you just had here at the MUTTS ticket office.

A: It went well except that I was a little bit frustrated because I could not do the search myself

for the events I might like.

Q: Can you please elaborate about that?

A: My search for something for this weekend was slow and awkward because every step had to

be a series of questions and answers through the ticket seller. If I could have used her

computer to browse and search, I could have found what I wanted much sooner. Also, it

works better if I can see the screensmyself and read the event descriptions. And I also felt

I need to answer quickly because I was holding up the line.

Q: Did you know you could search for some of these events on Tickets4ever.com?

A: No, I did not know they had local events.

Q: While you were looking at the seating chart, you seemed unsure about what the ticket seller

was expecting you to do with it. Can you please walk us through what you were thinking

and how that fit in with the way the seating chart was laid out.

117CONTEXTUAL INQUIRY : EL IC IT ING WORK ACT IV ITY DATA

A: Yeah, that was a problem. I could see it was a seating chart but I did not understand

what seats were still available and could not quite put the layout of the seats in

perspective. I had to ask her what the colors meant on the chart, and what the price

difference was for each of those colored regions.

Q: Walk us through a couple of other experiences you have had at the ticket office and do not

skip any details.

A: Last week I bought two movie tickets and that was very smooth because I knew what movie

I wanted to see and they are usually the same price. Generally, buyingmovie tickets is very

easy and quick. It is only with concerts and special events that things get somewhat

complicated. For example, a couple of months ago, I wanted to get tickets to a concert

and I could not get to this office for a couple of days because I was working late.

When I eventually got here, the tickets were sold out. I had to fill a form over there to get

added to a waitlist. I do not know how the waitlist works, and that form was very

confusing. Here, let me show you. . .

Q: What do you like most about MUTTS?

A: Because I am an MU employee, I get a discount on tickets. I also like that they feature the

most popular and most current local events.

Q: What do you like least about MUTTS and what concerns do you have about using

MUTTS to buy tickets?

A: MUTTS seems to have a limited repertoire of tickets. Beyond the most popular events

they do not seem to handle the smaller events outside the mainstream.

Q: What improvements, if any, would you like to see in MUTTS?

A: It would help me if they were open later at night. It would be great if I could get

football tickets here, too!

Q: Do you buy football tickets regularly?

A: Yes, I go to about four to five games every season.

Q: Do you buy tickets to any other athletic events? Can you describe a typical

transaction?

A: Yes, I also get MU basketball tickets for at least a few games every season. For athletic

tickets I have to be on the lookout for the dates when the lottery opens for the games

I care about. I sign up for the lottery during the three days they are open and if

I win, I have to go all the way to the other side of campus to the MU Athletics

Tickets Office. When I am looking to buy tickets to MU basketball, I like to look at

different seating options versus prices; I sometimes look for an option allowing

several friends to sit together. But that process is very complicated because I have to

coordinate lottery signup with some friends. We get to buy only two guest tickets if

we win the lottery.

118 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Q: What difficulties do you experience in using MUTTS as the main source of tickets for

events?

A: The main problem is that it is too far away from where I live and work.

Because the envisioned kiosk-based ticket system is so different from the

existing MUTTS ticket window, we also wanted to get their thoughts on the

proposed kiosk system.

Q: Nowwewant you to imagine a new service where you can buy tickets at public kiosks located

across campus and the town. In particular we are planning to have ticket kiosks

conveniently located at major bus stops in Middleburg. Have you had any experience

with ticket kiosks in other places, other towns?

A: That is interesting! I never bought tickets at a kiosk before.

Q: Have you had any experience with other kinds of ticket kiosks at places like bus stops or in

Metro-type commuter train stations in any big city?

A: Yes, I lived in New York for a couple of years and I used the MTA kiosks to buy metro cards

all the time.

Q: If we were to put kiosks at places such as university parking lots, the university mall, and

other public locations across campus to sell tickets that you get at this office, would you

use them?

A: I would be willing to at least try a ticket kiosk located at the Burruss Hall bus stop because I

take the bus there every day. I would also try one near the University Mall because I live

near there.

Most of my free time is outside normal business hours, after many businesses are closed, so

a kiosk might be convenient.

Q: What type of information would you like to see in such a kiosk?

A: When I look for entertainment options, I want to see the most current events (top picks

for today and tomorrow) on the first screen so I can avoid searching and browsing

for those.

Q: In your transaction here at the MUTTS office today, you asked if Unspoken Verses is like

theMiddleburgPoetBoysband.Howdoyouenvisiongetting information like that at akiosk?

A: That is a good question! I am not sure. I guess the kiosk should have some sort of related

items and good description of events. Perhaps even recommendations of some sort.

Q: Can you envision yourself using a kiosk to do what you did today at this office?

A: Yes, definitely. I guess I would expect some form of detailed description of the events.

I should be able to look for different types of events. If there are pictures, that would

help. I should be able to see a seating chart.

Exercise

See Exercise 3-2, Contextual

Inquiry Data Gathering for

the System of Your Choice

119CONTEXTUAL INQUIRY : EL IC IT ING WORK ACT IV ITY DATA

3.4 LOOK FOR EMOTIONAL ASPECTS OF WORK
PRACTICE

Look for the impact of aesthetics and fun in work practice, and look for

opportunities for more of the same. When you are visiting workplaces, observing

work practice, and interviewing people in work roles, youmay find that customers

and users are less likely to mention emotional aspects of their work practice

because they think that is about personal feelings, which they might think is

inappropriate in the context of technology and functional requirements.

As a result, youmust try harder to uncover an understanding about emotional

and social aspects of work practice. For each different work or other role studied

in contextual inquiry, try to get at how emotion might play a part. You have to be

diligent and observant of little details in this regard.

Look for ways to fight job boredom. Does anyone intimate, even obliquely,

that they would like their job to be less boring? What about the work is boring?

Where and when are people having fun? What are they doing when they have

fun? Where do people need to have fun when they are not?

Where is there stress and pressure? Where can job stress be relived with

aesthetics and fun? Where would it be distracting, dangerous, or otherwise

inappropriate to try to inject fun or surprise?

What are the long-term phenomenological aspects of usage? What parts of

usage are learned over longer times? Where is it appropriate for users to give the

system or product “presence” in their lives?

3.5 ABRIDGED CONTEXTUAL INQUIRY PROCESS

The full rigorous process for contextual inquiry and analysis is appropriate for

domain-complex systems. But the fully rigorous contextual process is not always

necessary. Contextual inquiry calls for using good sense and not slavishly

following a predefined process. Minimize overlap in raw data collection across

interviews. Use your experience to focus on just the essentials.

Another way to abridge your contextual inquiry is to limit your scope and

rigor. As an example, we were part of one small project where less than a day’s

worth of talking to users about their work practice made a big difference in our

understanding of the work domain to inform the design.

One of themost obvious and direct ways to abridge the full contextual inquiry

process to save resources is to not make audio or video recordings of the user

interview sessions. This also saves resources later in contextual analysis because

you do not have to transcribe the recordings.

Presence

Presence of a product is a

kind of relationship with

users in which the product

becomes a personally

meaningful part of their

lives.

120 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

3.6 DATA-DRIVEN VS. MODEL-DRIVEN INQUIRY

Beyer and Holtzblatt (1998) take an approach to contextual inquiry and analysis

for HCI based on pure ethnographic field research. That is, their process is led

entirely by work activity data. Simply stated, letting data do the driving means

that if you encounter any information that seems relevant to the work practice

and its milieu, collect it. This approach means forestalling any influence from

your own knowledge, experience, or expectations and just gathering data as they

present themselves.

Data-driven contextual inquiry results in voluminous raw data describing a

wide variety of topics. To digest this mass of disparate data points, make

sense of them, and put these data to work in informing design, practitioners

must apply contextual analysis to extract the concise and meaningful

points and issues and then sort and organize them into piles or affinity

diagrams. Then the sorted categories must be converted into design-

informing models such as flow models, user models, and task models. In the

purely data-driven approach, these categories and models are dictated by

the data content.

In effect, Beyer and Holtzblatt (1998) recommend not thinking of data

categories in advance, but letting data suggest the categories and

subsequent models. This will help avoid biasing the process by replacing data

from users with analysts’ hunches and opinions. Their “contextual design”

approach to contextual inquiry and contextual analysis has proven itself

effective.

However, Constantine and Lockwood (1999) show that there is more than

one effective approach to gathering contextual data to inform design. They

promote amethod they call model driven, which is in important ways the reverse

of the Beyer and Holtzblatt data-driven approach. In their “use what you know”

approach, Constantine and Lockwood advocate using knowledge and

expectations from experience, intelligent conjecture, knowledge of similar

systems and situations, marketing analysis, mission statements, and preliminary

requirements to focus your contextual inquiry data gathering to anticipate

preconceived data categories and target the most useful data and to get a head

start on its organization and analysis.

From this experience, most practitioners know what kinds of models

they will be making and what kinds of data feed each of these models.

This knowledge helps in two ways: it guides data collection to help ensure that

you get the kinds of contextual data you need, but at the risk of analyst bias in

those data. It also helps with analysis by giving you a head start on data

categories and models.

121CONTEXTUAL INQUIRY : EL IC IT ING WORK ACT IV ITY DATA

Certainly not all of this anticipatory information will be correct for a given

work practice or system, but it can provide an advantageous starting point.

Experienced professional practitioners, having gone through the contextual

inquiry process and having done similar analyses in other work contexts, will

learn to get through the chaff efficiently and directly to the wheat.

Although their process might seem that it is aboutmodeling and then finding

just the data to support the predefined models, it really is about starting with

some initial “exploratory”models to guide data collection and then focused data

collection to find answers to questions and outstanding issues, to refine,

redirect, and complete the models. This “model-driven inquiry” approach also

has a solid real-world track record of effectiveness.

The Beyer and Holtzblatt contextual design approach works because, in the

end, data will determine the truth about work practice in any specific real-world

customer or user organization. However, the Constantine and Lockwood

approach works because it encourages you to use your experience and what you

know to anticipate data needs in contextual inquiry and contextual analysis.

While data-driven inquiry assumes a “blank slate” and a completely open mind,

model-driven inquiry acknowledges the reality that there is no such thing as a

blank slate (Constantine & Lockwood, 1999).

The Beyer and Holtzblatt approach is rooted in real data untainted by

guesswork or analyst biases. But the Constantine and Lockwood approach claims

advantages in lower cost and higher efficiency; they claim the search for data is

easier if you know something about what you are looking for. To them, it is about

pragmatically reducing the ratio of data volume to insight yielded.

The Value of Contextual User Studies
in Understanding Problem Causes

Jon Meads, President/Principal Consultant, Usability Architects, Inc.

INTRODUCTION

This is a case study that exemplifies the integration of user studies with agile development. In an agile development

environment, the usability engineer may be the user’s representative, part of the design team, and, often

enough, both.

122 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

In order to inform the design and represent the user, the usability engineer needs to understand not only the user

requirements, but also the business requirements and process. Also, it is very possible that neither the business

requirements nor the current process is as well known as it should be. This case study depicts such a situation.

THE PROBLEM

I was working with an insurance claims processing company as a consultant. Their problem was that there was a high

turnover of adjudicators. The adjudicators had the responsibility of reviewing all claims that the automatic processing

had rejected and making a final determination on rejection or payment. The adjudicators were skilled workers and

required about 6 weeks of training followed by several months of experience to get to the level of performance that

the company required of them.

However, the work was both tedious and demanding, and the turnover of adjudicators was relatively high, as was

the case for most of their clerical staff. The company asked me if I could redesign the user interface to make the

process easier to learn so that new adjudicators could be brought on in less time.

UNDERSTANDING THE PROBLEM

As is usually the case for consultants, you work for a variety of clients in a variety of business sectors. The insurance

business was completely new to me and there was a lot to learn. Management was able to explain to me what the

responsibilities of the adjudicators were and what the management problem was. The company’s business analysts

provided me with an overview of the adjudication issues and pointed me to the policy manual, an online reference

document with much more information than I could possibly absorb in a reasonable amount of time. The policy

manual was the adjudicator’s “bible” and becoming familiar with it was essential for them to do their work.

Management thought that something might be done to make finding the desired information in the bible easier, which

would help the adjudicators. But discussions with the adjudicators did not reveal any significant problems in finding the

information they needed and did not mention it as being a problem for either doing their work or in becoming proficient at

their work. At this point I had no idea of what could be designed that would reduce the amount of training required.

There were two things still to do. One was to talk with the trainers to find out what they perceived to be the reason

it took new adjudicators 6 months to become proficient. The other was to spend some time observing the adjudicators

doing their work. Discussions with the trainers provided the first indication of what the problem really was and where

the solution might lie and the observations confirmed it.

The trainers stated that the actual task of adjudicating the claims was something that was learned in a couple of weeks.

The remainder of training time was spent learning where to get the information relative to the claim that would support a

decision on whether to allow the claim. Watching the adjudicators doing their work showed that they were constantly

pulling up new data screens, switching back and forth among the screens, and making notes on scraps of paper.

After spending some time observing the adjudicators at work, the real problem became evident. The current user

interface was based on the structure of the underlying database of claims, referrals, subscribers, and providers.

To resolve an issue, adjudicators needed to immerse themselves in the database, searching for information about past

claims (“encounters”), referrals, provider/clinic associations, and other pieces of data that would allow them to

determine if the claim was covered or not. To do this, they were constantly navigating a complex database, pulling up

screens full of data to find one or two items of interest.

It was not the training that was a problem or difficulty with the policy manual. The root problem was that they

were doing the work of the computer system, sifting through large amounts of data to find those items that were

pertinent to resolving the claim. Contextual research showed that the information needed to resolve a claim could be

diagrammed as an object model. This model showed the needed information as well-defined objects and what the

data relationships were from the perspective of the adjudicators.

I was also able to determine that the process of adjudicating a claim had three basic activities:

i. determining if a referral is needed

ii. matching a referral to a claim

iii. paying, denying, or forwarding the claim

DESIGN AND ITERATION

Although the process was usually fairly linear, the adjudicator would sometimes need to switch from one activity to

another to check up on an item or resolve a minor issue. However, the recognition of these activities as constituting

the process allowed for development of a simple conceptual model:

Encounter ProviderReferrals ResolveEncounter
History

where the information the users were previously writing down as notes was consolidated and kept visible as
“Encounter Data.” Selecting the tabs in the upper right would bring up tools and data needed for the specific activity
the adjudicator was currently engaged in.

The conceptual model, above, was validated (“tested”) by several adjudicators and adjusted to make access to

data being sought during the referral matching activity easier and more straightforward.

It was at this point that we entered the agile phase of development. We developed an initial working prototype

that fleshed out what data should be presented along with where and how it was presented and then went through

several iterations of programming and designing of the prototype, changing data that were presented, and adjusting

the placement of data and the mechanisms used to present it. These intermediate prototypes were reviewed with a

select group of adjudicators until we had a final version that most everyone was satisfied with. At this point, we let

the graphic designer clean it up and make it more attractive. Being an in-house application, our graphic design goals

were aesthetic: to provide a display that was clean in appearance and comfortable to view and work with.

SUCCESS MEASURES

The final check was to validate the design with measures on time to train and productivity. We checked expected

training time by simply allowing novice adjudicators to use the new design to adjudicate a number of claims with only

a simple introduction to it. We first measured their performance using the current system and then measured their

performance with the new system. During the first 30 minutes of using the new system, claim resolution time was

approximately 20% longer than their performance with the old system. During the second 30 minutes with the new

system, they were averaging 20% less time than with the old system. By the end of 90 minutes use of the new system,

adjudicators were resolving claims in about one-third of the time that they did with the old system.

Since it was the task of finding the information needed to resolve a claim that required 6 months of experience to

become proficient, we were comfortable that the new system would not only improve productivity but reduce the time

it took to train adjudicators and bring them to an acceptable level of proficiency.

3.7 HISTORY

3.7.1 Roots in Activity Theory
First of all, we owe a great acknowledgment to those who pioneered, developed,

and promoted the concepts and techniques of contextual design. Early

foundations go back to Scandinavian work activity theory (Bjerknes, Ehn, & Kyng,

1987; B�dker, 1991; Ehn, 1988). The activity theory work was conducted for

quite some time in Scandinavia, in parallel with the task analysis work in Europe

and the United Kingdom. More recent conferences and special issues have been

devoted to the topic (Lantz & Gulliksen, 2003). Much of the initial work in this

“school” was directed at the impact of computer-based systems on human labor

and democracy within the organizations of the affected workers. This singular

focus on human work activities shines through into contextual inquiry and

analysis.

Work Activity
Theory

Work activity theory in HCI

stemmed from a

democratic movement

that flourished in

Scandinavia during the

1980s. It emphasized

human labor and human

activities as complex, goal-

directed and socially

situated phenomena

mediated by tool usage.

3.7.2 Roots in Ethnography
A second essential foundation for contextual inquiry is ethnography, an

investigative field rooted in anthropology (LeCompte & Preissle, 1993).

Anthropologists spend significant amounts of time living with and studying a

particular group of humans or other possibly more intelligent animals, usually in

social settings of primitive cultures. The goal is to study and document details of

their daily lives and existence.

In a trend toward design driven by work practice in context, quick and dirty

varieties of ethnography, along with other hermeneutic approaches (concerned

with ways to explain, translate, and interpret perceived reality)(Carroll, Mack, &

Kellogg, 1988), have been adapted into HCI practice as qualitative tools for

understanding design requirements. Contextual inquiry and analysis are

examples of an adaptation of this kind of approach as part of the evolution of

requirements elicitation techniques.

The characteristics that define ethnography in anthropology are what make it

just right for adaptation in HCI, where it takes place in the natural setting of the

people being studied; it involves observation of user activities, listening to what

users say, asking questions, and discussing the work with the people who do it;

and it is based on the holistic view of understanding behavior in its context.

In contrast to long-term field studies of “pure” ethnography, with its cultural,

anthropological, and social perspectives, the “quick and dirty” version of

ethnography has been adapted for HCI. Although involving significantly shorter

time with subjects and correspondingly less depth of analysis, this version still

requires observation of subjects in their own environment and still requires

attending to the sociality of the subjects in their work context (Hughes et al.,

1995). For example, Hughes et al. (1994) describe application of ethnography

in the area of computer-supported cooperative work (CSCW), a sub-area of HCI.

Lewis et al. (1996) describe an ethnographic-based approach to system

requirements and design that parallels much of the contextual inquiry process

described here. Rogers and Belloti (1997) tell how they harnessed ethnography

as a research tool to serve as a practical requirements and design process.

Blythin, Rouncefield, and Hughes (1997) address the adaptation of

ethnography from research to commercial system development.

3.7.3 Getting Contextual Studies into HCI
The foundations for contextual design in HCI were laid by researchers at Digital

Equipment Corporation (Whiteside & Wixon, 1987; Wixon, 1995; Wixon,

Holtzblatt, & Knox, 1990). By 1988, several groups in academia and industry

126 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

were already reporting on early contextual field studies (Good, 1989) in the

United States and the United Kingdom (notably the work of Andrew Monk).

Similar trends were also beginning in the software world (Suchman, 1987).

Almost a decade later, Wixon and Ramey (1996) produced an edited collection

of much more in-depth reports on case studies of real application of contextual

studies in the field. Whiteside, Bennett, and Holtzblatt (1988) helped integrate

the concept of contextual studies into the UX process.

3.7.4 Connections to Participatory Design
Contextual inquiry and analysis are part of a collection of collaborative and

participatory methods that evolved in parallel courses over the past couple of

decades. These methods share the characteristic that they directly involve users

not trained in specialized methods, such as task analysis. Among these are

participatory design and collaborative analysis of requirements and design

developed by Muller and associates (1993a, 1993b) and collaborative users’ task

analysis (Lafrenière 1996).

127CONTEXTUAL INQUIRY : EL IC IT ING WORK ACT IV ITY DATA

Intentionally left as blank

CHAPTER

Contextual Analysis:
Consolidating and
Interpreting Work Activity
Data

4
Objectives

After you read this chapter, you will:

1. Have acquired an initial understanding of the concept of work roles

2. Know how to synthesize and manage work activity notes from raw contextual data

3. Be prepared to create an initial flow model from work activity notes to represent how

work gets done

4. Consolidate large sets of user data using a work activity affinity diagram to identify

unifying and underlying themes about work domains

4.1 INTRODUCTION

4.1.1 You Are Here
We begin each process chapter with a “you are here” picture of the chapter topic in

the context of the Wheel lifecycle template; see Figure 4-1. We have talked about

eliciting work activity data (Chapter 3) and now we will analyze that data to

understand the work context for the new system you are about to design.

Our source formuch of this material on contextual analysis comes fromBeyer

and Holtzblatt (1998). The credit for this is theirs; any errors of commission or

omission are ours.

Although the activities we describe for contextual inquiry and contextual

analysis do occur somewhat in sequence, the sequence is not followed slavishly,

allowing for reviewing or redoing a stage and, of course, for iteration.

Contextual
Analysis

Contextual analysis is the

systematic analysis—

identification, sorting,

organization,

interpretation,

consolidation, and

communication—of the

contextual user work

activity data gathered in

contextual inquiry, for the

purpose of understanding

the work context for a

new system to be

designed.

4.1.2 Contextual Analysis Is Data Interpretation
Now that you have used contextual inquiry to observe and interview users about

the nature of their work in context and collected corresponding contextual

data, it is now time to analyze that data to understand the work domain.

According to Beyer and Holtzblatt (1998), contextual analysis consists of user

work activity data interpretation, consolidation, and communication.

Interpretation of raw work activity data is accomplished through:

n building a flow model and

n synthesizing work activity notes

Data consolidation and communication are accomplished by, respectively:

n building a work activity affinity diagram (WAAD) from the work activity notes

n walkthroughs of all these work products

In the next few sections we will detail the phases of this analysis.

Figure 4-1

You are here; in the
contextual analysis
chapter, within
understanding user work
and needs in the context of
the Wheel lifecycle template.

Flow Model

A flow model is a diagram

giving the big picture or

overview of work,

emphasizing

communication and

information flow among

work roles and between

work roles and system

components within the

work practice of an

organization.

130 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

4.1.3 Overview of Data Interpretation
In Figure 4-2 we depict an overview of data interpretation, driven by user

researchers who are reporting back to the rest of the team as they review and

discuss their raw work activity data. As the debriefing unfolds, some team

members construct the flow model as others create work activity notes

(described next).

Work Activity
Note

A work activity note is

used to document a single

point about a single

concept, topic, or issue as

synthesized from the raw

contextual data. Work

activity notes are stated as

simple and succinct

declarative points in the

user’s perspective.

Affinity Diagram

An affinity diagramming is

a hierarchical technique

for organizing and

grouping the issues and

insights across large

quantities of qualitative

data and showing it in a

visual display, usually

posted on one or more

walls of a room.

Work Activity
Affinity Diagram

A work activity affinity

diagram (WAAD) is an

affinity diagram used to

sort and organize work

activity notes in

contextual analysis,

pulling together work

activity notes with

similarities and common

themes to highlight

common work patterns

and shared strategies

across all users.

Figure 4-2

Data interpretation in
contextual analysis.

131CONTEXTUAL ANALYS I S : CONSOLIDAT ING AND INTERPRET ING WORK ACT IV ITY DATA

We also get a few notes about insights and design ideas here, as well as notes

about “data holes,” missing data that need to be collected in the next visit. This

stage involves individual and group brainstorming and analyses with the

objective of understanding user work activities as much as possible.

Two important things about contextual analysis:

n Contextual analysis does not directly yield either requirements or design.

n You probably have to do much of your data interpretation separately for each of the

work roles.

The first point tells us that this data interpretation step is not an

interpretation in terms of requirements or design. This step of contextual

analysis is to pull meaning and depth of understanding from the raw user work

activity data. Data interpretation allows the team to broaden the connections in

raw data, which connect one or two team members with a few users, to connect

all team members with all interviewees through sharing and discussion.

The second point, about work roles, reflects the fact that there is little or no

overlap of responsibilities, work activities, or user concerns between, say, the

MiddleburgUniversity Ticket Transaction Service (MUTTS) ticket seller and the

MUTTS database administrator. Each performs different work with different

concerns and needs. Therefore, much of the data interpretation and

consolidation must be done in parallel for each of the work roles. Some

modeling, such as creating the flow model, is used to integrate it all back

together.

The essence of data interpretation is reviewing, analyzing, and discussing the

raw user work activity data. A flow model is constructed. Work activity notes are

produced from raw user data and tagged by source and type.

Your interpretation of data will be used in the next visits to the customer/

users to check the accuracy of your understanding with the next interviews and

observations. Show your data to the customer and users to get their confirmation

(or not) and discussion, and look for new data to fill holes.

4.2 ORGANIZING CONCEPTS: WORK ROLES
AND FLOW MODEL

As you do your contextual inquiry and analysis, there are a couple of organizing

concepts: the flow model sketch and user work roles. While these technically are

the beginnings of work models (Chapter 6), we include their beginnings

Work Role

A work role is defined and

distinguished by a

corresponding job title or

work assignment

representing a set of work

responsibilities. A work role

usually involves system

usage, but some work roles

can be external to the

organization being studied.

132 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

here because they are major organizing factors that will help you maintain an

understanding of the overall enterprise. Therefore, you should be aware of them

throughout both contextual inquiry and contextual analysis processes.

4.2.1 Managing Complexity with Work Roles
and Flow Models
We stand at the beginning of a process in which we will invest a lot of effort

to understand the user’s work domain for which the system is being designed

and how the users of that system are best served in the design. When we are

starting cold and just beginning this undertaking, the task seems enormous and

daunting. We need two things to help control the complexity and wrap our

heads around the problem:

n a big picture of the work domain, its components, and how information flows

among them

n a way to divide the big picture into manageable pieces

Because these two things are somewhat in opposition and cannot be done by

one single means, we need two complementary concepts to solve the two parts of

the problem, respectively:

n a flow model to provide the big picture

n the concept of work roles as a basis to divide and conquer

We cannot overemphasize the importance of work roles and the flow model

in almost everything else you do in contextual inquiry and analysis and

modeling. These two notions influence almost all the UX activities that follow in

this book, including contextual inquiry, contextual analysis, requirements,

design, user experience goals, and UX evaluation. Because they are a major

component of the flow model, we start with work roles in the next section.

4.2.2 Identify Work Roles as Early as Possible
The very first thing to start doing as you talk with customers and users is

to identify work roles. A work role is defined and distinguished by a

corresponding job title or work assignment representing an area of work

responsibility.

As Beyer and Holtzblatt (1998, p. 163) put it, a work role is a “collection of

responsibilities that accomplish a coherent part of the work.” The work activities

of the enterprise are carried out by individual people who act in the work roles,

133CONTEXTUAL ANALYS I S : CONSOLIDAT ING AND INTERPRET ING WORK ACT IV ITY DATA

performing tasks to carry out the associated responsibilities. Sometimes for

simplicity we will refer to a work role as a person instead of spelling out that it is a

person in that work role.

A given work role may or may not involve system usage and some roles can be

external to the organization, for example, a parts vendor, as long as they

participate in the work practice of the organization.

Example: Initial Work Role Identification in MUTTS

The two obvious work roles in MUTTS are the ticket seller and ticket

buyer. Among the other roles we discovered early in contextual inquiry are

the event manager, the advertising manager, and the financial administrator.

The event manager interacts with external event sponsors and venuemanagers to

book events for which they sell tickets. The financial manager is responsible

for accounting and credit card issues. The advertising manager interacts with

outside sponsors to arrange for advertising, for example, ads printed on the back

of tickets, posted on bulletin boards, and on the Website. In addition we

discovered a few more work roles that we will introduce in later sections.

4.2.3 Start Sketching an Initial Flow Model as Early
as Possible
A flow model is your picture of the work domain, its components and

interconnections among them, and how things get done in that domain.

A flow model captures workflow relationships among key work roles. A flow

model tells who does what and how different entities communicate to get

work done.

Even though your early contextual inquiry data will be incomplete and not

entirely accurate, we recommend you start as early as possible acquiring an

understanding of the work roles and a sketch of the flow model, refining as the

picture of the work domain, the system, and its users slowly becomes clearer. You

will be constantly updating this overview as you learn more via the interviews

and observations. Because the flowmodel is a unifying representation of how the

system fits into the workflow of the enterprise, it is important to understand it

and get it established as early as possible.

Even the sketchiest flow model will help guide the remaining contextual

inquiry. You will want to use the flowmodel as a reference to keep everything else

in perspective as you do the research of your contextual analysis.Within the work

domain and within the system, work is done by the work roles described in

the previous section, which play a central part in the flow model.

134 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Therefore, you should begin your flow model sketch by drawing icons,

labeled with the work roles, which will be nodes in a connected graph that is

the flow model. Include any roles external to the organization but involved in

any way in the work practice. Add additional labeled nodes for any other entity,

such as a database, into which and from which anything related to the work

practice can flow.

We will soon refine flow models in more detail.

Example: Sketching the Flow Model for MUTTS
As we conducted contextual inquiry sessions for the MUTTS ticket-buying

activity, we sketched out an initial flow model on flip charts, which we recreated

here in Figure 4-3.

Later, we give more details about how to create a final flow model

(Chapter 6).
Figure 4-3

An initial flow model
sketch of the MUTTS
system.

Exercise

See Exercise 4-1, FlowModel

Sketch for Your System

135CONTEXTUAL ANALYS I S : CONSOLIDAT ING AND INTERPRET ING WORK ACT IV ITY DATA

4.3 CREATING AND MANAGING WORK
ACTIVITY NOTES

The main point of contextual analysis has two basic parts:

n Converting raw contextual data into work activity notes

n Converting work activity notes into a work activity affinity diagram

This section is about the former, using raw data to synthesize work

activity notes.

4.3.1 Transcribing Interview and Observation Recordings
If you recorded your user and customer interviews in the contextual inquiry

process, video and/or audio, you must begin contextual analysis with

transcription, so you can see the raw observation and interview notes. The

written notes or transcripts will of course still be just as raw as the recordings,

meaning you still have to do the analysis to filter out noise and boil it down to the

essentials.

In our experience we have seen people use inexpensive overseas transcription

services for audio recordings of their user interviews and observations from

contextual inquiry. If you do decide to use an external transcription service, make

sure that you are not violating any confidentiality and non-disclosure agreements

you have with your customers by giving an outsider access to raw data.

4.3.2 Reviewing Raw User Work Activity Data
In one or more interpretation sessions, gather the “interpretation group” such

as the interviewers, the note takers, and other core UX team members. In this

session, the people who performed contextual inquiry are coming back and

reporting to the rest of the team.

Recounting one interview at a time, researchers:

n review interview and observation notes and any recorded audio

n retell the events

n in discussion with the group, capture key points and issues, design ideas, missing

data, and questions arising in the course of the discussion

User researchers talk about what users said and what they observed that users

did. This ensures that the team captures the real work practice and daily

136 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

activities of the people the system is to support, not just the self-reported practice

or official job descriptions.

n Startwithonebig session tohelpeveryonegetgoing in the samedirection, thenbreak into

groups to work in parallel. Choose groupings to give an approximate balance of group

size, background and skills, and distributing the user researchers across the groups.

n Amoderator in each group keeps things on track, while user researchers give accounts of

each interview.

n In general, people may interrupt to ask questions to clarify issues or fill gaps.

n As the interviews are reviewed, two things happen more or less in parallel: Design-

informing modelers create and refine sketches of the flow model, and note takers make

work activity notes.

n After the group data interpretation sessions, the groups get back together for

brainstorming to tie up loose ends on the data interpretation.

n Speakers representing each group summarize their flow models, while helpers update

these models, on flip charts or laptops with screen projection, in real time per discussion.

n The initial flow models from each group are consolidated into a single flow model upon

which all groups can agree.

n Work activity notes are shared, discussed, and adjusted as needed and new ones that

come from this discussion are added.

Finally the group engages in introspection about lessons learned. The group

brainstorms to evaluate their process reflecting on what went well and what

could be improved for next visit and how.

The outputs of this process of review and interpretation are:

n sets of work activity notes synthesized from raw data

n a work activity affinity diagram to organize the work activity notes

These two outputs are discussed in detail in this and the following sections.

4.3.3 Synthesizing Work Activity Notes
As each user researcher recounts interviews and observations from the

transcripts of raw data, and during any subsequent discussion about these data,

the group helps synthesize work activity note content from raw data and

someone designated as the note taker types notes in a specific format.

Because some application domains can be unfamiliar to some teammembers,

the work activity note synthesis should be done by people who have already been

immersed in the contextual data, probably the same people who did the

137CONTEXTUAL ANALYS I S : CONSOLIDAT ING AND INTERPRET ING WORK ACT IV ITY DATA

interviews and observations. The notes should be captured in some kind of

computer-readable form, whether it is in a word processor, a spreadsheet, or

directly into a database system. Ideally, the final set of synthesized work activity

notes should represent raw data so well that the team never has to go back to the

raw data to answer questions, fill in blanks, determine what the real point was, or

to sort out context.

The stepof synthesizingworkactivitynotes fromrawdataof interview transcripts

and observation notes is an important one. We have found from experience that

this step is easy to get wrong, sowe spell the process out in detail here.Work activity

notes that donot work will almost surely lead you to a frustrating, time-consuming,

and unsuccessful activity for building the work activity affinity diagram (WAAD).

As we proceed we will introduce guidelines for synthesizing work activity notes,

starting here. (NB: the special green font used in the next line denotes such a

guideline.)

As you create each new work activity note, tag it with a source ID, a unique

identifier of the person being observed and/or interviewed when the note was written.

These tags are essential links to follow back to the source person in case

further questions must be asked about missing data, unanswered questions, etc.

Unless it will be otherwise obvious, you should also tag each work activity

note with the work role with which the note is associated. Later, when we build

the WAAD, we will need to know the work role referred to by each note because

we often compartmentalize the WAAD by work roles.

Paraphrase and synthesize instead of quoting raw data text verbatim.

It is perfectly acceptable and often advised to paraphrase and rephrase or

to condense or summarize to make your own synthesized user “statements.”

We want the user’s perspective but not necessarily verbatim quotes of the

user’s words, which can be verbose and indirect. For paraphrased statements, you

should maintain the user’s perspective and remain true to the user’s intentions.

You should not introduce any new content and keep the expression terse and

to the point. It is the analyst’s responsibility to abstract out a clear and concise

statement conveying the substance of the issue in question.

For example:

Raw data: “I think of sports events as social events, so I like to go with my friends.

The problem is that we often have to sit in different places, so it is not as much

fun. It would be better if we could sit together.”

138 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

In the user’s perspective: “When I am looking to buy student tickets to MU

basketball, I look for an option allowing several friends to sit together.” (Note that

this reference to basketball games was taken from elsewhere in the raw interview

data gathered from that user.)

Sometimes the paraphrasing and abstraction can lead to a simple neutral

“factual” statement. For example, using the same raw data as in the previous

example, we get this statement in a factual perspective: “Many students who buy

MU basketball tickets want the option to sit with their friends.”

Regardless of whether you write your work activity notes in the user’s

perspective, you should still retain a work domain perspective. In other words, we

want to stay with observed work practice and not start moving too quickly into

needs and requirements and definitely not into design.

Make each work activity note a simple declarative point instead of quoting an

interviewer’s question plus the user’s answer.

Questions coming from the interviewer and confirmed by the user should be

worded as if they came from the user.

Filter out all noise and fluff; make each note compact and concise, easily read and

understood at a glance.

Raw user data are usually too verbose. You must filter out the noise and

irrelevant verbiage, boiling it down to the essence.

Be brief: Keep a note to one to three succinct sentences.

Embrace breviloquence; eschew grandiloquence.

Example (how not to do it): Here is a work activity note that a student team

made in a work activity note synthesis exercise for a real-world document

management system. It is obviously a verbatim copy, grabbing words from raw

data without any synthesis. The resulting “note” is full of noise and will require

repeated readings to understand the key idea later:

U12-63 Ah, they just, they sign andmark, letme see if I have one that I can pull up,

it’s like that, they’ve changed it. But here they mark like satisfactory or

unsatisfactory. It’s like applied from the date that they sign. Andmark satisfactory,

unsatisfactory and then the date. And students can have one unsatisfactory and

still pass the exam.

139CONTEXTUAL ANALYS I S : CONSOLIDAT ING AND INTERPRET ING WORK ACT IV ITY DATA

Here are some examples of good work activity notes for the aforementioned

excerpt of the interview transcript. Note that both of these work activity notes are

aboutwhat theuser perceives as “factual” rather than expressinguser experience:

At the conclusion of a research defense exam each faculty member on the

student’s committee signs and dates an exam card to indicate if the student’s

performance was satisfactory or unsatisfactory.

A student is considered to pass a research defense exam if he or she earns an

assessment of “satisfactory” from all or all-but-one of the research committee.

Each note should contain just one concept, idea, or fact, with possibly one rationale

statement for it. Break a long work activity note into shorter work activity notes.

An example of a rationale statement is “I do not ask for printed confirmations

of my ticket transactions because I am afraid someone else might find it and

use my credit card number.” If there are two reasons in the rationale for the idea

or concept in the note, split it into two notes.

Make each note complete and self-standing.

Be sure that each note is complete enough to stand on its own, a note

that everyone can understand independently of all the others. Always

resolve ambiguities and missing information as you synthesize your notes.

Because the notes will be shuffled, sorted, and mixed in various ways,

each note will get separated from its companions, losing any context it got

from them.

Never use an indefinite pronoun, such as “this,” “it,” “they,” or “them” unless its

referent has already been identified in the same note.

State the work role that a person represents rather than using “he” or “she.”

Add words to disambiguate and explain references to pronouns or other context

dependencies.

When the antecedent is in the same work activity note, it is not a problem.

However, if you separate the two sentences into two notes, you probably have to

140 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

repeat the thought of the first sentence in the second note. Otherwise, the

connection to the concept can be lost.

As an example of good work activity notes, consider this rather short passage

of raw data in the transcript:

U10: I think it should, I think it should go to the faculty advisor electronically

because, you know, the campus mail could take a couple of days to reach.

That passage can result in several individual points as captured in these work

activity notes (again, in the factual perspective), filling in some details that were

established in further questioning of the user.

Exam notecard goes to faculty advisor before exam.

Exam notecards are currently sent to faculty advisors via campus mail, but could

take a couple of days to reach them.

Exam notecard should be sent to the faculty advisor electronically [design idea].

Avoid repetition of the same information in multiple places.

In general, things that go into the flow model, such as naming the work roles,

do not go into the work activity notes or theWAAD. Similarly, things that go into

user class definitions do not go into work activity notes.

Example: Work Activity Note Synthesis for MUTTS
As inputs to this example of work activity note synthesis, we repeat

selected comments from the raw data transcripts in the previous example of data

gathering to show the relationship to the synthesized work activity notes.

Eachof thesenoteswouldbe labeledwith “ticket buyer” as theassociatedwork role.

Here we show potential work activity notes that could be synthesized; others

could be just as plausible. Note the cases where we had to add text (in italics) to

fill in context lost due to breaking a comment into pieces. These user comments

are perhaps more design oriented than typical, but that is what we got.

User comment:

It is too difficult to get enough information about events from a ticket seller at the

ticket window. For example, sometimes I want to see information about popular

User Class

A user class is a description

of the relevant

characteristics of the user

population who can take

on a particular work role.

User class descriptions can

include such

characteristics as

demographics, skills,

knowledge, experience,

and special needs—for

example, because of

physical limitations.

141CONTEXTUAL ANALYS I S : CONSOLIDAT ING AND INTERPRET ING WORK ACT IV ITY DATA

events that are showing downtown this week. I always get the feeling that there

are other good events that I can choose from but I just do not know which ones are

available and the ticket seller usually is not willing or able to help much, especially

when the ticket window is busy. Also, it is hard to judge just from the information

available at the ticket window whether it has been well received by others.

Synthesized work activity notes:

It is too difficult to get enough information about events from a ticket seller at the

ticket window.

I want to know about current and popular events.

I would like to be able to findmy own events and not depend on the ticket seller to

do all the browsing and searching.

There are potential communication gaps because the ticket seller does not always

understand my needs.

During peak times, the level of personal attention from the ticket seller is

minimal.

It would be nice to get reviews and other feedback from people who have already

seen the show.

[Design idea] Consider including capability for people to add reviews and to

rate reviews. Question: Should this capability be located at the event venues rather

than the kiosk?

User comment (in response to thinking ahead about including athletic events):

When I am looking to buy student tickets to MU basketball, I like to look at

different seating options vs. prices; I sometimes look for an option allowing

several friends to sit together.

Synthesized work activity notes:

When I am looking to buy student tickets to MU basketball, I like to look

at different seating options vs. prices.

When I am looking to buy student tickets to MU basketball, I sometimes look for an

option allowing several friends to sit together.

142 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

User comment:

Last Friday, several friends and I were planning a birthday outing for our friend,

Suzy. We decided to get tickets to Juxtaposition, the MU a cappella group’s

show, and I volunteered to pick up tickets on my way home. When I got to the

ticket office there was a long line and when it was my turn I found out we

could not get eight seats next to each other. I did not know if I should get tickets

that are not next to each other or try for a different event. I needed to call

my friends on the phone but knew I would be holding up everyone else in the line.

I finally got out of the line to make the call and it took a lot more time.

Synthesized work activity notes:

Sometimes I need to coordinate events and tickets with friendswho are not withme.

Sometimes I need to buy a set of tickets with adjacent seating.

[Design idea] Consider an option in the kiosk to “Find best n adjacent seats.”

Taking time to coordinate ticket buying for groups potentially slows down

everyone in the line.

[Design question] Can we add anything to the kiosk that would facilitate group

collaboration and communication? How about, at least, sending confirmation of

ticket purchase to group members?

4.3.4 Extending the Anticipated Data Bins to Accommodate
Your Work Activity Note Categories
Here is where you capitalize on the data bins that you began to create in

Chapter 3. Extend the set of existing bins to cover all the anticipated data

categories for your work activity notes, as you synthesize them from the raw data.

Keep the bins as labeled stacks of notes on your work table so that the whole

team can see them. The labels will denote all the useful categories plus a few

generic ones for “open questions to pursue” and “issues for further discussion

or debate.”

Examples of typical data categories youmight encounter in your raw data are:

n User and user class information

n Social aspects of work practice (how people interact with and influence each other)

n Emotional impact and long-term phenomenological aspects

n Task-specific information

Data Bin

A data bin is a temporary

repository—for example, a

labeled pile of notes on a

table—to hold data—raw

contextual data at first and,

later, synthesized work

activity notes. Each bin

corresponds to a different

data category or contextual

data topic.

143CONTEXTUAL ANALYS I S : CONSOLIDAT ING AND INTERPRET ING WORK ACT IV ITY DATA

n Physical work environment

n Design inspiration ideas

4.3.5 Printing Work Activity Notes
Although you can use handwritten work activity notes, some prefer to print

the notes. Beyer and Holtzblatt (1998) recommend printing the notes on

yellow Post-it note stock, such as the kind that has six peel-off Post-it labels

per page.

Notes printed or handwritten on colored bond printer paper formatted,

say, six to a page, also work fine. If your work activity notes come from a

database, you can use the “mail-merge” feature of your word processor

to format each note into the table cells for either plain paper or Post-it

printing.

Whichever stock you choose, print your work activity notes on plain white

or yellow paper or Post-it stock to distinguish from other colors that you might

use later for labels in the WAAD.

4.4 CONSTRUCTING YOUR WORK ACTIVITY AFFINITY
DIAGRAM (WAAD)

This is the second of the two basic parts of contextual analysis: using work activity

notes to build the work activity affinity diagram.

4.4.1 Introduction to WAAD Building
Affinity diagramming is a technique for organizing and grouping the issues

and insights across all users in your contextual data and showing it in a

visual display that can cover one or more walls of a room. By pulling together

work activity notes with similarities and common themes, a work activity

affinity diagram, guided by the emerging flow model, helps consolidate

contextual data and generalizes from instances of individual user activities and

issues to highlight common work patterns and shared strategies across

all users.

4.4.2 What You Need to Get Started
You are going to build a hierarchical diagram of common issues and themes

taken from the data. An affinity diagram is used to organize an enormous

mound of individual work activity notes into a structure that yields sense, affords

visualization of the user’s work and, eventually, suggests ideas for designs to

Exercise

See Exercise 4-2, Work

Activity Notes for Your

System

144 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

support it. You will need a big room with plenty of wall space, dedicated for the

duration of the project. You need to be able to leave the work up on the walls

over an extended period of time; it will be difficult and disruptive to have to

move to another room in mid-process.

Just like having a room dedicated for user experience evaluation, having a

room set aside, and labeled as such, for your contextual analysis raises awareness

and gives legitimacy to your process. It establishes a real “presence” in the

organization so that peoplemight ask, “What is going on? It looks like something

big here.”

Here is how you should prepare the room:

n Tape up a large “belt” of butcher paper or similar around the walls of the room (Curtis

et al., 1999) as a working space for posting work activity notes.

n We have found that blue “painter’s tape” holds well but releases later without pulling

off paint.

Make sure you have in hand the huge stack of work activity notes. Line up the

players, theWAAD team. Youwill need about two people per 100–150work activity

notes, as the goal will be to complete the WAAD in a short time (1 to 1½ days).

Look for diversity in the WAAD team members. Definitely include the

original user researchers and note takers, include analysts, designers, and other

members of your broader team, and include some who would not have

ordinarily gotten involved until later. If there are still empty slots on the WAAD

team, spread them around among other stakeholders and others whom you

would like to be exposed to the process. However, you would typically not

include the rest of the design team because you will use them in the WAAD

walkthrough in the next step.

Establish roles and responsibilities. Appoint one of the original interviewers

or note takers as leader ormoderator tomanage the process and the people, and

to keep the WAAD building on track. The larger the group, the more leadership

and moderation needed. Sometimes other “natural” leaders emerge within the

team doing the affinity diagram. This is acceptable as long as the others are

allowed to take initiative and have an equal say in things. However, intervention

may be required if a self-appointed leader becomes too dominating.

4.4.3 Set Rules of the Game
Themoderator explains how it works. Shuffle the work activity notes so that each

player gets a variety and no person in your group gets the notes from just one

interviewee. Deal out a limited number of notes to each team member.

145CONTEXTUAL ANALYS I S : CONSOLIDAT ING AND INTERPRET ING WORK ACT IV ITY DATA

Sometimes handing out too many notes at the beginning can overwhelm

novice practitioners, preventing them from getting a handle on where to start.

In these cases, it can help to limit the number of notes each person gets initially,

requiring them to deal with those before they get more. In our experience,

20 notes per person work well to get started.

n Allow time for each person to see what they have in their “hand.”

n At the beginning, the process starts out slowly and sequentially, with the moderator

explaining each step, so that everyone can see how it works and can be part of the

discussion.

n Let the initial work activity notes themselves drive the organization process.

n Someone starts by “playing” one work activity note:

n reading the note aloud

n possibly characterizing it with some other descriptive terms

n possibly entertaining some discussion by the group about its meaning

n Then that person posts it somewhere at the bottom of the large butcher paper

working space.

Because you are just getting started, you will not know how the structure will

turn out. Therefore, it is best to start as low on the butcher paper as possible,

building upward and leaving room for more and more levels. It is, after all,

literally a bottom-up process. When the initial “hand” is played by everyone, deal

out more until all the notes are gone.

4.4.4 Avoid Inappropriate Mind-Sets in Dealing with Work
Activity Notes
When your team is considering each work activity note as you build your work

activity affinity diagram, having the right mind-set can help determine success.

Here are some tips.

Sit on your designer and implementer instincts.

When discussing and organizing work activity notes, try to avoid too many

discussions about design and any discussions about implementation. In one

of our sessions, a team member rejected a work activity note by saying, “This

note has a good idea but it is about something that will not be implemented

in this version.” How could he possibly know this early whether it could be

implemented in this version? It sounded to us like unwarranted developer bias.

146 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Because these comments were so far off base, we paused the session to remind

everyone of the goals of this activity.

As an example, in one session we encountered a note about a comment from

a potential Ticket Kiosk System user that it would help in transaction planning

to know when the next bus is expected to arrive. Knowing that the technology

for tracking buses would be out of reach, analysts rejected the note. But bus

tracking is not the only way to address this still legitimate user need. At a

minimum, for example, the kiosk could display information about the average

arrival frequencies for buses on each route.

Do not make sweeping decisions involving technology solutions.

For example, for a student forms management system, the team was working

with themind-setof all-electronic forms. Forprogramsof study,graduate students

currently need to visit each committeemember to get a signature onpaper forms,

leading to issues of delays and tracking downpeople. So, electronic forms sent via

the Internetmake for abetter solution.However, electronic formsdonot turnout

to be the best solution in all cases. Because graduate student thesis defense

approval forms are typically signed by the thesis committee at the time and place

of the defense, paper forms are the still the simplest approach for that case.

4.4.5 Growing Clusters
After notes begin to be posted:

n Each team member in turn looks through his or her pile of notes, looking for other

notes that are topically similar, for example, about the same user concern or work

activity, to ones that have been posted.

n Notes that seem similar are said to “have an affinity for each other” and are read

aloud and posted together in a cluster or “cloud” on the wall.

n Neatness is not essential at this point; just get birds of a feather to flock together.

n If there are two or more of essentially the same note, derived from different users,

include them all in the cluster to show the “weight” of that issue.

n When no more notes can be found immediately to match the affinity of an existing

cluster, someone will pick a newnote from their hand to start a new cluster, and so on.

4.4.6 Compartmentalizing Clusters by Work Roles
In cases where the user interfaces and subsystems for each work role are

essentially mutually exclusive (except for flow connections to other work roles),

it is helpful to compartmentalize the WAAD by using work roles as the high-level

147CONTEXTUAL ANALYS I S : CONSOLIDAT ING AND INTERPRET ING WORK ACT IV ITY DATA

group labels. This is tantamount to developing separate WAADs for each

work role. You may still have to deal with an occasional work activity note

that involves more than one work role, probably by splitting or duplicating

the note.

4.4.7 Topical Labels for Clusters
Clusters will grow and morph like colonies of amoeba as they mature into more

clearly defined bunches of notes, each related by affinity to a specific topic. This

is the beginning of what Cox and Greenberg (2000) call emergence, “. . . a

characteristic of the process by which the group interprets and transforms . . .

raw [data] fragments into rich final descriptions.”

As the number of clusters grows, we have found it difficult to remember

by what criterion each cluster was formed (the topic of their affinity). Work

activity notes are put into the same cluster because they have an “affinity” for

each other; that is, they share some common characteristic. But a quick glance at

a cluster does not always reveal that characteristic.

As a solution, make a temporary label (before the cluster becomes a

group with an official WAAD label) to make the “topic” of each cluster explicit,

to identify the “gestalt” of the whole group, the theme that brought them

together.

Temporary cluster labels allow analysts to consider the cluster as a candidate

for posting further notes without having to look through the notes

themselves every time. Shown in Figure 4-4 is one of the clusters for ticket-buying

activities with MUTTS showing its temporary topical label.

Topical labels are only to help you remember what each cluster is about. When

you have a new work activity note and are looking at a cluster to attach it to,

topical labels serve as a cognitive-offloading technique. By offloading

descriptions of the clusters from your working memory to the environment,

namely to these cluster labels in the affinity diagram, you (the analyst) get

support for cognition.

As clusters grow, evolve, expand, and merge, so do the topical labels. As you

introduce more work activity notes, do not let topical labels determine or

constrain the direction you take with a cluster; let data do the driving and

change topical labels as needed to keep up. Figure 4-5 is a close-up of the topical

label in Figure 4-4, again for our ticket-buying system, showing a couple of extra

words added at different times to enlarge its scope during the affinity diagram-

building process. Finally, a topical label is only temporary and will be removed

when a real WAAD label is applied as the cluster evolves into a work activity

note group.

148 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Figure 4-4

Newly hatched cluster with
temporary topical label.

149CONTEXTUAL ANALYS I S : CONSOLIDAT ING AND INTERPRET ING WORK ACT IV ITY DATA

4.4.8 Work Activity Note Groups
Soon clusters will mature into real affinity groups. As a cluster of

work activity notes becomes a group, notes in the amorphous

“cloud” of the cluster are posted in a vertical column and the

group is labeled with a real group (affinity) label, in the user’s

perspective.

A group, for our kiosk system, with a first-level label in the user’s

perspective is shown in Figure 4-6.

4.4.9 Speeding It Up
Later on, when everyone is up to speed, all the players can come

up to the WAAD and move things along by “playing” their

work activity notes in parallel. Each one walks up to the growing WAAD and

posts his or her work activity notes where appropriate, while trying to stay

out of each other’s way. Although each note need no longer be read aloud,

talking or reading aloud is encouraged when useful to help others be aware

of current thinking and new developments, such as new groups being

created.

Figure 4-5

A topical label that has
grown in scope during
affinity diagram building.

Figure 4-6

Data note group with first-
level affinity label.

150 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

4.4.10 Stay Loose
Clusters are to be considered putty in the hands of analysts. They are but

embryonic aggregations on the way to becoming work activity note groups. On

that journey, they must remain highly malleable. As the WAAD grows, it is

common, and to be expected, that clusters will move and morph into different

clusters, and clusters will be split and/or merged. Labels change; notes migrate.

As work activity notes are handled, read, and posted, if a note needs

explanation, clarification, or improved wording, edit it with handwriting on the

spot. If needed, for example, to split a work activity note into two, handwritten

notes can be added, but do not make up your own data at this point. If you think

a note should or could be in more than one place in the WAAD, break it into

more than one note by making copies of the note and indicating that other

copies of the note exist using a label that says something like “Node-ID copy n”

and place the new notes accordingly.

4.4.11 Do Not Get Invested in Data Ownership
No work activity note or group is “owned” by any team member; you just have to

go with the flow and see how it develops. The success of the WAAD-building

process is determined somewhat by the competence and experience of the

analysts at organizing and classifying information, identifying common

characteristics, and naming categories. However, there are some checks and

balances. As multiple groups emerge, a work activity notemay be perceived to be

better placed in a different group. Anyone can place and/or move a note and

make and/or change a label.

Just make sure that other team members are aware of the rationale and the

emergence of new group or cluster definitions. There is no single correct affinity

diagram for the data; many different outcomes can be equally effective.

4.4.12 Monitoring Note Groups
The goal for groups is to keep them relatively small. Your team can decide the

threshold size for your situation, but anywhere from 4–5 notes to 12–15 notes

defines the ballpark. As groups get to this size, you should break the group into

two ormore smaller groups, again based on affinity or topical similarity. Look for

distinguishers as the basis for splitting.

When the work activity notes in each hand are used up, the WAAD team

should look at the groups. If there are very small groups (one or two notes),

review them together and see if anyone can find an existing group for those

notes. Think briefly about how to handle any “mavericks” that seem hard to

151CONTEXTUAL ANALYS I S : CONSOLIDAT ING AND INTERPRET ING WORK ACT IV ITY DATA

place, but do not spend toomuch time with these stragglers. Theymight fall into

place later, especially when more work activity notes are made and posted.

4.4.13 Label Colors
The hierarchy of the WAAD has a small number of levels of labeling, usually

about three. It is common practice to distinguish the levels by the color of labels.

The colors are arbitrary; just be consistent.

4.4.14 Labeling Groups
The team looks through the work activity notes of a cluster and “promotes” it to a

group. In Figure 4-7 you can see a team studying clusters in preparation to form

groups.

The team invents a label for the group derived from the notes, representing

the theme of the group, and often adapted from the cluster topical label. The

label for each group is handwritten on a Post-it of the color chosen for group

labels and posted at the top of the column of notes in the group.

The rules are that a group label:

n has its substance entirely derived from data in the notes, not a preconceived or

predefined characterization

n is written in the customer/user perspective

Figure 4-7

Team studying clusters to
form groups.

152 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

n is written in a story-tellingmode (the user talking to the team telling about their work

activities and thoughts)

n is understandable without reading the work activity notes in the group

n captures the collective “meanings” of the notes in the group

n is as specific and precise as possible to avoid confusion in later interpretation

n avoids wordings with low descriptive power, such as “miscellaneous” or “general”

The penultimate point above is, of course, a good guideline for almost anyHCI

situation.Forexample,a teaminoneofoursessionsused the label “Howwevalidate

information” when they really needed the more precise label “How we validate

forms.” A subtle difference but important to the intended affinity for that group.

4.4.15 Grouping Groups
After all the groups have been labeled, build up the hierarchy to reduce the

structure breadth and increase the depth by grouping the groups. Looking at

the group labels, move them around into larger groupings (bringing the whole

group with its label).

When you get groups of, again, up to about a half dozen group labels, they are

supergroups or second-level (going up from the group labels at bottom) groups,

which are labeled in a different color, the second-level color. In Figure 4-8,

showing part of the affinity diagram for MUTTS, you can see that we used blue

for group labels and pink for the second level.

Similarly, you group second-level labels to form a third level, labeled with yet

another color.

As with group labels, wording of successive levels of labels has to represent

their groups and subgroups so well that you do not have to read the labels

or notes below them in the hierarchy to know what the group is about.

Do not spin your wheels by trying to over-refine things. It is a bit like being

an artist creating a painting: use minimal and quick strokes to get a crisp and

fresh effect. Overworking it can make it heavy and muddy. Do not seek the one

best WAAD; as the master says, there are many paths to climb the same WAAD.

You get diminishing returns soon after you start fussing over it.

4.4.16 Number of Levels
Some of the literature recommends a fixed, small number of levels in the affinity

diagram. We have found, however, that some categories have more depth

than others and that our ability to understand the meanings of groups is

sometimes improved by more decomposition into subcategories. We

recommend you let data determine the number of levels needed.

153CONTEXTUAL ANALYS I S : CONSOLIDAT ING AND INTERPRET ING WORK ACT IV ITY DATA

4.4.17 Representing Hierarchical and Nonhierarchical
Relationships
The affinity diagram is inherently a hierarchical structure and you need to

represent the arcs connecting thegroups. Inaddition tohierarchical levels, we find

occasional other relationships between categories that cut across the hierarchy.

Things that happenwithusers or choices that usersmake in one part of the affinity

Figure 4-8

Second-level labels for
groups of groups shown in
pink.

154 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

diagram can have strong effects on choices they make in other parts. When these

relationships jump out at you strongly, you can draw arcs on the butcher paper or

tack on colored ribbons to represent those connections.

4.4.18 Walkthrough of the WAAD: Consolidation
and Communication
One of the purposes of doing a walkthrough of the WAAD is communication, to

share an appreciation of user work activities and associated issues with all

stakeholders. At the same time, you can review and unify your work activity notes

within the structure of theWAAD and look for data holes, work activity notes you

still need.

Invite all stakeholders, including marketing, customers, potential users,

engineering and development staff, and so on. Decide on a strategy for sharing

and communicating the contextual inquiry and analysis results. Tell everyone

upfront (before the meeting) how it will work, who is involved, what is needed,

how long to plan for, etc. Explain your process in a nutshell.

Yourgoalswill be togarnermore input anddiscussion tohelpunifyWAADdata

and the flow model and to achieve a shared understanding of user work issues.

This can alsobeused tobrainstormandcomeupwithkey insights as headlines for

the executive summary report that may be necessary in some organizations.

n For management, emphasize high-level issues, cost justification, data integrity,

security, and such corporate goals.

n Highlight the most important points and issues discovered.

n Create interest with unexpected things learned.

n Show graphical representations; flow models can be the most effective, as they show

your interpretation of the flow of information and materials within their business

process.

Getmanagement engaged to show them the effectiveness of your process. Get

developers engaged to obtain buy-in for the upcoming requirements and design

activities.

Try to fit your process into the established methodologies of your

organization; keep discussion user centered or usage centered with a user

perspective, and real user quotes. Use work activity data to keep things usage

centered and to deflect opinions and personal perspectives and to resolve

disagreements. After you explain the overview of what the data represent and

what you are hoping to accomplish, let everyone walk around and inspect the

WAAD as they will.

155CONTEXTUAL ANALYS I S : CONSOLIDAT ING AND INTERPRET ING WORK ACT IV ITY DATA

As people walk the wall individually, taking it all in and thinking about user

work and design to support it, several things can come to mind and you should

ask everyone to make their own notes about these items for discussion and

possibly to add them to the WAAD:

n design ideas—capture them while you can by adding them as “design idea” notes,

distinguishable from the work activity notes by using a different color and/or by

adding them at a different angle on the wall

n questions—to be answered by the team or by further data collection; add as

“question” note in a different color or orientation

n data “holes”—missing data that you have discovered as necessary to complete the

picture, used to drive further data collection in the field and added as “hole” notes in

a different color or orientation

As an interesting aside, in Figure 4-9, we show a team at Virginia Tech using

affinity diagram software on a high-resolution large-screen display as an

alternative to paper-based work activity note shuffling (Judge et al., 2008).

Each analyst can select and manipulate work activity notes on a PDA before

sending them to the wall for group consideration, where they can move them

around by touching and dragging.

Figure 4-9

Building a WAAD on a
large touchscreen.

156 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Example: WAAD Building for MUTTS
In Figure 4-10, you can see a photo of a large part of the overall WAAD we built

for MUTTS.

Figure 4-11 is a close-up photo of the MUTTS WAAD showing details for

three groups having an overall label “The type of things I expect to use the

kiosk for.”

4.5 ABRIDGED CONTEXTUAL ANALYSIS PROCESS

4.5.1 Plan Ahead during Contextual Inquiry by Capturing
One Idea per Note
The idea is to produce work activity notes without the laborious and

voluminous intervening raw data transcripts. Experienced practitioners,

skilled at note taking and abstracting the essence, can do some of this

abstraction of detail from the real-time flow of raw data during the interviews

themselves.

4.5.2 Focus on the Essence of WAAD Building
TheWAAD-building process itself can also be abridged by creating clusters of all

the work activity data notes without building a hierarchical abstraction of the

different categories. As you get through the part of the process where you put all

the work activity notes on the wall to represent the affinities as clusters, you get a

Figure 4-10

The WAAD that we
built for the MUTTS
example.

Exercise

See Exercise 4-3, WAAD

Building for Your System

157CONTEXTUAL ANALYS I S : CONSOLIDAT ING AND INTERPRET ING WORK ACT IV ITY DATA

sense of the key themes and issues in the work domain. Using the temporary

labels and walking through the clusters, you can immediately start creating a list

of high-level requirements for the system.

4.5.3 Use Finer-Grained Iteration to Address Pressure
for Early Deliverables
It is common for a whole project team to be under constant pressure to produce

deliverables. Project managers want to keep track of the direction the project is

going instead of being surprised after half the project schedule has expired.

Many team members think only of designs in the context of deliverables, and

most customers think the same way.

Because designs do not materialize until later in the lifecycle, many people

think there can be no deliverables in the early phases, such as contextual inquiry

and analysis. If you set customer expectations properly for the kind of

deliverables you can produce early, it can be a benefit to both of you to share

your contextual inquiry and analysis results with others, including the customer.

This is an important time to get feedback and reactions to your early analysis so

that you can be sure you are on the right track.

Figure 4-11

A close-up of the MUTTS
WAAD.

158 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Doing a full contextual inquiry and requirements extraction process upfront

(Figure 4-12) means a large investment in each stage before proceeding to the

next and delayed design deliverables, causing conflict with an anxious manager

or customer.

An incremental investment in smaller and more frequent iterations is well

suited for this common situation, as shown in Figure 4-13: Do a little

contextual inquiry, a little contextual analysis, a little requirements extraction,

and a little design and then get some feedback from users about whether you are

on course.

This could mean that for contextual inquiry you do limited initial

interviews with only a few people in themost important work roles. Then you can

try your hand at contextual analysis, building a limited WAAD, using it to

extract some requirements (Chapter 5), and maybe even doing a little design

and prototyping. Then go back and do additional data gathering for contextual

inquiry (with perhaps another customer or user role) and make adjustments

necessary to integrate the new findings.

4.6 HISTORY OF AFFINITY DIAGRAMS

Historically, affinity diagramming has been used as an effective method for

generating hierarchical categories to organize large amounts of unstructured,

far-ranging, and seemingly dissimilar qualitative data about almost anything.

Figure 4-12

Coarse-grained iteration of
contextual inquiry,
contextual analysis,
requirements, and design.

Figure 4-13

Finer-grained iteration
among contextual inquiry,
contextual analysis,
requirements, and design.

159CONTEXTUAL ANALYS I S : CONSOLIDAT ING AND INTERPRET ING WORK ACT IV ITY DATA

The technique is inductive in the sense that it is a purely bottom-up process

within which terms used for category labels within the organizing structure come

from data themselves and not from a predefined taxonomy or pre-established

vocabulary as would be in a top-down deductive approach. As Wood (2007) says,

“This process exposes and makes concrete common issues, distinctions, work

patterns, and needs without losing individual variation.” The process also shows

up missing data, to drive additional data gathering.

The affinity diagram has been called one of themost significant management

and planning tools in business and has been used to organize many different

kinds of ideas in brainstorming and qualitative data in studies. The original

conception of affinity diagrams is attributed to Jiro Kawakita (1982) in the 1960s.

Kawakita was a Japanese humanitarian who worked in areas of the ecology and

rural revitalization and who received the 1984 Ramon Magsaysay Award for

International Understanding. Sometimes called the KJ (Japanese people put

what we call their last names first) method, the affinity diagram has become one

of the most widely used of the management and planning tools coming from

Japan. See Brassard (1989) for an early adaptation for business and system

development.

160 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

CHAPTER

Extracting Interaction Design
Requirements 5
Objectives

After reading this chapter, you will:

1. Understand the nature of the gap between analysis and design

2. Understand the concept of requirements for interaction design

3. Know how to use needs and requirements as the first span to bridge this gap

4. Be able to deduce and extract requirements systematically from contextual data

5. Understand the background of interaction requirements in the context of software

engineering requirements

5.1 INTRODUCTION

5.1.1 You Are Here
We begin each process chapter in the book with a “you are here” picture of the

chapter topic in the contextof theoverallWheel lifecycle template; seeFigure5-1.

This chapter and the next are about a bridge—the bridge between contextual

inquiry/analysis (Chapters 3 and 4) and design (Chapters 7, 8, and 9).

The bridge has two spans—one for needs and requirements and one for

what we call design-informing models—each of which is extracted from the

contextual data. This chapter is about extracting interaction design

requirements within the activity of understanding user work and needs.

5.1.2 Now That We Have Done Contextual Analysis,
We Have the Requirements, Right? Not
Except in those few work activity notes, perhaps, where users commented

directly on a particular need or requirement, the work activity notes in your work

activity affinity diagram (WAAD), not only do not represent designs, but they do

not even yet represent requirements. Depending on how well you did them,

the contextual inquiry and analysis you have performed so far give you an

accurate and complete picture of the users’ work domain, including their

concerns and descriptions of their current usage.

We now are going to attempt to identify the needs and design requirements

for a proposed new system to optimize, support, and facilitate work in that

domain. It is now our job to comb through the WAAD and any preliminary

design-informing models, such as the flow model, and deductively extract those

user needs and requirements and thereby construct the first span of the bridge.

5.1.3 Gap between Analysis and Design
Contextual inquiry and analysis are about understanding existing work practice

and context. Then wemove on to producing designs for a new system to support

possibly new ways that work gets done. But what happens in between? The

output of contextual inquiry and analysis does not speak directly to what is

needed as inputs to design. There is a gap.

n Information coming from contextual studies describes the work domain but does not

directly meet the information needs in design.

n There is a cognitive shift between analysis-oriented thinking on one side of the gap

and design-oriented thinking on the other.

Figure 5-1

You are here; the chapter
on extracting interaction
requirements, within
understanding user work
and needs in the context
of the overall Wheel
lifecycle template.

162 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

n The gap is the demarcation between the old and the new—between studying existing

work practice and existing systems and envisioning a new work space and new system

design space.

This chapter is about how we begin to bridge this gap with requirements as

shown in Figure 5-2.

5.2 NEEDS AND REQUIREMENTS: FIRST SPAN
OF THE BRIDGE

5.2.1 What Are “Requirements”?
Almost everyone understands the basic meaning. The term refers to a statement

of what is needed to design a system that will fulfill user and customer goals.

But when you start getting specific, it is a term that can mean something

different to just about everyone associated with developing interactive software

systems. To one, it is about ascertaining all the functionality needed to do the

job. To another it is a compilation of all the user tasks needed to do the job.

In the UX domain, interaction design requirements describe what is required

to support user or customer work activity needs. To that endwe are also concerned

with functional requirements to ensure the usefulness component of the user

experience. Finally, we will have requirements to fulfill the need for emotional

impact and long-term phenomenological aspects of the user experience.

5.2.2 Requirements “Specifications”
Before we get into extracting requirements from contextual data, let us look

briefly at the forms interaction design requirements can take. One termwe often

think of when coupled with “requirements” is “specifications.”

In past software engineering traditions, a formal written requirements

document was de rigueur and could even designate details about how the

corresponding software is to be implemented, including such software stuff as

Figure 5-2

Overview of the bridge to
design.

Usability

Usability is the pragmatic

component of user

experience, including

effectiveness, efficiency,

productivity, ease-of-use,

learnability, retainability,

and the pragmatic aspects

of user satisfaction.

Phenomenological
Aspects of
Interaction

Phenomenological aspects

(deriving from

phenomenology, the

philosophical examination

of the foundations of

experience and action) of

interaction are the

cumulative effects of

emotional impact

considered over the long

term, where usage of

technology takes on a

presence in our lifestyles

and is used to make

meaning in our lives.

163EXTRACT ING INTERACT ION DES IGN REQUIREMENTS

object models, pseudo-code, use cases, and software structure. However,

currently in software engineering and software requirements engineering there

is an increasing recognition that:

n Detailed formal requirements cannot ever be complete.

n Detailed formal requirements cannot ever be 100% correct.

n Detailed formal requirements cannot be prevented from changing throughout the

lifecycle.

As a result, there appears to be a trend toward abandoning the detailed

requirements specifications in favor of ascertaining the important features and

capabilities.

Often people from a software engineering background expect a similar

kind of requirements specification for the user interface. However, on the

UX side we are talking about only interaction design requirements, nothing about

software or implementation. Also, as we will see, it is not easy to lay down

that same kind of requirements specification for the interaction design, nor

is it particularly useful to try.

However we specify our requirements, there is a broad range of acceptability

for completeness and detail. For domain-complex systems, with many

requirements for compliance and risk avoidance, you may need a rather

complete specification of requirements.

Our approach to interaction design requirements follows directly from the

contextual data that we have gathered and analyzed. The result is not just a

monolithic specification, but a variety of descriptions that, while not necessarily

like software specifications, are each part of the whole that constitutes the

interaction design requirements specification.

Therefore, at the end of the day, or more likely the end of the week,

requirements extraction produces an assortment of deliverables, each of which

can be thought of as a kind of “specification”—for needs and requirements and

for design-informing models such as personas, tasks, user experience goals, or

usage scenarios. That is why all those activities and deliverables are brought

together in this chapter and the next.

5.2.3 Software and Functional Implications of Interaction
Design Requirements
User needs are really not just interaction needs. Usability and UX include

usefulness that we get from functionality. Often an initial requirement

extracted from contextual data first appears as a requirement for a broad

Domain-Complex
Systems

Domain-complex systems

are systems with high

degree of intricacy and

technical content in the

corresponding field of

work. Often, characterized

by convoluted and

elaborate mechanisms for

how parts of the system

work and communicate,

they usually have

complicated workflow

containing multiple

dependencies and

communication channels.

Examples include an air

traffic control system and a

system for analyzing seismic

data for oil exploration.

164 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

overall system capability—that is, it expresses a need for both functionality

and user interface support.

As an example, a Ticket Kiosk System requirement might state that a user

should be able to buy tickets for up to 10 different events in one session or

transaction. We recommend that you devise a way to record the functional needs

that correspond to user needs and requirements revealed in this process and

pass them on to your software engineering counterparts. It will help them be

aware of needed functionality and will help you both stay on the same page

during the project.

5.3 FORMAL REQUIREMENTS EXTRACTION

This process of extracting needs and requirements is similar to data

interpretation and consolidation sessions of contextual analysis in that it

involves a group sitting down together and going over a large amount of data,

including the WAAD and evolving design-informing models. But here it is

actually easier because much of the hard work is already done.

5.3.1 Walking the WAAD for Needs and Requirements
At the end of Chapter 4 we recommended doing a “wall walk,” a walkthrough of

contextual data in the WAAD. It is now time for your team to get re-immersed in

work activity data; this time with the focus of the walkthrough on extracting

needs and requirements rather than iteratively improving the data. The general

idea is to traverse the hierarchical WAAD structure and focus on extracting

requirement statements from work activity notes.

5.3.2 Switching from Inductive to Deductive Reasoning
Extracting requirements from the WAAD calls for a deductive thinking

process. It is deductive because each work activity note in the WAAD is

treated as the major premise in a logical syllogism. The second “premise”

is everything you know about UX and interaction design. The conclusion

of this syllogism is a statement of user needs and requirements you

deduce from the work activity note, something we capture in a

“requirement statement.”

To clarify with a small example from MUTTS and the Ticket Kiosk System, a

WAAD note, say in node C19, that says “I am concerned about security and

privacy of my transactions” can imply a design requirement (at a high level):

“Shall protect security and privacy of ticket-buyer transactions.” In the design,

165EXTRACT ING INTERACT ION DES IGN REQUIREMENTS

this requirement might be at least partially met by a timeout feature to clear the

screen between customers. Note that at this level, requirements can be a mix of

interaction and functional requirements.

5.3.3 Preparation
Select a requirements team, including people you think will be best at

deductive reasoning and creativity. You will need both UX and software

people represented, plus possibly system architects and maybe managers.

This team approach enhances SE-UX communication because the SE and

UX roles are working together at a crucial point in their mutual lifecycles,

describing and funneling the different kinds of requirements to the places they

will be used. Choose a requirements team leader and a recorder, a person

experienced in writing requirements.

You may need a requirements “record” template in a word processing

document, a spreadsheet, or a database schema to capture the requirement

statements in a consistent and structured format in an interaction design

requirements document (or requirements document, for short in this context).

The requirements team will work in the room where the WAAD is posted on

the wall.

If there is a need for all to see each requirement statement, you can connect

the recorder’s computer to a screen projector and show the requirements

document on an open part of the wall. The leader is responsible for walking the

team through the WAAD, traversing its hierarchical structure systematically and

keeping the team on track.

5.3.4 Systematic Deduction of Needs as “Hinges”
to Get at Requirements
Start by letting everyone walk through the WAAD, individually and silently, to

accommodate those who need to think quietly and to allow everyone to write

notes about ideas for requirements. Then begin the main part of the process.

As the leader walks the team through the WAAD, one node and one note

at a time, the team works together to ask what user needs, if any, are reflected

in this work activity note and the hierarchical labels above it.

Such user needs are still expressed in the perspective of the user and in

the work domain. Although the user need is not documented in the

requirements document, it is an important “hinge” in the mental process of

getting from work activity notes to requirements. This interim step will become

almost automatic with only a little practice.

166 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

5.3.5 Terminology Consistency
This pass through the contextual data is a chance to standardize terminology

and build consistency. Your contextual data will be full of user comments

about an infinitude of usage and design concepts and issues. It is natural that

they will not all use exactly the same terms for the same concepts.

For example, users of a calendar system might use the terms “alarm,”

“reminder,” “alert,” and “notification” for essentially the same idea. Sometimes

differences in terminology may reflect subtle differences in usage, too. So it

is your responsibility to sort out these differences and act to help standardize the

terminology for consistency issues in the requirements document.

5.3.6 Requirement Statements
Next, the team translates each user need into one or more interaction design

requirement statements. Each requirement statement describes a way that

you decide to support the user need by providing for it in the interaction design.

Ask what new or more specific user interface feature you should see in the

design to support the user needs implied by this WAAD note. There is

not necessarily a one-to-one correspondence between work activity notes in

the WAAD and needs or requirements.

A given work activity note might not generate a need or requirement.

The ideas in some notes may no longer be relevant in the envisioned system

design. Sometimes one work activity note can produce more than one need.

A single need can also lead to more than one requirement. Examples of

work activity notes, user needs, and corresponding requirements are

coming soon.

Now the recorder writes the requirement statement in the requirements

document by first finding the appropriate headings and subheadings. If the

necessary headings are not already in the requirements document, now is the

time to add them and grow the document structure as the process continues.

Interaction requirements often imply functional requirements for the system,

which you may also capture here for communicating to your software people.

For example:

Interaction requirement: “Ticket buyers shall be able to see a real-time preview of

available seating for a venue.”

Corresponding system requirement: “System shall have networked infrastructure

to poll all kiosk transactions as they are happening and coordinate with the venue

seating data to ‘lock and release’ selected seats.”

167EXTRACT ING INTERACT ION DES IGN REQUIREMENTS

This is a good time for the software team members to work in parallel

and capture those inputs to software requirements here so that they are

not lost.

These inputs will be transformed into software requirements specifications

in the software requirements process, a separate process done only by the

software team and not part of our scope here. Although software

requirements gathering is not officially part of the interaction requirements

extraction process, it is a shame to not take advantage of this opportunity to

provide valuable software requirements inputs, based on real contextual

data. This is also a good opportunity for you, the interaction designer, to

coordinate with your software engineering teammates about your mutual

requirements.

In a requirement statement it is typical to use the phrase “Users shall

be able to . . .” and can be followed by a rationale statement explaining the

relationship of the requirement to the user need and how the requirement

was determined from that need. A “notes” statement can also be part of

a requirement statement. Such notes are not always necessary but they

document discussion points that may have come up within the extraction

process and need to be preserved for designers to consider in their process.

5.3.7 Requirement Statement Structure
A generic structure of a requirement statement that has worked for us is shown

in Figure 5-3. A requirements document is essentially a set of requirement

statements organized on headings at two or more levels.

For systems where risk is high and traceability is important, each

requirement is tagged with the WAAD source node ID, which serves as a link

back to the source of this requirement statement within the WAAD. The WAAD

in turn has a link back to its source in raw work activity data.

Later, if a question arises about a particular need or requirement, the

connection to original work activity data and the person who was its source can

be traced to find the answers (sort of the UX lifecycle analog of a software

requirements traceability matrix).

Because we use the WAAD node ID as a link this way, someone should ensure

that all WAAD nodes are labeled with some identification number before the

extraction process begins. We use

A, B, C, . . . for the highest-level

nodes under the root node. Under

node A, we use AA, AB, AC, . . . ,

and for the work activity notes

Name of major feature or category
Name of second-level feature or category
Requirement statement [WAAD source node ID]
Rationale (if useful): Rationale statement
Note (optional): Commentary about this requirement

Figure 5-3

Generic structure of a
requirement statement.

168 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

themselves we use the group ID plus

a number, such as AB1 and AB2; this

is the identifier that goes in the

“WAAD source node ID” part of a

requirement.

As an example, consider the work activity note that said “I am concerned

about privacy and security of my transactions.” In Figure 5-4 we show how the

resulting requirement statement fits into the requirement statement structure

of Figure 5-3.

5.3.8 Requirements Document Structure
We show two levels of headings, but you should use as many levels as

necessary for your requirements.

As an example of an extracted requirement for the Ticket Kiosk System,

suppose in our contextual inquiry a user mentioned the occasional convenience

of shopping recommendations from Amazon.com. The resulting requirement

might look like what is shown in Figure 5-5.

Example: Extracting a Requirement Statement
for the Ticket Kiosk System
Note CA9 within the WAAD for MUTTS says “I sometimes want to find events

that have to do with my own personal interests. For example, I really like ice

skating and want to see what kinds of entertainment events in the nearby areas

feature skating of any kind.” This user work activity statement implies the user

need, “Ticket buyers need to find various kinds of events.”

Labels on a group at a higher level imply a feature or topic of “Finding events”

so we use that as the heading for this requirement in the requirements

document. Lower-level labels in the WAAD narrow it down to

“Direct keyword search by event description”; we will use that for our

subheading.

We can then write the

requirement in Figure 5-6.

Note that this comment, also

in the WAAD, “I sometimes want

to find events that have to do with

my own personal interests,” could

lead to consideration of a

requirement to maintain

personal profiles of users.

Security
Privacy of ticket–buyer transactions
Shall protect security and privacy of ticket-buyer transactions [C19]

Note: In design, consider timeout feature to clear screen between customers.

Figure 5-4

Example requirement
statement.

….. Transaction flow
Recommendations for buying

Ticket-buyer purchases shall be supported by recommendations for the purchase
of related items. [DE2].

Implied system requirement: During a transaction session the Ticket Kiosk
System shall keep track of the kinds of choices made by the ticket buyer along
with the choices of other ticket buyers who bought this item. [DE2].
Note: Amazon.com is a model for this feature.

Figure 5-5

Sample requirement
statement for the Ticket
Kiosk System.

169EXTRACT ING INTERACT ION DES IGN REQUIREMENTS

5.3.9 Continue the Process
for the Whole WAAD
In the Ticket Kiosk System

example, you will also extract

requirements for all the different

ways you search and browse event

information, such as requirements to search by event category, venue, date

range, and so on. Take the time here to pick all the fruits; it is too easy to neglect

the connections of rationale to user work activities and lose much of the

advantage gained from the contextual analysis work.

After each requirement statement is written, it is very important for the whole

team to see—for example, by projection display—or hear—for example, by the

recorder reading it—the statement to ensure that the written statement

represents their concept of what it was supposed to be.

Later when reviewing and finalizing the requirements document, wemay find

that not every “requirement” extracted from the WAAD will eventually be

met because of cost, other constraints, and how our own knowledge and

experience temper the process, but that kind of judgment comes later. For now,

just keep cranking out the requirements.

5.3.10 Keep an Eye out for Emotional Impact Requirements
and Other Ways to Enhance the Overall User Experience
When extracting requirements, most people will think of the functional

requirements first, feeding usefulness. Most people might think of usability

goals next, feeding UX targets. But do not forget that we are on a quest to design

for a fabulous user experience and this is where you will find opportunities for

that, too.

In addition to getting at routine requirements for tasks, functions,

and features, seek out those indefinable evolving characteristics essential

to a quality usage experience. Because factors related to emotional impact

or phenomenological aspects may not be as clear-cut or explicit as

functional or other interaction requirements, you have to be alert for the

indicators.

Work activity notes with user concerns, frustration, excitement, and likings

offer opportunities to design a system to address emotional issues. Especially

look out for work activity notes that make even an oblique reference to “fun”

or “enjoyment” or to things like data entry being too boring or the use of

colors being unattractive. Any of these could be a clue to ways to provide a

more rewarding user experience. Also, be open minded and creative in this

Finding events
Direct keyword search by event description
Ticket buyers shall be able to find (e.g., search) by content to identify
relevant current and future events [CA9].

Browse events by parameters
Ticket buyers shall be able to browse by category, description, location,
time, rating, and price.

Figure 5-6

Example requirement
statement for the Ticket
Kiosk System.

170 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

phase; even if a note implies a need that is technologically difficult to

address, record it. You can revisit these later to assess feasibility and

constraints.

5.3.11 Extrapolation Requirements: Generalization
of Contextual Data
User statements in a WAAD can be quite narrow and specific. You may need to

generate extrapolation requirements to broaden existing contextual data to

cover more general cases.

For example, ticket buyers using MUTTS, in anticipation of a kiosk, might

have expressed the need to search for events based on a predetermined criterion

but said nothing about browsing events to see what is available. So you might

write an extrapolation requirement about the obvious need also to browse

events (as we did in Figure 5-6).

As another example, in our WAAD for MUTTS, a ticket buyer speaks about

the desirability of being able to post an MU football ticket for exchange with a

ticket in another location in the stadium to be able to sit with their friends. In

our extrapolation requirement statement we broadened this to “Ticket buyer

shall be able to post, check status of, and exchange student tickets.” And we

added a relationship note: “Will require ticket-buyer user ‘accounts’ of some

kind where they can login using their MU Passport IDs.”

In another work activity note a user mentioned it would be nice to be able to

select seats from all available seats in a given price category. This translates to a

requirement to display seating availability and to be able to filter that list of

available seats (such as by price categories). Seat selection assumes the existence of

a lock and release mechanism of some sort, something we perhaps did not yet

have in the requirements document. This is a technical requirement to give the

buyer a temporary option on the selected seats until the transaction is completed

or abandoned. So we added an extrapolation requirement to cover it:

Shall have a default time interval for locking available seating while the ticket

buyer is making a choice.

Rationale: If a ticker buyer has not performed any actions with the interface in a

certain amount of time, we assume the ticket buyer has left the kiosk or at least

abandoned the current transaction.

The timeout will release those seats back to an available pool for others to

access from other kiosks.

171EXTRACT ING INTERACT ION DES IGN REQUIREMENTS

Another work activity note said, “I often plan to attend entertainment events

with friends.” At first, we thought this comment was just a passing remark about

how he would use it. It did not seem to imply a requirement because it did not say

anything directly about a feature.

On reflection, however, we could easily broaden it slightly to imply a possible

need to communicate with those friends and, with a bit more extrapolation,

maybe facilitate sending tickets or event information to them via email. This

extrapolation could well be beyond the scope of the user’s intent and it could be

beyond the scope of the current project, but it should be saved as an input about

a potential future feature and, more importantly, as a chance to provide a great

user experience.

This example is a good one because it starts with a statement about usage. And

that is what contextual data are about, so we should not have missed seeing an

implied requirement because “it did not say anything about a feature.” It is our

job to come up with requirements implied by usage statements.

In balance, while extrapolation requirement statements may be necessary

and valuable, we should be careful with them. To be sure, we distinguish them

by calling them (and tagging them as) extrapolation requirements, which must

be taken back to users for confirmation as real needs or requirements. This

validation can result in a thumbs up and you can include it in your

requirements document or it can result in a thumbs down and you can

eliminate that requirement.

5.3.12 Other Possible Outputs from the Requirements
Extraction Process
In addition to requirement statements, a work activity note in a WAAD can lead

to certain other outputs, discussed in the following subsections.

Questions about missing data
Sometimes, as you go deeper into the implications of contextual data, you realize

there are still some open questions. For example, in our contextual inquiry for

MUTTS, while we were putting together requirements for the accounting

system to aggregate sales at the end of the day, we had to face the fact that the

existing business manages tickets from two independent systems. One is the

local ticket office sales and the other is from the national affiliate, Tickets4ever

.com. During our contextual inquiry and analysis we neglected to probe the

interaction between those two and how they reconciled sales across those two

systems.

172 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

System support needs
You may also occasionally encounter system requirements for issues outside

the user experience or software domains, such as expandability, reliability,

security, and communications bandwidth. These are dealt with in a manner similar

to that used for the software requirements inputs. A few examples from the

MUTTS WAAD illustrate:

Work activity note: “Identity theft and credit card fraud are huge concerns for me.”

System requirement: “System shall have specific features to address protecting

ticket buyers from identity theft and credit card fraud.” (This “requirement”

is vague but it is really only a note for us to contact the systems people to figure out

potential solutions to this problem.)

Work activity note: “When I am getting tickets for, say, a controversial

political speaker, I do not want people in line behind me to know what I am

doing.”

System requirement: “Physical design of kiosk shall address protecting privacy of a

ticket buyer from others nearby.”

Marketing inputs
Sometimes a comment made by a user during contextual inquiry might

make a good input to the marketing department as a candidate sound bite

that can be adapted into advertising copy. This is a good opportunity to

communicate with the marketing people and help cement your working

relationship with them.

Example: Requirements Extraction for the Ticket
Kiosk System
Here are a few selected requirements extracted from the MUTTSWAAD that we

are using to inform requirements for the Ticket Kiosk System.

Shopping cart

Existence of feature

Ticket buyer shall have a shopping cart concept with which they can buy multiple

items and pay only once [BBA1-4]

Accessibility of shopping cart

Ticket buyer shall be able to view and modify shopping cart at all times [BBA3]

173EXTRACT ING INTERACT ION DES IGN REQUIREMENTS

Shopping cart versatility

Ticket buyer shall be able to add different kinds/types of items (example,

different events, sets of tickets for the same event)[BBA4]

Note: This requirement is important because it has implications on how to display

shopping cart contents with dissimilar types of objects in it.

Transaction flow

Timeouts

Extrapolation: Ticket buyer shall be supported by a timeout feature [BCA]

Rationale: To protect ticket buyer privacy

Extrapolation: Ticket buyer shall be made aware of the existence and status of

timeout, including progress indicator showing remaining time and audible beep

near the end of the timeout period [BCA] [BCA1]

Extrapolation: Ticket buyer shall have control to reset the timeout and keep the

transaction alive

Extrapolation: Ticket buyer’s need to keep transaction alive shall be supported by

automation, timer reset triggered by ticket buyer activity

Immediate exit

Ticketbuyer shall be able tomakeaquickexit andreset to thehomescreen[BCB1]

Rationale: Important for kiosks in bus stations where user may have to quit in the

middle of a transaction and to protect their privacy

Ticket buyer shall have a way to quickly return to a specific item they were viewing

just prior to an immediate exit [BCB1]

Note: Ticket buyer shall be able to use an event ID number for direct access next

time or the system can potentially do it using an “account” and restore state.

Recommendations for buying

Extrapolation: Ticket buyer purchases shall be supported by recommendations

for related items [BCB2]

Extrapolation:Ticketbuyer shallbeable to sayno to recommendationseasily [BCB2]

Transaction progress awareness

Ticket buyer shall be able to track the progress of the entire transaction

(what is done and what is left to do) using, for example, a “bread crumb” trail

[BCB3-4]

174 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Ticket buyer reminders

Ticket buyer shall receive reminders to take the ticket and MU Passport/credit

card at the end of each transaction [BCC1-2]

Checkout

Ticket buyer shall have, before making a payment, a confirmation page showing

exactly what is being purchased [BCD1]

Ticket buyer shall receive actual ticket and not just confirmation [BCD2]

Rationale: For maintaining ticket buyer trust

Note: This is a huge issue involving marketing, high-level business decisions, and

hardware (printer) reliability and kiosk maintenance

Ticket buyer shall be able to use cash, credit cart, debit card, or MU Passport for

payment [BCD3]

Note: For cash transaction it is difficult to recognize and dispense change

[BCD4], and attracts vandals and thieves [BCD5]

System requirements

Performance

The system shall have a good response time to make transactions fast (so ticket

buyers do not miss the bus)[BCB5]

5.3.13 Constraints as Requirements
Constraints, such as from legacy systems, implementation platforms, and system

architecture, are a kind of requirements in real-world development projects.

Although, as we have said, much of the interaction design can and should be

done independently from concerns about software design and implementation,

your interaction design must eventually be considered as an input to software

requirements and design.

Therefore, eventually, you and your interaction design must be reconciled

with constraints coming from systems engineering, hardware engineering,

software engineering, management, and marketing. Not the least of which

includes development cost and schedule, and profitability in selling the product.

What restrictions will these constraints impose on product scope?

Are product, for example, a kiosk, size and/or weight to be taken into

account if, for example, the product will be on portable or mobile

equipment? Does your system have to be integrated with existing or other

developing systems? Are there compliance issues that mandate certain

Exercise

See Exercise 5-1, Extracting

Requirement Statements

for Your System

Legacy System

A legacy system is a system

with maintenance problems

that date back possibly

many years.

175EXTRACT ING INTERACT ION DES IGN REQUIREMENTS

features? Constraints arise from the problems of legacy systems, limitations

of implementation platforms, demands of hardware and software,

budgets, and schedules.

Example: Constraints for MUTTS
A hardware constraint for the existing working environment of MUTTS is the

necessity of keeping the secure credit card server continuously operational.

An inability of the ticket office to process credit card transactions would

essentially bring their business to a halt. They have only one “general purpose”

technician on staff to care for this server plus all the other computers, network

connections, printers, scanners, and so on.

In addition, the physical space of the MUTTS office is constrained,

a constraint that should also show up in the physical model (Chapter 6), and

work areas can become cramped on busy days. Their office space is leased, a fact

that is not likely to change in the near future, so a more efficient work flow is

desirable. Sometimes the air conditioning is inadequate.

The constraints will show significant differences in going fromMUTTS to the

Ticket Kiosk System. Here are some example constraints that might be

anticipated in the Ticket Kiosk System, mostly about hardware (systems

engineering people would probably add quantitative standards to be met in

some cases):

n Special-purpose hardware for the kiosk

n Rugged, “hardened” vandal-proof outer shell

n All hardware to be durable, reliable

n Touchscreen interaction, no keyboard

n Network communications possibly specialized for efficiency and reliability

n If have a printer for tickets (likely), maintenance must be an extremely high

priority; cannot have any customers pay and not get tickets (e.g., from paper or ink

running out)

n Need a “hotline” communication feature as backup, a way for customers to contact

company representatives in case this does happen

5.3.14 Prioritizing Requirements
A drawback of affinity diagrams is that they do not contain priority

information, so every note has the same weight as any other note. A note

about a major task has the same significance as a passing comment. As a result,

the extracted requirements are also unprioritized. To remedy this, as part of

Exercise

See Exercise 5-2, Constraints

for Your System

176 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

the validation process, ask your customer and users to prioritize the

requirements.

At a minimum they can point out the key requirements and the requirements

that are “also-rans.” These can be separated into different sections of a

requirements document or distinguished by a color-coding scheme.

With a bit more effort you can tag each requirement with an importance

rating. Later, you will use these priority ratings to decide which design-informing

models to focus on. For example, important tasks will be the ones chosen as the

basis for representative scenarios.

Often, as the result of prioritizing, you and your customer achieve a

realization of, and mutual understanding about, the fact that some

requirements cannot be met realistically in the current product version and

must be set aside for consideration in the future.

5.3.15 Taking Requirements Back to Customers
and Users for Validation
After your own review, it is time to take the requirements document or

requirements WAAD back to the customer and users for validation. This is a

critical step for them because it gives them a chance to offer inputs and correct

misconceptions before you get into design. It also helps solidify your

relationship as partners in the process.

For each work role, schedule a meeting with the representative users,

preferably some from the ones you have interviewed or otherwise interacted

with before, and some new users. Walk them through the requirements to

make sure your interpretation of requirements from the work activity notes is

accurate.

Pay close attention to feedback from new users who are looking at the

requirements for the first time. They may provide valuable feedback on

anything you missed or new insights into the needs. Remember that these

users are experts in the work domain, but probably not in the domains of

interaction design or software development, so protect them from technical

jargon.

5.3.16 Resolve Organizational, Sociological, and Personal
Issues with the Customer
When you take your requirements to the customer for validation, it is also a good

opportunity to resolve organizational, social, and personal issues. Because your

requirements reflect what you intend to put into the design, if heeded, they can

flash early warning signs to customers and users about issues of which your team

Work Role

A work role is defined and

distinguished by a

corresponding job title or

work assignment

representing a set of work

responsibilities. A work role

usually involves system

usage, but some work roles

can be external to the

organization being studied.

177EXTRACT ING INTERACT ION DES IGN REQUIREMENTS

may be unaware, even after thorough contextual inquiry. Especially if your

requirements are pointing toward a design that changes the work environment,

the way work is done, or the job descriptions of workers, your requirements may

give rise to issues of territoriality, fear, and control.

Changes in the workflow may challenge established responsibilities and

authorities. There may also be legal requirements or platform constraints

for doing things in a certain way, a way you cannot change, regardless of

your arguments for efficiency or better user experience. Organizational,

social, and personal issues can catch your team by surprise because

they may well be thinking mostly about technical aspects and design at

this point.

5.4 ABRIDGED METHODS FOR REQUIREMENTS
EXTRACTION

5.4.1 Use the WAAD Directly as a Requirements
Representation
To save time and cost, the WAAD itself can be taken as a set of implicit

requirements, without formally extracting them. On the WAAD you created in

contextual analysis, highlight (e.g., using a marker pen) all groups or individual

work activity notes that imply requirements and design ideas directly or

indirectly. The way aWAADnote can represent a requirement is: youmust cover,

include, or accommodate (in the interaction design) the issue, idea, or concept

expressed in the note.

To use the Ticket Kiosk System example of customer security and privacy

again, the work activity note says, “I am concerned about the security and privacy

of my transactions.” Instead of rewriting this as a formal requirement

statement in a requirements document as we did previously, you just interpret

it directly as you read it to “shall protect security and privacy of ticket-buyer

transactions.”

This requirement may immediately generate ideas about how to solve the

problem in the design, such as by automatic timeout and and/or a limited

viewing angle on the physical kiosk. You should also document these design

ideas immediately, while you can, as notes directly on the WAAD.

You will acquire the ability to look at the WAAD with an interpretative eye and

see the work activity notes as more explicit requirements. Clear and crisply written

work activity notes will help make this mental step of interpretation easier.

Work Activity
Affinity Diagram

A work activity affinity

diagram (WAAD) is an

affinity diagram used to sort

and organize work activity

notes in contextual analysis,

pulling together work

activity notes with

similarities and common

themes to highlight

common work patterns and

shared strategies across all

users.

178 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

5.4.2 Anticipating Needs and Requirements in
Contextual Analysis
In anticipation of the need to extract requirements here, we can introduce a

shortcut in contextual analysis, adjusting the process for work activity note

synthesis and saving some cost. The shortcut involves doing some interpretation

of the raw data, on the fly, to move it more rapidly to reflect requirements.

For example, consider a work activity note from the MUTTS interviews that

says: “After the lottery results for an MU football game are out, students who

won try to exchange tickets with others so they and their friends can sit

together.” From this, you can move more rapidly toward needs and

requirements by restating it as: “Some MU football ticket lottery winners need

an ability to go to a kiosk and trade tickets with other winners so they can sit

with their friends.”

5.4.3 Use Work Activity Notes as Requirements
(Eliminate the WAAD Completely)
Another efficient abridgement technique, for experienced practitioners, is

eliminating the WAAD altogether and using the bins of sorted work activity

notes as requirements. Building a WAAD is about organizing large amounts of

data to identify underlying themes and relationships.

If your contextual inquiry did not result in a huge number of work

activity notes (a likely case in an abridged approach), you can identify

relationships by just manipulating the work activity notes themselves. But

you still have to make the mental step of interpretation to deduce

requirements on the fly.

179EXTRACT ING INTERACT ION DES IGN REQUIREMENTS

Intentionally left as blank

CHAPTER

Constructing Design-
Informing Models 6
Objectives

After reading this chapter, you will:

1. Know how to construct design-informing models as the second span to bridge the

gap between analysis and design

2. Understand user models such as work roles, user classes, social models, and

user personas

3. Understand usage models such as flow model, task models, and the information

object model

4. Understand work environment models such as the artifact model and physical model

5. Understand the role of barriers (to work practice) within models

6.1 INTRODUCTION

6.1.1 You Are Here
We begin each process chapter in the book with a “you are here” picture of

the chapter topic in the context of the overall Wheel lifecycle template; see

Figure 6-1. We have now made it across the first of two spans of the bridge

between contextual analysis and design. We have extracted requirements and

are now on our way to constructing some design-informing models.

6.2 DESIGN-INFORMING MODELS: SECOND SPAN
OF THE BRIDGE

In crossing the second span of our bridge on the way to design (Figure 5-2),

we take what we learned in contextual analysis and build “design-informing

models,” evolving work products that we can use to bridge the rest of the gap

toward design. Just as we did in the previous chapter for requirements

extraction, in this chapter we introduce another kind of deductive data

extraction: from the work activity affinity diagram (WAAD) or your bins of

sorted work activity notes and other contextual data to these design-informing

models.

We wish to acknowledge upfront the ample influence of Holtzblatt and

colleagues (Beyer & Holtzblatt, 1998; Holtzblatt, Wendell, & Wood, 2005), who

have led the way in bringing ethnographic studies of work practice into the

human–computer interaction context, in this chapter. In their book, Contextual

Design (Beyer & Holtzblatt, 1998), Beyer and Holtzblatt use five models: flow,

physical, artifact, sequence, and cultural.

In the book Rapid Contextual Design (Holtzblatt, Wendell, & Wood, 2005), the

authors use mainly the physical, sequential, and artifact models. We have built

on their work here, adapting andmodifying it for our own needs.We also feature

flow, artifact, and physical models. Their cultural model has been adapted to

form our social model, and we have expanded their sequence model into a

number of different task models.

We also acknowledge the influence of Constantine and Lockwood (1999).

Much of our model-driven approach is based loosely on their “use what you

know” technique.

Figure 6-1

You are here; the chapter on
constructing design-
informing models, within
understanding user work
and needs in the context of
the overall Wheel lifecycle
template.

182 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

6.2.1 What Are Design-Informing Models
and How Are They Used?
Design-informingmodels are not building blocks that appear directly in a design

but are artifacts that embody, drive, inform, and inspire the design. They are

design-oriented constructs, such as task descriptions or user personas, that turn

raw data into actionable items as design ideas, as elements to consider or take

into account in the design.

Like WAADs and requirements, design-informing models:

n help integrate and summarize the contextual data

n point back to the data, to maintain the “chain of custody” to ensure that the design

is based on real contextual data

n provide a shared focus for analysis now and, later, design

n provide intermediate deliverables, which can be important to your working

relationship with the customer

6.2.2 Envisioned Design-Informing Models
Even though this chapter is about modeling existing work practice, the

purpose of the models is to inform design. So, as we get closer to design in

Chapters 7, 8, and 9, we need to make a transition with our models from

existing to envisioned work practice. To this end, after we construct each kind of

model, we also look at the envisioned version of that model for the new design.

Use these models as springboards to your design scenarios, sketches, and

storyboarding. Using the flow model and physical model as guides, look for

ways to make flows more efficient and to avoid redundant data entry and

unnecessary physical motions. From the task interaction models, try to

reduce and automate steps.

Using the social model as a guide, find ways to increase communication,

reinforce positive values, address concerns of people in work roles, and

accommodate influences. One important way to use each kind of model

to inform design is to look at all the barriers identified in the models and solve

the problems they represent.

When the new work practice and supporting system are quite different from

the existing ones, the transition from modeling to design begins with a

transition from the models of existing work practice by envisioning how

each model will make the transition to the new work practice and supporting

design.

Each model directly informs its envisioned counterpart. Envisioned

design-informing models are a step closer toward design from analysis. Most of

Persona

A persona, as used in

contextual data

representation and

interaction design, is a

hypothetical but specific

“character” in a specific

work role, with specific user

class characteristics. As a

technique for making users

real to designers, a persona

is a story and description of

a realistic individual who

has a name, a life, and a

personality, allowing

designers to limit design

focus to something very

specific.

Barrier

A barrier, in contextual

modeling, is a problem that

interferes with normal

operations of user work

practice. Anything that

impedes user activities,

interrupts work flow or

communications, or

interferes with the

performance of work

responsibilities is a barrier

to the work practice.

Scenario

A scenario is a design input

in the form of a story about

specific people performing

work activities in a specific

work situation within a

specific work context, told

in a concrete narrative style,

as if it were a transcript of a

real usage occurrence.

Scenarios are deliberately

informal, open-ended, and

fragmentary narrative

depictions of key usage

situations happening over

time.

183CONSTRUCTING DES IGN - INFORMING MODELS

the envisioned design-informing models can be very brief, addressing only

the differences from the existing models.

In cases where the new work practice and new system are only incrementally

improved versions of the old work practice and system, envisioned

design-informing models are probably of little value and usually can be skipped.

6.3 SOME GENERAL “HOW TO” SUGGESTIONS

6.3.1 Maintain Connections to Your Data
It is important to label everything you put in a model with an identifier tag that

points directly back to the place in the raw data that was the source of this item in

the model. This tag can be the line number in the raw data transcript, a time

code in a recording, or a note number in your manually recorded notes. It can

also be a node-ID in your WAAD, which indirectly takes you to raw data source

tags. This tagging allows your analysis team to get back to the raw data

immediately to resolve questions, disagreements, or interpretations of the data.

If any element of a model has no pointer back to the data, it must then be

considered an unsupported assumption and is subject to additional scrutiny.

6.3.2 Extract Inputs to Design-Informing Models
The business of extracting inputs for design-informing models is not the “next

step” after requirements extraction, but you do this in conjunction with

requirements extraction. We discuss it separately here for clarity, but usually

you would not want to take the time and energy to make another pass through

the contextual data at this point. As you “walk the wall” and traverse the WAAD

for extracting requirements, take notes on design-informing models, too.

References to design-informing models just come out naturally; you’ll see

references to task descriptions, references to user types, references to social

concerns, and so on. In WAAD notes and other contextual data, references to

design-informingmodels will often be indirect or implied and sometimes oblique.

These work activity notes will seldom be complete descriptions of any component

of a design-informing model, but will be hints and clues and pieces of the puzzle

that you, the detective, will assemble as you compile each model deductively.

6.3.3 Use Your “Bins” of Sorted Work Activity Notes from
Contextual Inquiry and Contextual Analysis
It is hoped, as a result of anticipating in contextual analysis your current needs

for modeling, that you will have separate work activity note bins sorted out for

each kind of model. For example, you might have bins of user-related notes for

Social Model

A social model is a

diagrammatic description

that captures the social

aspects of the users’

organizational workplace,

including the overall flavor,

philosophy, ambiance, and

environmental factors as

well as thought processes,

mind-sets, policies, feelings,

attitudes, concerns and

influences, norms of

behavior, attitudes, and

pressures that affect users.

Storyboard

A storyboard is a visual

scenario in the form of a

series of sketches or

graphical clips, often

annotated, in cartoon-like

frames depicting the

actions, states, and

sequences of interaction

flow between user and

system.

184 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

user class definitions and personas. Separate your task-related work activity notes

into sub-bins for hierarchical task inventory (HTI), task sequences, scenarios,

and so on.

These ordered and structured bins of notes for each resulting model

type provide the inputs to drive your synthesis of the corresponding

design-informing models. The user models bin will contain notes revealing

major work roles. The social models bin might contain notes (perhaps through

a user concern) about how people in those roles relate. Similarly, the flow

model bin may contain notes about and inputs to workflow-related

descriptions. Task-related work activity notes in your task model bin are obvious

sources of inputs to task descriptions for task modeling, storyboarding, and

scenarios.

Example: Bins of Inputs to Design-Informing
Models from MUTTS
Here are a few examples of items found in the personas bin and the task

descriptions bin, as inputs to corresponding design-informing models.

References in square brackets at the end of each input item are tags, tracing the

input item back to the data. In this case, the combination of letters and numbers

reflects a node within the hierarchical structure of a WAAD.

n Personas

n I usually work long hours in the lab, on the other side of campus [from BA1-4]

n I like classical music concerts, especially from local artists [from CE3-4]

n I love the sense of community in Middleburg [from BC2-1]

n Task descriptions

n Sometimes I need to buy a set of tickets with adjacent seating [from EB5-6]

n After the lottery results for an MU football game are out, students who won try

to exchange tickets with others so that they and their friends can sit together

[from EA3-14]

6.3.4 Represent Barriers to Work Practice
In most of the models you will want to represent problems that interfere

with normal operations of the users. These barriers to usage are of special

interest because they point out where users have difficulties in the work

practice. These barriers also represent key opportunities for improvement in

the design.

Barriers include what Beyer and Holtzblatt call “breakdowns,” but are a bit

more general. Anything that impedes user activities, interrupts workflow or

User Class

A user class is a description

of the relevant

characteristics of the user

population who can take on

a particular work role. User

class descriptions can

include such characteristics

as demographics, skills,

knowledge, experience, and

special needs—for example,

because of physical

limitations.

185CONSTRUCTING DES IGN - INFORMING MODELS

communications, or interferes with the performance of work responsibilities is a

barrier to the work practice. Any time you observe users having difficulties at

various steps in their work or experiencing confusion or awkwardness in the

work role or task performance, even if it does not cause a full breakdown, is a

candidate for being labeled as a barrier.

Especially in the flow model, barriers can include problems with

coordination, slips of communication, forgetting to do things, getting the

timing of steps wrong, failure to pass along needed information, and

so on. We will use the Beyer and Holtzblatt symbology of a graphical

red lightning bolt () in various ways to indicate barriers in our

design-informing models.

6.4 A NEW EXAMPLE DOMAIN: SLIDESHOW
PRESENTATIONS

In addition to our running MUTTS and Ticket Kiosk System example, in this

chapter we will use examples from a contextual inquiry study of slideshow

presentations performed at Carnegie Mellon University (Cross, Warmack, &

Myers, 1999) to illustrate some of the models in this chapter. Many thanks to

Brad Myers for permission to use it here.

These examples about slideshow presentations were chosen because the

domain is easy to understand, the models are relatively straightforward, and

the models are supported with real contextual data. A small group of user

researchers analyzed a set of pre-existing videotapes of nine academic

presentations representing a variety of subject matter, audience sizes, audience

location (some local and remote, some local only), presentation styles, and

audience reaction styles (listen-only, questions, criticism). The objective of

the study was to find design improvements to the slide presentation process,

possibly through a technology solution.

This example illustrates a creative adaptation of contextual inquiry to

make use of available video data, unbiased data because it was not taken

with contextual inquiry in mind but just to create a record of the presentations.

Although the existing videotapes allowed observation of work as it occurs

in its own context, they did not permit interaction with users and

questioning of users during the observations. Nonetheless, their adaptation

of the contextual inquiry method did yield observational data, which did

lead to some design-informing models; we use them here as real-world

examples.

186 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

6.5 USER MODELS

User models are a set of models that define who the users are, including

everything about work roles, sub-roles, user class definitions, and personas.

Perhaps themost important of the design-informingmodels are the user models

of this section and the usage models of the next.

6.5.1 Work Roles
A work role corresponds to the duties, functions, and work activities of a person

with a certain job title or job responsibility. For Constantine and Lockwood

(1999), a role is a set of responsibilities assumed by a human within an activity in

relation to a focal system. In other words, work roles are “hats” that people wear

when they take on the corresponding job responsibilities and perform the

associated activities.

As an integral part of contextual analysis, we got an early start at identifying

work roles (Chapter 4). Now, in this section, we follow up on this step as part

of the modeling.

A work role can involve:

n System usage or not (meaning the person in the role may or may not be a direct user)

n Internal or external to the organization, as long as the job entails participation in the

work practice of the organization

Sub-roles
For some work roles, there are obvious sub-roles distinguished by different

subsets of the tasks the work role does. See the MUTTS example after the

next section.

Mediated work roles
For many systems, your contextual data will show you that there are “users” in

roles that do not use the system, at least not directly, but still play a major part in

the usage context. These mediated users, whom Cooper (2004) calls “served

users,” have true work roles in the enterprise and are true stakeholders in the

system requirements and design and definitely play roles in contextual analysis,

scenarios, user class definitions, and even personas.

The ticket-buyer role for MUTTS is a prime example of a user role whose

interaction with the computer system ismediated; that is, someone else acts as an

agent (the ticket seller) or intermediary between this kind of user and the

computer system. It turns out, of course, that ticket buyers will become direct

187CONSTRUCTING DES IGN - INFORMING MODELS

user roles in the envisioned Ticket Kiosk System. The ticket buyer is still a very

important role and indirect user of MUTTS and is, therefore, important to

interview in contextual inquiry.

The ticket buyer will be the main role considered in subsequent examples.

These mediated roles are often customers and clients of the enterprise on whose

behalf direct users such as clerks and agents conduct transactions with the

computer system. They might be point-of-sale customers or clients needing

services from a retail outlet, a government agency, a bank, or an insurance

agency. They have needs that reflect on user tasks directly and that are mapped

into the interaction design. The working relationship between the mediated

users and the agent is critical.

Example: Work Roles and Sub-roles for MUTTS
MUTTS work roles include:

n ticket buyer, with further sub-roles as described later, who interacts with the ticket

seller to learn about event information and buy event tickets [from AA-3-6]

n ticket seller, who serves ticket buyers and uses the system to find and buy tickets on

behalf of ticket buyers [from AL-11-16]

n event manager, who negotiates with event promoters about event information and

tickets to be sold by the MUTTS ticket office [from AF-7-13]

n advertising manager, who negotiates advertising to be featured via MUTTS [from

AB-5-18]

n maintenance technician, who maintains the MUTTS ticket office computers,

Website, ticket printers, and network connections [from AC-3-10]

n database administrator, who tends the reliability and data integrity of the database

[from AG-2-17]

n financial administrator, who is responsible for financial and accounting-related

affairs [from AH-1-6]

n administrative supervisor, who oversees the entire MU services department [from

AE-6-6]

n office manager, who is in charge of the daily MUTTS operation [from AF-2-15]

n assistant office manager, who assists the office manager [from AC-1-8]

We also identified sub-roles for the ticket-buyer role: student, general public,

faculty/staff, alumni, seniors, and children. People in the ticket-buyer role for

MUTTS are associated with themain goal of ticket buying. However, a student of

Middleburg University, in what we might call the MU-student sub-role, is

188 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

associated predominantly with the goal of picking up athletic tickets reserved for

students.

In contrast, nonstudent sports fans want to buy more publicly available

sporting tickets. Similarly, town residents and Middleburg visitors, who may be

more interested in buying concert and other event tickets, can comprise two

other sub-roles. Finally, ticket buyers in the MU-alumni sub-role are buyers of

tickets for university-hosted alumni events.

The administrative supervisor has overall responsibility for daily operations,

success of the program, and planning for the future. Because she is charged with

responsibility for more than one such program, she is definitely not involved in

the daily operation.

There are also some work roles external to MUTTS, but who interact with

people in MUTTS work roles, including:

n event promoters, who interact with the event manager to book events

n venue managers, who interact with the event manager to establish seat selection

charts

n advertisers, who interact with the advertising manager to book advertising

Envisioned work roles
The basic work itself, what has to be done, usually does not changemuch from the

old system to the new system. For example, for MUTTS, even with the

introduction of kiosks, the goals of most work roles are still the same. Much of the

change from old to new shows up in envisioned work roles and an envisioned flow

model. For example, the responsibilities and tasks of some roles may change.

As wemove from the existing system and existing work practice to the design of

the new work process, work roles can be expanded and changed. Some old work

roles are no longer necessary; for example, the ticket seller may no longer exist as

a role. Some new roles are introduced and we now spotlight some roles that were

previously only in the murky background. Along with new roles, we get new issues

and concerns in the envisioned social model, new work activities and constraints.

The new roles come alive in the new workflow of the envisioned flow model.

Because you might have some new roles in the new design, you may not have

contextual data from them. If you have not already interviewed people who

might serve in these roles, now is the time to do just a little bit more contextual

inquiry to see if there are any new considerations for design arising from the

new roles.

Exercise

See Exercise 6-1, Identifying

Work Roles for Your System

189CONSTRUCTING DES IGN - INFORMING MODELS

Example: Envisioned New Work Roles for Ticket
Kiosk System
The major difference between the new Ticket Kiosk System and the old

MUTTS is that public kiosks are being used instead of a computer in the

ticket office to find and sell tickets. With ticket kiosks come changes in

work roles.

In the most significant role transformation, the ticket-seller role disappears

and the ticket-buyer role becomes a direct user through the kiosk, now

becoming what is perhaps the central role in the design. The ticket-buyer role

includes all people who use the kiosk in a public manner, for example, for

buying tickets and/or looking for information. The same sub-roles and user

classes generally still apply.

Relationship of work roles to other concepts
Work roles are distinguished by the kinds of work they use the system to

accomplish. For example, theMUTTS ticket seller whohelps customers buy tickets

does entirely different tasks with the system than, say, the event manager who,

behind the scenes, enters entertainment event information into the system so that

tickets can be offered, printed, and purchased.

In Figure 6-2, we show the relationship of work roles to other key concepts.

Work roles are central to flow models.

User Class

A user class is a description

of the relevant

characteristics of the user

population who can take on

a particular work role. User

class descriptions can

include such characteristics

as demographics, skills,

knowledge, experience, and

special needs—for example,

because of physical

limitations.

Work Role

A work role is defined and

distinguished by a

corresponding job title or

work assignment

representing a set of work

responsibilities. A work role

usually involves system

usage, but some work roles

can be external to the

organization being studied.

Flow Model

A flow model is a diagram

giving the big picture or

overview of work,

emphasizing

communication and

information flow among

work roles and between

work roles and system

components within the

work practice of an

organization.

Figure 6-2

Concepts defining and
related to work roles.

190 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

6.5.2 User Classes
A user class is defined by a description of the relevant characteristics of people

who might take on a particular work role. Every work role will have at least

one accompanying description of potential user community who can perform

that role. Sometimes a work role can have such a broad user population that

it requires more than one user class definition to describe all the different

kinds of people who can assume that role.

User class definitions document the general characteristics of these groups of

people who can take on a given role in terms of such characteristics as

demographics, skills, knowledge, and special needs. Some specialized user

classes, such as “soccer mom,” “yuppie,” “metrosexual,” or “elderly citizen,” may

be dictated by marketing (Frank, 2006).

Knowledge- and skills-based characteristics
User class definitions can include background, experience, training,

education, and/or skills expected in a user performing a work role. For

example, a given class of users must be trained in X and must have Y years

experience in Z.

User class characteristics can include user knowledge of computers—both in

general and with respect to specific systems. Some knowledge- and skills-based

characteristics of user class definitions can be mandated by organizational

policies or even legal requirements, especially for work roles that affect

the public.

For example, organizational policy might require a specific kind of

training for anyone to take on a given role or no one is allowed to take

on the role of an air traffic controller until they have met rather strict

requirements for levels of experience and background training mandated

by federal law.

In Figure 6-3 we show relationships among work roles, sub-roles, and user

class characteristics.

User class characteristics can include user knowledge of the work

domain—knowledge of and experience with the operations, procedures,

and semantics of the various aspects of the application area the system being

designed is trying to address.

For example, a medical doctor might be an expert in domain knowledge for

an MRI system, but may have novice-to-intermittent knowledge in the area of

related computer applications. In contrast, a secretary in the hospital may be a

novice in the domain of MRI but may have more complete knowledge regarding

the use of related computer applications.

191CONSTRUCTING DES IGN - INFORMING MODELS

Physiological
characteristics
Physiological factors

include impairments and

limitations. Age can

imply physiological factors in

user class characteristics. If

older adults are expected to

take on a given work role,

they may have known

characteristics to be

accommodated in design.

Beyond the popular but

often inaccurate

characterization of having

cognitive rigor mortis, older adults can be susceptible to sensory and motor

limitations that come naturally with age.

The older adult population in our country is growing rapidly, mainly due to

aging baby boomers. A study of potential usability barriers for older adults in 50

state and 50 federal e-government Websites (Becker, 2005) revealed a huge

amount of easily correctable flaws in the form of distractions, poor use of color,

nonstandard use of links, nonstandard search boxes and mechanisms,

requirements for precise motor movements with the mouse, font size, and Web

page lengths. Also, electronic voting machines, although not online, are

certainly part of the concept of e-government.

Physiological characteristics are certainly one place where accessibility issues

can be found. Within usage roles you may also find subclasses of users based on

special characteristics such as special needs and disabilities, such as the woman

voter mentioned in Chapter 3.

Figure 6-3

Relationships among work
roles, sub-roles, and user
class characteristics.

Web Accessability

Dr. Jonathan Lazar

Department of Computer and Information Sciences and Universal Usability Laboratory, Towson

University

Why are not more Websites accessible for people with disabilities when there are guidelines and tools available to

help developers make their Websites accessible? This is a question that fascinates me. I am a professor of computer

and information sciences at Towson University, founder and director of the Universal Usability Laboratory, and author

192 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

of the book Web Usability: A User-Centered Design Approach, editor of the book Universal Usability: Designing

Computer Interfaces for Diverse User Populations, and coauthor of the book Research Methods in Human-Computer

Interaction.

I first became fascinated with this research question when the World Wide Web Consortium, and their

Web Accessibility Initiative, came out with the Web Content Accessibility Guidelines (WCAG) version 1.0 in May

1999, which provide guidance to developers on how to design Web pages that are accessible to people with

motor and perceptual impairments. People with impairments often use alternative input or output devices, for

instance, people with motor impairments (such as limited use of hands) may not use a pointing device or may

use an alternative keyboard or speech recognition for input. People with visual impairment may use a screen

reader (such as JAWS, Window-Eyes, or VoiceOver), which provides computer-synthesized speech output of what

appears on the screen, as well as back-end textual equivalents and labels in the code. To make a Website

accessible does not mean changing the visual appearance. Web accessibility means to make sure that the Web

page uses appropriate coding standards, such as making sure that all graphics and forms have meaningful text

labels (such as name, address, rather than form1, form2), making sure that links make sense when heard out of

context (“information about the history of Wal-Mart” rather than “click here”), making sure that any scripts,

applets, or plug-ins have accessible equivalent content, and captioning and/or transcripts for any multimedia. And,

of course, a Website is a living, breathing entity that changes on a daily basis. A Website that was accessible last

week may be inaccessible this week, and accessible again next week. Accessibility must be maintained and

monitored through organizational processes. A very common approach for this is for companies and government

agencies to run a monthly report using automated accessibility tools (such as Deque WorldSpace or SSB Bart

InFocus). While usability testing, involving users with disabilities, is the best way to evaluate Websites,

automated accessibility testing (using some of the tools described previously) is used commonly for ongoing

evaluation.

The WCAG 1.0 guidelines influenced laws around the world that were created that require that government

information on the Web be accessible. Most laws are based on WCAG 1.0 or are strongly influenced by it. For instance,

the Section 508 regulations in the United States, in subsection 1194.22 (the section addressing Websites), specifically

notes that paragraphs a–k were based on WCAG 1.0. The Section 508 guidelines (which apply to both Websites and

many other forms of technology) have been legally, in effect, since June 2001. However, there has been a gap

between existing law and actual compliance. Most U.S. federal Websites are not currently accessible, and the Justice

Department, which is in charge of reporting on Section 508 compliance to the U.S. Congress and the president every

2 years, has not done so since 2003. A July 2010 memo from the CIO of the U.S. federal government states that

compliance activities will begin again soon. The Canadian national government has not fared any better. In November

2010, a Canadian federal court ruled that the Canadian national government has not followed their own laws related

to Web accessibility and has set a 15-month deadline for the Canadian federal government to bring their Websites into

compliance with the accessibility law.

Not only is accessibility policy changing, but the accessibility guidelines themselves are changing as well. In

December 2008, version 2.0 of the WCAG was approved. Governments around the world are working on updating

their regulations to match more closely with the new WCAG 2.0. In the United States, the Section 508 regulations

have already been under review, and a new draft of Section 508 regulations (which is still waiting final approval) was

released in March 2010.

Accessibility is not just important for government Websites, but also for Websites of companies, transportation

providers, education, and nonprofit organizations. When Websites are inaccessible, it can lead to unemployment,

discriminatory pricing, and lack of access to education. For instance, in one study from my research group, we

determined that when Websites of airlines are not accessible, the airfares quoted to people who are calling the airlines

on the phone are often higher, despite the callers noting that they have a disability and the law requires that they receive

the same fares (and that they cannot be charged the call center fee). In November 2010, Pennsylvania State University

was sued by the National Federation of the Blind, who claimed that the course management software, the department

Websites, and even the online library catalog were inaccessible, prohibiting access to education. eBay has recently made

their Website accessible, providing more employment and revenue opportunities for people with impairment. Currently,

the U.S. Justice Department is working toward clarifying the Americans with Disabilities Act so that Websites of public

accommodations (such as state government, education, and stores) would be addressed more clearly in the law.

I urge everyone to learn more about Web accessibility. Some great suggestions: start by trying to navigate a

Website using only a keyboard, without using a pointing device. Then either download a free demo version of the

screen reader JAWS (http://www.freedomscientific.com/jaws-hq.asp) or use a free Web-based screen reader such as

WebAnywhere (http://webanywhere.cs.washington.edu). Read up on the Web Content Accessibility Guidelines (http://

www.w3.org/TR/WCAG20) and check in to see what is currently happening in the public policy area related to Web

accessibility. Web accessibility is a goal that can be achieved. As usability engineers, we play an important role in

making this happen.

Suggested reading

Ebay. (2010). EBay for users with special needs access. Downloaded fromhttp://pages.ebay.com/help/account/

accessibility.html.

Lazar, J., Jaeger, P., & Adams, A., et al. (2010). Up in the air: Are airlines following the new DOT rules on equal pricing for

people with disabilities when websites are inaccessible? Government Information Quarterly, 27(4), 329–336.

Loriggio, P. (2010). Court Orders Ottawa to Make Websites Accessible to the Blind. Downloaded fromhttp://www.

theglobeandmail.com/news/national/ontario/court-orders-ottawa-to-make-websites-accessible-to-blind/

article1817535/?cmpid=rss1.

Parry, M. (2010). Penn State Accused of Discriminating Against Blind Students. Downloaded fromhttp://chronicle.com/

blogs/wiredcampus/penn-state-accused-of-discriminating-against-blind-students/28154.

Web Accessibility Initiative. (2010).Web Content Accessibility Guidelines 2.0. Downloaded from http://www.w3.org/TR/

WCAG20/.

Experience-based characteristics
Experience-based characteristics can also contribute to user class or subclass

definitions. Also, you should remember that experienced users for some systems

are novices for others. Considerations include:

n novice or first-time user: may know application domain but not specifics of the

application

n intermittent user: uses several systems from time to time; knows application domain

but not details of different applications

n experienced user: “power” user, uses application frequently and knows both

application and task domain very well

Example: User Class Definitions for MUTTS
Even though the ticket-seller role will be eliminated in the Ticket Kiosk System, it

is instructive to look at user classes for the ticket seller work role for MUTTS.

What characteristics are needed for this role? What training, background, or

experience is required? Minimum requirements include point-and-click

computer skills with typical Windows-based applications. Probably some simple

training is called for. They had a manual explaining the job responsibilities, but

over time it has become lost [from CJ2-17].

Because ticket sellers are often hired as part-time student employees,

there can be considerable turnover with time. So, as a practical matter, much

of the ticket seller training is picked up as on-the-job training or while

“apprenticing” with someone more experienced in the role, with some mistakes

occurring along the way [from DF1-9]. This variability of competence in the

work role, which is the main interface with the public, is not always the best for

customer satisfaction, but there does not seem to be a way around that [from

HA2-12].

Other roles, such as the event manager or advertising manager, require

some specific training because the work involves some complexity and must

be done consistently from one client to another. The event manager must

have knowledge and experience with the general domain of entertainment,

events, and ticket selling. The advertising manager must have a certain level of

knowledge and experience with promotions, sales, and the advertising aspects of

business.

As we move from MUTTS to the Ticket Kiosk System, we will see user class

definitions that relate more directly to kiosk usage. For example, you might be

expected to include inexperienced (first-time) users from the general public, as

well as senior citizens with limited motor skills and some visual impairment.

Because the database administrator role includes tasks that involve technical

issues, such as database structures and data integrity, a user class appropriate for

the database administrator role would include requirements for professional

training in database management functions. Finally, an additional work role,

maintenance technician, is also introduced to maintain the kiosks. More new

work roles will arise as they are encountered during the creation of the

envisioned flow model and the envisioned social models.

Exercise

See Exercise 6-2, User Class

Definitions for Your System

195CONSTRUCTING DES IGN - INFORMING MODELS

6.5.3 Social Models
Work does not happen in a vacuum; it occurs within a social setting, in the

broadest sense. The social model is a design-informing model that captures the

communal aspects of the users’ organizational workplace, including the overall

flavor, philosophy, ambiance, and environmental factors.

The social model highlights what is important to the organization. It

characterizes the norms of behavior, influences, attitudes, and pressures that

affect users within the work and usage context. Social models are about

thought processes, mind-sets, policies, feelings, attitudes, and terminology that

occur in the work environment. They include the concerns and influences of

Beyer and Holtzblatt’s cultural model. They include social ambiance and the

social milieu, which define explicit or implicit social interaction in the

workplace.

We call it a social model because it is mainly about the feelings, issues, and

concerns of people in the workplace and the forces that influence those feelings

and concerns, which often have a significant influence on how people approach

and do their work.

Other factors involved include position or influence within the political

structure of the organization, user goals, job-related factors, for example, job

description, location, and level of responsibility, motivational factors, and

attitudes toward the system such as “I hate this system because it will add to

my work.”

The social model contains nodes connected with arcs. Nodes represent active

roles and arcs represent social relationships, such as influence by role on

another. We describe how to create a social model diagram in the following

sections.

Identify active entities and represent as nodes
In the social model, different entities—especially work roles— with concerns or

influences within the work practice are represented as nodes. The active entities

can also include any non-individual agent or force that participates in,

influences, or is impacted by the work practice, internal to or external to the

immediate work environment.

Examples of external roles that interact with work roles include outside

vendors, customers, “the government,” “the market,” or “the competition.”

Perhaps the project team depends on an external vendor to supply a certain part

in order to build a design prototype. Or an external regulatory agency may have

put a rule in effect that limits the way a product can be marketed.

196 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Alternatively, the enterprise may be limited by union policy regarding the

number of people who can take on a given work role. Some workers in a large

government agency may feel bound up by government rules and policies, by

federal and state legislation, and by working in a union shop. Finally, generic

roles in the broader business process model, such as “management,” “the

government,” “the market,” and “the competition,” can be roles in a social

model.

Groups and subgroups of roles. Work roles and other roles can be grouped into

generalized roles that represent common concerns or influences. Group roles

can be very informal with respect to the official organization chart. For example,

you can refer to “those people in shipping” or “management” as groups.

System-related roles. There can be a number of different kinds of nonhuman

roles in a social model, including databases, systems, external signals, and

devices.

Workplace ambiance. The workplace ambiance is another nonhuman social

model entity, one that represents the prevailing organizational identity and

organizational attitudes, and any pervasive organizational personality.

Ambiance includes the milieu, the atmosphere of the workplace, and the

general “air” or “way of life” in the workplace.

Ambiance is part of the social model rather than a working environment

model because of the psychological impact on users. Sometimes the ambiance of

a workplace reflects stress and pressure.

As an example, consider a typical doctor’s office. The general mood or work

climate is rushed, chronically overbooked, and behind schedule. Emergencies

and walk-ins add to the already high workload. The receptionist is under

pressure to make appointments correctly, efficiently, and without errors.

Everyone feels the constant background fear of mistakes and the potential of

resulting lawsuits.

Work domain. The work domain itself can be an entity in a social model,

possibly containing constraints and influences on the work practice. Examples

include conventions and traditions in the work domain and legal and business

policy constraints.

Create nodes to represent social model entities. Each node in a social model

diagram represents an entity in the work practice of the enterprise. Start

with sketching a node, as a circle for example, for each of the entities, of

the kinds described in previous sections, in your broadly viewed existing working

environment. Label each node with the name of the entity. Use circles within

circles, in a Venn diagram approach, to represent groups and subgroups.

Work Environment
Model

A work environment model

is a model that defines the

milieu in which work gets

done, including constraints

and artifact and physical

models.

197CONSTRUCTING DES IGN - INFORMING MODELS

Example: Entities in the Slideshow Presentation Social Model
In Figure 6-4 we show the beginnings of a social model. We start by

identifying the entities. In the social models for the cases studied in contextual

inquiry for the Slideshow Commander, there were two main roles: one or more

people in the presenter role and a group called the audience. In turn, the

audience was sometimes composed of subgroups, local audience and remote

audience(s).

To represent these entities as nodes in our diagram of Figure 6-4, we have

drawn a circle labeled “Presenter” on the left and a large circle for “Audience” on

the right. Two smaller circles inside the main audience circle are labeled for the

subgroups “Local Audience” and “Remote Audience.” We also added

“Ambiance” as a nonhuman entity.

Each presentation potentially included one or more other subsidiary roles in

the social model (not shown in Figure 6-4 for the sake of readability), including

technical support, the host (to welcome the audience and introduce the

speaker), advisory committees (in the case of student presentations), and

members of the presenter’s immediate research team. All of the people filling

Figure 6-4

Depiction of entities in
the slideshow presentation
social model. Thanks to
Brad Myers, Carnegie
Mellon University, and
his colleagues for their case
study (Cross, Warmack, &
Myers, 1999) on which this
example is based.

198 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

these roles worked toward making the communication between presenter and

audience as smooth and as informative as possible.

Identify concerns and perspectives and represent
as attributes of nodes
Often managers treat concerns of their employees as “intangibles,” yet they

can have a very tangible effect on how people work. Workers often have

concerns about other workers, issues connected to their work roles, work

goals, and how things get done in the work domain. The concerns show what

people care about in the work place and how they think about their work,

the tools they use, the people they work with, and the organization they

work for.

They may (and are likely to) share overall work goals with other work roles,

but each work role has a different perspective on the work and the workplace

and on the other work roles. Groups and subgroups can have their own set of

common concerns, just as any other entity. Many concerns are hidden and must

be teased out in contextual inquiry.

For example, while the primary intents of people in work roles are to get the

job done, people also have secondary intents driven by their own personal

and possibly tacit agenda or concerns. Those concerns in turn motivate user

behavior in doing the work and, if a system is used to do the work, in using the

system.

For example, a manager might be concerned with capturing very complete

documentation of each business transaction, whereas the person in the work

role that has to compile the documentation may have as a goal to minimize the

work involved. If our analysis does not capture this secondary user goal, in design

wemaymiss an opportunity to streamline that task and the two goals may remain

in conflict.

Finally, there is another kind of concern, personal concerns that relate to the

user as a person rather than to the work. For example, most workers want to do

almost anything to avoid being embarrassed or being made to look stupid. It is

natural not to want to lose face publicly. Designs that emphasize worker

production can be broadened to take these more personal concerns into

account. Satisfied workers are more productive.

The point here is that information about this kind of personal concerns

cannot be obtained from any requirements document, task analysis, or other

engineering method. You must do the contextual inquiry and analysis and

social modeling.

199CONSTRUCTING DES IGN - INFORMING MODELS

Label nodes with associated concerns. Summaries of user concerns are

represented as text in “thought bubbles” connected to human roles and

expressed in the perspective of users. We are showing what goes on inside the

head of the person in the role in the style of a cartoon.

Example: Concerns in the Slideshow Presentation
Social Model
In Figure 6-5 we have added the concerns of several roles of Figure 6-4. Because a

member of the local audience was selected to set up the software and equipment

for the presentation, we added “Selected Member” as a subgroup of “Local

Audience.” Note the feelings and concerns of the presenter and those of the

audiences.

Identify influences and represent as relationships
among entities
Each entity type can exert different kinds of influences on other entities.

Personal and professional inter-role influences. Individuals in work roles have

different kinds of influence on individuals in other work roles that affect behavior

within the work practice. There are personal feelings about the work and aboutFigure 6-5

Depiction of concerns in the
slideshow presentation
social model.

200 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

co-workers that influence how well people work together. The model may also

reflect plain old interpersonal or inter-role frictions and animosities.

In an enterprise that counts on teamwork, there will be dependencies of

people in certain roles on others in other roles—the ability to do one’s job well

can depend on others doing theirs equally well. As an example, consider a case

in which one person gathers data from machines in the field and someone else

analyzes these data. The analyst depends on getting accurate and timely data

from the data gatherer.

Power influences. There are many kinds of power within most organizations.

Power relationships between roles can stem from having different official ranks.

As an example of influence built into the professional hierarchy, in our

consulting with the U.S. Navy we often encountered a strong professional

imperative that sometimes put rank above reason. It often meant to those of

lower rank that it is better (for your career, if not for the task at hand) to follow

orders and keep your opinions to yourself, for example, opinions about what

might be a better way to do things.

Alternatively, nonmilitary employees can “pull rank” based on official job

titles. Influence stemming from this kind of power relationship can be exerted

inmany ways. However, in a social model, power influence is not always based on

power that comes with a given job title in an organization chart; it can be

leverage or clout that exists as a practical matter and often comes from people

who proactively take on leadership roles.

Influence comes from the strength or authority a person exerts in a work role.

In meetings, to whom does everyone listen the most? When the chips are down,

who gets the job done, even it if means working outside the box?

For systems with complex work domains, territorial boundaries are

important to some people and can have a profound effect on how work is done.

Interaction designers must take all these influences into account if they are to

come up with a design that works in the target environment.

System-related influences. People in various roles can feel influences, including

pressureor stress, fromsystem-related entities, including the computer system.For

example, a slow server can frustrate a data entry clerk and cause job stress.

Influences from ambiance. The general atmosphere of the workplace can exert

powerful influences on work practice and behavior, including the values on

which daily work practice is based, and the implied expectations that underlie

the “way of life” in an organization.

Influences from work domain constraints. Constraints imposed by legal

requirements and regulations, as well as organizational policies and politics, can

frustratingly tie your hands as barriers to accomplishing your work goals.

201CONSTRUCTING DES IGN - INFORMING MODELS

Another source of influence on enterprise work practice has to do with

whether system usage is discretionary or captive. This parameter, dictated by

work domain constraints, indicates whether users in a particular work role have a

choice in deciding to adopt or use the system being designed or whether

political or organizational policies or business needs mandate the use of the

system.

Discretionary users can walk away from the system if they do not like it. If a

discretionary user does choose to use the system, that user is usually a receptive

user, one who is favorably inclined toward adopting the system being designed.

In contrast, captive users may feel trapped and may see the new systemmerely as

adding to their work.

Barriers as influences. Barriers to successful work practice are a type of

influence in the social model. One of the most common kinds of barrier to

consider when redesigning work practice within a complex-domain system is

rooted in people’s attitude toward change.

Just because new ways of getting work done, new technology, and new systems

may have obvious advantages to you, the designer, does not mean that they will

not be upsetting to, and resisted by, the people whose jobs are affected. The

attitude toward change can vary across an organization, from top management

all the way down to the worker bees.

We have labored in organizations in which legacy systems thrive long beyond

their useful lives because old-timers are bound up in a struggle to hang on to the

old ways within an ancient “stove pipe” management structure. It is all but

impossible to sell new ideas in these bastions of tradition.

It may sound like a trite observation, but the “we have never done it that way”

mentality can be a huge and real barrier to creativity in a social work

environment. Dissatisfied workers can also present real barriers within a

work environment. In your contextual inquiry and analysis be sensitive to

indicators of job dissatisfaction and do your best to glean insight on the

underlying causes.

Be sure to include in your social model how people think and act negatively

in response to dissatisfaction. Is the watercooler or the break room the center

of subversive coordination? Is subversion or passive-aggressive behavior a

common answer to power and authority? How strong is the “whistle-blower”

mentality? Does the organization thrive on a culture of guerilla activity?

As in the other models, barriers, or potential barriers, in relationships

between entities are represented as a red bolt of lightning (), in this case on

influence arcs. See examples of these barriers in Figure 6-6.

202 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Consequences of and reactions to influence. People react to pressures and

influences. Backlash reactions to influences are what Beyer and Holtzblatt call

“push-back.” For example, a person in a particular work role feels pressure to

deliver but barriers to performing on the job have combined to produce

frustration.

Users can react to this kind of job frustration by “pulling in their wings”

and hunkering down to “endure” the job or they can react by causing further

stress for everyone. This kind of situation needs a solution that will restore

everyone’s ability to contribute to the success of the enterprise while enjoying

satisfaction on the job.

Create arcs to represent influences. Influences by one entity upon another are

represented by an arrow, or directed arc, from the influencer to the influencee in

the style of “influence: consequence/reaction”. An arc canbebidirectional, shown

as a two-headedarrow, if, for example, the twoentitiesdependoneachother in the

same way. Arcs are labeled to denote the specific influence being represented.

Example: Arcs Representing Influences in the Slideshow
Presentation Social Model
In Figure 6-6, we have added arcs representing some selected influences in the

slideshow presentation social model. Note that arrows to and from the outer

“Audience” circle correspond to influences common to both kinds of audience.

Figure 6-6

Depiction of influences in
the slideshow presentation
social model.

203CONSTRUCTING DES IGN - INFORMING MODELS

Arrows to or from an inner circle, such as the “Local Audience” circle, represent

influences pertinent to that type of audience only.

In their studies, the team noted the mostly obvious observation that some

stress due to speaking before a group in public is common to most people.

So, we represent this influence of the general stress of public speaking on the

presenter from the situational ambiance.

The team noted that some presenters not used to public speaking, in reaction

to this influence, will display a nervous demeanor to the local audience, talking

too fast and sometimes mumbling. You can see this presenter behavior

represented as an influence on the local audience in the lower left-hand portion

of the diagram in Figure 6-6, with the added reaction by the audience in the form

of reminders to slow down, speak up, and enunciate.

Other barriers represented as influences include communication barriers

between the presenter and remote audiences, as noted in the studies. In

Figure 6-6, for example, we show the fact that the remote audience often cannot

hear the presenter as a barrier, with a red lightning bolt, to the “influence”

labeled “Tell me what you’re doing.”

Similarly, another red lightning bolt shows that the presenter cannot

always hear questions from remote audiences. As an example of another barrier,

when source material references were given verbally, they could not be

remembered by audience members; this caused a barrier to pursuing the

topic further after the talk.

Limited space in this one small figure precludes completeness, but you can

imagine other influences. For example, the presenter desires feedback, support,

and interesting questions from the audience. The audience desires clear and

organized information. The presenter wants to impress everyone and wants to

stimulate interesting discussion and help the audience understand the material.

The audience wants clear and complete information.

An additional influence related to work domain constraints might

arise with hierarchical audiences, as opposed to peers only. Their studies

found a strong element of influence (again, not shown in Figure 6-6, for

simplicity) due to the presence of faculty and thesis supervisors at a student

presentation.

Because it is their job to do so, this kind of audience often exhibited a more

critical tone and a more “demanding” (of explanations and rationale) and

stressful ambiance for the presenter as compared to the more collaborative,

sharing, and supportive ambiance of peer audiences that usually offered

suggestions in a two-way exchange.

204 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Example: A Social Model for MUTTS
In the example social model for MUTTS shown in Figure 6-7, we present

selected parts of what is an even larger model. Starting with the roles, we identify

the ticket seller and ticket buyer as the main ones, represented as two nearby

circles near the top. Almost always you will want to include the ambiance and

work domain as nonhuman entities.

The administrative supervisor, database administrator, and office manager

are shown, and a full representation of themodel would also show all other roles

that appear in the upcoming flow model, such as the event manager, the

advertising manager, and the financial administrator.

The diagram shows a few examples of concerns, including mutual

concerns between the ticket buyer and the ticket seller about possible

negative consequences of going to a kiosk-based system. The administrative

supervisor is also shown as concerned about insufficient revenues from Figure 6-7

Example social model
for MUTTS.

205CONSTRUCTING DES IGN - INFORMING MODELS

tickets alone. Note for clarity of narrative reading that we have omitted tags

to the data sources.

The bulk of the diagram is devoted to influences. For example, the ticket

seller wants to please ticket buyers and especially wants to avoid complaints

from ticket buyers, complaints that could have a negative effect on the

ticket seller’s job reviews. You can also see pressure, when the ticket window is

busy, from other ticket buyers in line for the current ticket buyer to hurry up and

not delay the rest of them.

The ambiance exerts certain pressures on ticket buyers, too, because the

environment is public and can be noisy, distracting the ticket buyer and

impeding the ability to make event choices, seating choices, and other decisions

needed to buy tickets.

The database administrator works in a relatively quiet office but could be

faced with daily pressure to maintain data integrity and to keep the systems

up and running continuously. Because of sharing a fairly small office with the

event manager, whose phone is ringing constantly, the database administrator

can, at times, find it hard to concentrate. When faced with the pressure of things

going wrong with the computer, the ringing phone and constant chatter on the

phone can become enormously irritating.

Problems with Tickets4ever.com are a negative influence on all internal

work roles. There is concern that the poor quality usage experience users get

on Tickets4ever.com will cast a shadow on MUTTS’s reputation for reliability

and service. Because ticket buyers do not necessarily make the distinction

between Tickets4ever.com and MUTTS, they can all be painted with the same

brush. For big concerts, a large online demand can sometimes overwhelm the

Tickets4ever.com server and it goes down. If a transaction fails for any reason

and the order does not go through and the ticket buyer starts over, he or she

can sometimes get charged twice. If he or she does not start over, sometimes

the order does not go through and the ticket buyer fails to get the expected

tickets.

The administrative supervisor has influence on all the internal work

roles, out of proportion to her real role in the work practice. Because she

is not involved directly in the day-to-day operations, employees perceive

her as unfamiliar with the work practice and therefore unrealistic in her

expectations for performance. The staff then feels obligated to explain

when the expectations are not met. And, when the workers have questions, it is

hard for them to get answers from her.

206 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

To make things worse, the administrative supervisor tends to show up

occasionally, causing stress for everyone. So she has an impact on people

in other work roles and makes all their jobs harder, producing more

on-the-job stress.

As another example of her influence, because the administrative

supervisor’s concerns that the enterprise is not generating enough revenue on

contracts, ticket sales, and advertising, she has aspirations to increase total

revenues by selling many items in addition to tickets, including over-the-

counter commodities such as candy, gum, and aspirin, plus merchandise

souvenirs, T-shirts, hats, and banners. But the people currently in other work

roles are resisting this kind of change, saying that these merchandising

activities will distract their focus on actual ticket operations. Plus their main

sales software, Event Pro, is not set up for event-independent merchandise

sales.

An example of work domain influence on both ticket buyers and ticket sellers

is seen in the organizational policy not to give refunds for tickets. Tickets can be

exchanged, but for a $3 fee. This policy causes a public relations problem

because the staff has to deal with and console disappointed ticket buyers.

Another influence from the work domain, this one on the office manager,

stems from the fact that MUTTS uses up to three ticket sellers to operate their

three ticket stations. They often have just one ticket seller but in periods of high

demand they need to hire additional ticket sellers quickly, which they later lay

off. However, university hiring policies make it difficult to hire and fire

temporary ticket sellers on a timely basis to match workload demands.

Ticket buyers exert various influences on the ticket seller. For example, many

repeat customers want a “small-town” relationship with the ticket seller. They

want them to remember the ticket buyer by name and, in some cases, provide

recommendations based on what the ticket buyer likes.

Among the influences from the work domain is pressure on the ticket buyer

to buy tickets for popular events before all the good seats are gone. For season

tickets, it is especially important to get good seats because you will have the same

seats for the whole season.

As an example of influence of the work domain on all roles, when the

workload is high, over-the-counter sales get hectic and there is pressure on

everyone to get things right. Errors and problems will upset ticket buyers.

Finally, through contextual inquiry interviews, we discovered an influence

on all work roles that can be traced indirectly to the administrative supervisor.

In some cases there is a lack of a clear division of roles and responsibilities,

207CONSTRUCTING DES IGN - INFORMING MODELS

making it uncertain who is authorized to do what and who is not. This influence

can lead to hand tying and, because of it, sometimes things do not get done.

Social models in the commercial product perspective
Social Model for a SmartphoneSocial models about usage of a commercial

product can be very illuminating to designers. What is the context of usage?

When do people use it? Are other people around? What does the product look

like—is the impression cool or is it dorky? What are the users’ feelings about

having and using the product? Are they proud or embarrassed to own it? What

does it say about them as individuals? What influenced them to buy it as opposed

to a competing product?

The envisioned social model
As new work roles arise, so do concerns and influences experienced by people

in those roles.

Example: An Envisioned Social Model for the
Ticket Kiosk System
As we introduce the concept of ticket kiosks all around town, new roles,

concerns, and influences arise in the social model. Venue managers may see

the potential for greatly increased ticket sales but may wonder if they can handle

the additional logistics. Advertisers might be thinking about how they can

monitor the effects of the additional advertising. How can they determine

if their kiosk ads are cost-effective?

The working environment for the ticket buyer now will be quite different.

Instead of standing at the ticket office window, the ticket buyer will be at a kiosk

in a public place that could be noisy and distracting. Also, now that the ticket

seller is replaced with a kiosk, the ticket buyer interacts with amachine instead of

a human; the issue of trust may become more important.

The ticket buyer will still need to communicate with friends and other

individuals to discuss event information—only now the ticket buyer is at the

kiosk. A cellphone would still work, but also maybe this need to communicate

might inspire designers to consider a possible future feature requirement

for including a way to send event information from the kiosk, via the Internet,

to email addresses. This need for outside communication could also show

up in the flow model.

Another example of a concern is that of a customer who uses the kiosk located

at a bus stop: “If my bus arrives when I am only partway through a transaction

to buy tickets, will I be able to get out quickly and safely and resume later, for

Exercise

See Exercise 6-3, A Social

Model for Your System

Exercise

See Exercise 6-4, A Social

Model for a Smartphone

208 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

example, after work tomorrow, without losing too much progress in my search

for entertainment events?”

Because many of the kiosks will be placed near bus stops, the Middleburg Bus

Authority, although not a direct user of the Ticket Kiosk System, becomes a

stakeholder. And this new stakeholder has concerns about whether crowds at the

kiosks will interfere withMiddleburg Bus operations or introduce a safety hazard

to bus riders.

Also, if the kiosks are actually onMiddleburg Bus property, howmuch income

can be expected from leasing the space for the kiosk? Middleburg Bus may also

be worried about the added exposure to public liability, whether bus stop

lighting is adequate, and will there be any added public safety issues? By the same

token, the local police may be concerned about the potential for vandalism and

whether a kiosk poses an “attractive nuisance.”

6.5.4 User Personas
Technically, personas are a type of user models, but they are tied so closely to

design that we discuss them in Chapter 7.

6.6 USAGE MODELS

Usage models are a set of models that define how work gets done, including flow

models, task structure models, and task interaction models.

6.6.1 Flow Model
Different authors place different relative values on different kinds ofmodels, but

we believe that if you had to pick the single most valuable design-informing

model, the flow model is it. The flow model is a picture of existing work

processes in the work domain being analyzed for a new design.1

The flowmodel is like a plan view in architecture—it shows a bird’s-eye view of

the entire workflow of the enterprise humming along below. It should show

territorial boundaries, especially the separation between enterprise and non-

enterprise work roles.

Initial sketches of the enterprise flow model are begun from customer and

user data early in contextual inquiry. Now we follow up on the flow model

sketches and complete the flow model.

1Our approach to the flowmodel was influenced byMonk and Howard’s (1998) rich picturemodel, which in

turn has its roots in the Checkland’s Soft Systems Methodology (Checkland & Scholes, 1990), which itself

connects to roots common to those of work activity theory, contextual design, and other ethnographic and

sociotechnical techniques in system design (Bjerknes, Ehn, & Kyng, 1987).

209CONSTRUCTING DES IGN - INFORMING MODELS

The focus of a flow model is on the issue of with whom and with what do the

users in each work role interact. Specify whether the system supports inter-role

communication or users must do it on their own, for example, via a shared

database or through a telephone conversation. What information is exchanged

when entities communicate? Describe the different types of information that are

exchanged among work roles and other entities.

For example, in a financial institution, a loan officer may need to speak with

customers over the phone as part of a home loan application. Such details provide

valuable insights to designing for their work activities. For instance, in this case,

the user interface of the loan officer user class could have an option to dial the

customer’s primary phone number as and when required at the touch of a button.

Creating a flow model diagram
Since early contextual analysis, you will have already been creating a flow

model, representing workflow and other flow within the enterprise.

We introduced this with a quick sketch in Chapter 4. Structurally, a flow

model is a graph of nodes and directed arcs (arrows).

Nodes for entities. Labeled nodes represent entities in the enterprise workflow.

Be sure you have represented as nodes all the work roles, including individuals

or groups, direct or mediated users, potential users of all kinds, and all other

entities that interact to get work done within the work practice.

“Other entities” include people outside the enterprise and entities such as

systems, software, and devices. Most work domains in a domain-complex system

context have a central database that users in all kinds of roles use to store,

update, and retrieve work data. Draw entity nodes for information systems

and databases that, like the work roles, are usually central in the workflow.

Label each node with the corresponding entity name. Instead of using labeled

circles for work role nodes, you can make your flow model more expressive

by representing work roles as icons or stick figures depicting one or more

people in those roles. You can make your flow model even more compelling

by representing entity nodes with pictures of the corresponding personas

labeled with their persona names, where they exist.

Having the user work roles visually in the center of a flow model also will help

maintain user-centered thinking. Also, focusing on their workflow will help

maintain usage-centered thinking.

Arcs for flow. Add labeled arcs or arrows to connect the entity nodes,

showing who talks with whom and who gives what to whom, both internal to

the enterprise and externally in the rest of the world. The arcs represent

210 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

communication and coordination necessary to do the work of the enterprise—

via email, phone calls, letters, memos, and meetings. Arrows show the flow

of information, goods, services, workflow, work products, and artifacts during

the execution of work practice.

If flow from one work role or piece of equipment in the system branches to

more than one place, it can be helpful to know about how often it goes each

way. Sellers (1994, p. 62, Figure 67) suggests labeling flow lines with

percentages representing frequency of flow, if you have data to support it.

Along with the label naming each arc, as much as possible, add a tag or

identifier back to the relevant associated part of the raw data, using the tagging

we did in Chapter 3.

If physical equipment contributes to flow, for example, information is

communicated via telephones or email, label arcs accordingly. Flow model

components should reveal how people get help in their work and make it clear

where each artifact comes from and where it goes in the work process. Flow

models also include non-UI software functionality, too, when it is part of the

flow; for example, the payroll program must be run before printing and then

issuing paychecks.

If youmake a flowmodel of how aWebsite is used in work practice, do not use

it as a flowchart of pages visited, but it should represent how information and

command flow among the sites, pages, and users.

Example: A Flow Model for Slideshow Presentations
Separate flow models for slideshow presentation cases showed that the

flow of information was often interrupted, either briefly or significantly,

for almost 10 minutes during one presentation. The flow in some presentations,

particularly ones with remote audiences, was overwhelmed with the need for the

speaker and technicians to manipulate multiple electronic devices.

Barriers to flow were revealed most frequently when information flow to

the presenter or the audience was interrupted, such as when extraneous

application windows blocked part of the presentation screen or when sound

controls were not adjusted properly. In Figure 6-8 we show an example flow

model for slideshow presentations. Note the red lightning bolts representing

barriers to flow.

Example: A Flow Model for MUTTS
The early sketch of the ticket-buying flow model for MUTTS shown in Figure 4-3

evolved into the diagram shown in Figure 6-9.

Barrier

A barrier, in contextual

modeling, is a problem that

interferes with normal

operations of user work

practice. Anything that

impedes user activities,

interrupts work flow or

communications, or

interferes with the

performance of work

responsibilities is a barrier

to the work practice.

211CONSTRUCTING DES IGN - INFORMING MODELS

This flow model shows flow of goods, services, and significant internal flow of

information, for example, tickets and event information for customer, for

running the business of MUTTS. The flow model is also a model of the

enterprise organization business process, as it includes information

transformations that occur as part of the flow as a component of the work

process.

You may note that some of the important roles in the work process are

within the MUTTS enterprise boundary (shown as an oval outline in Figure 6-9)

and some are external. Some of the internal roles are, in fact, paired with

external (to the MUTTS enterprise) roles in order to accomplish the flow

of work.

For example, the internal role of event manager pairs up with the external

role of the event promoter to carry out the work of booking and entering

information for particular events. Note also interactions among roles not

involved directly in ticket buying or selling, such as friends and/or family of

Figure 6-8

Example flow model
from the slideshow
presentation contextual
inquiry. Thanks to Brad
Myers, Carnegie Mellon
University, and his
colleagues for their case
study (Cross, Warmack, &
Myers, 1999) on which
this is based.

212 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

ticket buyer in the upper right-hand corner of the diagram, standing there with

the ticket buyer or on the cell phone, communicating about choices of

events, dates, seats, and prices.

Flow models in the product perspective
In the perspective of a system with a complex work domain, the flow model is a

complex enterprise representation. In the product perspective, the flow model

can still be useful but is usually much simpler because there is usually no

“organization” involved.

Flow models in the product perspective usually have fewer work roles than

their domain-complex counterparts. The nature of work in the product

perspective is different because of the fact that it does not happen in a fixed

place. In an organization the workflow is somewhat fixed, although usually

complex.

For a product, the workflow and context have much more variation from

somewhat defined usage to connections with other users and devices for a

Figure 6-9

Flowmodel of our version of
MUTTS.

Exercise

See Exercise 6-5, Creating a

FlowModel for Your System

213CONSTRUCTING DES IGN - INFORMING MODELS

large number of purposes. For example, in the case of a camera, most people

just use it to take pictures, but if we expand the scope of consideration of

workflow we get into how the pictures are downloaded, stored, and further

processed and exchanged. Those parts of the photographic process could have

implications for camera design.

For example, the need for easy physical access to the flash card, tethered-

use picture transfer by cable, remote transfer by WiFi or infrared

connections, sharing with friends and family, and streaming directly to

printers or the Internet. The flow models of work in the product perspective

tend to be much less connected than the typically established work patterns

in an organization.

As another example, if the product being designed is a midrange laser

printer, you need to model work activities in different types of homes, offices,

and businesses, including all the activities for finding the right cartridge when

one runs out and where to buy one.

Similarly, the amount of information exchanged among different work roles

associated with a commercial product tends to be less structured and more

opportunistic in nature. Also, given that the adoption of most end user products

tends to be discretionary, it is much more important to capture and model a

broad range of subjective and emotional impact factors than in domain-complex

system contexts.

The envisioned flow model
Holtzblatt and colleagues (Beyer & Holtzblatt, 1998, pp. 275–285;

Holtzblatt, Wendell, & Wood, 2005, Chapter 11) use the term “visioning”

to describe their creation of an envisioned flow model. Through structured

and focused brainstorming, the team creates a new design for work

practice. The resulting vision is a story about the future, a new flow model

of what the new work practice will be like and how the new system will

support it.

To sketch out your envisioned flow model, you can start by reviewing,

if necessary, relevant parts of your WAAD (Chapter 4) and any relevant

design-informing models including, of course, your existing flow model.

Brainstorm the flow of information and physical work artifacts among work roles

and other parts of the system, such as external data sources and any central

databases, as needed to carry out the high-level tasks in your HTI. Look for

where work is handed off between roles, as these are places where things can

fall through the cracks.

Hierarchical Task
Inventory (HTI)

Hierarchical task inventory

(HTI) is the process of

cataloguing and

representing the

hierarchical relationships

among the tasks and sub-

tasks that must be

supported in the system

design.

214 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Example: Envisioned Flow Model for the Ticket Kiosk System
The early sketch of the ticket-buying flow model in Figure 4-3 evolved into the

diagram shown in Figure 6-9, which captured the viewpoints of the ticket-buying

customer of MUTTS and the internal and external work roles required to

run the business.

This flow model evolved into the envisioned flow model of Figure 6-10, which

captures the viewpoints of the ticket-buying customer of the kiosk and some of

the roles internal to the kiosk enterprise organization required to run the

business, including themarketingmanager, the event informationmanager, the

database administrator, the financial administrator, and kiosk maintenance.

This envisioned flow model shows several additional new work roles not

identified previously for the Ticket Kiosk System. Figure 6-10

Envisioned flow model for
the Ticket Kiosk System.

215CONSTRUCTING DES IGN - INFORMING MODELS

6.6.2 Task Models
Task models represent what users do or need to do in the work practice and

work environment, using system or not. Task models include both task structure

and task interaction models. The primary task structure model is the

hierarchical task inventory, similar to the idea of hierarchical task analysis.

There are several different task interaction models, each with its own way to

represent the interaction.

Tasks vs. functions
In order to understand task modeling, one must appreciate the distinction

between a task and a function. Informally, we may use the terms more or less

interchangeably when talking about the features of a system, but when we wish to

avoid confusion, we use the term “task” to refer to things a user does and the

term “function” to things the system does.

When the point of view is uncertain, we sometimes see a reference to

both. For example, if we talk about a situation where information is

“displayed/viewed,” the two terms represent two views of the same

phenomenon. It is clear that “display” is something the system does and

“view” is something the user does, as the user and system collaborate to

perform the task/function. Within contextual analysis, of course, the user,

or task, view is paramount.

6.6.3 Task Structure Models—Hierarchical Task Inventory
Task structure modeling, such as hierarchical task inventory modeling, is the

process of cataloguing the tasks and subtasks that must be supported in the

system design. Like functional decompositions, hierarchical task inventories

capture relationships among tasks that need to be supported in a new

system design.

Task inventories
A hierarchical task inventory, in which tasks are broken down into a series of

subtasks and steps, is used:

n to show what user tasks and actions are possible

n to guide overall design

n as a checklist for keeping track of task coverage in your design (Constantine &

Lockwood, 1999, p. 99)

n for matching that coverage to your inventory of scenarios and other task

representations

216 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Also, the accounting of the scope of tasks in hierarchical task inventory

can serve as feedback about completeness in the contextual inquiry data,

highlighting task-related areas of missing or inadequate contextual

data to pursue in subsequent data-gathering activities. A hierarchical

inventory of tasks is also a good source from which to select tasks for usage

and design scenarios.

Task naming in hierarchical task inventories
In hierarchical task decomposition, each task is named and task names are

usually of the form “action object,” such as “add appointment” or “configure

parameters.” Task names require usage-centered wording rather than

system-centered wording. For example, “view appointment” is a task name, but

“display appointment” would be a system function name.

Hierarchical relationships are represented graphically by the usual tree-like

structure, as in Figure 6-11. If task A is drawn above task B, it means

A is a super-task of B, or B is a subtask of A. Exactly the same

relationship exists between A and C. B and C are “sibling” tasks.

The litmus test characteristic for themeaning of this hierarchical

relationship is that doing B is part of doing A. Another way to put it is:

if the user is doing task B, then that user is also doing task A. As an

example, if the user is filling out the name field in a form (task B),

then that user is also filling out a form (task A).

Avoid temporal implications in hierarchical
task inventories
The hierarchical relationship does not show temporal sequencing. So, in

Figure 6-12 we depict an incorrect attempt at a hierarchical relationship because

selecting a gear is not part of starting the engine.

Example: Hierarchical Task Inventory for MUTTS
Starting at the very highest level of tasks for MUTTS, you have the major task sets

performed by each of the work roles, such as the financial administrator, the

database administrator, the event manager, the advertising manager, and the

ticker buyer. Using an “action-object” approach to task naming, these major task

sets might be called “manage finances,” “manage database,” and so on, as shown

in Figure 6-13.

The full HTI diagram for MUTTS is enormous. Because the work roles often

represent mutually exclusive task sets, often leading to separate interaction

designs, it is convenient to treat them in separate HTI diagrams. In this example,

Figure 6-11

Hierarchical relationship
of task A, the super-task,
and tasks B and C,
subtasks.

Figure 6-12

An incorrect hierarchical
relationship attempting to
show temporal sequencing.

Work Role

A work role is defined and

distinguished by a

corresponding job title or

work assignment

representing a set of work

responsibilities. A work role

usually involves system

usage, but some work roles

can be external to the

organization being studied.

217CONSTRUCTING DES IGN - INFORMING MODELS

we focus on the ticket-seller role and the

corresponding most obvious task: “sell

tickets.”

How does this break down into

subtasks? This is where our design-

informing model notes about tasks come

in. If we organize them in a hierarchical

structure, we will see notes about big tasks at the top, subtasks in the middle, and

individual user actions (if any) at the bottom. Looking at the top-level notes, we

see that “sell tickets” involves a number of potential user activities to find and

decide on an appropriate event before the actual ticket purchase is made.

We intend the “sell tickets” task to encompass all event searching and other

subtasks that necessarily go into making a final ticket sale. In Figure 6-14, we

show a few more details for under the “sell tickets.”

Figure 6-13

Sketch of the top levels of a
possible hierarchical task
inventory diagram for
MUTTS.

Figure 6-14

Partial HTI for MUTTS
“sell tickets” task.

218 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

As we work with tasks we try to organize by adding logical structure. For

example, there may not be task-related work activity notes explicitly about

“finding information” in the contextual data, but there are references to work

activities that imply the need for searching, browsing, and filtering event

information. So we have pulled these together and synthesized the general

heading of “find information.”

Envisioned task structure model
If the task structure changes in your new vision of work practice, then it is

important to update the HTI representation to reflect your envisioned task

structure. The HTI also shows the new vision of how all the subtasks fit together

under the tasks.

Example: Envisioned Hierarchical Task Inventory
for the Ticket Kiosk System
The envisioned HTI diagram for the Ticket Kiosk System is very similar to the

HTI diagram of MUTTS. The essential difference is that finding and ticket

buying tasks are now done by the ticket buyer instead of the ticket seller, and

they are done on a kiosk instead of a computer. New work roles and

corresponding tasks will be added for kiosk monitoring and maintenance.

6.6.4 Task Interaction Models
In addition to modeling task structure, and much more important for

understanding user work, wemust model the interaction part of tasks, steps, and

user actions required to perform tasks.

Usage scenarios as narrative task interaction models
Scenarios are a task description technique that offers powerful tools for gaining

insight about user needs and activities, supporting almost every phase of the

interaction design lifecycle. In this chapter the term “scenario” refers to a “usage

scenario” because these scenarios are extracted from contextual data that

reflect actual usage that stems from real work practice in the existing work

domain. When we get to design, we will talk about “design scenarios” because

those scenarios are stories of what usage will look like using the new design.

Like other design-informing models, scenarios are threads that link various

interaction design process activities. Scenarios begin in contextual inquiry and

requirements analysis and later will play an obviously important role in design.

Real contextual data provide the necessary richness to avoid superficiality

Exercise

See Exercise 6-6,

Hierarchical Task Inventory

for Your System

219CONSTRUCTING DES IGN - INFORMING MODELS

(Nardi, 1995). Even after transitioning to a product, scenarios can be updated

and used for usability evaluation and in training to show users examples of how

to do various tasks.

What are scenarios, how do they work? Usage scenarios are stories about specific

people performing work activities in a specific existing work situation within a

specific work context, told in a concrete narrative style, as if it were a transcript

of a real usage occurrence.However, as Go andCarroll (2004) point out, scenarios

are many things to many people. In addition to their obvious value in

requirements and design, Go and Carroll (2004) demonstrate their use as a

brainstorming tool for planning, a decision-making tool for stakeholders,

requirements engineering support, and a tool for object-oriented analysis and

design.

Scenarios describe key usage situations happening over time, being

deliberately informal, open-ended, and fragmentary. Interaction designers use

these scenarios to gain a better understanding of the system usage in the context

of the user’s actual experience. Tasks defined in task modeling become the

heart of each scenario, which attempts to capture a representative description of

the actual task performance.

Because scenarios are work oriented, they focus on needs, goals, and

concerns of users. Scenarios reveal and facilitate agreement on requirements

and evoke thought and discussion about requirements, design, user experience

goals, and testing strategy.

Elements of scenarios. Scenarios typically capture these kinds of elements:

n Agents (users, people in work roles, often in personas, system, sensors)

n User goals and intentions

n User background, training, needs, etc.

n Reflections on work practice, including user planning, thoughts, feelings, and

reactions to system

n User actions and user interface artifacts

n System responses, feedback

n User tasks, task threads, workflows, including common, representative, mission

critical, and error and recovery situations

n Environmental and work context (e.g., phone ringing)

n Barriers, difficulties encountered in usage

n And, of course, a narrative, a story that plays out over time

Usage scenarios should be annotated, as meta-data, with comments about

what you have observed that works and what does not, what the problems are

220 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

with the way things are done currently. We represent a barrier or difficulty in a

usage scenario with the usual red lightning bolt () added at a strategic place in

the text.

Scenarios are not for everyone. The efficacy of scenarios as models to inform

design is not universally lauded. In a CHI 2003 tutorial, Constantine and

Lockwood (2003) claim that scenarios suffer from a few drawbacks, which we

quote verbatim here:

n coarse-grained model muddles distinct tasks

n rarely feasible to model entire task domain

n superfluous details distract from essentials

n exceptional, uncommon, or unimportant actions can assume undue prominence in

story line

n concreteness does not facilitate innovative thinking

Example: Usage Scenario for MUTTS
Here is a fairly detailed usage scenario about a group of students using MUTTS.

On cellphone and email over a day or two, Priya and a group of her

friends plan an evening out together on the coming weekend. They agree to

meet at the MUTTS ticket window on Friday afternoon. Some walk to MUTTS,

while others take the bus.

With the work week behind them, the group is in a festive mood, looking for

entertainment over the weekend. They decide to check out events for

Saturday night. After waiting in line, Priya asks the ticket seller what kinds of

events have tickets available for Saturday night. The agent looks through her

computer listings of movies, concerts, plays, fairs, carnivals, and special events

and tells the group about their options. After talking among themselves, they

decide they want to go to a concert. The agent asks, “Which kind, classical or

pop?” They choose to go with a pop concert. Again, she tells them their options.

They finally decide on a concert playing at The Presidium.

There is some unease within the group, though, because they feel that the

agent did not give them enough information to make the best choice () and

they felt some pressure to decide in a hurry (), as the agent was standing there

and waiting.

They ask about what seats are available and the agent goes back to her

computer and brings up a graphical seating map of the hall. However, the

tickets the agent has on hand are for only a subset of the seats actually available,

forcing the group to pick from these, knowing they had not seen all the real

221CONSTRUCTING DES IGN - INFORMING MODELS

options (). They choose their seats based on price and seat location and the

agent requests an option to buy the tickets, locking out others until the

transaction is either completed or given up. The group agrees on the purchase

and thendiscusses thematter of paying. They decide to give Priya cash and shewill

pay on her credit card, so Priya swipes her credit card through the slot on the

counter. The transaction is authorized by the credit card company, the sale is

committed, and the agent gives them the tickets. The group is happy, but they

leave with a nagging feeling that there must be a better way to buy tickets.

Envisioned usage scenarios or design scenarios
One of the most effective kinds of design-informing model for facilitating

connections between requirements and design is the design scenario. In the

envisioned transition to design, these scenarios are stories of what usage will look

like in the new design, stories that inform design in a detailed and concrete way.

Design scenarios are the best way to visualize early the consequences of design

choices and to share and communicate design ideas at the task level. Scenarios

are an excellent medium for discussion of design alternatives and are easy to

change as the design evolves.Muchof your early design can be informedby design

scenarios, starting with the key task set you have chosen to lead the design effort.

In creating a design informed by a scenario, you do not want your design to be

too specialized for just that one scenario, but you want to be general enough to

cover the scenario. However, do not overgeneralize the design to cover every

user’s needs in a big potpourri of functions, either. As your personas evolve

(next section), you can feature them in design scenarios. This will help show

clearly how your designs are aimed at particular personas. Soon you will also be

extending your scenarios by interspersing the narrative with graphic

presentations of storyboards.

Example: Design Scenario for the Ticket Kiosk System
A local movie theater, The Bijou, has a standing contract with the Ticket Kiosk

System Company, and every time a new movie comes up, all of the information

about showings, trailers, and advertising blurbs get sent automatically to the

kiosk event manager in the right format so that most of it can be posted

automatically.

Many different local and other advertisers have contacted the marketing

manager and sent graphics and text advertising for their products and

companies. For example, the Back Country Provisions has a beautiful

advertisement about tents, backpacks, hiking boots, and so on. Plus, they have

Exercise

See Exercise 6-7, Usage

Scenarios for Your System

222 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

an agreement to associate their advertisement with any event, for example, a

movie about Alaska, that has to do with hiking, camping, or traveling into any

kind of wilderness or camping situation.

On a Friday night, Joe drives his pickup into the parking lot next to a bus

stop with a Ticket Kiosk System kiosk. Joe is looking for some entertainment

for the evening, something to take his mind off the busy past week. He is

thinking about a fun sporting event on this Friday night, maybe basketball game

or a hockey game.

At the “Welcome” screen Joe, touches the button labeled “Sports” from the

main menu and looks under the current date. But the ones that are available

that night really do not appeal to him, so he starts browsing for other events.

He touches the “Main menu” button and returns to the “Welcome” screen.

Joe is tired after a hard week of work, and he does not think he has the energy

to go to a concert, so he thinks he might like to just sit back and see a movie.

He touches the “Movies” button and browses casually through some of the

movies that are currently showing and sees Into the Wild and gets excited. He has

never been to Alaska and he has always wanted to go. In fact, this would be a great

movie for him to take a date.

Joe has been secretly dating a woman named Jane, who lived in Alaska before

moving to this area. Joe calls Jane on his cellphone and, although she too would

prefer to attend a hockey game, she agrees to meet him at The Bijou.

While Joe is standing there on the phone in front of the kiosk, he sees an

advertisement for Back Country Provisions, which is showing on the far

right-hand side of the screen, as it is automatically associated with this movie. As

he looks at it, he imagines himself off in the wilderness, escaping his busy work

life. He dreams of himself on this nice trip to Alaska. He makes a note to stop by

at Back Country Provisions and see what kinds of hiking boots they have.

Joe then pays for the tickets with a credit card, and the transaction goes by

wire to the financial company. The transaction is approved and the tickets are

printed. The printer ink is getting a little low, which triggers a sensor, and a

warning is sent to the kiosk maintenance person. Joe is so excited about pulling

this all off (the transaction and the date) that he almost forgets to take the tickets

from the slot, but he sees the reminder message on the screen that says “Thank

you. Do not forget to take your credit card and your tickets.”

Step-by-step task interaction models
Amore direct and less story-oriented way to describe task interaction is by a step-

by-step task interaction model. Beyer and Holtzblatt (1998) call this kind of

model a “sequence” or a “sequence model.”

Exercise

See Exercise 6-8, Design

Scenarios for Your System

223CONSTRUCTING DES IGN - INFORMING MODELS

A step-by-step task interaction model contains a detailed description of task

performance observed in users or as told by users. Remember that task

interaction modeling is all about current work practice, not (yet) an envisioned

way to do things with a new system. So, any references to specific systems or

technology necessary in describing the task steps will always be to existing

technology and existing task-supporting systems.

The task interaction model of work also shows the detailed steps of task

performance, including temporal ordering of actions and activities. Like usage

scenarios, task interaction models capture instances of possibilities (“go paths”

or representative paths), not complete task specifications. At the beginning,

individual task interactionmodels will be mostly linear paths without branching.

Later you can add the most important branching or looping.

So, for example, an initial task interaction model for an online purchase

might not show a decision point where the user can pay with either a

credit card or PayPal. It would just be a linear set of steps for the task of

buying a ticket with a credit card. Later, as task interaction models are

consolidated, a separate linear path for the alternative of paying with

PayPal is merged, introducing a decision-making point and branching

(see sub-section later).

Task and step goals. A task or step goal is the purpose, reason, or rationale

for doing the task or taking the step. Called the user “intent” by Beyer and

Holtzblatt (1998), the goal is a user intention, in the sense of being “what the

user wants to accomplish” by doing the task. Each task interaction model will

include a goal statement at the top. Goals and subgoals, as well as multiple goals,

are possible for the same task and for each step in a task.

The goal of a task, being the “what” of a task interaction model, is often

more important to understanding work than the way a task is performed or the

steps of the “how.” If the work stays the same in the transition to a new system,

the task goal usually stays the same, regardless of the operational steps in the

way of doing the task. In fact, a list of the goals can stand alone without the

task steps, as a “to-do” list for the user.

Task triggers. A task trigger (Beyer & Holtzblatt, 1998) is an event or

activation condition that leads that user to initiate a given task. For example,

when a user makes a phone call, it might be because something came up that

presented an information need that can be resolved by the call. If the user

logs into a system, it is because a need arose, maybe from an incoming call, to

access that system.

If a user sends a “heads-up” message to a user in another role, it is because of

a desire or need to inform that user of something important to the work

process. Triggers are easy to identify in your contextual inquiry observations.

224 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

New work arrives in the user’s in-box, a new aircraft appears on the air traffic

controller’s screen, an email request arrives, or the calendar says a report is

due soon.

Information and other needs in tasks.One of themost important components of

a task description is the identification of user information and other needs at

any step. Unmet information needs constitute one of the largest sources of

barriers in task performance. The contextual inquiry and analysis processes

and modeling can help you identify these needs and eventually design to

meet them.

Information and other needs of people in work roles at certain points within

task performance are represented by specific annotations to the graphical

diagram of a step-by-step task interaction model. Just before the step in which

the need occurs, we add an indented line beginning with a red block “N,” like

this, N, followed by a description of the need.

Barriers within task interaction models. These are things that happen or

difficulties encountered that present impediments to task performance,

including things that slow the user down and make a task more difficult than

necessary. The symbol for a barrier in a task interaction model is, you guessed it,

a red lightning bolt (), which you should put at the beginning of an indented

line explaining the barrier.

Something that requires the user’s attention to be divided might be a task

barrier or an intervening manual step that interrupts the flow of using the

system. Task barriers also include interruptions and having to “stack” one task in

the middle to go off and do something else before coming back and trying to

remember where things were in the original task. For example, suppose a key

input to a task is unavailable, delayed, or difficult to dig out. Perhaps the user has

to stop in the middle of the task and go to a different system to get the needed

information. That kind of task detour is a barrier.

If the user’s reaction or response to a barrier is known through the contextual

data, add a brief description of that right after the barrier description among the

task steps.

Creating a step-by-step task interaction model. Step-by-step task interaction models

are mostly textual. Write the initial task interactionmodel as a linear task thread,

as a model of one instance of how a task happened with a user, not a general

model of how all users perform the task. Sequential steps can be written as an

ordered list without the need for flowchart-style arrows to show the flow. Linear

lines of text are less cluttered and easier to read.

Start with some structural components, a label for the task name and a

contextual data identifier, a tag identifying the source of the specific data used

for this instance of the model.

225CONSTRUCTING DES IGN - INFORMING MODELS

The task description is labeled at the top with one or more task goals and the

task trigger, followed by the steps at whatever granularity of detail is needed to

help everyone understand it. Lines describing breakdowns and information

needs are indented to set them off, interspersed with the steps, and labeled,

respectively with a or an N. Include responses or reactions to barriers, if

known, and label as such. In addition, each task step can be labeled with its own

step goal(s) and step trigger.

It can help analysis and discussion to number the steps so that you can refer

to, for example, step 5 of the send email task interaction model. Note cases of

multitasking, where the user is juggling more than one task thread at once. The

increasedcognitive loadtokeeptrackofmultiple taskscanbeabarrier toeaseofuse.

Example: Step-by-Step Task Interaction Model for MUTTS
This is an example of a step-by-step task interaction model for the task of ticket

buying by the ticket seller work role. People often have something specific in

mind when they go to buy tickets but, to illustrate a rich step-by-step interaction

model, we are using an example in which the ticket buyer starts by wanting to

know what is available.

Task name: Finding entertainment for a given date (performed by ticket seller on behalf

of ticket buyer)

Task goal: Helping a ticket buyer choose and buy a ticket for entertainment for this

coming Friday night

Task trigger: Ticket buyer arrives at the MUTTS ticket window on the way home from

work on a Thursday evening, thinking ahead to the weekend

Ticket Buyer Ticket Seller

1. Tells ticket seller about general goal of wanting to find

an entertainment event for the next night (Friday

night)

2. Asks agent about available types of entertainment 3. “There are plays, concerts,

movies, and sports”

4. Not enough information yet to decide on the category.

Asks to see examples of different types.

Step goal: Consider examples of entertainment events

5. Asks what events are available for Friday night

226 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Barrier : Agent sees that the number of results is too large to sort through or tell the

customer about

Response to barrier:

6. Ask customer how to filter results or narrow

it down (e.g., “Tell memore about what you

like”)

7. “How about something within

reasonable walking distance

downtown or near a Middleburg bus

stop?

8. Tells about some possibilities

Task continues:

9. Thinks about the list of possibilities

: It is difficult to think about specific events while remembering all the others given

orally on the list

Response to barrier:

10. Makes a few sketchy notes by hand

Trigger: Movies seem attractive to ticket buyer

Goal: Find a movie to see

11. Tells agent about switching focus

to just movies

12. Tells agent to use the same criterion

about being within reasonable walking

distance downtown or near a Middleburg

bus stop

13. Tells about possibilities

14. Considers possibilities and finds a few

he likes

15. Writes choices down on paper

Trigger for interrupt to embedded task: Thinks a friend might also like these movies

N: Needs to know friend’s opinion of the selections

Goal: Contact a friend to help narrow these last few choices down and pick something

together

227CONSTRUCTING DES IGN - INFORMING MODELS

16. Asks agent to please wait

17. Calls friend on cellphone

18. Makes choice with friend

Trigger: Choice made, ready to buy two tickets

Goal: To buy tickets

19. Tells agent to buy two tickets to

selected movie

20. Sets up transaction in computer

21. Cash or credit card?

22. Gives agent credit card 23. Swipes card

24. Signs credit transaction 25. Prints tickets and receipt

26. Gives printed tickets and returns credit card

and receipt

Branching and looping. Although step-by-step task interaction models are

primarily for capturing linear sequences of representative task steps, sometimes

you encounter a point in the work practice where there is a choice. You observe

some doing A and other users B. You can generalize the task sequence

representation by showing this choice in both observed paths using branching,

as shown with arrows on the left-hand side of Figure 6-15. Note the conditions for

branching on the diagram.

Similarly, if you observe iteration of a set of tasks or task steps, you can

represent that as shown on the right-hand side of Figure 6-15. For sets of steps

that are repeated or iterated, note the number of iterations or the condition

for termination.

Example: Task Interaction Branching and Looping
for MUTTS
In Figure 6-16 we show a sketch of task interaction representation for

selling tickets with MUTTS. Note several instances of looping to iterate

parts of the task and, in the bottom box, branching to accommodate two

different cases.

Essential use case task interaction models
By combining the best characteristics of step-by-step task descriptions and

software use cases, Constantine and Lockwood (1999, p. 100 ff) created

essential use cases as an alternative task interaction modeling technique.

228 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

An essential use case is a structured narrative, in the language of users in

the work domain, that describes a single user intention or goal, a complete,

well-defined task description that is meaningful to a user in a role (Constantine

& Lockwood, 2003).

An essential use case is a kind of step-by-step task description but, being more

abstract and less specific than step-by-step task interaction models of the

previous section, it is not a complete story, nor is it a scenario, but rather a task

skeleton on which a scenario story could be woven. An essential use case is a

simple, general, and abstract task description, independent of technology or

implementation. Just as it does in task interactionmodels, the importance of the

task goals underlying an interaction greatly overshadows that of specific steps or

user actions to carry them out.

In the classic style of using columns, or “swim lanes,” to represent

collaborative task performance between user and system, an essential use case

has two columns: one for user interactions and one for corresponding system

responsibilities. The inclusion of system responsibilities clearly connects user

actions to requirements for what the system must do in response.

Each essential use case is named with a “continuing verb” to indicate an

ongoing intention, plus a fully qualified object, for example, “buying a movie

ticket.” Essential use cases capture what users intend to do and why, but not how,

Figure 6-15

Branching and looping
structures within step-by-
step task interaction
models.

229CONSTRUCTING DES IGN - INFORMING MODELS

for example, searching for a particular

entertainment event, but nothing about

user actions, such as clicking on a button.

Because only the essence of the

transaction is represented and nothing is

said about how the transaction looks in

the user interface, it is an easy

description for users and customers to

understand and confirm. Essential use

cases help structure the interaction

design around core tasks. These are

efficient representations, getting at the

essence of what the user wants to do and

the corresponding part played by the

system.

The term “essential” refers to

abstraction. An essential use case

contains only steps essential to the user

and the task. The representation is a

further abstraction in that it represents

only one possible task thread, usually the

simplest thread without all the

alternatives or special cases. Each

description is expressed as a pure work-

domain representation, not a system

domain or design-oriented expression.

To illustrate, in Constantine and

Lockwood’s ATM example, the user’s

first step is expressed as an abstract

purpose, the “what” of the interaction:

“identify self.” They do not express it in terms of a “how”; for example, they do

not say the first step is to “insert bank card.” This is a deceptively simple

example of a very important distinction.

The abstraction of essential use cases is the opposite of the concreteness of

usage scenarios. Usage scenarios read like real stories because they contain

specific names of people and specific details about the context. These concrete

details make the story easy to read and easy to understand, but when they are

generalized as essential use cases, they serve better as inputs to interaction

design.

Figure 6-16

Task interaction
branching and looping for
MUTTS.

230 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Many of the details, although they add interest, are not essential to the

general understanding of a task and how users perceive and perform it. In

usage scenarios, those names and details are placeholders for more general

attributes and information. The user’s name is a stand-in for all such users.

A specific usage scenario describes an instance of the task, an instance of an

essential use case.

Task cases are simplified and technology and implementation independent,

traits that bring them close to the essence of work activities. Essential use cases

are descriptions of what users do, not about design.

Example: Essential Use Case for MUTTS
Table 6-1 contains an example, cast in the same fashion as Constantine and

Lockwood (2003). This is a task that the ticket seller does with the computer

using the ticket buyer’s credit card.

Your contextual data can indicate focal points for expanding and

elaborating task details. As an example, there are some possible alternative cases

following step 6, when the system reads the credit card. Perhaps the system could

not read the card successfully or maybe there is a problem with the credit or

debit account associated with the card—the card has been reported stolen, the

account has been cancelled, or payment is overdue.

While these detailed alternative task paths are important to capture, they are

not usually put directly in the task description, as they would interfere with its

abstract simplicity. You can create new essential use cases for these ancillary

Table 6-1

Example essential use case:
Paying for a ticket purchase
transaction (with a credit
or debit card)

User Intention System Responsibility

1. Ticket seller to computer: Express
intention to pay

2. Request to insert card

3. Ticket seller or ticket buyer: Insert card 4. Request to remove card quickly

5. Withdraw card 6. Read card information

7. Summarize transaction and cost

8. Request signature (on touch pad)

9. Ticket buyer: Write signature 10. Conclude transaction

11. Issue receipt

12. Take receipt

231CONSTRUCTING DES IGN - INFORMING MODELS

task threads or you can put the alternate cases and exceptions in a list that goes

with the basic task description to remind designers that these special cases

have to be dealt with in the design.

Envisioned task interaction models
Individual task descriptions in your envisioned task interaction models are

exactly what you need as inputs to scenario and storyboard content. Begin

your envisioned task descriptions by selecting a set of key tasks that will

serve to focus the initial design effort and help you control complexity.

Remember that task triggers are pivotal and must be represented in the

envisioned models, too; otherwise the same task will not get done when using

the new design.

Also, do not forget to design for task threads. It is relatively easy to design for

single user tasks isolated from the workflow. In fact, HTI can lead you to think

that tasks can be boxed up and addressed separately.

But, of course, tasks are woven into a fabric of user workflow. Real work occurs

as task threads, and you have to design for the continuity of likely next tasks

within the workflow. Your contextual data are key for understanding where you

find these “go paths” or “happy paths” that users like to slide through.

6.6.5 Information Object Model
Information objects are work domain objects shared by users and the system.

As internally stored application objects, information objects are hugely

important in the operation and design of a system. These are mainly the

entities that move through the workflow in the flow model. These are the

entities within an application that are operated on by users; they are searched

and browsed for, accessed and displayed, modified and manipulated, and

stored back again.

In action-object task names, such as “add appointment,” the object

(appointment) is often an information object. They are connected directly

to the design ontology that drives the bread and butter of most domain-

complex system designs. They show up as objects of user actions in usage

scenarios and other task descriptions and drive design questions such as how

will users access the objects and how will we represent them to users in displays,

as well as how will users do the operations to manipulate these application

objects?

In a calendar application, for example, appointments will be objects that are

created and manipulated by users. As another simple example, suppose a

user draws a circle with a graphics-drawing package. Data representing the circle

Design Ontology

Design ontology is a

description of all the objects

and their relationships,

users, user actions, tasks,

everything surrounding the

existence of a given aspect

of a design.

232 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

are stored by the system, the user can call it up and the system will display it, and

the user can manipulate and modify it and save it back in the system.

Most information objects have defining attributes. A calendar

appointment has date, time, subject, and so on; a graphical circle has a

radius, location, color, and so on. Start the information object model by

compiling information objects identified in the contextual data. Sketch an

outline or list of information objects, their attributes, and the relationships

among them.

Example: Identifying Information Objects and Attributes
in MUTTS
The two-word goal of the main task of the ticket seller work roles is “sell tickets.”

Within this goal, the term “tickets” identifies a principal information object in

the system. We know that a ticket is associated with an event, another

information object, which in turn is linked to attributes, such as event date, time,

venue, and so on. We also know that each event object is associated with

descriptive attributes, such as genre, to support customer user searching and

browsing.

Analyzing scenarios to identify ontology
As usage stories, scenarios tie together many kinds of design-informing

models. They help you identify information objects and how they are

manipulated and by which work roles. To see links with other design-informing

models, you can tag or highlight words and phrases occurring in scenarios

with the type of design element they represent. You can identify and label the

components of design scenarios, such as tasks, actions, user interface objects,

user roles, user experience goals, user classes, user characteristics, application

information objects, system data objects, and work context.

Example: Scenario Analysis to Help Identify Ontological
Elements of the Ticket Kiosk System
We have highlighted (with italics and color) some of the ontological elements

of the example scenario for the Ticket Kiosk System given earlier.

On cellphone and email over a day or two, Priya and a group of her friends agree to

take in some entertainment together on the coming weekend. They agree to

meet at the Ticket Kiosk System kiosk at the library bus stop at 5:30 PM on Friday.

Some walk to the kiosk from nearby, while others avail themselves of the

convenience of the bus. The group is in a festive mood, looking forward to sharing

some fun over the weekend.

233CONSTRUCTING DES IGN - INFORMING MODELS

Priya steps up to the kiosk and sees a “Welcome” screen with an advertisement

for a movie scrolling at the top and text that says “What kind of even information

would you like to see?,” followed by several touchscreen buttons with labels on

the left-hand side such as “Browse by event type,” “Browse by venue/location,” and

“Event calendar: Browse by date.” On the right-hand side there are buttons for

specific types of events, such as “Sports,” “Concerts,” “Movies,” “Special

features,” etc.

Because they are looking for something specifically for the next night, she touches

the “Event calendar” button, looking for events such as movies, concerts, plays, fairs, or

even a carnival for Saturday night. After browsing for a while and talking among

themselves, they want to go to a concert. Priya touches the “Concerts” button, and

they are presented with the subcategories Rock, Classical, Folk, and Pop. They

choose to go with pop concerts and Priya touches that button. From among

several choices, they finally decide on a concert called “Saturday Night at the

Pops” playing at The Presidium.

n Cellphone and email refer to methods of communicating with family and friends

outside the system

n Priya is the name of a person in the customer/user role

n a group of her friends refers to other roles, customers who are probably not direct users

n library bus stop refers to a location of use (of a kiosk), part of the work context

n 5:30 PM on Friday refers to a time of use (a time when the kiosk is open but the old

MUTTS would not have been open), also part of the work context

n festive mood, looking forward to sharing some fun over the weekend refers to an emotional

state of mind of the users, expressing an expectation to be met by the product, a

subtle part of the work context

n “Welcome” screen with an advertisement for a movie scrolling at the top is a design idea for

user interface objects

n touchscreen buttons are possible user interface objects

n “Browse by venue/location” is a suggested button label, which also indicates a user task

n looking for something specifically for the next night is a user task

n looking for events such as movies, concerts, plays, fairs, or even a carnival for Saturday night is

a combination of user tasks

n “Concerts,” Rock, Classical, Folk, and Pop are names of categories of information/

application objects

And so on. Can you identify others? The idea of identifying these

different entities within scenarios is that they help pick out types and instances of

234 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

design-informing models and help identify ontological objects and tie them

together in the threads of design scenarios in ways that directly inform

designing.

6.7 WORK ENVIRONMENT MODELS

Working environment models are a set of models that define themilieu in which

work gets done, including constraints, artifact models, and physical models.

These models capture how the related work environment factors affect tasks

in real usage. Of the work environment models, the physical model is probably

the most important. Factors such as the layout of work space, proximity of

printers or scanners, and the inability to hold a device with a keyboard while

standing up will have a direct impact on UX and work practice.

In the slideshow presentation example presented earlier, the physical

model indicates where people in the different roles will be standing or

seated, the presentation room layout, and the ability to control light from

windows and to control selectively the artificial lighting in the room.

Sound and other attributes of the space will contribute to the physical

model, as do the availability and locations of electrical outlets and Internet

connections.

6.7.1 Artifact Model
An artifact model shows how tangible elements (physical or electronic) are

used and structured in the business process flow of doing the work. Work

artifacts are one of the most important entities that get passed from one work

role to another within the flow model. Examples include paper memos, email

messages, correspondence templates, product change orders, and other things

people create and use while working. Sometimes artifacts are work products,

information objects used in daily operation of the enterprise, for example, an

order form being filled out, that reveal traces of people’s work practices. The

contextual inquiry team must pay close attention to how these artifacts are

created, communicated, and used. What are those notes scribbled on those

forms? Why are some fields in this form left blank? Why is there a sticky note on

this form? Perhaps a signature is required for approval on other kinds of

documents. This model is one reason why observers and interviewers must

collect as many artifacts as possible during their contextual inquiry field visits

to users.

Exercise

See Exercise 6-9, Identifying

Information Objects for

Your System

235CONSTRUCTING DES IGN - INFORMING MODELS

Example: Artifact Model from a Restaurant
It is easy to think of artifacts associated with a restaurant. In Chapter 3 we

mentioned collecting artifacts from a restaurant, examples of which are shown

in Figure 3-3. The first artifact encountered by a person in the customer work

role, delivered by the person in the wait-staff work role, is a menu, used by

the customer work role to decide on something to order.

Other usual restaurant work artifacts include the order form on which the

wait-staff person writes the original order and the guest check, which can be the

same artifact or a printed check if the order is entered into a system. Finally,

there might be a regular receipt and, if a credit card is used, a credit card

signature form and a credit card receipt. Artifacts in restaurants, as they do in

most enterprises, are the basis for at least part of the flow model. In Figure 6-17

you can see how restaurant artifacts help show the workflow from order to

serving to concluding payment.

Figure 6-17

Part of a restaurant flow
model with focus on work
artifacts derived from the
artifact model.

236 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

The artifacts, especially when arranged as part of a flowmodel, can helpmake

a connection from contextual data to thinking ahead about design. For

example, the waiting and boredom shown in Figure 6-17 pose a “barrier” to the

customer.

This leads us to ask questions such as: How can we make that experience for

the customer placing the order more fun, engaging, and informed? This kind of

question posed now will later provide a great starting point for design

brainstorming later: Would not it be cool if each dining table contained an

embedded interactive touch tablet. Users could pass time by playing games,

doing email, or surfing the Web.

Another barrier shown in Figure 6-17 is the difficulty of ordering food

from a textual description in a paper menu. Interviewing restaurant

customers about their experiences, you find that many people, when they order

a dish and then see something else someone has ordered, wish to get that

dish instead.

Papermenus do not leverage this rich human sensual connection to the food!

However, this discussion of restaurant artifacts does help us ask questions that

will later inspire design: If the table contained an interactive display, then why

not let the customer use it to interact with the kitchen, ask questions about

ingredients, and see images of the dish being served? In fact, why not let the

customers place their orders themselves?

Constructing the artifact model
How do you make the model? Well, the artifact model is mainly a collection of

artifacts, but you can organize it for analysis and use. In contextual inquiry you

will have collected the artifacts, usually visual, by making a drawing, a copy, or a

photograph or by having collected a real example of the artifact. An example of

a tangible work artifact is a guest check from a restaurant. If an artifact is more

aural than visual, a recording of the sound could be an artifact.

Next, the team should make “artifact posters.” Attach samples of each artifact

to a separate flip chart page. Add annotation to your “exhibits” to provide more

information about your observations of them in the work practice. Add

explanations of how each artifact is used in the work practice and workflow.

Annotate artifacts with stick-on notes associating them with tasks, user goals,

and task barriers. Each poster drives discussion to explain the artifact’s use while

trying to tease out associated issues and user needs. As usual, the process can

generate additional user work activity notes from what is learned about the

artifacts and how they are used.

237CONSTRUCTING DES IGN - INFORMING MODELS

Example: Artifact Model for Slideshow Presentations
The artifact model for slideshow presentations did not turn up anything

unexpected, but it is informative. It includes physical devices such as laser

pointers for pointing to the screen and a timer or watch for keeping track of

time, bottled water for the speaker and/or the audience members, possible

paper handouts with copies of the slides, and a PC and mouse. Because the

artifacts, especially the various pieces of equipment, are physical, there is some

overlap with the physical model.

6.7.2 Physical Model
The physical model gives the roles, activities, and artifacts of other models

a physical setting, showing the physical environment as it supports (or not)

the work. The physical model shows physical dimensions of the work spaces,

buildings, walls, rooms, workstations, all physical equipment, and collaboration

spaces, but does not have to be an exact to-scale floor plan. The physical

model includes computing and communications and other work devices, for

example, copy machines, telephones, FAX machines, printers, and network

connections.

Because a physical model shows the placement and paths of movement of

people and objects within this work space layout diagram, it can be used to assess

the proximities of task-related equipment and artifacts and task barriers due to

distances, awkward layouts, and physical interference among roles in a shared

work space.

The latter is helped by showing movement lines of each user role within the

space, including multiple lines for multiuser movement in doing a collaborative

task. If the physical locations or devices associated closely with the same tasks or

related tasks are located at a distance from each other, it can result in wasted

time and effort for workers.

For example, in the design for her house, a friend did this kind of physical

model and workflow analysis and found that the traditional American proclivity

for putting the clothes washer and dryer in the basement gave a very poor

proximity-to-task-association ratio for the task of doing laundry. Enlarging the

dressing room and putting the washer and dryer in there improved this ratio

enormously.

Similarly, the flow of fresh vegetables from the car to the kitchen led to

moving the garage from the basement level to the living floor level (aided by a

steep grade). In both cases, the changes brought the physical model elements

much closer to their location of use in the design.

238 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Looking further at the veggie flow in the physical model led to an efficient

design of a kitchen island as a shared food preparation and cooking area—

cleaning at the veggie sink, flowing over to slicing and dicing, and then flowing

to sautéing under a bright light and a vent hood.

When creating physical models, also think of all the physical characteristics of

a workplace that can affect work activities and add them as annotations. For

example, a steel mill floor is about noise, dust, hot temperatures, and safety

concerns, making it more difficult to think. A system with a terminal on a factory

floor means dirty conditions and no place to hold manuals or blueprints. This

may result in designs where the use of audio could be a problem, needing more

prominent visual design elements, such as blinking lights.

Other concerns by people in the physical working environment might

include room lighting, air quality and ventilation, room temperature, and how

to set all these parameters to suit everyone. Note the red lightning bolts

representing barriers to work practice in the physical model.

Example: Physical Model for Slideshow Presentations
The physical model of the presentation room described the arrangement of

physical structures that limit or define the work space and usage and movement

within the space. These physical models showed the room, equipment and

other artifacts used, positioning of the presenter and audience within the

environment, and barriers that arose due to limitations of these physical layouts.

The physical models fell into two cases: presentations that included remote

audience members required a different physical arrangement than for local-

only presentations. In particular, remote presentations used more devices,

including cameras, screens, and sound control boards.

All presentations, however, used a seated local audience, a standing

presenter, and at least one screen that showed the slides to the audience and

served as a display for some of the interaction used to control the slideshow.

Most physical barriers in the social models occurred when the desires of the

presenter to give information, and the audience to receive information, were

obstructed. For example, the behavior of several presenters indicated a desire to

be near the audience physically, but their movement toward and among the

audience often blocked the audience’s view of the slides on the screen. Also,

presentations with multiple presenters had difficulty with transitions between

presenters because of physical barriers to handing off the presentation.

Otherbarriers tosmoothtaskperformance includedcordsoverwhichpresenters

sometimes trippedanddifficult-to-reachcontrols for videosandslideadvancement.

In Figure 6-18 we show a physical model for one of the presentation cases.

239CONSTRUCTING DES IGN - INFORMING MODELS

Figure 6-18

Physical model for one slideshow presentation case. Thanks to Brad Myers, Carnegie Mellon University, and his colleagues
for their example (Cross, Warmack, & Myers, 1999) on which this is based.

As an aside, you might think that this physical model would not be very useful

since it is very specific to one presentation room and one work space in one

presentation case. Surely other presentation rooms will be quite different in size

and layout.

But it is exactly the point of contextual inquiry: that you can take work

practice data from a very specific existing working environment and learn things

that apply to the more general case. This team was able to do just that in

discovering the problem of presenters having to stay near the computer during

the presentation, needing to lean awkwardly across tables to use the PC mouse

to change slides. This is a barrier to quality presentations and could be true in

most settings, regardless of room layout details.

Example: Physical Model for MUTTS
In Figure 6-19 we show the physical model for MUTTS. The center of workflow

is the ticket counter, containing up to three active ticket seller terminals. On

the back wall, relative to ticket sellers, are the credit card and MU Passport

swiping stations. This central ticket-selling area is flanked with the manager’s

and assistant manager’s administrative offices.

Barriers not shown in Figure 6-19 include a barrier to the ticket buyer lines: At

peak times, customers may have to wait in long lines outside the ticket window.

Figure 6-19

A physical model for
MUTTS.

241CONSTRUCTING DES IGN - INFORMING MODELS

The scanner in the manager’s office, used to digitize graphical material such as

posters or advertisements for Website content, presents barriers to usage: It is

very slow and is not in a convenient location for all to share.

The ticket printers can also introduce barriers to workflow. Because they

are specialized printers for ticket stock, when one goes down or runs out of

paper or ink, the employees cannot just substitute another printer. They have to

wait until the technician can get it serviced or, worse, until it can be sent out for

service.

Envisioned physical model
As much as possible, try to describe the physical model of the new work

practice and new system. In many cases, the physical model will not change that

much in the transition. Our Ticket Kiosk System is an exception; the physical

model will change completely.

6.8 BARRIER SUMMARIES

Many of the models tell partial stories from different perspectives, but no one

model highlights all the barriers discovered in contextual inquiry and analysis.

Yet it is the barriers to work practice and user performance that most directly

inform design ideas for the new system. So it can be helpful and informative to

extract barrier-related information from themodels and summarize the barriers

in one place.

Example: Barrier Summaries for the Slideshow
Presentation System
The team that did the slideshow presentation contextual inquiry summarized

some selected barriers found in their step-by-step task interaction model as

follows, in Table 6-2.

Further, in Table 6-3 the team summarized the most frequently encountered

barriers. The “% of talks” column is the percentage of presentations in which the

barrier occurred at least once. “Count” is the total number of instances of the

barrier observed across all presentation cases. “Severity” is the average severity

rating across all instances of the barriers. “Average duration” is the average

length of time of a single instance of the interruption due to the barrier.

The single most frequent barrier to slide presentation was the physical

awkwardness of changing slides. Six out of nine presenters walked to one spot to

talk, but then had to turn and walk to a location typically 3 feet away, position

themselves, advance the slides using the mouse on their PC, and then return to

their original location to talk.

242 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Table 6-2

Summary of selected barriers discovered within the step-by-step task interaction models for slideshow presentationsa

Trigger Goal Barrier

18 Question from remote
audience member

Answer questions Audio unintelligible. Local members instruct
remote members to adjust audio setting.

19 Comment from remote
member

Respond to comment Audio unintelligible. Local members instruct
remote members to reconnect.

20 Comments from local
members

Respond to comments by referring
to slide fromearlier in presentation

Presenter tries to return to slide. Presenter
searches through slides rapidly but cannot
find it.

21 Question from local
member

Answer question Presenter tries again and eventually finds
slide.

22 Local member asks
presenter to bring up
previous slide.

Go backward one slide Presenter tries to go back one slide but goes
forward one slide instead.

23 Remote audience
reconnected

Continue discussion

24 Question from remote
member

Answer question

25 Comment from local
member

Respond to question Presenter flips through slides searching for
“system architecture” slide.

aThanks to BradMyers, CarnegieMellon University, and his colleagues for their case study (Cross, Warmack, &Myers, 1999) onwhich
this is based.

Table 6-3

Summary of most frequent barriers observed in presentation casesa

Description Model % of
Talks

Count
(Over all
Talks)

Average
Severity

Average
Duration
(Each Time)

1. Changing slides is difficult and awkwardbecause of the
placement of the mouse or laptop.

Physical 67 166 1.2 2 sec

2. Presenter loses track of time, must ask for verbal
update.

Sequence 44 6 1.5 55 sec

3. Reference provided is incomplete or skimmed
over, audience members would be unable to find
it after the talk.

Cultural 44 6 1 19 sec

4. Camera view is unclear or pointed at wrong
information.

Flow 33 3 1.7 60 sec

5. Audio level for demos is not set correctly. Flow 33 3 2 46 sec

aThanks to BradMyers, CarnegieMellon University, and his colleagues for their case study (Cross, Warmack, &Myers, 1999) onwhich
this is based.

243CONSTRUCTING DES IGN - INFORMING MODELS

Often, the PC was on a low table, or otherwise difficult to reach, further

compounding the problem. This behavior wasted a significant amount of time

during presentations. One presenter found a solution that wasted less time: stay

next to the slide control throughout the lecture part of the presentation, but

move to a spot away from behind the podium and closer to the audience for the

duration of the discussion period.

The second-most frequent barrier to a smooth presentation was an inability of

presenters to keep track of time or be aware of how much time they had

remaining. Six of the presenters asked an audience member for a time check at

some point during their lectures.

None of the barriers reached the highest severity rating used by the study

group—causing a permanent and premature end to the presentation. However,

three different presentations did encounter barriers with major severity,

requiring significant portions of the talk to be skipped. One had a demo that

could not be shown because the PC lacked Shockwave software. Two of the

presentations with remote audiences contained significant periods of time when

the remote audience could not read the presentation slides because of an

unfocused camera and problems with the settings of the NetMeeting software.

6.9 MODEL CONSOLIDATION

If you constructed your models with multiple subteams working in parallel, you

will get multiple models of the same type. Now is the time to consolidate the

model versions by merging, uniting, and combining them into one model. The

key idea is to induce generalizations, that is, a bottom-up process to build a

general model from pieces of specific data.

It is a little like eliminating the unimportant details and taking the union of

the important ones over all the versions of the model.

As an example, start with representations of single user stories of task steps in

the existing work practice. Merge the description of essentially the same task

created with data from several users, and factor out the differences in details.

The result is a more abstract or more general representation of the interaction,

representing how most or all users do the task.

Example: Flow Model Consolidation for MUTTS
When flow modeling that was begun in contextual inquiry is continued during

contextual analysis by different subteams, eachmaymodel things differently; for

example, the same work role might get modeled in different ways, yielding

different work role descriptions and work role names. Because these various

versions of the flow model are about the same workflow, they can be

consolidated essentially by merging them.

244 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

For example, Figures 6-20, 6-21, and 6-22 are partial flow models constructed

by groups who observed and interviewed different parts of the overall

organization and work practice.

See, in Figure 6-9, how the three parts of the overall flowmodel came together

in model consolidation.

Figure 6-20

Flow model from a group
who observed and
interviewed the event
manager, event sponsors,
the financial manager,
and the database
administrator.

Figure 6-21

Flow model from a group
who mainly observed and
interviewed ticket buyers
and ticket sellers.

245CONSTRUCTING DES IGN - INFORMING MODELS

6.10 PROTECTING YOUR SOURCES

One of the things to watch out for throughout the process, especially when

dealing with design-informing models, is confidentiality. This is important in

all cases where you have observed, synthesized, deduced, or were given insights

that were about problems and breakdowns arising due to social and political

issues in the work practice.

Situations involving breakdowns due to bad management or flawed work

practices (modeled in social models) are especially dangerous if there is a

chance the sources will be revealed. Make this your unbreakable rule: When you

take data and models back to anyone, users or management, everything must be

anonymous.

6.11 ABRIDGED METHODS FOR DESIGN-INFORMING
MODELS EXTRACTION

6.11.1 Be Selective about the Modeling You Need to Do
Do not be bound by the exact models we discuss in this chapter. Depending on

the work domain and your design goals, some kinds of models will not be

important, while others will take on much more importance.

Figure 6-22

Flow model from a group
who observed and
interviewed the office
manager, the advertising
manager, and external
advertisers.

246 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

6.11.2 Designer-Ability-Driven Modeling
In the real world, designers use design-informing modeling to understand

and control the complexity of the work domain in the context of designing the

next generation of system support. To be efficient, each designer chooses the

amount of modeling necessary to meet his or her own needs, which in turn

depend on the designer’s individual skills, knowledge, and experience.

Less experienced designers will need to work out models in more detail to

manage complexity and be sure that all the complexity of the work domain is

accounted for. Expert designers, who perhaps have experience in a similar

kind of system or a similar work domain, already know things that will propel

their process forward more rapidly. Often it is not necessary to develop all the

models fully and formally along the way. Experienced analysts or designers

do not build models that will tell them something they already know.

The models are a way of cognitively off-loading details so that there is room

in the analyst’s head for other analysis. Experienced designers have abstractions

for some of the models mentally built in, leaving room for further analysis. Of

course such ability-driven approaches run the risk of missed details and issues

falling through the cracks, but the practical bottom line is that, in most real-

world projects, designers rarely develop a complete set of full models, but just

the key aspects of the models they feel they need the most.

So, students entering the professional workforce and novice practitioners

should make all the complete models but should also be aware of this reality and

not come across as impractical to the more experienced analysts by insisting on

constructing every model in full before moving on to design.

6.11.3 Use a Hybrid of WAAD and Relevant Models
Mix andmatch themodeling best suited for your needs. Add different models of

your own creation. Combine simple models into a hybrid model, for example,

combine workflow superimposed upon a physical model.

Another effective way of abridging the process for creating design-informing

models is by creating a hybrid of a WAAD and relevant models on the same

wall. We recommended using large strips of butcher paper to create your

WAAD; you can capture the essence of the different models right next to the

clusters of work activity notes on the WAAD. This canvas affords a fluid

medium to represent relationships among the different themes in the work

domain; you can draw on the WAAD and annotate it with ideas that you

would otherwise capture in different formal models while using a full rigorous

process.

For example, any interpersonal concerns that you would usually capture in

a social model will now just become annotations on the cluster of notes

247CONSTRUCTING DES IGN - INFORMING MODELS

organized under the corresponding work roles. In our experience we found

a hybrid of a WAAD and flow model to be the most useful.

6.11.4 Create Design-Informing Models on the Fly
during Interviews
Another abridged technique we have used in the field with great success is

on-the-fly modeling during the actual contextual inquiry process. Experienced

practitioners can create or add to models as they are interviewing and observing

users during contextual inquiry.

Any information that can be captured as amodel is done so as rough sketches,

and the remaining information is captured as regular work activity notes. For

example, during our interview with a MUTTS ticket seller, she mentioned

the need for all ticket sellers to enter the amount of money taken from the safe

into a ledger at the start of a shift, a need for recording the total deposit at

the end of the shift, and to attach a printout of all sales in that shift generated by

the ticketing software system. Instead of capturing this information as a series

of work activity notes, we can capture this in a flow model diagram on the fly.

6.12 ROOTS OF ESSENTIAL USE CASES
IN SOFTWARE USE CASES

A use case is not a user experience lifecycle artifact, but a software engineering

and systems engineering artifact for documenting functional requirements,

especially for object-oriented development, of a system. “Use-cases, stated

simply, allow description of sequences of events that, taken together, lead to a

system doing something useful” (Bittner & Spence, 2003). They include outside

roles—end users and external entities such as database servers or bank

authorization modules—and internal system responses to outside actions.

Although a use case can represent the user view, the bottom-line focus is on

functional, not interaction, requirements. Sometimes use cases are thought of as

an object-oriented approach to user modeling, but in practice they are usually

created by developers and systems analysts without any contextual data from

users.

Use cases are formalized usage scenarios, narratives of “black box”

functionality in the context of user–system interaction (Constantine &

Lockwood, 1999, p. 101). Use cases are often used as a component of software

requirements. Their strong software orientation means that use cases lean in

the direction of software implementation and away from user interaction design.

248 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

As Meads says (2010), in use cases, the user is an external object, not a

person with human needs and limitations. This view leads to system

requirements, but not to usage or UX requirements.

Use cases describe the major business requirements, features, and functions

that the envisioned system must support. A use case “describes a sequence of

actions that are performed by a human in work roles or other entities such as a

machine or another system as they interact with the software” (Pressman, 2009);

“use cases help to identify the scope of the project and provide a basis for project

planning” (Pressman, 2009).

In answer to the need for something more effective than use cases in

identifying interaction design requirements, Constantine (1994a, 1995) created

a variation he calls “essential use cases.”

249CONSTRUCTING DES IGN - INFORMING MODELS

Intentionally left as blank

CHAPTER

Design Thinking, Ideation,
and Sketching 7

A common mistake that people make when trying to design something completely foolproof is

to underestimate the ingenuity of complete fools.

– Douglas Adams

Objectives

After you read this chapter, you should be able to:

1. Understand the evolution of design paradigms

2. Appreciate the design-thinking philosophy

3. Understand the ecological, interaction, and emotional design perspectives

4. Undertake ideation and sketching and appreciate their close relationship

7.1 INTRODUCTION

7.1.1 You Are Here
We begin each process chapter with a “you are here” picture of the chapter topic

in the context of the overall Wheel lifecycle template; see Figure 7-1. We have

noted that contextual inquiry (Chapter 3) is empirical, contextual analysis

(Chapter 4) is inductive, requirements extraction (Chapter 5) is deductive, and

design is integrative.

Chapters 3 and 4 are about existing work practice and any existing system.

Chapters 5 and 6 are the bridge connecting analysis and design. This chapter

and the next two are about designing the new work practice and the new system.

7.1.2 Design vs. Development
The entire field of system development uses the term “design” in a very broad

sense, often connoting the entire lifecycle process. People refer to the “system

design lifecycle” or “the interaction design process.” People say “you cannot

do design without including evaluation.” And, of course, we agree.

The problem is that “design” is also used narrowly to refer to the creative

human activity by which new ideas are synthesized and put together to make

up parts of an interaction design, that is, to the box labeled “Design” in

Figure 7-1, the topic of this chapter. In this usage, design is just one process

activity and does not include the others; it specifically does not include

analysis or evaluation.

There is really no effective term to distinguish the overall process from just

synthesis activity. We would love to use the terms “develop” and “development”

for the entire lifecycle process, calling it a “development lifecycle process.”

However, “develop,” “development,” and “developer” are terms used almost

universally to denote software engineering concepts tied strongly to

programming and coding. A developer is someone who writes or develops

implementation code.

Our path to happiness regarding this terminology trap is to follow the loose

conventions of the field and use “design” with both narrow and broad meanings,

hoping that contextwillprovideclarity. Inaddition,weavoid“develop,” “developer,”

or “development” as much as possible unless we are talking about software

implementation. Instead, we will refer to the entire UX lifecycle process as a

process for creating and refining interaction designs and will refer to activities in

the lifecycle as process activities. On a rare occasion, we might lapse into using

Figure 7-1

You are here; the first of
three chapters on creating
an interaction design in
the context of the overall
Wheel lifecycle template.

252 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

“development” to mean the creation and refinement of something, such as the

development of a flow model. In those cases we are counting on context to avoid

ambiguity.

7.2 DESIGN PARADIGMS

In a seminal paper that we think should have received more exposure, Harrison,

Tatar, and Sengers (2007) paint the history of the focus of design in human–

computer interaction (HCI) as a series of paradigms: engineering, human

information processing (HIP), and phenomenological. They get credit for

identifying the phenomenological perspective as a major design paradigm

within the three major intellectual waves that have formed the field of HCI:

n Engineering and human factors: deconstruct work with the objective of designing the

machine for optimum human performance.

n Cognitive science: the theory of what is happening in the human mind during and with

respect to interaction by treating human minds as information processors.

n The phenomenological paradigm (they call it the phenomenological matrix): emphasis

in interaction is about making meaning (more on this later).

The increasing importance of social and situated actions in HCI was at odds

with both the usability-oriented engineering paradigm and the cognitive

logic of the human information processor approach. The initial reluctance of

HCI as a field to recognize and embrace the phenomenological paradigm

spawned a parallel exploration in computer-supported cooperative work.

Activity theory helped explain the situated actions in work practice but did

not do much to help design and evaluation. The paper by Harrison, Tatar,

and Sengers (2007) is an evangelical wake-up call to include the

phenomenological paradigm in mainstream HCI.

7.2.1 Engineering Paradigm
With some of its roots in software engineering, the HCI engineering paradigm

prescribed starting with an inventory of the functionality envisioned for a

new system and proceeding to build an interaction design of the best quality

possible given available resources.

With recognition that user interaction deserved attention on its own, usability

engineering emerged as a practical approach to usability with a focus on

improving user performance, mainly through evaluation and iteration. The

engineering approach casts design as just another lifecycle phase, a systematic

approach that often works well for building systems with complex work domains.

Phenomenological
Aspects of
Interaction

Phenomenological aspects

(deriving from

phenomenology, the

philosophical examination

of the foundations of

experience and action) of

interaction are the

cumulative effects of

emotional impact

considered over the long

term, where usage of

technology takes on a

presence in our lifestyles

and is used to make

meaning in our lives.

Domain-Complex
Systems

Domain-complex systems

are systems with high

degree of intricacy and

technical content in the

corresponding field of

work. Often, characterized

by convoluted and

elaborate mechanisms for

how parts of the system

work and communicate,

they usually have

complicated work flow

containing multiple

dependencies and

communication channels.

Examples include an air

traffic control system and a

system for analyzing seismic

data for oil exploration.

253DES IGN THINK ING , IDEAT ION , AND SKETCHING

The engineering paradigm also had strong roots in human factors, where

work was studied, deconstructed, and modeled. Here, the goal was user

productivity and eliminating user errors. An example is the study of an assembly

line where each action required to do work efficiently was described carefully.

These descriptions were then more or less translated into requirements.

Designs focused on how to support these requirements and to automate

where desirable. It was a purely utilitarian and requirements-driven approach.

Success was measured by how much the user could accomplish, and alternative

methods and designs were compared with statistical summative studies.

7.2.2 Human Information Processing (HIP) Paradigm
The human information processing approach to HCI is based on the metaphor

of “mind and computer as symmetrically coupled information processors”

(Tatar, Harrison, & Sengers, 2007). This paradigm, which at its base is about

models of how information is sensed, accessed, and transformed in the human

mind and, in turn, how those models reflect requirements for the computer side

of the information processing, was defined by Card, Moran, and Newell (1983)

and well explained by Williges (1982).

The HIP paradigm has its roots in psychology and human factors, from which

it gets an element of cognitive theory. Especially as psychology is used in the

discipline of human factors, it is about human mental states and processes;

it is about modeling human sensing, cognition, memory, information

understanding, decision making, and physical performance in task execution.

The idea was that once these human parameters were codified, it is possible to

design a product that “matches” them. Guidelines, such as not havingmore than

seven plus or minus two items on transient lists on a user interface because of

limits on human short-term memory, were a result of this type of thinking.

Human–Computer Interaction Design and the
Three Paradigms

Deborah Tatar, Department of Computer Science, and, by courtesy, Psychology; Member, Center for

Human-Computer Interaction; Member, Program for Women and Gender Studies; Virginia Tech

Steve Harrison, Department of Computer Science and School of Visual Arts, Virginia Tech.

Methods are like toothbrushes. Everyone uses them, but nobody wants to use somebody else’s. John Zimmerman

As you learn the methods in this book, you will adopt them for your own, and as you adopt them, you will

adapt them to the situation that you are working in. Learning this well will allow you to design how you design.

254 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

However, some changes are particularly difficult to understand and encompass. These are shifts across paradigms.

You are unlikely to do this often, but sometimes it may be important to know when a shift is important or to recognize

that someone else is working in a different paradigm.

In this sidebar, we define design as making something new that fits with reality. A design idea is a proposal for

action in the world, burdened with the responsibility to solve problems or create delight. These definitions are cross-

cutting. But the outcomes of design work are not as general as these definitions because any given design problem is

approached within the particular way of seeing the world held by the designers. Such world views consist of a set of

practices, expectations, and values sometimes called paradigms. Some world views value “thinking outside the box.”

In fact, they may value this so much that one criterion for success is to break out of whatever assumptions are seen to

be in place! Others may value the most refined interface that perfectly fits a heavily researched user. Paradigms

suggest the kinds of questions that the designer should care about, what factors are important to consider, and what

factors are outside the scope of the endeavor. The notion of paradigms differs a bit in its use in linguistics, in science,

and in computation. What is really important here is that, in design, there is no absolute best for all circumstances. It

depends on the paradigm. Identifying the paradigms in design helps us understand the intended value of the work

more clearly.

The three paradigms we identify in human–computer interaction (HCI) are human factors, classical cognitivism/

information processing, and the third/phenomenologically situated paradigm. Each of these paradigms represents

a world view. Each encompasses a set of practices and expectations for the value and contribution of research.

Each contributes to HCI, but in different ways. Some people might argue that there are more than three

paradigms, whereas some might argue that there are fewer. But these have substantial claim to both history and

utility. Human factors focus on optimizing man–machine fit. Classical cognitivism/information processing

emphasizes (ideally predictive) models and theories about the relationship between what is in the computer and

in the human mind. The third paradigm, with its base in phenomenology, focuses on the experiential quality of

interaction, primarily the ways that users experience meaning in the artifact and its use. The third paradigm,

unlike the other two, emphasizes the ways in which individuals and individual experiences in the moment may

differ from one another.

To orient you, we will cartoon the nature of each of the paradigms through a simple and well-known interface

example.

In the 1960s, the U.S. Air Force developed automated cockpit warning systems to alert pilots to hazardous conditions.

The systems used recorded voices to tell pilots to turn, climb, or dive to avoid head-on collisions, among other things.

Each of the three paradigms contributes a different kind of thinking to the formulation of the problem and the range

of solutions.

1. Situations that drove the initial system design were classic examples of human factors “critical incidents” (Flanagan, 1954).

That is, pilots were crashing more often than they needed to. The Air Force realized that they needed to gain the pilots’

attention quickly to avert these problems. At the time, all pilots and flight controllers were male, so someone had the

bright idea of using a woman’s voice so that it would be immediately identified as the “emergency voice.” This was

clever and worked well to reduce pilot errors.

2. The use of women’s voices was a particular design solution. However, it worked for reasons of interest to the classical cognitivism/

information processing paradigm; women’s voices effectively differentiated signal from noise in the system interface’s interaction

with the pilot. They allowed the efficient transmission of information, an important factor in any model of (i) human, (ii) computer, and

(iii) interaction. Instead of simply saying “we are using women’s voices because they are different from men’s voices,” in this

paradigm, we describe a model in which women’s voices vs men’s voices is an instance of the critical, generalizable parameter of

signal/noise differentiation. This description suggests other design solutions. For example, a taxonomy of voice types, based on

cognitive load and desired response times, could be created. Indeed, experimentation using this approach revealed that familiar

women’s voices (i.e., wives, girlfriends) further improved pilot performance over nonspecific women’s voices. This approach

optimized communication and pilot mental workload. This kind of characterization also continued to be useful once women became

pilots and flight controllers. It predicted that their voices would no longer have the crucial properties and that another design solution

needed to be sought.

3. However, starting with the first paradigm finding, there is still more to be said. A pilot’s wife’s voice might be most familiar, but

might lead to unpredictable pilot response when the couple was on the verge of divorce. In the third/phenomenologically situated

paradigm, we include construction of meaning in our description of the situation, including social and emotional meaning. This

leads to different design implications and explorations than those that emerge in the design solutions of the other two

approaches. In fact, the original female voice was reputed to have been selected for its sultry and seductive tone.1 This

quality reinforced the idea of the space of the cockpit being “male,” echoed in movies such as Top Gun. However this

appeared originally to pilots, it became palpably inappropriate in creating a comfortable workplace as women became pilots

and flight controllers. An important aspect of the third paradigm is that it is as concerned with the variety of human behaviors

as with their prevalence. That is, suppose you find that voices with certain properties work well for 98% of pilots. In the third

paradigm, you might decide that you have to account for what makes the other 2% different, whereas in the first two

paradigms, one is more likely to dismiss these as statistical aberrations or error.

We picked this example because the boundaries to generalizability have changed so palpably that it is relatively easy

to perceive all three paradigms. Most of the time that is not the case, even retrospectively. People make arguments

based on unarticulated positions, allegiances, and values, often dismissing thinking in other paradigms as uninteresting,

unimportant, dull, or frivolous.

We advance the idea of the three paradigms not as an absolute truth to last for the ages, but as an important

heuristic that helps explain important differences of opinion about what constitutes good design in HCI. This

perspective is useful in understanding what is happening in contemporary HCI. It may also be helpful in scoping

particular design problems, in understanding the concerns of a particular client, and in working across organizational

and institutional team boundaries.

7.2.3 Design-Thinking Paradigm
Harrison, Tatar, and Sengers (2007) propose a third HCI design paradigm

that they call the “phenomenological matrix.” We call it the design-thinking

paradigm because our use of that concept goes a bit beyond their description of

1One interesting side effect was to gender popular media representations of flight control automata as female. Particularly notable is the

original StarTrek computer.

256 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

a “pure” phenomenological approach. This third design paradigm brings a

vision of the desired user experience and product appeal and how the design of

a product can induce that experience and appeal.

For B�dker and Buur (2002), the third paradigm for HCI design is motivated

by a desire to “reframe usability practice.” The heavy priority for usability testing

in traditional usability methods meant that usability concerns were being

brought into the process too late and that emphasis was on refining a design but

not on getting the right design in the first place [as Buxton (2007b) would say

it]. They used participatory design techniques to experiment with and explore

design through early prototypes as design sketches.

Another of their reasons for reframing usability practice is the fact that the

usual usability techniques focused on snapshots of usage, user performance

evaluated during single tasks. But they wanted to include emergence of use.

They also wanted to overlap the four basic process activities—analysis, design,

implementation, and evaluation—instead of “pipelining” them in an iterative

process.

As a contrast to the other two paradigms, the third one is not about the

utilitarian aspects but more about the emotional and phenomenological ones.

The design-thinking paradigm is about social and cultural aspects of interaction

and the design of “embodied interaction” because it is about interaction

involving our whole bodies and spirit, not just our fingertips on a keyboard. It is

also about “situated” design because it is about the notion of “place” with respect

to our interaction with technology.

Malcolm McCullough (2004) espoused this idea in the context of pervasive,

embedded, and ubiquitous computing surrounding us in our lives and in

our architecture, connecting interaction design with psychology, cultural

anthropology, and technology. A primary characteristic of the design-thinking

paradigm is the importance of emotional impact derived from design—the pure

joy of use, fun, and aesthetics felt in the user experience.

To put the paradigms in perspective, consider the concept of a new car

design. In the first paradigm, the engineering view, a car is built on a frame that

holds all the parts. The question of its utility is about how it all fits together

and whether it makes sense as a machine for transportation. It is also about

performance, horsepower, handling, and fuel mileage. The second paradigm

will see the car design as an opportunity to develop ergonomic seating and

maybe new steering control concepts, as well as placement of controls to react

quickly to emergency driving situations.

The design-thinking view of the third paradigm will also encompass many of

the things necessary to produce a car that works, but will emphasize emotional

Participatory
Design

Participatory design is a

democratic process for

design entailing user

participation in design for

work practice. Underlying

participatory design is the

arguments that users should

be involved in designs they

will be using, and that all

stakeholders, including and

especially users, have equal

inputs into interaction

design.

257DES IGN THINK ING , IDEAT ION , AND SKETCHING

impact, “coolness” of the ride, and how to optimize the design to best appeal to

the joy of driving and feelings of ownership pride. The design-thinking

paradigm will also highlight the phenomenological aspects of how a car

becomes more than just transportation from A to B, but how it becomes an

integral part of one’s life.

The third paradigm, our design-thinking paradigm, is about designing for

the user experience. Architects have long known that the physical building is

not really the target of the design; they are designing for the experience of

being in and using that building. Similarly, we are not designing products to

sell; we are selling the experience that the product engenders, encourages, and

supports.

Sometimes the design-thinking approach can be in opposition to what

contextual inquiry and requirements might say a design should have. Frank

Lloyd Wright was a master at envisioning a concept and an experience for his

clients, often ignoring their inputs. You can see similarities in the design of the

iPad. Popular criticism of the iPad cited the lack of so-called connection

features, the ability to write free-form notes, and so on, making this a gadget that

would not appeal to people. The argument was that this will be just another

gadget without a clearly defined utility because it lacked the features to replace a

laptop or a desktop computer.

However, the overwhelming success of this device goes to the fact that

it is not about utility but the intimate experience of holding a beautiful

device and accessing information in a special way. Before the iPad, there

were email, digital newspapers such as CNN.com, book readers, and photo

viewers, but this device introduced an experience in doing these same

things that was unprecedented. With the design-thinking approach, often

the outcome is an intangible something that evokes a deeper response in

the user.

7.2.4 All Three Paradigms Have a Place
These paradigms are just frameworks within which to think about design. The

paradigms are not necessarily mutually exclusive; they do overlap and can be

complementary. In most real system or product development, there is room for

more than one approach.

To read some of the new literature on design thinking, you might think that

the old engineering approach to interaction design is on its way out (Nilsson &

Ottersten, 1998), but a utilitarian engineering approach is still effective for

258 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

systems with complex work domains. Just because a methodical and systematic

approach to contextual inquiry, requirements, and modeling is a characteristic

of the engineering paradigm does not mean that we do not pay attention to such

things in the other paradigms.

Even the most innovative design thinking can benefit from being

grounded in a real understanding of user work practice and user needs that

comes from contextual inquiry and analysis. And even creative design thinking

must still be directed and informed, and informing design can mean doing

contextual inquiry and analysis, modeling, requirements extraction,

prototyping, and so on. Further, there is no reason why the rich approach of

design thinking, using ideation and sketching, should not be followed with

iterative refinement.

Similarly, there is need for creativity and innovation in all three paradigms.

Just because we single out design thinking as the main place we discuss

innovation and creativity does notmean there is no call for creativity in the other

paradigms.

Further, even when the engineering paradigm or design-thinking

paradigm is dominant in a project, designing from HIP-like inputs is still

effective for leading to an interaction that is consistent with human cognitive

capabilities and limitations. A consideration of ergonomics, human factors,

and carefully studied workflow can still have a valid place in almost any kind

of design.

7.3 DESIGN THINKING

The “design” box in the lifecycle template is usually a placeholder for an

unknown or unspecified process. The usual UX lifecycle glosses over the

whole subject of what is in the box labeled “design” (Buxton, 2007b). Design

should be more than just a box within a larger lifecycle; it is a separate discipline

on its own.

What some call design is applied only after functionality and interaction

design are completed, when the product needs a shell or skin before going

to market and everyone wants to know what color the device will be. This

might help make an existing product attractive and perhaps more marketable,

but this is cosmetic design, not essential design built into the product from

the start.

Design Thinking

Design thinking is amind-set

in which the product

concept and design for

emotional impact and the

user experience are

dominant. It is an approach

to creating a product to

evoke a user experience that

includes emotional impact,

aesthetics, and social- and

value-oriented interaction.

As a design paradigm,

design thinking is an

immersive, integrative, and

market-oriented eclectic

blend of art, craft, science,

and invention.

Ideation

Ideation is an active,

creative, exploratory, highly

iterative, fast-moving

collaborative group process

for forming ideas for

design. With a focus on

brainstorming, ideation is

applied design thinking.

Sketching

Sketching is the rapid

creation of free-hand

drawings expressing

preliminary design ideas,

focusing on concepts rather

than details. Multiple

sketches of multiple design

ideas are an essential part of

ideation. A sketch is a

conversation between the

sketcher or designer and the

artifact.

259DES IGN THINK ING , IDEAT ION , AND SKETCHING

Fortunately, this emerging mind-set that we call design thinking turns that

around and puts a focus on design up front. The design-thinking paradigm is an

approach to creating an experience that includes emotional impact, aesthetics,

and social- and value-oriented interaction. The design of the product concept

and design for emotional impact and the user experience comes first; it is a

design-driven process.

Designers are called upon to create a new vision, taking customers and users

to a profound and satisfying user experience. After the design concept emerges,

then engineers can follow up by providing the functionality and interaction

design to make the vision a reality.

Design thinking is immersive; everything is about design. Design thinking

is integrative; you pull many different inputs, inspiration, and ideas together to

focus on a design problem. Design thinking is human centered, requiring a

thorough understanding of the needs, especially the emotional needs, of

human users.

Design thinking is market oriented, requiring a thorough understanding

of the market, trends in usage and technology, and the competition. As

such, design thinking is not just the world of dreamers and geeks; it has

become an essential business tool for decision making and marketing.

Design thinking is broadly attentive to the product, packaging, presentation,

and customer support. Design thinking is an eclectic blend of art, craft,

science, and invention.

In the traditional engineering view, we use terms such as plan, analyze, build,

evaluate, and optimize. In the design-thinking perspective, you are more likely

to hear terms such as create, ideate, craft, envision, interpret, excite, provoke,

stimulate, and empathize.

The Apple iPod Touch is an example of a product resulting from design

thinking. The device has superb usability; its soft buttons have precise and

predictable labels. The physical device itself has a marvelous design with great

emotional impact. Much design effort went into aspects that had nothing to do

with performance or functionality.

The packaging, gift-wrapping, and engraving appeal to a personal and social

desirability. It is attractive; it is delightful. The user experience is everything

and everything is about design. In fact, the label on the device does not

say, “Made by Apple”; it says, “Designed by Apple!” “You buy it for what it can

do, but you love it because it is so cool.” Apple’s senior vice president of

industrial design, Jonathan Ive, says (Salter, 2009) “With technology, the

function is much more abstract to users, so the product’s meaning is almost

entirely defined by the designer.”

260 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

7.4 DESIGN PERSPECTIVES

We describe three design perspectives as filters through which we view design

and design representations to guide thinking, scoping, discussing, and doing

design. They are easy to understand and do not require much explanation.

7.4.1 Ecological Perspective
The ecological design perspective is about how the system or product works

within its external environment. It is about how the system or product is used in

its context and how the system or product interacts or communicates with its

environment in the process. This is a work role and workflow view, which

includes social interaction and long-term phenomenological aspects of usage as

part of one’s lifestyle.

System infrastructure (Norman, 2009a) plays an important role in the

ecological perspective because the infrastructure of a system, the other systems

and devices with which it interacts in the world, is a major part of its ecology.

Infrastructure leads you to think of user activities, not just isolated usage.

Norman (2009b) states it in a way that designers should take to heart, “A product

is actually a service.”

7.4.2 Interaction Perspective
The interaction design perspective is about how users operate the system or

product. It is a task and intention view, where user and system come together.

It is where users look at displays and manipulate controls, doing sensory,

cognitive, and physical actions.

7.4.3 Emotional Perspective
The emotional design perspective is about emotional impact and value-sensitive

aspects of design. It is about social and cultural implications, as well as the

aesthetics and joy of use. System infrastructure (Norman, 2009b) can also play a

role in the emotional perspective because the infrastructure of a system provides

scaffolding for the phenomenological aspects of usage, which are about broader

usage contexts over longer periods of time.

A product is not just a product; it is an experience (Buxton, 2007a). People

donotusually use aproduct in isolation fromother activities. Peopleuseproducts as

part of anactivity, which can includemanydifferent kindsof usageofmanydifferent

things. And that starts with the out-of-the-box experience, which is not enhanced by

difficult hardplastic encasing, large usermanuals, complex installationprocedures,

and having to consent to a legal agreement that you cannot possibly read.

261DES IGN THINK ING , IDEAT ION , AND SKETCHING

The Delicate Balance among Visual Appeal,
Emotion, and Usability

Gitte Lindgaard, Distinguished Research Professor, Carleton University, Ottawa, Canada

Professor, Neuro affective psychology, Swinburne University of Technology, Melbourne, Australia

“Yellow sox ! nice guy!” We know that many snap decisions, such as assessing the suitability of a person to a

particular job, are often based on less than credible, if not entirely irrelevant, information. Still, whether we are sizing up

another person or deciding to stay on a given Website, first impressions are instant, effortless, powerful, and based on

affect, that is, on “what my body tells me to feel.” Even decisions that should involve serious contemplation, additional

information, and evidence from different sources are made instantly. Worse, once we have made a decision, we set out

to “prove” to ourselves that our decision was “right.”

Thus, when encountering an ugly, cluttered Website, we will be out of there on the next click, before gleaning the

quality of the information, goods, or services it offers. However, if we have decided a priori to buy a given product from a

certain vendor, we will persevere and complete our purchase, hating every step of the interaction. In our annoyed, even

angry, state, we go out of our way to identify every trivial usability flaw simply to justify that initial decision.

Yet, we are much more likely to hang around and enjoy the ride on a pretty site even if its products are of a lower quality

and the usability issues more serious and more numerous than on the ugly site so unceremoniously discarded. When given

a choice, even the most unusable, but very pretty, site will typically be preferred over a less appealing, more usable site. In

some studies, people, well aware of the site’s poor usability, have vigorously defended and justified their choice.

Numerous other studies have shown that beauty matters and that the first impression “sets the scene” for further

action, at least in a Web environment where the next site is but a click away; visual appeal is simply used as a

screening device. Quality of content will only be evaluated on sites that pass that initial step.

This rather uncompromising instant approach to decide on staying or leaving a Website could suggest that being

pretty is all that matters. Not so! When the Canadian government wanted to attract masses of new graduates, they

designed a vibrantly colorful Website with lots of animation in the belief that “this is what young people like.” They

then took their beautiful Website around the country for feedback from the target audience.”Yeah, we like lots of

bright color and movement” was the response, “but not when looking for a job in the Government!”

For an application to appeal to users, then, their judgmental criteria depend on the usage context. Even a neutral,

relative boring gray color may occasionally be very appealing, pleasant to use, and highly usable. Figure 1 shows a

telecommunications network alarm management system. In earlier versions of the software it was almost impossible

to identify the problem nodes, making the operator’s job extremely stressful. If a blockage between two nodes is not

detected and rectified within a few minutes, the problems spread so quickly that the entire network may break down,

blocking all communication and making it almost impossible to fix.

The gray background on the left shows a map of a recognizable part of a certain city with a network problem. The

rough-looking color indicates land surrounding a small (outlined) river, shown with a smooth surface and overlaid with

the network nodes currently in alarm mode. This facilitates the geographical identification of the location. The red

rectangles indicate the most serious problem nodes and the seriousness of these.

In the present example, there is no communication between the two red nodes; the yellow node is affected, but is

still able to communicate. Callout balloons with the letters “C” (critical, circled in green), “M”, and “m” (both

medium) show where to start fixing the problem. Clicking on the red “C” takes the operator directly to the faulty

equipment, shown on the right, where clicking again on the red C shows the affected equipment.

This example takes us back to Mark Weiser’s notion of “calm computing” aiming to ensure that the user feels good

and “in control” at all times. There are no design gimmicks, no fun or attempt to “jazz up” the displays with smart icons

or pretty colors in this user interface; it just “feels right.” This simple, very effective visual language presented on a

consistent, bland background has removed most of the stress previously experienced by network operators. It has been

adopted by the International Telecommunications Union as a standard for network management systems.

These examples contradict the currently sexy assumption in the human–computer interaction community that even

serious tasks should be couched in a colorful gaming model. Apparently, appropriateness also features prominently

when deciding how much to like a Website or an application. Judgments of appropriateness are based largely on

culturally constructed expectations. The domain and the purpose of an interactive product determine our expectations

and hence influence how we feel about it. This emotional effect underlies our situated judgment of appeal. Indeed, in

our collective quest to create great user experiences, we must be careful not to lose sight of the traditional, often

sneezed at, utilitarian brand of usability.

The example in Figure 2 is from a high-pressure petrochemical plant-management system. The plant produces many

types of plastic, from purified, highly compressed gas injected under high pressure into reactor vessels operating at

200�+ C. The gas is mixed with chemical catalysts, which eventually turn the mix into tiny plastic pellets. The left side

of Figure 2 shows how the pressure (red pen) and temperature (green pen) were plotted automatically on a constantly

scrolling paper roll before automation. The variation in each parameter is shown in rows, and time is given in columns,

with each row representing 30 minutes in elapsed time. The range of movement of those two pens enabled the team

leader to easily monitor four reactor vessels simultaneously.

Three minor changes in the management system are shown on the right: (1) time is now shown in rows, (2) each column

represents 10 minutes (instead of 30) of lapsed time, and (3) the two indicators are shown on different screens. These

apparently minor changes paralyzed production completely. The highly experienced team with over 20 years of practice was

unable to achieve the required quality of product; they continually overadjusted either the pressure or the temperature.

Consequently, the company nearly lost its main customer who bought 60% of the products, and an engineer had to

be on duty with the team 24/7 for the next 6 months. The screen display was just as visually appealing as the original

paper roll, but relearning the system rendered the system unusable. Thus, aesthetics alone did not ensure usability; the

Figure 1

Example of an alarm management system relying on a simple visual language

operators disliked the system intensely, and violation of the long-established expectations of what and how

information should be displayed turned out to be a very costly oversight.

Evidently, the relationship among visual appeal, emotion, and usability is much more complex than may be assumed. To

date, relatively little attention has been paid to the power of expectation, to our sense of appropriateness, and to our

decisions concerning the “fitness for purpose” of interactive products. However, these do profoundly affect the appeal and

hence our acceptance of such products. As user interface designers, we simply cannot afford to ignore the context in, and

purpose for, which our products will be seen and used.

Figure 2

A before- and after-
automation display shows
minor changes to a
mission-critical system

7.5 USER PERSONAS

For the Latin sticklers, we prefer the easy-going “personas” over the pedantic but

probably more correct “personae.” Personas are a powerful supplement to work

roles and user class definitions. Storytelling, role-playing, and scenarios go hand

in hand with personas.

We have leaned heavily on Cooper (2004) for our descriptions of personas

with additional ideas on connecting to contextual data from Holtzblatt,

Wendell, and Wood (2005, Chapter 9) and we gladly acknowledge their

contributions here. Personas are an excellent way of supporting the design

thinking and design perspectives of this chapter.

7.5.1 What Are Personas?
A persona is not an actual user, but a pretend user or a “hypothetical archetype”

(Cooper, 2004). A persona represents a specific person in a specific work role

and sub-role, with specific user class characteristics. Built up from contextual

data, a persona is a story and description of a specific individual who has a name,

a life, and a personality.

Personas are a popular and successful technique for making your users really

real. Personas have an instant appeal through their concreteness and personal

engagement that makes them ideal for sharing a visualization of the design

target across the whole UX team.

Stories Are at the Center of User Experience

Whitney Quesenbery, WQusability, Coauthor, Storytelling in User Experience: Crafting Stories for

Better Design (Rosenfeld Media)

Perhaps you think that stories and storytelling are out of place in a book about methodology and process. Once, you

might have been right. As recently as 2004, a proposal for a talk about writing stories and personas as a way of

understanding the people who use our systems was rejected out of hand with, “Personas? Stories!? We are engineers!”

They were wrong.

Stories have always been part of how human beings, including engineers, come up with new ideas and share those

ideas with others. Stories may be even more important for innovative ideas. It is not very hard to explain an

incremental change: “It is just like it is now, but with this one difference.” But when you are trying to imagine an

entirely new concept or a design that will change basic processes, you need a story to fill in the gaps and make the

connections between how it is now and how it might be.

To see what I mean, try this experiment. Close your eyes and try to explain to your 1995 self why you might want

to use Twitter, Yelp, or Foursquare. There are just too many steps between the world then and the world now.

Sometimes it is easy because the context is familiar. Yelp’s story is like that: You are standing somewhere—the

lobby of a building or a street corner—and you are hungry. Where can you go eat? Is it open right now? The idea is

easy; the product is new because we could not pull off the technology, even just a few years ago.

Sometimes it is hard because the idea meets a need you did not know you even had. When Twitter first launched,

people said “Why would I want to know that much about someone else’s daily life?” CommonCraft’s video, Twitter in

Plain English2 takes up this challenge by showing how the system works in 2 minutes and 23 seconds. Not in technical

terms, but in the human actions and human relationships it is based on.

Could you have predicted that (for a few years) a FAX would be the easiest way to order lunch from the local deli?

It does not make sense until you think about the entire user experience.

One place to start an innovation story is with a frustrating situation. Tell a story that explains that point of pain.

Maybe your story starts with how annoying it is to take sandwich orders from a room full of people. Include context

and imagery and a realistic situation. Or it might be about the noise and craziness of lunch hour in a busy city deli,

with people all yelling at once and at least three different languages in the kitchen.

2www.commoncraft.com/twitter

265DES IGN THINK ING , IDEAT ION , AND SKETCHING

Now change that story to give it a better ending. That is your innovation story.

You have people, in a situation, with a problem, and a solution, along with what will make it work.

Before you decide that your story is ready to share, ask yourself, “Did it all seem too easy? Did the story seem a

little too perfect?” If so, take a 10-minute timeout and start over. Back in the deli, did you decide that the solution

would be a laptop on the deli counter? Did you think about the people standing behind a counter, wiping mustard off

their hands? It is easy to fall into the trap of writing stories about the users we wish we had.

Stories in user experience are not made up fairy tales; they are grounded in good user research and other data. They

are like personas in this way. Personas start with data, organized into user profiles. It is the stories that turn a good user

profile into a persona, that is, adding the emotions, detailed personal characteristics, and specific background or goals

that make a persona come alive. You cannot tell much of a story about a stick figure. However, if you imagine Jason, who

is leaving high school, is interested in computers, and loves his local sports team, you can begin to think about what kind

of experiences will work well for Jason and how he might interact with the product you are designing.

Similarly, you can start with a task or goal. Use your favorite method to model the task. That gives you the analysis.

Put that together into a sequence of actions, and you have a scenario. Add character into that narrative, with all their

context and personal goals. Let their emotions be part of it; they are not robots. Are they frustrated, eager, happy, or

sad? Now you are starting to craft a story.

Both personas and stories rely on data. They are the raw material. Scenarios and profiles are the skeleton—the

basic shape and size of it. But it is when you add emotion and imagery that you have a story. If you understand the

human and technical context, your stories will have believable characters and narratives.

The next time you want to help someone understand a design or how it will be used, try a story instead of a

technical explanation. The really great thing about stories is that they make people want to tell more stories, which

will get everyone engaged with the idea and its impact on our lives. All of a sudden, you are all talking about user

experience.

7.5.2 What Are Personas Used For? Why Do We Need Them?
Common sense might dictate that a design for a broad user population should

have the broadest possible range of functionality, with maximum flexibility in

how users can pick the parts they like themost. But Cooper (2004, p. 124) tells us

this thinking is wrong. He has shown that, because you simply cannot make a

single design be the best for everyone, it is better to have a small percentage of

the user population completely satisfied than the whole population half-

satisfied.

Cooper extends this to say it can be even better to have an even smaller

percentage be ecstatic. Ecstatic customers are loyal customers and effective

marketing agents. The logical extreme, he says, is to design for one user. This is

where a persona comes in, but you have to choose that one user very carefully.

It is not an abstract user with needs and characteristics averaged across many

other kinds of users. Each persona is a single user with very concrete

characteristics.

Edge cases and breadth
Personas are a tool for controlling the instinct to cover everything in a design,

including all the edge cases. This tool gives us ways to avoid all the unnecessary

discussion that comes with being “edge-cased to death” in design discussions.

Personas are essential to help overcome the struggle to design for the

conflicting needs and goals of too many different user classes or for user classes

that are too broad or too vaguely defined. In situations where users for one work

role come from different user classes, but all have to take on the same work role, a

persona lets us focus on designing literally for a single person and liberates them

from having to sort through all the conflicting details of multiple user classes.

As Cooper (2004) put it, personas can help end feature debates. What if the

user wants to do X? Can we afford to include X? Can we afford to not include X?

How about putting it in the next version? With personas, you get something

more like this: “Sorry, but Noah will not need feature X.” Then someone says

“But someone might.” To which you reply, “Perhaps, but we are designing for

Noah, not ‘someone.’”

A specific persona makes clear what functionality or features must be

included and what can be omitted. It is much easier to argue whether a person

represented by a specific persona would like or use a given design feature.

Designers designing for themselves
Designing to “meet the needs of users” is a vague and ill-defined notion giving

designers the slack to make it up as they go. One common way designers do

stray from thinking about the user is when they design for themselves. In most

project environments, it is almost impossible for designers to not think of the

design in terms of how they would use it or react to it.

One of the strengths of personas is that they deflect this tendency of designers

to design for themselves. Because of their very real and specific characteristics,

personas hold designers’ feet to the fire and help them think about designs

for people other than themselves. Personas help designers look outward instead

of inward. Personas help designers ask “How would Rachel use this feature?,”

forcing them to look at the design from Rachel’s perspective. The description of

a persona needs to make it so well defined as a real and living being that it is

impossible for a designer or programmer to substitute themselves or their own

characteristics when creating the design.

267DES IGN THINK ING , IDEAT ION , AND SKETCHING

7.5.3 How Do We Make
Them?
As in most other things we do in

analysis and design, we create a

separate set of personas for each

work role. For any given work role,

personas are defined by user goals

arising from their sub-roles and

user classes. Different sub-roles

and associated user classes have

different goals, which will lead to

different designs.

Identifying candidate
personas
Although personas are

hypothetical, they are built from

contextual data about real users.

In fact, candidate personas are

identified on the fly as you interview

potential users. When you

encounter a user whose persona would have different characteristics than any of

the existing ones, add it to the list of candidates.

This means that you will create multiple candidate personas generally

corresponding to a major sub-role or user class, as shown in the top part of

Figure 7-2. How many candidate personas do you need? As many as it takes to

cover all the users. It could be in the dozens.

Goal-based consolidation
The next step is to merge personas that have similar goals. For example, in the

Ticket Kiosk System we have a persona of an undergraduate student ticket buyer

sub-role who lives on campus and is interested in MU soccer tickets. Another

persona in the same work role, this time a graduate student who lives off campus,

is interested in MU tennis tickets.

These two personas have different backgrounds, defining characteristics, and

perhaps personal interests. But in the context of designing the kiosk system, they

are similar in their goals: get tickets formediumpopularity athletic events atMU.

This step reduces the number of personas that youmust consider, as shown in

the middle part of Figure 7-2. But you still cannot design for a whole group of

personas that you may have selected, so we choose one in the next section.

Figure 7-2

Overview of the process of
creating a persona for
design.

268 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Selecting a primary persona
Choose one of the personas selected in the previous step as the one primary

persona, the single best design target, the persona to which the design will be

made specific.

Making this choice is the key to success in using the persona in design. The

idea is to find common denominators among the selected personas. Sometimes

one of the selected personas represents a common denominator among the

others and, with a little adjusting, that becomes the primary persona.

The way you get the primary persona right is to consider what the design

might look like for each of the selected personas. The design specifically for

the right primary persona will at least work for the others, but a design

specifically for any of the other selected personas may not work for the

primary persona.

An example of the primary persona for the student sub-role in the Ticket

Kiosk System could be that of Jane, a biology major who is a second-generation

MU attendee and a serious MU sports fan with season tickets to MU football.

This persona is a candidate to be primary because she is representative of most

MU students when it comes to MU “school spirit.”

Another persona, that of Jeff, a music major interested in the arts, is also an

important one to consider in the design. But Jeff is not a good candidate as a

primary persona because his lack of interest inMU athletics is not representative

of a majority of MU students.

In constructing the primary persona, making it precise and specific is

paramount. Specificity is important because that is what lets you exclude other

cases when it comes to design. Accuracy (i.e., representing a particular real user)

is not as important because personas are hypothetical.

Do not choose a mixture of users or an “average” user; that will be a poor

choice and the resulting design will probably not work well for any of the

personas. Averaging your users just makes your persona a Mr. Potato Head, a

conglomeration that is not believable and not representative of a single user.

7.5.4 Mechanics of Creating Personas
Your persona should have a first and last name to make it personal and real.

Always, of course, use fictitious names for personas to protect the anonymity of

the real users upon which they may be based. Mockup a photo of this person.

With permission, take one of a volunteer who is a visual match to the persona or

use a photo from a noncopyrighted stock collection. Write some short textual

narratives about their work role, goals, main tasks, usage stories, problems

encountered in work practice, concerns, biggest barriers to their work, etc.

269DES IGN THINK ING , IDEAT ION , AND SKETCHING

Whenever a persona is developed for a work role, if there is enough space in

the flow and social model diagrams, you can show the association of your

personas to work roles by adding the persona represented as a “head shot” photo

or drawing of a real person attached with lines to the work role icon. Label each

with the persona’s name.

7.5.5 Characteristics of Effective Personas

Make your personas rich, relevant, believable, specific,
and precise
The detail of a persona has to be a rich part of a life story. It has to be specific and

precise; this means lots of details that all fit together. Give your persona a

personality and a life surrounded with detailed artifacts.

Personas are relevant and believable. Every persona must be a complete and

consistent picture of a believable person. Personas excel in bringing out

descriptions of user skills.

Unlike aggregate categories (e.g., user classes), a persona can be a frequent

user without being an expert (because they still do not understand how it works).

Make your personas “sticky”
Some practitioners of the persona technique go far beyond the aforementioned

minimal descriptions of their creations. The idea is to get everyone thinking in

terms of the personas, their needs, and how they would use a given system.

Personas need to get lots of visibility, and their personalities need to be

memorable or “sticky” in the minds of those who encounter them (Nieters,

Ivaturi, & Ahmed, 2007). To this end, UX teams have created posters, trading

cards, coffee mugs, T-shirts, screen “wallpaper,” and full-sized cardboard stand-

up figures to bring their personas alive and give them exposure, visibility, and

memorability to keep them on the minds of all stakeholders.

At Cisco in San Jose, designers have gone so far as to invent “action figures”

(à la Spiderman), little dolls that could be dressed and posed in different ways

and photographed (and sometimes further “developed” via Photoshop) in

various work contexts to represent real usage roles (Nieters, Ivaturi, & Ahmed,

2007). To us, that may be going beyond what is necessary.

Where personas work best
When personas are used in designing commercial products or systems with

relatively simple work domains (i.e., projects on the left-hand side of the system

complexity space of Figure 2.5), they help account for the nuances and the

activities in personal lives outside organizations. Social networking and other

phenomenological behavior come into play.

270 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

For example, you may have the kind of person who always carries a phone but

does not always carry a camera. This might help in design discussions about

whether to combine a camera in a cellphone design.

As you move toward the right-hand side of the system complexity space of

Figure 2.5, toward systems for more complex work domains, the work practice

often becomes more firmly defined, with less variation in goals. Individual users

in a given work role becomemore interchangeable because they have almost the

same exact goals. For example, the work goals of an astronaut are established by

the mission, not by the person in the astronaut role and usage is prescripted

carefully.

In this kind of project environment, personas do not offer the same

advantages in informing design. Roles such as astronaut or air traffic controller

are defined very restrictively with respect to background, knowledge, skills, and

training, already narrowing the target for design considerably. People who take

on that role face stiff user class specifications to meet and must work hard and

train to join the user community defined by them. All users in the population

will have similar characteristics and all personas for this kind of role will look

pretty much alike.

7.5.6 Goals for Design
As Cooper (2004) tells us, the idea

behind designing for a persona is that

the design must make the primary

persona very happy, while not making

any of the selected personas unhappy.

Buster will love it and it still works

satisfactorily for the others.

7.5.7 Using Personas in Design
Team members tell “stories” about how

Rachel would handle a given usage

situation. As more and more of her

stories are told, Rachel becomes more

real and more useful as a medium for

conveying requirements.

Start by making your design as though

Rachel, your primary persona, is the only

user. In Figure 7-3, let us assume that we

have chosen persona P3 as the primary

persona out of four selected personas.

Figure 7-3

Adjusting a design for the
primary persona to work for
all the selected personas

271DES IGN THINK ING , IDEAT ION , AND SKETCHING

Because D(P3) is a design specific to just P3, D(P3) will work perfectly for P3.

Now we have to make adjustments to D(P3) to make it suffice for P1.

Then, in turn, we adjust it to suffice for P2 and P4. The final resulting design

will retain the essence of D(P3), plus it will include most of the attributes that

make D(P1), D(P2), and D(P4) work for P1, P2, and P4, respectively.

As you converge on the final design, the nonprimary personas will be

accounted for, but will defer to this primary persona design concerns in case

of conflict. If there is a design trade-off, you will resolve the trade-off to benefit

the primary persona and still make it work for the other selected personas.

7.5.8 Example: Cooper’s In-Flight Entertainment System
Cooper (2004, p. 138) describes the successful use of personas in a Sony design

project for an in-flight entertainment system called P@ssport. In addition to the

work roles for system maintenance and the flight attendants who set up and

operate the entertainment system, the main users are passengers on flights.

We call this main work role the Traveler.

The user population that takes on the role of Traveler is just about the

broadest possible population you can imagine, including essentially all the

people who travel by air—almost everyone. Like any general user population,

users might represent dozens of different user classes with very diverse

characteristics. Cooper showed how the use of personas helped mitigate the

breadth, vagueness, and openness of specification of the various Traveler user

classes and their characteristics.

You could come up with dozens or more personas to represent the Traveler,

but in that project the team got it down to four personas, each very different

from the others. Three were quite specialized to match the characteristics of

a particular type of traveler, while the fourth was an older guy who was not

technology savvy and was not into exploring user interface structures or

features—essentially the opposite of most of the characteristics of the other

personas.

They considered designs for each of the first three personas, but because

none of those designs would have worked for the fourth, they came up with an

initial design for the fourth persona and then adapted it to work well for all the

other personas, without sacrificing its effectiveness for the target persona.

Example: User Personas—Lana and Cory
Here is an example of a persona derived from the interviews of the couple, Lana

and Cory, whom we treat as a single composite persona because they share

an approach to entertainment events. (NB: The interspersed comments in

272 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

parentheses are not part of the personas, but possibly design-related

observations related to various aspects of the personas.)

Lana is a young 20-somethingmanager and yoga instructor in the Dirk Gently

Holistic Yoga Studio and enjoys using her laptop during off-work hours. Cory

works as a graphic designer at Annals of Myth-information, a small-sized

company of creative people.

Lana does not own a car, a smart option in Middleburg, so she takes the bus

for distances beyond walking or biking. Cory has to drive to work but bikes or

takes public transportation to other places on weekends. Lana and Cory work

hard, play hard, and are ready for entertainment on the weekends. (Because

they both spend time occasionally at bus stops, it would be a good place for

them to peruse the entertainment possibilities and buy tickets while waiting for

the bus.)

In addition to pursuing Middleburg entertainment, Lana and Cory have also

been known to skip over toWashington, DC, or New York City to visit friends and

take in some world-class entertainment. (Therefore, they would love to see

information about events in other cities included in the kiosk.)

They occasionally take time out on weekday evenings to do something

different, to get away from the routine, which can include seeing a movie,

visiting a museum, going out with friends, or traveling in the immediate area. As

a balance to the routine of their jobs, they both crave opportunities for learning

and personal growth so they often seek entertainment that is sophisticated and

interesting, entertainment that challenges intellectually.

However, there are some days they want to rest their minds and they seek

something more like mindless entertainment, often something that will make

them laugh. They hear about a lot of events and places to visit through word of

mouth, but they wonder about how many other interesting events do not come

to their attention.

Cory, being influenced by his work in designing social Websites, wonders if

sources of entertainment information could also provide a special kind of social

networking. He would like to see mediated discussions about events and

entertainment-related issues or at least a way to post and read reviews and

opinions of various movies and other performances.

Similarly, Lana would like a way to share event information. “Like maybe this

weekend there is going to be a jazz festival at a certain sculpture garden and I

want Cory to know about it. It would be nice to have a button to touch to cause

some kind of link or download to my iPhone or iPod.” It is easy to copy

information from an entertainment Website and send it via email, but sharing is

not as easy from a ticket office or kiosk.

273DES IGN THINK ING , IDEAT ION , AND SKETCHING

To sum up the characteristics of their joint persona, they:

n lead busy lives with a need for cooling off once or twice a week

n are sophisticated, educated, and technology savvy

n are civic minded and care about sustainability and environment

n like the outdoors

n have a good group of friends with whom they sometimes like to share entertainment

7.6 IDEATION

Ideation is an active, fast-moving collaborative group process for forming ideas

for design. It is an activity that goes with design thinking; you might say that

ideation is a tool of design thinking; ideation is applied design thinking.

Ideation is where you start your conceptual design. This is a hugely creative

and fun phase. Ideation is where you brainstorm to come up with ideas to solve

design problems. Ideation is inseparable from sketching and evaluation aimed

at exploration of design ideas.

7.6.1 Essential Concepts

Iterate to explore
Ideation involves exploration and calls for extensive iteration (Buxton, 2007b).

Be ready to try, try, try, and try again. Think about Thomas Edison and his more

than 10,000 experiments to create a usable and useful light bulb. Make sketches

and physical mockups early and often, and expose customers and users to your

designs; involve them in their creation, exploration, and iteration.

The evaluation part of this kind of exploratory iteration is never formal;

there are no established “methods.” It is a fast, furious, and freewheeling

comparison of many alternatives and inspiration for further alternatives. If you

are starting out with only two or three alternatives, you are not doing this right.

Idea creation vs. critiquing
In the active give-and-take of design, there are two modes of thinking: idea

creation and critiquing. Idea creation is about the generation of new ideas and

throwing them out for discussion and inspiration. Critiquing is review and

judgment.

Although you will interweave idea creation and critiquing throughout the

design process, you should know which mode you are in at any given time and

Exercise

See Exercise 7-1, Creating a

User Persona for Your

System

274 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

not mix the modes. That especially means not to mix critiquing into idea

creation. Idea creation should result in a pure flow of ideas regardless of

feasibility, in the classic tradition of brainstorming. Although we know that, at

the end of the day, practical implementation constraints must be considered

and allowed to carry weight in the final overall design, saying “Hey, wait a

minute!” too early can stifle innovation.

Mason (1968) calls this separation of idea creation and critiquing “go-mode

and stop-mode thinking.”3 Sodan (1998) calls it the yin and yang of computer

science. In idea-creation mode you adopt a freewheeling mental attitude that

will permit ideas to flourish. In critiquing you revert to a cold-blooded, critical

attitude that will bring your judgment into full play.

Idea creation gives a new creative idea time to blossom before it is cut at the

stem and held up to the scale. Idea creation gives you permission to be radical;

you get to play outside the safe zone and no one can shoot you down. Allowing

early cries of “that will never work,” “they have already tried that,” “it will cost too

much,” “we do not have a widget for that,” or “it will not work on our

implementation platform” will unfairly hobble and frustrate this first step of

creativity.

We once experienced an interesting example of this tension between

innovation and implementation constraints with a consulting client, an example

that we call the implementation know-it-all. The interaction designers in a cross-

disciplinary team that included software folks were being particularly innovative

in scenario and prototype sketching but the software team member was not

going along.

He was doubtful whether their implementation platform could support the

design ideas being discussed and he got his team to stop designing, start talking

about technical feasibility, and explore implementation solutions. When we

threw a “premature critiquing” penalty flag, he defended his position with the

rationale that there was no sense spending time on an interaction design if you

are only to discover that it cannot be implemented.

This might sound like a reasonable stance, but it is actually the other

way around! You do not want to spend time working on technical solutions

for an interaction design feature that can change easily as you evaluate and

iterate. That is the whole point of low-fidelity prototypes; they are inexpensive,

fast, and easy to make without concerns about implementation platforms.

Wait and see how the design turns out before worrying about how to

implement it.

3Thanks to Mark Ebersole, long ago, for this reference.

275DES IGN THINK ING , IDEAT ION , AND SKETCHING

Beyond this, early stifling of a design idea prevents a chance to explore parts

of the idea that are practical. Even when the idea does turn out to be infeasible,

the idea itself is a vehicle for exploring in a particular direction that can later be

used to compare and contrast with more feasible ideas.

The design teams at IDEO (ABC News Nightline, 1999) signal premature

critiquing by ringing a wrist-mounted bicycle bell to signal the foul of being

judgmental too early in design discussions. To help engender an idea creation

attitude in early design discussions, Cooper, Reimann, and Dubberly (2003,

p. 82) suggest that team members consider the user interface as all-powerfully

magical, freeing it from implementation-bound concerns up front. When you

do not have to consider the nuts and bolts of implementation, you might find

you have much more creative freedom at the starting point.

7.6.2 Doing Ideation
If the roof doesn’t leak, the architect hasn’t been creative enough

–Frank Lloyd Wright (Donohue, 1989)

Set up work spaces
Set aside physical work spaces for ideation, individual work, and group

work. Establish a place for design collaboration (B�dker & Buur, 2002).

If possible, arrange for dedicated ideation studio space that can be closed

off from outside distractions, where sketches and props can be posted and

displayed, and that will not be disturbed by time-sharing with other meetings

and work groups.

In Figure 7-4 we show the collaborative

ideation studio, called the Kiva, in the

Virginia Tech Department of Industrial

Design. The Kiva was originally designed

and developed by Maya Design in

Pittsburgh, Pennsylvania, and is used at

Virginia Tech with their permission.

The Kiva is a cylindrical space in which

designers can brainstorm and sketch in

isolation from outside distractions. The

space inside is large enough for seating

and work tables. The inner surface of

most of the space is a metallic skin.

It is painted so it serves an enveloping

whiteboard that can hold magnetic

Figure 7-4

The Virginia Tech ideation
studio, the “Kiva” (photo
courtesy of Akshay Sharma,
Virginia Tech Department
of Industrial Design).

276 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

“push pins.” The large-screen display

on the outside can be used for

announcements, including group

scheduling for the work space.

In Figure 7-5 we show individual and

group work spaces for designers.

Assemble a team
Why a team? The day of the lone genius

inventor is long gone, as is the die-hard

misconception of the disheveled genius

inventor flailing about in a chaotic

frenzy in a messy and cluttered

laboratory (picture the professor in

Back to the Future)(Brown, 2008).

Thomas Edison, famous not just for

his inventions but for processes to

create inventions, broke with the single

genius inventor image and was one of

the first to use a team-based approach

to innovation. Thomas Edison “made it

a profession that blended art, craft,

science, business savvy, and an astute

understanding of customers and

markets” (Brown, 2008, p. 86). Today,

design thinking is a direct descendant

of Edison’s tradition, and in this design

thinking, teamwork is essential for

bouncing ideas around, for collaborative brainstorming and sketching, and for

potentiating each other’s creativity.

So, gather a creative and open-minded team. You might think that only a

talented few brilliant and inventive thinkers could make ideation work

successfully. However, we all have the innate ability to think freely and creatively;

we just have to allow ourselves to get into the mode—and the mood—for a free-

thinking flow of ideas without inhibition and without concern that we will be

criticized.

Try to include people with a breadth of knowledge and skills, cross-

disciplinary people who have experience in more than one discipline or area.

Include customer representatives and representative users. If you are going to be

Figure 7-5

Individual and group
designer work spaces
(photos courtesy of Akshay
Sharma, Virginia Tech
Department of Industrial
Design).

277DES IGN THINK ING , IDEAT ION , AND SKETCHING

thinking visually, it helps to have a visual designer on the team to bring ideas

from graphic design.

Use ideation bin ideas to get started
If you gathered ideation inputs into a “bin” of work activity notes back in

contextual analysis, now is the time to use them. An ideation input bin is an

unconstrained and loosely organized place to gather all the work activity notes

and other ideas for sparking and inspiring design.

You should also include emotional impact factors in your ideation inputs

because ideation is most likely where these factors will get considered for

incorporation into the design. In your contextual data, look for work activity

notes about places in the work practice that are dreaded, not fun, kill joy, or

drudgery so you can invent fun ways to overcome these feelings.

Shuffle the notes around, form groups, and add labels. Use the notes as

points of departure in brainstorming discussions.

Conceiving and Informing the Magitti Context
Aware Leisure Guide

Dr. Victoria Bellotti, Principal Scientist, and Dr. Bo Begole, PARC, a Xerox Company

In the realm of new product and service innovation, it is rare that a business places such importance on the idea of

utility that it is willing to invest heavily in user-centered research before investing in design and implementation of any

kind. It is especially rare before even determining who the user should be or what the product or service should do.

When this happened at PARC in 2003–2006, we were delighted to participate in an extraordinary collaboration with

Dai Nippon Printing (DNP), the highest-revenue printing technologies and solutions company in the world. DNP

executives wished to respond to the widespread transition from printed to electronic media. So they asked PARC, with

its reputation for user-centered technology innovation, to discover a new rich media technology-based business

opportunity and to develop an innovative solution for the Japanese market. They wanted the solution to be centered

on leisure content, as that was most compatible with the bulk of the content in their traditional media printing

business.

Initially the most important thing we needed to do was to search broadly for an ideal target user. A method we call

“Opportunity Discovery” was developed to handle the situation where one wants to brainstorm and eliminate possible

market opportunities in a systematic manner. Many different problem statements representing a demographic plus

some activity, problem, or desire were compared side by side in terms of preagreed criteria, which represented the

properties of an ideal opportunity for DNP. The most promising three were selected for further, deeper exploration.

278 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Representatives of those target markets were interviewed about their receptiveness to new technology and finally the

youth market was chosen as the most likely to adopt a novel technology solution.

Using surveys, interviews, and shadowing, we determined that the 19- to 25-year-old age group had the most

leisure, as they were between cram school and a demanding career. These were therefore chosen as the ideal target

for our leisure technology. After engaging in some persona explorations, we brainstormed about 500 ideas for possible

technology solutions and subsequently clustered them into more coherent concepts. The concepts were evaluated by a

team of PARC and DNP representatives for their intuitive appeal, their match to DNP’s business competencies, and

their potential to generate intellectual property, which could be used to protect any business endeavor built around the

technology against competitors. The five best ideas were then sketched out in a deliberately rough scenario form to

elicit criticism and improvement. They were then taken to Tokyo and exposed to representatives of the target market

for feedback, refinement, and an indication as to which was the most compelling.

In the end, two scenarios were neck and neck—Magic Scope (a system for viewing virtual information) and Digital

Graffiti (a system for creating virtual information). These scenarios were combined into the Magitti city leisure guide

concept, which was then elaborated in a much more detailed format. We crystallized the idea of recommending

venues where leisure activities could be pursued that became the heart of the final system. A mockup was built out of

cardboard and plastic with switchable paper screens that matched the storyline in the scenario. This was taken back to

Japan for in situ evaluation on the streets of Tokyo with target market representatives. We also held focus group

evaluations using just the paper screens where more penetrating questions could be asked of large groups who

outnumbered the researchers and were more confident in this context.

As Magitti was taking shape, we continued our field investigations, involving more interviews, observations, and a

mobile phone diary, which led to useful insights that informed the system design. One phenomenon that we noticed

was that people in the city tended to travel a long way to meet friends half-way between their widely dispersed homes.

The half-way points were often unfamiliar and indeed most young people we interviewed on the street reported being

moderately to extremely unfamiliar with the location they were in. A second phenomenon we noticed was that our

young prospective users tended not to plan everything in advance, sometimes only the meeting place was preagreed.

Both of these phenomena constituted good evidence of the receptivity toward or need for a leisure guide.

We surfaced a strong requirement for one-handed operation, as most Japanese people use public transit and

carry bags with only one hand free in the context of use that Magitti was intended for. We also discovered a need

for photos that convey ambiance inside a venue, as it is hard to see inside many Japanese businesses, even

restaurants, because they are often above ground floor level. Finally, the fact that our target users trusted the

opinions of people more than businesses and advertisers led us to believe that end user-generated content would

be important.

Our extensive fieldwork and user-centered design activities allowed us to develop a well-grounded idea of what

we needed to build and how it should work before we ever wrote a line of code for DNP. It is quite extraordinary

that this happens so rarely, given that a lot of wasted development effort can be saved in technology innovation by

good user-centered work. We can use observation to drive insights and focus our efforts on solving real problems,

and we can elicit feedback from target users about simple scenarios and mockups early on to elicit crucial

feedback. This approach was responsible for the fact that the Magitti system concept was very appealing to

representatives of its target market. The working prototype we subsequently developed was also well received and

found to be helpful in leisure outings in Tokyo. The commercial solution based off the Magitti prototype is now initially

available in Japan as an iPhone application called MachiReco (meaning city recommender).

R E F E R E N C E

Bellotti, V., Begole, B., Chi, E. H., Ducheneaut, N., Fang, J., & Isaacs, E., et al. (2008). Activity-based serendipitous recommendations with the
Magitti mobile leisure guide. In Proceeding of the twenty-sixth annual SIGCHI conference on Human factors in computing systems (CHI ’08)
(pp. 1157–1166). New York, NY, USA: ACM.

Brainstorm
Is it wrong to cry “Brainstorm!” in a crowded theater?

–Anonymous

Ideation is not just sketching, it is brainstorming. According to Dictionary

.com, brainstorming is a “conference technique of solving specific problems,

amassing information, stimulating creative thinking, developing new ideas,

etc., by unrestrained and spontaneous participation in discussion.” Ideation is

classic brainstorming applied to design.

Setting the stage for ideation. Part of brainstorming involves the group deciding

for itself how it will operate. But for groups of any size, it is a common activity to

start with an overview discussion in the group as a whole.

The initial overview discussion establishes background and parameters and

agreement on goals of the design exercise. Post major issues and concepts from

your ideation bin (see earlier discussion). The ideation team leadermust be sure

that everyone on the team is in tune with the same rules for behavior (see sub-

section on rules of engagement later).

Next, divide up the team into pairs or small sub-teams and go to breakout

groups to create and develop ideas. The goal of breakout groups is to have

intense rapid interactions to spawn and accumulate large numbers of ideas

about characteristics and features. Use marking pens on flip charts and/or write

on whiteboards. Put one idea per sheet of paper so that you have maximum

freedom to move each around independently.

Use sketches (imperative, not optional) annotated with short phrases to

produce quick half-minute representations of ideas. You can include examples

of other systems, conceptual ideas, considerations, design features, marketing

ideas, and experience goals. Get all your whacky, creative, and off-the-wall ideas

out there. The flow should be a mix of verbal and visual.

Reconvene when the sub-teams have listed all the ideas that they can think

of or when the allotted time is up. In turn, each sub-team reports on their work

to the whole group. First posting their

annotated sketches around the room,

the sub-teams walk the group through

their ideas and explain the concepts.

The sub-teams then lead a group

discussion to expand and elaborate the

ideas, adding new sketches and

annotations, but still going for essentials,

not completeness of details.

When the font of new ideas seems to

have run dry for the moment, the group

can switch to critiquing mode. Even in

critiquing, the focus is not to shoot down

ideas but to take parts that can be

changed or interpreted differently and

use them in even better ways.

In Figure 7-6 we show an example of ideation brainstorming in mid-process

within the Virginia Tech ideation studio.

The mechanics of ideation.Use outlining as verbal sketching. An outline is easier

to scan for key ideas than bulk text. An outline is an efficient way to display

ideation results on flip charts or in projected images.

Immerse your sketching and ideation within a design-support ecology, a “war

room” of working artifacts as inputs and inspiration to ideation. Get it all

out there in front of you to point to, discuss, and critique. Fill your walls, shelves,

and work tables with artifacts, representations of ideas, images, props, toys,

notes, posters, and materials.

Make the outputs of your ideation as visual and tangible as possible;

intersperse the outline text with sketches, sketches, and more sketches. Post and

display everything all around the room as your visual working context. Where

appropriate, build physical mockups as embodied sketches.

Use teamwork and play off of each other’s ideas while “living the part of the

user.” Talk in scenarios, keeping customers and users in themiddle, telling stories

of their experience as your team weaves a fabric of new ideas for design solutions.

In IDEO’s “deep dive” approach, a cross-disciplinary group works in total

immersion without consideration of rank or job title. In theirmodus operandi of

focused chaos (not organized chaos), “enlightened trial and error succeeds over

the planning of lone genius.” Their designing process was illustrated in a

well-known ABC News documentary with a new design for supermarket shopping

carts, starting with a brief contextual inquiry where teammembers visit different

Figure 7-6

Ideation brainstorming
within the Virginia Tech
ideation studio, Kiva
(photo courtesy of Akshay
Sharma, Department of
Industrial Design).

Physical Mockup

A physical mockup is a

tangible, three-

dimensional, physical

prototype or model of a

device or product, often one

that can be held in the hand,

and often crafted rapidly

out of materials at hand,

and used during

exploration and evaluation

to at least simulate physical

interaction.

281DES IGN THINK ING , IDEAT ION , AND SKETCHING

stores to understand the work domain of shopping and issues with existing

shopping cart designs and use.

Then, in an abbreviated contextual analysis process, they regrouped and

engaged in debriefing, synthesizing different themes that emerged in their

contextual inquiry. This analysis fed parallel brainstorming sessions in which

they captured all ideas, however unconventional. At the end of this stage they

indulged in another debriefing session, combining the best ideas from

brainstorming to assemble a design prototype. This alternation of

brainstorming, prototyping, and review, driven by their “failing often to succeed

sooner” philosophy, is a good approach for anyone wishing to create a good user

experience.

Rules of engagement. The process should be democratic; this is not a time for

pulling rank or getting personal. Every idea should be valued the same. Ideation

should be ego free, with no ownership of ideas; all ideas belong to the group; all

are equally open to critiquing (when the time comes). It is about the ideas, not

the people. There is to be no “showboating” or agendas of individuals to

showcase their talent.

The leader should be especially clear about enforcing “cognitive firewalling”

to prevent incursions of judgment into the idea-creation mode. If the designers

are saying they need a particular feature that requires an interstellar

ion-propulsion motor and someone says “wait, we cannot make that out of

Tinkertoys,” you will have to throw out a penalty flag.

Example: Ideation for the Ticket Kiosk System
We brainstormed with potential ticket buyers, students, MU representatives, and

civic leaders. Here we show selected results of that ideation session with our

Ticket Kiosk System design team as a consolidated list with related categories in

the spirit of “verbal sketching.” As in any ideation session, ideas were

accompanied with sketches. We show the idea part of the session here separately

to focus on the topic of this section.

Thought questions to get started:

What does “an event” mean? How do people treat events in real life?

An event is more than something that happens and maybe you attend

An event can have emotional meanings, can be thought provoking, can have meaning

that causes you to go out and do something

Ontological artifacts:

Tickets, events, event sponsors, MU student ID, kiosk

282 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Things people might want to do with tickets:

People might want to email tickets to friends

Possible features and breadth of coverage:

We might want to feature customized tickets for keepsake editions

Homecoming events

Parents weekend events

Visiting speakers on current topics

Visitor’s guide to what’s happening in town and the university

Christmas tour of Middleburg

View Christmas decorations on historic homes

Walk Main Street to see decorations and festive shops

Types of events:

Action movies, comedy (plays, stand-up), concerts, athletic events, specials

Special themes and motifs:

Motif for the Ticket Kiosk System could be “Adventures in Entertainment,” which would

show up in the physical design (the shape, images and colors, the aesthetic appearance)

of the kiosk itself and would carry through to the metaphor pervading the screen,

dialogue, buttons, and so on in the interaction design

Complete theme package: Football game theme: brunch, tailgating parties, game tickets,

post-game celebrations over drinks at select places in town, followed by a good football

movie

Date night theme: Dinner and a movie, restaurant ads with movie/event tickets,

proximity information and driving/public transportation directions, romantic evening,

flowers from D’Rose, dinner at Chateau Morrisette, tour some of the setting of the

filming of Dirty Dancing, stroll down Draper Road under a full moon (calendar and

weather driven), watch Dirty Dancing at The Lyric Theater, tickets for late-night wine

tasting at The Vintage Cellar, wedding planner consultation (optional)

Business consideration:

Because it is a college town, if we make a good design, it can be reused in other college

towns

Competition: Because we are up against ubiquitous Websites, we have to make the kiosk

experience something way beyond what you can get on a Website

Emotional impact:

Emotional aspect about good times with good friends

Emphasize MU team spirit, logos, etc.

Entertainment event tickets are a gateway to fun and adventure

Combine social and civic participation

Indoor locations could have immersive themes with video and surround sound

283DES IGN THINK ING , IDEAT ION , AND SKETCHING

Immersive experience: For example, indoor kiosk (where security is less of a problem) at

TheUniversity Mall, offer an experience “they cannot refuse,” support with surrounding

immersive visuals and audio, ATM-like installation with wrap-around display walls and

surround sound, between ticket buyers, run preview of theme and its mood

Minority Report style UIs

Rock concerts for group euphoria

Monster trucks or racing: ambiance of power and noise, appeals to the more primal

instincts and thrill-seeking

Other desired impact:

Part of university and community “family”

Ride on the emerging visibility of and talent at MU

Collective success and pride

Leverage different competencies of MU and community technologies

Patron-of-the-arts feeling: classiness, sophistication, erudition, feeling special

Community outreach:

Create public service arrangements with local government (e.g., could help advertise

and sell T-shirts for annual street art fair)

Advertise adult education opportunities, martial arts classes, kids camps, art and welding

courses

Ubiquitous locations:

Bus stops

Library

Major dorms

Student center

City Hall building

Shopping malls

Food courts

Inside busses

Major academic and administrative buildings

7.7 SKETCHING

We have already mentioned sketching several times. Sketching is the rapid

creation of freehand drawings expressing preliminary design ideas, focusing

on concepts rather than details. To start with, we credit Bill Buxton (2007b)

as the champion for sketching; much of what we say about sketching can be

credited to him.

284 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

7.7.1 Essential Concepts

Sketching is essential to ideation and design
Design is a process of creation and exploration, and sketching is a visual medium

for that exploration. Sketching for design goes back at least to the Middle Ages.

Consider da Vinci and all his famous sketch books. Nilsson andOttersten (1998)

describe sketching as an essential visual language for brainstorming and

discussion.

By adding visualization to ideation, sketching adds cognitive supercharging,

boosting creativity by bringing in more human senses to the task (Buxton,

2007a). Clearly sketching supports communication within ideation and, as

Nilsson and Ottsersten (1998) point out, sketches also serve as an important

longer-term design documentation. This helps other team members and

designers retain understanding of the design and its details as they get into

prototyping and implementation. The evolution of your sketches provides a

history of your thinking.

What sketching is and is not
Sketching is not about putting pen to paper in the act of drawing. A sketch is not

about making a drawing or picture of a product to document a design. A sketch

is not just an artifact that you look at; a sketch is a conversation between the

sketcher or designer and the artifact. A sketch is a medium to support a

conversation among the design team members.

In a talk at Stanford, Buxton (2007a) challenges his audience to draw his

mobile phone. But he does not mean a drawing of the phone as a product.

He means something much harder—a sketch that reveals the interaction,

the experience of using the phone in a situated context, where the product and its

physical affordances encourageone typeofbehavior andexperienceover another.

Sketches are not the same as prototypes
Sketches are not prototypes, at least not in the usual UX process sense (Buxton,

2007b). Sketches are not used to refine a design that has been chosen. Sketches

are for exploring the possibilities for creating a design. Sketching is designing,

whereas prototyping in the usual sense is implementation to build a concrete

design representation for testing.

In Figure 7-7, based on Buxton’s Figure 52 (2007b), we show how sketches

and prototypes are different in almost every way.

Sketches evoke thinking and ideas to arrive at a design. Prototypes illustrate

an instance of a design. While sketches suggest possibilities, prototypes describe

285DES IGN THINK ING , IDEAT ION , AND SKETCHING

designs already decided upon. Sketches

are to explore and raise questions.

Prototypes are to refine and provide

answers.

The lifecycle iteration of sketching is a

divergence of discovery, an expansion of

ideas and possibilities. In contrast, the

lifecycle iteration of the HCI

engineering process is intended to be a

convergence, a closing-up of ideas and

possibilities. Sketches are deliberately

tentative, noncommittal, and

ambiguous. Prototypes, however

detailed, are depictions of specific

designs.

Sketching is embodied cognition to aid invention
Sketching is not intended to be a tool for documenting designs that are

first created in one’s head and then transferred to paper. In fact, the sketch itself

is far less important than the process of making it. The process of sketching is

a kind of cognitive scaffolding, a rich and efficient way to off-load part of

the cognition, especially the mental visualization, to physical artifacts in the

world.

A sketch is not just a way to represent your thinking; the act of making the

sketch is part of the thinking. Sketching is a direct part, not an after-the-fact part,

of the process of invention. Designers invent while sketching. Sketching embraces

one’s whole being: the hands, the mind, and all the senses.

The kinesthetics of sketching, pointing, holding, and touching bring the

entire hand-eye-brain coordination feedback loop to bear on the problem

solving. Your physical motor movements are coupled with visual and

cognitive activity; the designer’s mind and body potentiate each other in

invention.

In Figure 7-8 you can see an example of a sketch to think about design.

7.7.2 Doing Sketching

Stock up on sketching and mockup supplies
Stock the ideation studio with sketching supplies such as whiteboards,

blackboards, corkboards, flip chart easels, Post-its™ of all sizes, tape, and

marking pens. Be sure to include supplies for constructing physical mockups,

Figure 7-7

Comparison between
Buxton design exploration
sketches and traditional
low-fidelity refinement
prototypes.

Physical Mockup

A physical mockup is

a tangible, three-

dimensional, physical

prototype or model of a

device or product, often one

that can be held in the hand,

and often crafted rapidly

out of materials at hand,

and used during

exploration and evaluation

to at least simulate physical

interaction.

286 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

including scissors, hobby knives,

cardboard, foam core board, duct tape,

Scotch™ tape, wooden blocks, push pins,

thumb tacks, staples, string, bits of cloth,

rubber, other flexible materials, crayons,

and spray paint.

Use the language of sketching
To be effective at sketching for design,

you must use a particular vocabulary

that has not changed much over the

centuries. One of the most important

language features is the vocabulary of

lines, which are made as freehand “open”

gestures. Instead of being mechanically

correct and perfectly straight, lines in sketches are roughed in and not

connected precisely.

In this language, lines overlap, often extending a bit beyond the corner.

Sometimes they “miss” intersecting and leave the corner open a little bit.

Further, the resolution and detail of a sketch should be low enough to suggest

that it is a concept in the making, not a finished design. It needs to look

disposable and inexpensive to make. Sketches are deliberately ambiguous and

abstract, leaving “holes” for the imagination.

They can be interpreted in different ways, fostering new relationships to

be seen within them, even by the person who drew them. In other words,

avoid the appearance of precision; if everything is specified and the

design looks finished, then the message is that you are telling something,

“this is the design,” not proposing exploration, “let us play with this and see

what comes up.” You can see this unfinished look in the sketches of

Figures 7-9 and 7-10.

Here are some defining characteristics of sketching (Buxton, 2007b; Tohidi

et al., 2006):

n Everyone can sketch; you do not have to be artistic

n Most ideas are conveyed more effectively with a sketch than with words

n Sketches are quick and inexpensive to create; they do not inhibit early exploration

n Sketches are disposable; there is no real investment in the sketch itself

n Sketches are timely; they can be made just-in-time, done in-the-moment, provided

when needed

Figure 7-8

A sketch to think about
design (photo courtesy of
Akshay Sharma, Virginia
Tech Department of
Industrial Design).

287DES IGN THINK ING , IDEAT ION , AND SKETCHING

n Sketches should be plentiful; entertain a large number of ideas and make multiple

sketches of each idea

n Textual annotations play an essential support role, explaining what is going on in

each part of the sketch and how

In Figure 7-11, we show examples of designers doing sketching.

Example: Sketching for a Laptop/Projector Project
The following figures show sample sketches for the K-YAN project

(K-yan means “vehicle for knowledge”), an exploratory collaboration by

the Virginia Tech Industrial Design Department and IL&FS.4 The objective

is to develop a combination laptop and projector in a single portable device

for use in rural India. Thanks to Akshay Sharma of the Virginia Tech

Industrial Design Department for these sketches. See Figures 7-12 through 7-15

for different kinds of exploratory sketches for this project.

Figure 7-9

Freehand gestural sketches
for the Ticket Kiosk System
(sketches courtesy of Akshay
Sharma, Virginia Tech
Department of Industrial
Design).

Exercise

See Exercise 7-2, Practice in

Ideation and Sketching

4http://kyan.weebly.com

Exercise

See Exercise 7-3, Ideation

and Sketching for Your

System

288 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Figure 7-10

Ideation and design exploration sketches for the Ticket Kiosk System (sketches courtesy of Akshay Sharma, Virginia Tech Department
of Industrial Design).

Figure 7-11

Designers doing sketching (photos courtesy of Akshay Sharma, Virginia Tech Department of Industrial Design).

7.7.3 Physical Mockups as Embodied Sketches
Just as sketches are two-dimensional visual vehicles for invention, a physical

mockup for ideation about a physical device or product is a three-dimensional

sketch. Physical mockups as sketches, like all sketches, are made quickly,

highly disposable, and made from at-hand materials to create tangible props

for exploring design visions and alternatives.

A physical mockup is an embodied sketch because it is an even more

physical manifestation of a design idea and it is a tangible artifact for

touching, holding, and acting out usage (see Figures 7-16 and 7-17).

Figure 7-12

Early ideation sketches of
K-YAN (sketches courtesy of
Akshay Sharma,
Department of Industrial
Design).

290 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Where appropriate in your ideation, you can do the same. Build

many different mockups, each as creative and different as possible.

Tell stories about the mockup during ideation and stretch it as far as

you can.

For later in the process, after design exploration is done and you want a

3D design representation to show clients, customers, and implementers,

there are services to produce finished-looking, high-fidelity physical

mockups.

7.8 MORE ABOUT PHENOMENOLOGY

7.8.1 The Nature of Phenomenology
Joy of use is an obvious emotional counterpart to ease of use in interaction. But

there is a component of emotional impact that goes much deeper. Think of the

kind of personal engagement and personal attachment that leads to a product

being invited to become an integral part of the user’s lifestyle. More than

functionality or fun—this is a kind of companionship. This longer-term situated

kind of emotional impact entails a phenomenological view of interaction

(Russell, Streitz, & Winograd, 2005, p. 9).

Figure 7-13

Mid-fidelity exploration
sketches of K-YAN (sketches
courtesy of Akshay Sharma,
Virginia Tech Department
of Industrial Design).

291DES IGN THINK ING , IDEAT ION , AND SKETCHING

Figure 7-14

Sketches to explore flip-open mechanism of K-YAN (sketches courtesy of Akshay Sharma, Virginia Tech Department of
Industrial Design).

292 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Figure 7-16

Examples of rough physical mockups (models courtesy of Akshay Sharma, Virginia Tech Department of Industrial Design).

Figure 7-15

Sketches to explore emotional impact of form for K-YAN (sketches courtesy of Akshay Sharma, Virginia Tech Department of
Industrial Design).

293DES IGN THINK ING , IDEAT ION , AND SKETCHING

Emerging from humanistic studies,

phenomenology5 is the philosophical

examination of the foundations of experience

and action. It is about phenomena, things that

happen and can be observed. But it is not about

logical deduction or conscious reflection on

observations of phenomena; it is about

individual interpretation and intuitive

understanding of human experience.

Phenomenology is part of the “modern

school of philosophy founded by Edmund

Husserl. Its influence extended throughout

Europe and was particularly important to the

early development of existentialism. Husserl

attempted to develop a universal philosophic method, devoid of

presuppositions, by focusing purely on phenomena and describing them;

anything that could not be seen, and thus was not immediately given to the

consciousness, was excluded.”6

“The phenomenological method is thus neither the deductive method of

logic nor the empirical method of the natural sciences; instead it consists in

realizing the presence of an object and elucidating its meaning through

intuition. Husserl considered the object of the phenomenological method to be

the immediate seizure, in an act of vision, of the ideal intelligible content of the

phenomenon” (Husserl, 1962). His key and defining work from the early 20th

century is now reprinted in an English translation.

However, it was Martin Heidegger who translated it into “the most thorough,

penetrating, and radical analysis of everyday experience” (Winograd & Flores,

1986, p. 9). Heidegger, quoted often in human–computer interaction contexts,

was actually a student of Professor Husserl and, although they had collaborated

closely, they had a falling out during the 1940s over the social politics of World

War II.7 “Writers like Heidegger challenge the dominant view of mind, declaring

that cognition is not based on the systematic manipulation of representations”

(Winograd & Flores, 1986, p. 10). This view is in opposition to the human-as-

information-processor paradigm discussed earlier in this chapter.

Figure 7-17

Example of a more finished
looking physical mockup
(model courtesy of Akshay
Sharma, Virginia Tech
Department of Industrial
Design).

5Dictionary.com says phenomenology is: 1. the movement founded by Husserl that concentrates on the

detailed description of conscious experience, without recourse to explanation, metaphysical assumptions,

and traditional philosophical questions; 2. the science of phenomena as opposed to the science of being.
6http://www.reference.com/browse/Phenomenologyþ
7http://en.wikipedia.org/wiki/Edmund_Husserl

294 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Because phenomenology is about observables, it enjoys a relationship with

hermeneutics, the theory of interpretation (Winograd & Flores, 1986, p. 27), to

fill the need to explain what is observed. Historically, hermeneutics was about

interpretation of artistic and literary works, especially mythical and sacred texts

and about how human understanding of those texts has changed over time.

However, “one of the fundamental insights of phenomenology is that this

activity of interpretation is not limited to such situations, but pervades our

everyday life” (Winograd & Flores, 1986, p. 27).

7.8.2 The Phenomenological View in Human–Technology
Interaction
When translated to human–computer interaction, phenomenological aspects of

interaction represent a form of emotional impact, an affective state arising

within the user. It is about emotional phenomena within the interaction

experience and the broadest interpretation of the usage context. It is about a

social role for a product in long-term relationships with human users. It is about

a role within human life activities. In that regard, it is related to activity theory

(Winograd & Flores, 1986) because activity theory also emphasizes that the

context of use is central to understanding, explaining, and designing technology

(B�dker, 1991).

7.8.3 The Phenomenological Concept of Presence
The phenomenological paradigm is central to Harrison, Back, and Tatar

(2007), who make it clear that HCI is no longer just about usability and user

performance, but that it is about presence of technology as part of our lives: “We

argue that the coming ubiquity of computational artifacts drives a shift from

efficient use to meaningful presence of information technology.” This is all about

moving from the desktop to ubiquitous, embedded, embodied, and situated

interaction.

Hallnäs and Redström (2002) also describe the “new usability” as a shift from

use to “presence.” To them, a key characteristic of phenomenological concepts

is that the product or system that is the target of design or evaluation is present in

the user’s life, not just being used for something. That certainly rules out almost all

desktop software, for example, but calls to mind favorite portable devices, such

as the iPhone and iPod, that have become a part of our daily lives.

Use or functional descriptions are about what you do with the product.

Presence is about what it means to you. A description of presence is an existential

description, meaning that the user has given the product a place to exist in the

Presence

Presence of a product is a

kind of relationship with

users in which the product

becomes a personally

meaningful part of their

lives.

295DES IGN THINK ING , IDEAT ION , AND SKETCHING

user’s life; it is about being known within the user’s human experience rather

than a theoretical or analytical description.

So, presence is about a relationship we have with a device or product. It is no

longer just a device for doing a task, but we feel emotional ties. In Chapter 8,

the Garmin handheld GPS is described as a haven of comfort, coziness,

familiarity, and companionship, like a familiar old pair of boots or your favorite

fleece. The device has been invited into the user’s emotional life, and that is

presence.

As Hallnäs and Redström put it, “. . . ‘presence’ refers to existential

definitions of a thing based on how we invite and accept it as part of our

lifeworld.” Winograd and Flores (1986, p. 31) allude to the same relationship, as

expressed byHeidegger, “He [Heidegger] argues that the separation of subject

and object denies the more fundamental unity of being-in-the-world.” Here

subject means the person having the user experience, and the object is

everything they perceive and experience. You cannot separate the user, the

context, and the experience.

Presence, or the potential for presence, cannot necessarily be detected

directly in design or evaluation. Acceptance is usually accompanied by a

“disappearance” (Weiser, 1991) of the object as a technological artifact.

Hallnäs and Redström use, as a simple but effective example, a chair. If your

description of the chair simply refers to the fact that you sit in it without

reference to why or what you do while sitting in it, you have removed the user

and the usage context; it is more or less just a functional description. However,

if the user describes this chair as the place where she seeks comfort each

evening in front of the fire after a long day’s work, then the chair has an

emotional presence in that user’s life.

7.8.4 The Importance of Phenomenological Context
over Time
From the discussion so far, it should be abundantly clear that the kind of

emotional context found in the phenomenological paradigm is a context

that must unfold over time. Usage develops over time and takes on its own life,

often apart from what designers could envision. Users learn, adapt, and change

during usage, creating a dynamic force that gives shape to subsequent usage

(Weiser, 1991).

Short-term studies will not see this important aspect of usage and interaction.

So, while users can experience snapshot episodes of good or bad usability,

good or bad usefulness, and even good or bad emotional impact, the

296 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

phenomenological aspects of emotional impact are about a deeper and longer-

term concept. It is not just about a point in time within usage, but it speaks to a

whole style and presence of the product over time. The realization of this fact is

essential in both design and evaluation for emotional impact within the

phenomenological context.

297DES IGN THINK ING , IDEAT ION , AND SKETCHING

Intentionally left as blank

CHAPTER

Mental Models and
Conceptual Design 8
Objectives

After reading this chapter, you will:

1. Understand designers’ and users’ mental models and the mapping between them

2. Be able to create conceptual designs from ecological, interaction, and emotional

perspectives

3. Know what storyboards are and how to produce them

4. Understand the background aspects of embodied, ubiquitous, and situated

interactions

8.1 INTRODUCTION

8.1.1 You Are Here
We begin each process chapter with a “you are here” picture of the chapter

topic in the context of the overall Wheel lifecycle template; see Figure 8-1.

This chapter is a continuation of design, which we started in Chapter 7 and

will conclude in Chapter 9, for designing the new work practice and the

new system.

8.2 MENTAL MODELS

8.2.1 What Is a Mental Model?
According to Wikipedia.org, “a mental model is an explanation of

someone’s thought process about how something works in the real world.”

A designer’s mental model is a vision of how a system works as held by the

designer. A user’s mental model is a description of how the system works,

as held by the user. It is the job of conceptual design (coming up soon) to

connect the two.

8.2.2 Designer’s Mental Model
Sometimes called a conceptual model (Johnson & Henderson, 2002, p. 26),

the designer’s mental model is the designer’s conceptualization of the

envisioned system—what the system is, how it is organized, what it does, and

how it works. If anyone should know these things, it is the designer who is

creating the system. But it is not uncommon for designers to “design” a system

without first forming and articulating a mental model.

The results can be a poorly focused design, not thought through from the

start. Often such designs proceed in fits and starts and must be retraced and

restarted whenmissing concepts are discovered along the way. The result of such

a fuzzy start can be a fuzzy design that causes users to experience vagueness and

misconceptions. It is difficult for users to establish a mental model of how the

system works if the designer has never done the same.

As shown in Figure 8-2, the designer’s mental model is created from what is

learned in contextual inquiry and analysis and is transformed into design by

ideation and sketching.

Johnson and Henderson (2002, p. 26) include metaphors, analogies,

ontological structure, and mappings between those concepts and the task

domain or work practice the design is intended to support. The closer the

designer’s mental model orientation is to the user’s work domain and work

Figure 8-1

You are here; the second of
three chapters on creating
an interaction design in the
context of the overall Wheel
lifecycle template.

Metaphor

A metaphors is an analogy

used in design to

communicate and explain

unfamiliar concepts using

familiar conventional

knowledge. Metaphors

control complexity by

allowing users to adapt

what they already know in

learning how to use new

system features.

300 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

practice, the more likely users will internalize the model as their own. To

paraphrase Johnson and Henderson’s rule for relating the designer’s mental

model to the final design: if it is not in the designer’s mental model, the system

should not require users to be aware of it.

Designer’s mental model in the ecological perspective:
Describing what the system is, what it does,
and how it works within its ecology
Mental models of a system can be expressed in any of the design perspectives of

Chapter 7. In the ecological perspective, a designer’s mental model is about how

the system or product fits within its work context, in the flow of activities

involving it and other parts of the broader system. In Norman’s famous book,

The Design of Everyday Things, he describes the use of thermostats (Norman, 1990,

pp. 38–39) and how they work. Let us expand the explanation of thermostats to a

description of what the system is and what it does from the perspective of its

ecological setting.

Figure 8-2

Mapping the designer’s
mental model to the user’s
mental model.

301MENTAL MODELS AND CONCEPTUAL DES IGN

First, we describe what it is by saying that a thermostat is part of a larger

system, a heating (and/or cooling) system consisting of threemajor parts: a heat

source, a heat distribution network, and a control unit, the latter being the

thermostat and some other hidden circuitry. The heat source could be gas,

electric, or wood burning, for example. The heat distribution network would use

fans or air blowers to send heated or cooled air through hot air ducts or a pump

would send heated or cooled water through subfloor pipes.

Next, we address what it does by noting that a thermostat is for controlling the

temperature in a room or other space. It controls heating and cooling so that the

temperature stays near a user-settable value—neither too hot or too cold—

keeping people at a comfortable temperature.

Designer’s mental model in the interaction perspective:
Describing how users operate it
In the interaction perspective, a designer’s mental model is a different view of an

explanation of how things work; it is about how a user operates the system or

product. It is a task-oriented view, including user intentions and sensory,

cognitive, and physical user actions, as well as device behavior in response to

these user actions.

In the thermostat example, a user can see two numerical temperature

displays, either analog or digital. One value is for the current ambient

temperature and the other is the setting for the target temperature. There will

be a rotatable knob, slider, or other value-setting mechanism to set the desired

target temperature. This covers the sensory and physical user actions for

operating a thermostat. User cognition and proper formation of intentions with

respect to user actions during thermostat operation, however, depend on

understanding the usually hidden explanation of the behavior of a thermostat in

response to the user’s settings.

Most thermostats, as Norman explains (1990, pp. 38–39), are binary switches

that are simply either on or off. When the sensed ambient temperature is below

the target value, the thermostat turns the heat on. When the temperature then

climbs to the target value, the thermostat turns the heat source off. It is,

therefore, a false conceptualization, or false mental model, to believe that you

can make a room warm up faster by turning the thermostat up higher.

The operator’s manual for a particular furnace unit would probably say

something to the effect that you turn it up and down to make it warmer or

cooler, but would probably fall short of the full explanation of how a thermostat

works. But the user is in the best position to form effective usage strategies,

Design Ontology

Design ontology is a

description of all the objects

and their relationships,

users, user actions, tasks,

everything surrounding the

existence of a given aspect

of a design.

302 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

connecting user actions with expected outcomes, if in possession of this

knowledge of thermostat behavior.

There are at least two possible design approaches to thermostats, then. The

first is the common design containing a display of the current temperature plus

a knob to set the target temperature. A second design, which reveals the

designer’s mental model, might have a display unit that provides feedback

messages such as “checking ambient temperature,” “temperature lower than

target; turning heat on,” and “temperature at desired level; shutting off.” This

latter design might suffer from being more complex to produce and the added

display might be a distraction to experienced users. However, this design

approach does help project the designer’s mental model through the system

design to the user.

Designer’s mental model in the emotional perspective:
Describing intended emotional impact
In the emotional perspective, thementalmodel of a design it about the expected

overarching emotional response. Regarding the thermostat example, it is

difficult to get excited about the emotional aspects of thermostats, but perhaps

the visual design, the physical design, how it fits in with the house décor, or the

craftsmanship of its construction might offer a slight amount of passing

pleasure.

8.2.3 User’s Mental Model
A user’s mental model is a conceptualization or internal explanation each user

has built about how a particular system works. As Norman says (1990), it is a

natural human response to an unfamiliar situation to begin building an

explanatory model a piece at a time. We look for cause-and-effect relationships

and form theories to explain what we observe and why, which then helps guide

our behavior and actions in task performance.

As shown in Figure 8-2, each user’s mental model is a product of many

different inputs including, as Norman has often said, knowledge in the head

and knowledge in the world. Knowledge in the head comes frommental models

of other systems, user expertise, and previous experience. Knowledge in the

world comes from other users, work context, shared cultural conventions,

documentation, and the conceptual design of the system itself. This latter source

of user knowledge is the responsibility of the system designer.

Few, if any, thermostat designs themselves carry any knowledge in the world,

such as a cognitive affordance that conveys anything like Norman’s explanation

of a thermostat as a binary switch. As a result, thermostat users depend on

303MENTAL MODELS AND CONCEPTUAL DES IGN

knowledge in the head, mostly from previous experience and shared

conventions. Once you have used a thermostat and understand how it works, you

pretty much understand all thermostats.

But sometimes mental models adapted from previous encounters with similar

systems can work against learning to use a new systemwith a different conceptual

design. Norman’s binary switch explanation is accurate for almost every

thermostat on the planet, but not for one in the heater of a mid-1960s Cadillac.

In a fascinating departure from the norm, you could, in fact, speed up the

heating system in this car, both the amount of heat and the fan speed, by setting

the thermostat to a temperature higher than what you wanted in steady state.

Since cars were beginning to have more sophisticated (in this case, readmore

failure prone) electronics, why not put them to use? And they did. The output

heat and fan speed were proportional to the difference between the ambient

temperature and the thermostat setting. So, on a cold day, the heater would run

wide open to produce as much heat as possible, but it would taper off its output

as it approached the desired setting.

Lack of a correct user mental model can be the stuff of comedy curve balls,

too. An example is the scene in the 1992 movie, My Cousin Vinny, where Marisa

Tomei—as Vinny’s fiancée, Mona Lisa Vito—tries to make a simple phone call.

This fish-out-of-water scene pits a brash young woman from New York against a

rotary dial telephone. You cannot help but reflect on the mismatch in the

mapping between her mental model of touch-tone operation and the reality of

old-fashioned rotary dials as she pokes vigorously at the numbers through the

finger holes.

But, lest you dismiss her as a ditzy blond, we remind you that it was she who

solved the case with her esoteric knowledge in the head, proving that the boys’

1964 Buick Skylark could not have left the two tire tracks found outside the

convenience store because it did not have a limited-slip differential.

8.2.4 Mapping and the Role of Conceptual Design
The mapping in Figure 8-2 is an abstract and objective ideal transformation of

the designer’s mental model into the user’s mental model (Norman, 1990,

p. 23). As such the mapping is a yardstick against which to measure how closely

the user’s mental model matches the reality of the designer’s mental model.

The conceptual design as it is manifest in the system is an implementation of

this mapping and can be flawed or incomplete. A flawed conceptual design leads

to a mismatch in the user’s mental model. In reality, each user is likely to have a

different mental model of the same system, and mental models can be

incomplete and even incorrect in places.

304 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

8.3 CONCEPTUAL DESIGN

8.3.1 What Is a Conceptual Design?
A conceptual design is the part of an interaction design containing a theme,

notion, or idea with the purpose of communicating a design vision about a

system or product. A conceptual design is the manifestation of the designer’s

mental model within the system, as indicated in Figure 8-2. It is the part of the

system design that brings the designer’s mental model to life within the system.

A conceptual design corresponds to what Norman calls the “system image” of the

designer’s mental model (Norman, 1990, pp. 16, 189–190), about which he

makes the important point: this is the only way the designer and user can

communicate.

Conceptual design is where you innovate and brainstorm to plant and first

nurture the user experience seed. You can never iterate the design later to yield a

good user experience if you do not get the conceptual part right up front.

Conceptual design is where you establish the metaphor or the theme of the

product—in a word, the concept.

8.3.2 Start with a Conceptual Design
Now that you have done your contextual inquiry and analysis, requirements, and

modeling, as well as your ideation and sketching, how do you get started on

design? Many designers start sketching out pretty screens, menu structures, and

clever widgets.

But Johnson and Henderson (2002) will tell you to start with conceptual

design before sketching any screen or user interface objects. As they put it,

screen sketches are designs of “how the system presents itself to users. It is better to

start by designing what the system is to them.” Screen designs and widgets will

come, but time and effort spent on interaction details can be wasted without a

well-defined underlying conceptual structure. Norman (2008) puts it this way:

“What people want is usable devices, which translates into understandable ones”

(final emphasis ours).

To get started on conceptual design, gather the same team that did the

ideation and sketching and synthesize all your ideation and sketching results

into a high-level conceptualization of what the system or product is, how it fits

within its ecology, and how it operates with users.

For most systems or products, especially domain-complex systems, the best

way to start conceptual design is in the ecological perspective because that

captures the system in its context. For product concepts where the emotional

305MENTAL MODELS AND CONCEPTUAL DES IGN

impact is paramount, starting with that perspective is obvious. At other times the

“invention” of an interaction technique like that of the iPod Classic scroll wheel

might be the starting point for a solution looking for a problem and is best

visualized in the interaction perspective.

8.3.3 Leverage Metaphors in Conceptual Design
One way to start formulating a conceptual design is by way of metaphors—

analogies for communication and explanations of the unfamiliar using familiar

conventional knowledge. This familiarity becomes the foundation underlying

and pervading the rest of the interaction design.

What users already know about an existing system or existing phenomena can

be adapted in learning how to use a new system (Carroll & Thomas, 1982). Use

metaphors to control complexity of an interaction design, making it easier to

learn and easier to use instead of trying to reduce the overall complexity

(Carroll, Mack, & Kellogg, 1988).

One of the simple and oldest examples is the use of a typewriter metaphor in

a word processing system. New users who are familiar with the knowledge, such

as margin setting and tab setting in the typewriter domain, will already know

much of what they need to know to use these features in the word processing

domain.

Metaphors in the ecological perspective
Find a metaphor that can be used to describe the broader system structure.

An example of a metaphor from the ecological perspective could be the

description of iTunes as a mother ship for iPods, iPhones, and iPads. The

intention is that all operations for adding, removing, or organizing media

content, such as applications, music, or videos, are ultimately managed in

iTunes and the results are synced to all devices through an umbilical connection.

Metaphors in the interaction perspective
An example of a metaphor in the interaction perspective is a calendar

application in which user actions look and behave like writing on a real calendar.

A more modern example is the metaphor of reading a book on an iPad. As the

user moves a finger across the display to push the page aside, the display takes on

the appearance of a real paper page turning. Most users find it comfortingly

familiar.

Another great example of a metaphor in the interaction perspective can be

found in the Time Machine feature on the Macintosh operating system. It is a

backup feature where the user can take a “time machine” to go back to older

306 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

backups—by flying through time as guided by the user interface—to retrieve lost

or accidentally deleted files.

One other example is the now pervasive desktop metaphor. When the idea of

graphical user interfaces in personal computers became an economic feasibility,

the designers at Xerox Parc were faced with an interesting interaction design

challenge: How to communicate to the users, most of whom were going to see

this kind of computer for the first time, how the interaction design works?

In response, they created the powerful “desktop” metaphor. The design

leveraged the familiarity people had with how a desktop works: it has files,

folders, a space where current work documents are placed, and a “trash can”

where documents can be discarded (and later recovered, until the trash can

itself is emptied). This analogy of a simple everyday desk was brilliant in its

simplicity and made it possible to communicate the complexity of a brand new

technology.

As critical components of a conceptual design, metaphors set the theme of

how the design works, establishing an agreement between the designer’s vision

and the user’s expectations. But metaphors, like any analogy, can break down

when the existing knowledge and the new design do not match.

When ametaphor breaks down, it is a violation of this agreement. The famous

criticism of the Macintosh platform’s design of ejecting an external disk by

dragging its icon into the trashcan is a well-known illustration of how ametaphor

breakdown attracts attention. If Apple designers were faithful to the desktop

metaphor, the system should probably discard an external disk, or at least delete

its contents, when it is dragged and dropped onto the trashcan, instead of

ejecting it.

Metaphors in the emotional perspective
An example of a metaphor from the emotional perspective is seen in advertising

in Backpackermagazine of theGarmin handheldGPS as a hiking companion. In a

play on words that ties the human value of self-identity with orienteering,

Garmin uses the metaphor of companionship: “Find yourself, then get back.” It

highlights emotional qualities such as comfort, cozy familiarity, and

companionship: “Like an old pair of boots and your favorite fleece, GPSMAP

62ST is the ideal hiking companion.”

8.3.4 Conceptual Design from the Design Perspectives
Just as any other kind of design can be viewed from the three design perspectives

of Chapter 7, so can conceptual design.

307MENTAL MODELS AND CONCEPTUAL DES IGN

Conceptual design in the ecological perspective
The purpose of conceptual design from the ecological perspective is to

communicate a design vision of how the system works as a black box within its

environment. The ecological conceptual design perspective places your system

or product in the role of interacting with other subsystems within a larger

infrastructure.

As an example, Norman (2009) cites the Amazon KindleTM—a good example

of a product designed to operate within an infrastructure. The product is for

reading books, magazines, or any textual material. You do not need a computer

to download or use it; the device can live as its own independent ecology.

Browsing, buying, and downloading books and more is a pleasurable flow of

activity. The Kindle is mobile, self-sufficient, and works synergistically with an

existing Amazon account to keep track of the books you have bought through

Amazon.com. It connects to its ecology through the Internet for downloading

and sharing books and other documents. Each Kindle has its own email address

so that you and others can send lots of materials in lots of formats to it for later

reading.

As discussed previously, the way that iPods and iTunes work together is

another example of conceptual design in the ecological perspective. Norman

calls this designing an infrastructure rather than designing just an application.

Within this ecosystem, iTunes manages all your data. iTunes is the overall

organizer through which you buy and download all content. It is also where you

create all your playlists, categories, photo albums, and so on. Furthermore, it is

in iTunes that you decide what parts of your data you want on your “peripherals,”

such as an iPod, iPad, or iPhone. When you connect your iDevice to the

computer and synchronize it, iTunes will bring it up to date, including an

installation of the latest version of the software as needed.

Usability of an Ecology of Devices: A Personal
Information Ecosystem

Manuel A. Pérez-Quiñones, Department of Computer Science, Virginia Tech

The world of ubiquitous computing imagined by Mark Weiser (1991) is upon us. The computational power of small

devices is enabling new uses of computing away from the desktop or office. Networking and communication abilities

of devices make it possible to use computing in mobile settings. Storage and display improvements make difficult

308 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

tasks now possible on small devices. For example, one can do photo and video editing on an iPhone. The “cloud”

is tying all of these together and providing access to computing and information anytime, anywhere.

In this new environment, the biggest challenge for usability engineers is that all of these devices are used

together to accomplish user’s information needs and goals. Whereas before we had tools dedicated to

particular tasks (e.g., email programs), now we have a set of devices, each with a set of tools to support the

same tasks. The usability of these tasks must be evaluated as a collection of devices working together, not as the

sum of the usability of individual tools. Some tasks, on the surface, can be done on any of our many devices. Take

email, for example. You can read, reply, forward, and delete emails in your phone, tablet device, laptop, desktop,

game console, or even TV or entertainment center. However, managing email sometimes entails more than that.

Once you get to filing and refinding previous email messages, the tasks gets very complicated on some of

these devices. And opening some attachments might not be possible in other devices. Also, even though we have

connectivity to talk to anyone in the world, you do not quite have enough connectivity to print an email remotely

at home or at the office. The result is that not all devices support all the tasks required to accomplish our work, but

the collection of devices together do, while allowing mobility and 24/7 access to information.

The challenge comes on how to evaluate a system of coordinated device usage that spans multiple

manufacturers, multiple communication capabilities, and multiple types of activities. The experience of using (and

configuring and managing) multiple devices together is very different than using only one device. As a matter of

fact, the usability of just one device is barely a minimum fit for it to work within the rest of devices used in our

day-to-day information management. Furthermore, the plethora of devices creates a combinatorial explosion of

device choices that make assessing the usability of the devices together practically impossible.

Part of the problem is that we lack a way to understand and study this collection of devices. To alleviate this

need, we have proposed a framework, called a personal information ecosystem (PIE) (Pérez-Quiñones et al., 2008),

that at least helps us characterize different ecologies that emerge for information management. The idea of

ecosystems in information technology is not new, but our approach is most similar to Spinuzzi’s (2001) ecologies

of genre. Spinuzzi argues that usability is not an attribute of a single product or artifact, but that instead it is best

studied across the entire ecosystem used in an activity. His approach borrows ideas from distributed cognition

and activity theory.

At the heart of the ecology of devices is an information flow that is at its optimum point (i.e., equilibrium)

when the user is exerting no extra effort to accomplish his/her tasks. At equilibrium, the user rarely needs to

think of the devices, the data format, or the commands to move information to and from devices. This

equilibrium, however, is disrupted easily by many situations: introduction of a new device, disruption in service

(wifi out of range), changes in infrastructure, incompatibility between programs, etc. It is often quite a challenge

to have all of your devices working together to reach this equilibrium. The usability of the ecosystem depends

more on the equilibrium and ease of information flow than on the individual usability of each device.

However, having a terminology and understanding the relationships between devices are only the beginning.

I would claim that designing and assessing user experience within an ecology of devices is what Rittel (1972) calls

a “wicked problem.” A wicked problem, according to Rittel, is a problem that by its complexity and nature

cannot have a definitive formulation. He even states that a formulation of the problem itself corresponds to a

particular solution of the problem. Often, wicked problems have no particular solution, instead we judge a solution

as good or bad. We often cannot even test a solution to a wicked problem, we can only indicate to a degree to

which a given solution is good. Finally, in wicked problems, according to Rittel, there are many explanations for

the same discrepancy and there is no way to test which of these explanations is the best one. In general, every

wicked problem can be considered a symptom of another problem.

Why is designing and assessing usability of an ecology a wicked problem? First, different devices are often

designed by different companies. We do not really know which particular combination of devices a given user will

own. Evaluating all combinations is prohibitively expensive, and expecting one company to provide all the devices is

not ideal either, as monopolies tend to stifle innovation. As a result, the user is stuck in an environment that can at

best provide a local optimum—“if you use this device with this other device, then your email will work ok.”

Second, while some problems are addressed easily by careful design of system architecture, eventually new

uses emerge that were not anticipated by the designers. For example, if a user is using IMAP as the server

protocol for his/her email, then all devices are “current” with each other as the information about her/his email

is stored in a central location. But even this careful design of network protocols and systems architecture cannot

account for all the uses that evolve over time. The email address autocompletion and the signature that appears at

the bottom of your email are both attributes of the clients and are not in the IMAP protocol. Thus, a solution

based on standards can only support agreed common tasks from the past but does not support emergent behavior.

Third, the adoption of a new device into the ecology often breaks other parts that were already working

effectively. As a result, whatever effort has gone into solving a workflow problem is lost when a different

combination of devices is present. For example, I use an Apple MacBook Pro as my main computer, an iPad for

most of my home use, and an Android phone for my communication needs. At times, finding a good workflow for

these three devices is a challenge. I have settled on using GMail and Google Calendar in all three devices because

there is excellent support for all three. But other genres are not as well supported. Task management, for example,

is one where I currently do not have a good solution that works in my phone, the most recent addition to my PIE.

New devices upset the equilibrium of the ecosystem; the problem that I am addressing (task management) is

a symptom of another problem I introduced.

Fourth, the impact of the changes in an ecosystem is highly personalized. I know users whose email

management and information practices improved when they obtained a smartphone. For them, most of their email

traffic was short and for the purpose of coordinating meetings or upcoming events. Introduction of a smartphone

allowed them to be more effective in their email communication. For me, for example, the impact was the opposite. As

most knowledge workers, I do a lot of work over email with discussions and document exchanges. The result is that I

tag my email and file messages extensively. But because my phone and tablet device provide poor support for filing

messages, I now leave more messages in my inbox to be processed when I am back on my laptop. Before I added my

smartphone to my ecosystem, my inbox regularly contained 20 messages. Now, my inbox has pending tasks from

when I was mobile. The result is that I have 50 to 60 messages regularly in my inbox. Returning to my laptop now

requires that I “catch-up” on work that I did while mobile. The impact of adding a smartphone has been negative to

me, in some respects, whereas for other users it had a positive effect.

Finally, a suitable solution to a personal ecosystem is one that depends on the user doing some work as a designer

of his or her own information flow. Users have to be able to observe their use, identify their own inefficiencies,

propose solutions, and design workflows that implement those solutions. Needless to say, not every user has the skills

to be a designer and to even be able to self-assess where their information flow is disrupted. Spinuzzi (2001) discusses

this point using the B�dker (1991) concept of breakdowns. Paraphrasing Spinuzzi, breakdowns are points at which a

person realizes that his or her information flow is not working as expected and thus the person must devote attention

to his or her tools/ecosystem instead of his or her work. Typically this is what a usability engineer would consider a

usability problem, but in the context of a PIE, this problem is so deeply embedded in the particular combination of

devices, user tasks, and user information flows that it is practically impossible for a usability engineer to identify this

breakdown. We are left with the user as a designer as the only option of improving the usability of a PIE.

As usability engineers, we face a big challenge on how to study, design, and evaluate user experience of personal

information ecosystem that have emerged in today’s ubiquitous environments.

References

B�dker, S. (1991). Through the Interface: A Human Activity Approach to User Interface Design. Hillsdale, New Jersey: Erlbaum.

Pérez-Quiñones, M. A., Tungare, M., Pyla, P. S., & Harrison, S. (2008). Personal Information Ecosystems: Design Concerns

for Net-Enabled Devices. In Proceedings of Latin American-WEB’2008 Conference, (pp. 3–11). October 28–30, Vila

Velha, Espı́rito Santo, Brasil.

Rittel, H. (1972). On the planning crisis: Systems Analysis of the ‘first and Second Generations’. Bedriftskonomen, 8,

390–396.

Spinuzzi, C. (2001). Grappling with Distributed Usability: A Cultural-Historical Examination of Documentation Genres over

Four Decades. Journal of Technical Writing and Communication, 31(1), 41–59.

Weiser, M. (1991). The Computer for the 21st Century. Scientific American, 94–100, September.

Conceptual design in the interaction perspective
The conceptual design from the interaction perspective is used to communicate

a design vision of how the user operates the system. A good example of

conceptual design from an interaction perspective is the Mac Time Machine

backup feature discussed previously. Once that metaphor is established, the

interaction design can be fleshed out to leverage it.

The designers of this feature use smooth animation through space to

represent traveling through the different points in time where the user made

backups. When the user selects a backup copy from a particular time in the past,

the system lets the user browse through the files from that date. Any files from

that backup can be selected and they “travel through time” to the present,

thereby recovering the lost files.

As an example of designers leveraging the familiarity of conceptual

designs from known applications to new ones, consider a well-known application

such as Microsoft Outlook. People are familiar with the navigation bar on

the left-hand side, list view at the top right-hand side, and a preview of the

selected item below the list. When designers use that same idea in the

conceptual design of a new application, the familiarity carries over.

Conceptual design in the emotional perspective
Conceptual design from the emotional perspective is used to

communicate a vision of how the design elements will evoke emotional impact in

users. Returning to the car example, the design concept could be about jaw-

dropping performance and how your heart skips a beat when you see its

aerodynamic form or it could be about fun and being independent from the

crowd. Ask any MINI driver about what their MINI means to them.

In Figure 8-3 we summarize conceptual design in the three perspectives.

Example: Conceptual Design for the Ticket Kiosk System
There is a strong commonly held perception of a ticket kiosk that includes a

box on a pedestal and a touchscreen with colorful displays showing choices of

events. If you give an assignment to a team of students, even most HCI students,

to come up with a conceptual design of a ticket kiosk in 30 minutes, 9 times out

of 10 you will get something like this.

But if you teach them to approach it with design thinking and ideation, they

can come up with amazingly creative and varied results.

Figure 8-3

Designer workflow and
connections among the
three conceptual design
perspectives.

312 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

In our ideation about the Ticket Kiosk System, someonementionedmaking it

an immersive experience. That triggered more ideas and sketches on how to

make it immersive, until we came up with a three-panel overall design. In

Figure 8-4 we show this part of a conceptual design for the Ticket Kiosk System

showing immersion in the emotional perspective.

Here is a brief description of the concept, in outline form.

n The center screen is the interaction area, where immersion and ticket-buying action

occur.

n The left-hand screen contains available options or possible next steps; for example, this

screen might provide a listing of all required steps to complete a transaction, including

letting user access these steps out of sequence.

n The right-hand screen contains contextual support, such as interaction history and

related actions; for example, this screen might provide a summary of the current

transaction so far and related information such as reviews and ratings.

n The way that the three panels lay out context as a memory support and for consistent use

is a kind of human-as-information-processor concept.

n Using the sequence of panels to represent the task flow is a kind of engineering concept.

n Each next step selection from the left-hand panel puts the user in a new kind of

immersion in the center screen, and the previous immersion situation becomes part of

the interaction history on the right-hand panel.

Figure 8-4

Part of a conceptual
design showing
immersion in the
emotional perspective
(sketch courtesy of Akshay
Sharma, Virginia
Tech Department of
Industrial Design).

313MENTAL MODELS AND CONCEPTUAL DES IGN

n Addressing privacy and enhancing the impression of immersion: When the ticket buyer

steps in, rounded shields made of classy materials gently wrap around. An “Occupied”

sign glows on the outside. The inside of the two rounded half-shells of the shield become

the left-hand-side and right-hand-side interaction panels.

In Figure 8-5 we show ideas from an early conceptual design for the Ticket

Kiosk System from the ecological perspective.

In Figure 8-6 we show ideas from an ecological conceptual design for the

Ticket Kiosk System focusing on a feature for a smart ticket to guide users to

seating.

In Figure 8-7 we show ecological conceptual design ideas for the Ticket Kiosk

System focusing on a feature showing communication connection with a

smartphone. You can have a virtual ticket sent from a kiosk to yourmobile device

and use that to enter the event.

In Figure 8-8 we show ecological conceptual design ideas for the Ticket Kiosk

System focusing on the features for communicating and social networking.

Figure 8-5

Early conceptual design
ideas from the ecological
perspective (sketch courtesy
of Akshay Sharma,
Virginia Tech Department
of Industrial Design).

Exercise

See Exercise 8-1, Conceptual

Design for Your System

314 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Figure 8-6

Ecological conceptual
design ideas focusing on a
feature for a smart ticket to
guide users to seating
(sketch courtesy of Akshay
Sharma, Virginia Tech
Department of Industrial
Design).

Figure 8-7

Ecological conceptual
design ideas focusing on a
feature showing
communication connection
with a smartphone (sketch
courtesy of Akshay Sharma,
Virginia Tech Department
of Industrial Design).

315MENTAL MODELS AND CONCEPTUAL DES IGN

In Figure 8-9 we show part of a conceptual design for the Ticket Kiosk System

in the interaction perspective.

8.4 STORYBOARDS

8.4.1 What Are Storyboards?
A storyboard is a sequence of visual “frames” illustrating the interplay between a

user and an envisioned system. Storyboards bring the design to life in graphical

“clips,” freeze-frame sketches of stories of how people will work with the system.

This narrative description can come in many forms and at different levels.

Storyboards for representing interaction sequence designs are like visual

scenario sketches, envisioned interaction design solutions. A storyboard might

be thought of as a “comic-book” style illustration of a scenario, with actors,

screens, interaction, and dialogue showing sequences of flow from frame

to frame.

Figure 8-8

Ecological conceptual
design ideas focusing
on the features for
communicating and social
networking (sketch courtesy
of Akshay Sharma,
Virginia Tech Department
of Industrial Design).

316 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

8.4.2 Making Storyboards to Cover All Design
Perspectives
From your ideation and sketches, select themost promising ideas for each of the

three perspectives. Create illustrated sequences that show each of these ideas in

a narrative style.

Include things like these in your storyboards:

n Hand-sketched pictures annotated with a few words

n All the work practice that is part of the task, not just interaction with the system, for

example, include telephone conversations with agents or roles outside the system

n Sketches of devices and screens

n Any connections with system internals, for example, flow to and from a database

n Physical user actions

Figure 8-9

Part of a conceptual design
in the interaction
perspective (sketch courtesy
of Akshay Sharma,
Virginia Tech Department
of Industrial Design).

317MENTAL MODELS AND CONCEPTUAL DES IGN

n Cognitive user actions in “thought balloons”

n Extra-system activities, such as talking with a friend about what ticket to buy

For the ecological perspective, illustrate high-level interplay among human

users, the system as a whole, and the surrounding context. Look at the

envisioned flow model for how usage activities fit into the overall flow. Look in

the envisioned social model for concerns and issues associated with the usage in

context and show them as user “thought bubbles.”

As always in the ecological perspective, view the system as a black box to

illustrate the potential of the system in a context where it solves particular

problems. To do this, youmight show a device in the hands of a user and connect

its usage to the context. As an example, you might show how a handheld device

could be used while waiting for a flight in an airport.

In the interaction perspective, show screens, user actions, transitions, and

user reactions. You might still show the user, but now it is in the context of

user thoughts, intentions, and actions upon user interface objects in operating

the device. Here is where you get down to concrete task details. Select key

tasks from the HTI, design scenarios, and task-related models to feature in

your interaction perspective storyboards.

Use storyboards in the emotional perspective to illustrate deeper user

experience phenomena such as fun, joy, and aesthetics. Find ways to show the

experience itself—remember the excitement of the mountain bike example

from Buxton (Chapter 1).

Example: Ticket Kiosk System Storyboard Sketches
in the Ecological Perspective
See Figure 8-10 for an example of a sequence of sketches as a storyboard

depicting a sequence using a design in the ecological perspective.

Figure 8-10

Example of a sequence of
sketches as a storyboard
in the ecological perspective
(sketches courtesy of
Akshay Sharma,
Virginia Tech Department
of Industrial Design).

Continued

318 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Example: More Ticket Kiosk System Storyboard Sketches
in the Ecological Perspective
In Figure 8-11 we show part of a different Ticket Kiosk System storyboard in the

ecological perspective.

Figure 8.10, cont’d

Figure 8-11

Part of a different Ticket
Kiosk System storyboard
in the ecological perspective
(sketches courtesy of
Akshay Sharma, Virginia
Tech Department of
Industrial Design).

319MENTAL MODELS AND CONCEPTUAL DES IGN

Example: Ticket Kiosk System Storyboard Sketches
in the Interaction Perspective
The following is one possible scenario that came out of an ideation session for

an interaction sequence for a town resident buying a concert ticket from the

Ticket Kiosk System. This example is a good illustration of the breadth we intend

for the scope of the term “interaction,” including a person walking with respect

to the kiosk, radio-frequency identification at a distance, and audio sounds

being made and heard. This scenario uses the three-screen kiosk design, where

LS ¼ left-hand screen, CS ¼ center screen, RS ¼ right-hand screen, and

SS ¼ surround sound.

n Ticket buyer walks up to the kiosk

n Sensor detects and starts the immersive protocol

n Provides “Occupied” sign on the wrap-around case

n Detects people with MU passports

n Greets buyer and asks for PIN

n [CS] Shows recommendations and most popular current offering based on buyer’s

category

n [RS] Shows buyer’s profile if one exists on MU system

n [LS] Lists options such as browse events, buy tickets, and search

n [CS] Buyer selects “Boston Symphony at Burruss Hall” from the recommendations

n [RS] “Boston Symphony at Burruss Hall” title and information and images

n [SS] Plays music from that symphony

n [CS] Plays simulated/animated/video of Boston Symphony in a venue that looks

like Burruss Hall. Shows “pick date and time”

n [LS] Choices, pick date and time, go back, exit.

n [CS] Buyer selects “pick date and time” option

n [CS] A calendar with “Boston Symphony at Burruss Hall” is highlighted, with other

known events and activities with clickable dates.

n [CS] Buyer selects date from the month view of calendar (can be changed to week)

n [RS] The entire context selected so far, including date

n [CS] A day view with times, such as Matinee or evening. The rest of the slots in the

day show related events such as wine tasting or special dinner events.

n [LS] Options for making reservations at these special events

n [CS] Buyer selects a time

n [RS] Selected time

n [CS] Available seating chart with names for sections/categories aggregate number

of available seats per each section

320 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

n [LS] Categories of tickets and prices

n [CS] Buyer selects category/section

n [RS] Updates context

n [CS] Immerses user from a perspective of that section. Expands that section to show

individual available seats. Has a call to action “Click on open seats to select” and an

option to specify number of seats.

n [LS] Options to go back to see all sections or exit

n [CS] Buyer selects one or more seats by touching on available slots.

A message appears “Touch another seat to add to selection or touch selected

seat to unselect.”

n [CS] Clicks on “Seat selection completed”

n [RS] Updates context

n [CS] Shows payment options and a virtual representation of selected tickets

n [LS] Provides options with discounts, coupons, sign up for mailing lists, etc.

n [CS] Buyer selects a payment option

n [CS] Provided with a prompt to put credit card in slot

n [CS] Animates to show a representation of the card on screen

n [CS] Buyer completes payment

n [LS] Options for related events, happy hour dinner reservations, etc. These are

contextualized to the event they just bought the tickets just now.

n [CS] Animates with tickets and CC coming back out of their respective slots

In Figure 8-12 we have shown sample sketches for a similar storyboard.

8.4.3 Importance of Between-Frame Transitions
Storyboard frames show individual states as static screenshots. Through a series

of such snapshots, storyboards are used to show the progression of interaction

over time. However, the important part of cartoons (and, by the same token,

storyboards) is the space between the frames (Buxton, 2007b). The frames do

not reveal how the transitions are made.

For cartoons, it is part of the appeal that this is left to the imagination, but in

storyboards for design, the dynamics of interaction in these transitions are where

the user experience lives and the actions between frames should be part of what

is sketched. The transitions are where the cognitive affordances in your design

earn their keep, where most problems for users exist, and where the challenges

lie for designers.

We can augment the value of our storyboards greatly to inform design by

showing the circumstances that lead to and cause the transitions and the context,

Cognitive
Affordance

A cognitive affordance is a

design feature that helps

users with their cognitive

actions: thinking, deciding,

learning, remembering, and

knowing about things.

321MENTAL MODELS AND CONCEPTUAL DES IGN

situation, or location of those actions. These include user thoughts, phrasing,

gestures, reactions, expressions, and other experiential aspects of interaction. Is

the screendifficult to see? Is theuser toobusywithother things topay attention to

the screen? Does a phone call lead to a different interaction sequence?

In Figure 8-13 we show a transition frame with a user thought bubble

explaining the change between the two adjacent state frames.

Figure 8-12

Sample sketches for a similar concert ticket purchase storyboard in the interaction perspective (sketches courtesy of Akshay Sharma,
Virginia Tech Department of Industrial Design).

Continued

Exercise

See Exercise 8-2, Storyboard

for Your System

322 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Figure 8.12, cont’d

8.5 DESIGN INFLUENCING USER BEHAVIOR

Beale (2007) introduces the interesting concept of slanty design. “Slanty design

is an approach that extends user-centered design by focusing on the things

people should (and should not) be able to do with the product(s) behind the

design.” Design is a conversation between designers and users about both

desired and undesired usage outcomes. But user-centered design, for example,

using contextual inquiry and analysis, is grounded in the user’s current

Figure 8.12, cont’d

Figure 8-13

Storyboard transition frame with thought bubble explaining state change (sketches courtesy of Akshay Sharma, Virginia Tech
Department of Industrial Design).

324 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

behavior, which is not always optimal. Sometimes, it is desirable to change, or

even control, the user’s behavior.

The idea is to make a design that works best for all users taken together

and for the enterprise at large within the ecological perspective. This can

work against what an individual user wants. In essence, it is about controlling

user behavior through designs that attenuate usability from the individual

user’s interaction perspective, making it difficult to do things not in the

interest of other users or the enterprise in the ecological perspective, but still

allowing the individual users to accomplish the necessary basic functionality

and tasks.

One example is sloped reading desks in a library, which still allow

reading but make it difficult to place food or drink on the desk or, worse,

on the documents. Beale’s similar example in the domain of airport

baggage claims is marvelously simple and effective. People stand next to the

baggage conveyor belt and many people even bring their carts with them.

This behavior increases usability of the system for them because the best ease

of use occurs when you can just pluck the baggage from the belt directly

onto the cart.

However, crowds of people and carts cause congestion, reducing

accessibility and usability of other users with similar needs. Signs politely

requesting users to remain away from the belt except at the moment of luggage

retrieval are regrettably ineffective. A slanty design for the baggage carousel,

however, solves the problem nicely. In this case, it involves something that

is physically slanty; the surrounding floor slopes down away from the baggage

carousel.

This interferes with bringing carts close to the belt and significantly reduces

the comfort of people standing near the belt, thus reducing individual usability

by forcing people to remain away from the carousel and thenmake a dash for the

bags when they arrive within grasping distance. But it works best overall for

everyone in the ecological perspective. Slanty design includes evaluation to

eliminate unforeseen and unwanted side effects.

There are other ways that interaction design can influence user behavior.

For example, a particular devicemight change readinghabits. TheAmazonKindle

device, because of its mobility and connectedness, makes it possible for users to

access and read their favorite books in many different environments. As another

example, interaction design can influence users to be “green” in their everyday

activities. Imaginedevices thatdetect theproximityof theuser, shutting themselves

down when the user is no longer there, to conserve power.

325MENTAL MODELS AND CONCEPTUAL DES IGN

The Green Machine User-Experience Design: An
InnovativeApproach to Persuading People to Save
EnergywithaMobileDeviceThatCombinesSmart
Grid Information Design Plus Persuasion Design

Aaron Marcus, President, and Principal Designer/Analyst, Aaron Marcus and Associates, Inc. (AMþA)

In past decades, electric meters in homes and businesses were humble devices viewed primarily by utility company

service technicians. Smart Grid developments to conserve energy catapult energy data into the forefront of high-

technology innovation through information visualization, social media, education, search engines, and even games and

entertainment. Many new techniques of social media are transforming society and might incorporate Smart Grid data.

These techniques include the following:

n Communication: Blogs, microblogging, social networking, soc net aggregation, event logs/tracking

n Collaboration: wikis, social bookmarking (social tagging), social news, opinions, Yelp

n Multimedia: photo/video sharing, livecasting, audio/music sharing

n Reviews and opinions: product/business reviews, community Q+As

n Entertainment: platforms, virtual worlds, game sharing

Prototypes of what might arise are to be found in many places around the Internet. As good as these developments

are, they do not go far enough. Just showing people information is good, but not sufficient. What seems to be missing

is persuasion.

We believe that one of the most effective ways in which to reach people is to consider mobile devices, in use by

more than three billion people worldwide. Our Green Machine mobile application prototype seeks to persuade people

to save energy.

Research has shown that with feedback, people can achieve a 10% energy-consumption reduction without a

significant lifestyle change. In the United States, this amount is significant, equal to the total energy provided by wind

and solar resources, about 113.9 billion kwh/year. President Obama allocated more than $4 billion in 2010 Smart Grid

funding to help change the context of energy monitoring and usage. Most of the Smart Grid software development has

focused on desktop personal computer applications. Relatively few have taken the approach of exploring the use of

mobile devices, although an increasing number are being deployed.

For our Green Machine project, we selected a home-consumer context to demonstrate in an easy-to-understand

example how information design could be merged with persuasion design to change users’ behavior. The same

principles can be reapplied to the business context, to electric vehicle usage, and to many other contexts. For our use

scenario, we assumed typical personas, or user profiles: mom, dad, and the children, who might wish to see their

home energy use status and engage with the social and information options available on their mobile devices.

326 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

We incorporated five steps of behavior-changing process: increasing frequency of use of sustainability tools,

motivating people to reduce energy consumption, teaching them how to reduce energy consumption, persuading them

to make short-term changes, and persuading them to make long-term changes in their behavior. This process included,

for example, the following techniques: rewards, using user-centered design, motivating people via views into the

future, motivating them through games, providing tips to help people get started and to learn new behaviors,

providing visual feedback, and providing social interaction.

We tested the initial designs with about 20 people, of varying ages (16–65), both men and women, students,

professionals, and general consumers. We found most were quite positive about the Green Machine to be effective in

motivating them and changing their behavior in both the short and the long term. A somewhat surprising 35% felt a

future view of the world in 100 years was effective even though the news was gloomy based on current trends. We

made improvements in icon design, layout, and terminology based on user feedback.

The accompanying two figures show revised screen designs for comparison of energy use and tips for purchasing

green products. The first image shows how the user compares energy use with a friend or colleague. Data charts can

appear, sometimes with multiple tracks, to show recent time frames, all of which can be customized, for example,

a longer term can show performance over a month’s time, or longer. The second image shows data about a product

purchase that might lead the user to choose one product/company over another because of their “green” attributes.

A consumption meter at the top of each screen is a constant reminder of the user’s performance. Other screens offer

a view into the future 100 years from now to show an estimate of what the earth will be like if people behave as the

user now does. Still other screens show social networking and other product evaluation screens to show how a user

might use social networks and product/service data to make smarter choices about green behavior.

The Green Machine concept design proved sturdy in tests with potential users. The revised version stands ready for

further testing with multicultural users. The mental model and navigation can be built out further to account for

shopping, travel, and other energy-consuming activities outside the home. The Green Machine is ready to turn over to

companies or governmental sponsors of commercial products and services based on near-term Smart Grid technology

developments, including smart-home management and electric/hybrid vehicle management. Even more important, the

philosophy, principles, and techniques are readily adapted to other use contexts, namely that of business, both

enterprise and small-medium companies, and with contexts beyond ecological data, for example, healthcare. Our

company has already developed a follow-on concept design modeled on the Green Machine called the Health

Machine.

Coupled with business databases, business use contexts, and business users, the Green Machine for Business

might provide another example of how to combine Smart Grid technology with information design and persuasion

design for desktop, Web, and mobile applications that can more effectively lead people to changes in business,

home, vehicle, and social behavior in conserving energy and using the full potential of the information that the

Smart Grid can deliver.

Acknowledgment

This article is based on previous publications (Jean and Marcus, 2009, 2010; Marcus 2010a,b); it includes additional/

newer text and newer, revised images.

References

Jean, J., & Marcus, A. (2009). The Green Machine: Going Green at Home. User Experience (UX), 8(4), 20–22ff.

Marcus, A. (2010a). Green Machine Project. DesignNet, 153(6) June 2010, 114–115 (in Korean).

Marcus, A. (2010b). The Green Machine. Metering International, (2), July 2010, South Africa, 90–91.

Marcus, A., & Jean, J. (2010). Going Green at Home: The Green Machine. Information Design Journal, 17(3), 233–243.

8.6 DESIGN FOR EMBODIED INTERACTION

Embodied interaction refers to the ability to involve one’s physical body in interaction with technology in a

natural way, such as by gestures. Antle (2009) defines embodiment as “how the nature of a living entity’s

cognition is shaped by the form of its physicalmanifestation in the world.” As she points out, in contrast to the

human as information processor view of cognition, humans are primarily active agents, not just “disembodied

symbol processors.” This means bringing interaction into the human’s physical world to involve the human’s

own physical being in the world.

Embodied interaction, first identified by Malcolm McCullough in Digital Ground (2004) and further

developed by Paul Dourish in Where the Action Is (2001) is central to the idea of phenomenological

interaction. Dourish says that embodied interaction is about “how we understand the world, ourselves,

and interaction comes from our location in a physical and social world of embodied factors.” It has been

described as moving the interaction off the screen and into the real world.

Embodied interaction is action situated in the world.

To make it a bit less abstract, think of a person who has just purchased

something with “some assembly required.” To sit with the instruction manual

and just think about it pales in comparison to supplementing that thinking with

physical actions in the working environment—holding the pieces and moving

them around, trying to fit them this way and that, seeing and feeling the spatial

relations and associations among the pieces, seeing the assembly take form, and

feeling how each new piece fits.

This is just the reason that physical mockups give such a boost to invention

and ideation. The involvement of the physical body, motor movements, visual

connections, and potentiation of hand–eye–mind collaboration lead to an

embodied cognition far more effective than just sitting and thinking.

Simply stated, embodiment means having a body. So, taken literally,

embodied interaction occurs between one’s physical body and surrounding

technology. But, as Dourish (2001) explains embodiment does not simply refer

to physical reality but “the way that physical and social phenomena unfold in real

time and real space as a part of the world in which we are situated, right

alongside and around us.”

As a result, embodiment is not about people or systems per se. As Dourish

puts it, “embodiment is not a property of systems, technologies, or artifacts; it is a

property of interaction. Cartesian approaches separate mind, body, and thought

from action, but embodied interaction emphasizes their duality.”

Although tangible interaction (Ishii & Ullmer, 1997) seems to have a

following of its own, it is very closely related to embodied interaction. You could

say that they are complements to each other. Tangible design is about

interactions between human users and physical objects. Industrial designers

have been dealing with it for years, designing objects and products to be held,

felt, and manipulated by humans. The difference now is that the object involves

some kind of computation. Also, there is a strong emphasis on physicality, form,

and tactile interaction (Baskinger & Gross, 2010).

More than ever before, tangible and embodied interaction calls for physical

prototypes as sketches to inspire the ideation and design process. GUI interfaces

emphasized seeing, hearing, and motor skills as separate, single-user, single-

computer activities. The phenomenological paradigm emphasizes other senses,

action-centered skills, and motor memory. Now we collaborate and communicate

and make meaning through physically shared objects in the real world.

In designing for embodied interaction (Tungare et al., 2006), you must think

about how to involve hands, eyes, and other physical aspects of the human body

329MENTAL MODELS AND CONCEPTUAL DES IGN

in the interaction. Supplement the pure cognitive actions that designers have

considered in the past and take advantage of the user’s mind and body as they

potentiate each other in problem solving.

Design for embodied interaction by finding ways to shape and augment

human cognition with the physical manifestations of motor movements,

coupled with visual and other senses. Start by including the environment

in the interaction design and understand how it can be structured and

physically manipulated to support construction of meaning within interaction.

Embodied interaction takes advantage of several things. One is that it

leverages our innate human traits of being able to manipulate with our hands. It

also takes advantage of humans’ advanced spatial cognition abilities—laying

things on the ground and using the relationships of things within the space to

support design visually and tangibly.

If we were to try tomake a digital version of a game such as Scrabble (example

shown later), one way to do it is by creating a desktop application where people

operate in their own window to type in letters or words. This makes it an interactive

game but not embodied.

Another way to make Scrabble digital is the

way Hasbro did it in Scrabble Flash Cubes

(see later). They made the game pieces into real

physical objects with built-in technology.

Because you can hold these objects in your

hands, it makes them very natural and tangible

and contributes to emotional impact because

there is something fundamentally natural

about that.

Example: Embodied and Tangible
Interaction in a Parlor Game
Hasbro Games, Inc. has used embedded

technology in producing an electronic version

of the old parlor game Scrabble. The simple but

fun new Scrabble Flash Cubes game is shown in

Figure 8-14. The fact that players hold the

cubes, SmartLink letter tiles, in their hands and

manipulate and arrange them with their fingers

makes this a good example of embodied and

tangible interaction.

Figure 8-14

The Scrabble Flash Cube
game.

330 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

At the start of a player’s turn, the tiles each generate their own letter for the

turn. The tiles can read each other’s letters as they touch as a player physically

shuffles them around. When the string of between two and five letters makes up

a word, the tiles light up and beep and the player can try for another word with

the same tiles until time is up.

The tiles also work together to time each player’s turn, flag duplicates, and

display scores. And, of course, it has a built-in dictionary as an authority

(however arbitrary it may be) on what comprises a real word.

8.7 UBIQUITOUS AND SITUATED INTERACTION

8.7.1 Ubiquitous, Embedded, and Ambient Computing
The phenomenological paradigm is about ubiquitous computing (Weiser,

1991). Since the term “computing” can conjure a mental image of desktop

computers or laptops, perhaps the better term would be ubiquitous interaction

with technology, which is more about interaction with ambient computer-like

technology worn by people and embedded within appliances, homes, offices,

stereos and entertainment systems, vehicles, and roads.

Kuniavsky (2003) concludes that ubiquitous computing requires extra careful

attention to design for the user experience. He believes ubiquitous computing

devices should be narrow and specifically targeted rather than multipurpose or

general-purpose devices looking more like underpowered laptops. And he

emphasizes the need to design complete systems and infrastructures instead of

just devices.

The concept of embedded computing leans less toward computing in the

living environment and more toward computing within objects in the

environment. For example, you can attach or embed radio-frequency

identification chips and possibly limited GPS capabilities in almost any physical

object and connect it wirelessly to the Internet. An object can be queried about

what it is and where it is. You can ask your lost possessions where they are

(Churchill, 2009).

There are obvious applications to products on store or warehouse shelves

and inventory management. More intelligence can be built into the objects,

such as household appliances, giving them capabilities beyond self-

identification to sensing their own environmental conditions and taking

initiative to communicate with humans and with other objects and devices.

As example is ambient computing as manifest in the idea of an aware and

proactive home.

Ubiquitous
Interaction

Ubiquitous interaction is

interaction occurring not

just on computers and

laptops but potentially

everywhere in our

environment. Interactive

devices are being worn by

people; embedded within

appliances, homes, offices,

stereos and entertainment

systems, vehicles, and roads;

and finding their way into

walls, furniture, and objects

that we carry.

331MENTAL MODELS AND CONCEPTUAL DES IGN

8.7.2 Situated Awareness and Situated Action
The phenomenological paradigm is also about situated awareness in which the

technology and, by the same token, the user are aware of their context. This

includes awareness of the presence of others in one’s own activity space and their

awareness of your virtual presence in their activity spaces. In a social interaction

setting, this can help find other people and can help cultivate a feeling of

community and belonging (Sellen et al., 2006).

Being situated is all about a sense of “place,” the place of interaction within

the broader usage context. An example of situated awareness (credit not ours) is

a cellphone that “knows” it is in a movie theater or that the owner is in a

nonphone conversation; that is, the device or product encompasses knowledge

of the rules of human social politeness.

332 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

CHAPTER

Design Production 9
Objectives

After reading this chapter, you will:

1. Know how to use requirements to drive design

2. Understand the macro view of lifecycle iteration for design

3. Be able to unpack conceptual designs and explore strategies for realization in

intermediate design

4. Understand wireframes and how to make and use them

5. Be prepared to use annotated scenarios, prototypes, and wireframes to represent

screens and navigation in detailed design

6. Know how to maintain a custom style guide in design

7. Understand the concept of interaction design specifications for software

implementation

9.1 INTRODUCTION

9.1.1 You Are Here
We begin each process chapter with a “you are here” picture of the chapter topic

in the context of the overall Wheel lifecycle template; see Figure 9-1. This

chapter is a continuation of the previous one about designing the new work

practice and the new system.

In Chapter 7 we did ideation and sketching and in Chapter 8 we

conceptualized design alternatives. Now it is time to make sure that we account

for all the requirements and envisioned models in those designs. This is

especially important for domain-complex systems where it is necessary to

maintain connections to contextual data.

The translation from requirements to design is often regarded as the most

difficult step in the UX lifecycle process. We should expect it to be difficult

because now that we have made the cognitive shift from analysis-mode thinking

to synthesis-mode thinking, there are so many possible choices for design to

meet any one given requirement and following requirements does not

guarantee an integrated overall solution.

Beyer, Holtzblatt, and Wood (2005, p. 218) remind us that “The design isn’t

explicit in the data.” “The data guides, constrains, and suggests directions” that

design “can respond to.” The requirements, whether in a requirements

document or as an interpretation of the work activity affinity diagram (WAAD),

offer a large inventory of things to be supported in the design.

9.2 MACRO VIEW OF LIFECYCLE ITERATIONS
FOR DESIGN

In Figure 9-2 we show a “blow up” of how lifecycle iteration plays out on a

macroscopic scale for the various types of design. Each type of design has its own

iterative cycle with its ownkindofprototype andevaluation.Among the very first to

talk about iteration for interaction design were Buxton and Sniderman (1980).

The observant reader will note that the progressive series of iterative loops in

Figure 9-2 can be thought of as a kind of spiral lifecycle concept. Each loop

in turn addresses an increasing level of detail. For each different project context

and each stage of progress within the project, you have to adjust the amount

of and kind of design, prototyping, and evaluation to fit the situation in each of

these incarnations of that lifecycle template.

Figure 9-1

You are here; the third of
three chapters on creating
an interaction design in
the context of the overall
Wheel lifecycle template.

334 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

9.2.1 Ideation Iteration
At “A” in Figure 9-2, iteration for ideation and sketching (Chapter 7) is a

lightning-fast, loosely structured iteration for the purpose of exploring design

ideas. The role of prototype is played by sketches, and the role of evaluation is

carried out by brainstorming, discussion, and critiquing. Output is possibly

multiple alternatives for conceptual designs, mostly in the form of annotated

rough sketches.

Figure 9-2

Macro view of lifecycle
iterations in design.

335DES IGN PRODUCTION

9.2.2 Conceptual Design Iteration
At “B” in Figure 9-2, iteration for conceptual design is to evaluate and compare

possibly multiple design concepts and weigh concept feasibility. The type of

prototype evolves with each successive iteration, roughly from paper prototype

to low-fidelity wireframes and storyboards. The type of evaluation here is usually

in the form of storytelling via storyboards to key stakeholders. The idea is to

communicate how the broader design concepts help users in the envisioned

work domain.

Depending on the project context, one or more of the design perspectives

may be emphasized in the storyboards. This is usually the stage where key

stakeholders such as users or their representatives, business, software

engineering, andmarketingmust be heavily involved. You are planting the seeds

for what the entire design will be for the system going forward.

9.2.3 Intermediate Design Iteration
At “C” in Figure 9-2, the purpose of intermediate design (coming up soon)

iteration is to sort out possible multiple conceptual design candidates and to

arrive at one intermediate design for layout and navigation. For example, for

the Ticket Kiosk System, there are at least two conceptual design candidates in

the interaction perspective. One is a traditional “drill-in” concept where users

are shown available categories (e.g., movies, concerts, MU athletics) from

which they choose one. Based on the choice on this first screen, the user is

shown further options and details, navigating with a back button and/or

“bread crumb” trail, if necessary, to come back to the category view. A second

conceptual design is the one using the three-panel idea described in the

previous chapter.

Intermediate prototypes might evolve from low-fidelity to high-fidelity or

wireframes. Fully interactive high-fidelity mockups can be used as a vehicle to

demonstrate leading conceptual design candidates to upper management

stakeholders if you need this kind of communication at this stage. Using such

wireframes or other types of prototypes, the candidate design concepts are

validated and a conceptual design forerunner is selected.

9.2.4 Detailed Design Iteration
At “D” in Figure 9-2, iteration for detailed design is to decide screen design

and layout details, including “visual comps” (coming up soon) of the “skin”

for look and feel appearance. The prototypes might be detailed wireframes

and/or high-fidelity interactive mockups. At this stage, the design will be fully

Conceptual Design

A conceptual design is a

theme, notion, or idea

with the purpose of

communicating a design

vision about a system or

product. It is the part of the

system design that brings

the designer’s mentalmodel

to life.

Wireframe

A wireframe is a visual

schematic, blueprint, or

template of a screen or

Web page design in an

interaction design. It is a

skeletal representation of

screen (or page) layout of

interaction objects such as

tabs, menus, buttons,

dialogue boxes, displays,

and navigational elements.

The focus of wireframes is

on screen content and

behavior but not graphical

specifics such as fonts,

colors, or graphics. Often

the earliest way design

ideas become tangible,

wireframes are the basis for

iterative rapid prototypes.

336 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

specified with complete descriptions of behavior, look and feel, and information

on how all workflows, exception cases, and settings will be handled.

9.2.5 Design Refinement Iteration
At “E” in Figure 9-2, a prototype for refinement evaluation and iteration is usually

medium tohigh fidelity and evaluation is either a rapidmethod (Chapter 13) or a

full rigorous evaluation process (Chapters 12 and 14 through 18).

9.3 INTERMEDIATE DESIGN

For intermediate design, you will need the same team you have had since

ideation and sketching, plus a visual designer if you do not already have one.

Intermediate design starts with your conceptual design and moves forward with

increasing detail and fidelity. The goal of intermediate design is to create a

logical flow of intermediate-level navigational structure and screen designs.

Even though we use the term screen here for ease of discussion, this is also

applicable to other product designs where there are no explicit screens.

9.3.1 Unpacking the Conceptual Design: Strategies
for Realization
At “C” in Figure 9-2, you are taking the concepts created in conceptual design,

decomposing them into logical units, and expanding each unit into different

possible design strategies (corresponding to different conceptual design

candidates) for concept realization. Eventually you will decide on a design

strategy, from which spring an iterated and evaluated intermediate prototype.

9.3.2 Ground Your Design in Application Ontology with
Information Objects
Per Johnson and Henderson (2002, p. 27), you should begin by thinking in

terms of the ontological structure of the system, which will now be available

in analyzed and structured contextual data. This starts with what we call

information objects that we identified in modeling (Chapter 6).

As these information objects move within the envisioned flowmodel, they are

accessed and manipulated by people in work roles. In a graphics-drawing

application, for example, information objects might be rectangles, circles, and

other graphical objects that are created, modified, and combined by users.

Identify relationships among the application objects—sometimes

hierarchical, sometimes temporal, sometimes involving user workflow. With the

Information Object

An information object is an

internally stored work

object shared by users and

the system. Information

objects are often data

entities central to work

flow, being operated on by

users; they are searched and

browsed for, accessed and

displayed, modified and

manipulated, and stored

back again.

337DES IGN PRODUCTION

help of your physical model, cast your ontological net broadly enough to identify

other kinds of related objects, for example, telephones and train tickets, and

their physical manipulation as done in conjunction with system operation.

In design we also have to think about how users access information objects;

from the user perspective, accessing usually means getting an object on the

screen so that it can be operated on in some way. Then we have to think about

what kinds of operations or manipulation will be performed.

For example, in the Ticket Kiosk System, events and tickets are important

information objects. Start by thinking about how these can be represented in the

design. What are the best design patterns to show an event? What are the design

strategies to facilitate ways to manipulate them?

In your modeling you should have already identified information objects,

their attributes, and relationships among them. In your conceptual design and

later in intermediate design, you should already have decided how information

objects will be represented in the user interaction design. Now you can decide

how users get at, or access, these information objects.

Typically, because systems are too large and complex to show all information

objects on the screen at once initially, how do your users call up a specific

information object to operate on it? Think about information seeking, including

browsing and searching.

Decide what operations users will carry out on your information objects. For

example, a graphics package would have an operation to create a new rectangle

object and operations to change its size, location, color, etc. Think about how

users will invoke and perform those operations.

Add these new things to your storyboards. The design of information object

operations goes hand in hand with design scenarios (Chapter 6), personas

(Chapter 7), and storyboards (Chapter 8), which can add life to the static

wireframe images of screens.

9.3.3 Illustrated Scenarios for Communicating Designs
One of the best ways to describe parts of your intermediate interaction design in

a document is through illustrated scenarios, which combine the visual

communication capability of storyboards and screen sketches with the capability

of textual scenarios to communicate details. The result is an excellent vehicle for

sharing and communicating designs to the rest of the team, and to

management, marketing, and all other stakeholders.

Making illustrated scenarios is simple; just intersperse graphical storyboard

frames and/or screen sketches as figures in the appropriate places to illustrate

338 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

the narrative text of a design scenario. The storyboards in initial illustrated

scenarios can be sketches or early wireframes (coming up later).

9.3.4 Screen Layout and Navigational Structure
During this phase, all layout and navigation elements are fully fleshed out. Using

sequences of wireframes, key workflows are represented while describing what

happens when the user interacts with the different user interface objects in the

design. It is not uncommon to have wireframe sets represent part of the

workflow or each task sequence using click-through prototypes.

9.4 DETAILED DESIGN

At “D” in Figure 9-2, for detailed design you will need the same team you had for

intermediate design, plus documentation and language experts, to make sure

that the tone, vocabulary, and language are accurate, precise and consistent,

both with itself and with terminology used in the domain.

9.4.1 Annotated Wireframes
To iterate and evaluate your detailed designs, refine your wireframes more

completely by including all user interface objects and data elements, still

represented abstractly but annotated with call-out text.

9.4.2 Visual Design and Visual Comps
As a parallel activity, a visual designer who has been involved in ideation,

sketching, and conceptual design now produces what we call visual “comps,”

meaning variously comprehensive or composite layout (a term originating in the

printing industry). All user interface elements are represented, now with a very

specific and detailed graphical look and feel.

A visual comp is a pixel-perfect mockup of the graphical “skin,” including

objects, colors, sizes, shapes, fonts, spacing, and location, plus visual “assets” for

user interface elements. An asset is a visual element along with all of its defining

characteristics as expressed in style definitions such as cascading style sheets for a

Website. The visual designer casts all of this to be consistent with company

branding, style guides, and best practices in visual design.

Custom Style Guide

A custom style guide is a

document that is fashioned

and maintained by

designers to capture and

describe details of visual

and other general design

decisions that can be

applied in multiple places.

Its contents can be specific

to one project or an

umbrella guide across all

projects on a given

platform, or over a whole

organization.

Exercise

See Exercise 9-1,

Intermediate and Detailed

Design for Your System

339DES IGN PRODUCTION

9.5 WIREFRAMES

In Figure 9-3 we show the path from ideation and sketching, task interaction

models, and envisioned design scenarios to wireframes as representations of

your designs for screen layout and navigational flow.

Along with ideation and sketching, task interaction models and design

scenarios are the principal inputs to storytelling and communication of designs.

As sequences of sketches, storyboards are a natural extension of sketching.

Storyboards, like scenarios, represent only selected task threads. Fortunately, it is

a short and natural step from storyboards to wireframes.

To be sure, nothing beats pencil/pen and paper or a whiteboard for the

sketching needed in ideation (Chapter 7), but, at some point, when the design

concept emerges from ideation, it must be communicated to others who pursue

the rest of the lifecycle process. Wireframes have long been the choice in the

field for documenting, communicating, and prototyping interaction designs.

9.5.1 What Are Wireframes?
Wireframes, amajor bread-and-butter tool of interaction designers, are a form of

prototype, popular in industry practice. Wireframes comprise lines and outlines

(hence the name “wire frame”) of boxes and other shapes to represent emerging

interaction designs. They are schematic diagrams and “sketches” that define a

Web page or screen content and navigational flow. They are used to illustrate

high-level concepts, approximate visual layout, behavior, and sometimes even

look and feel for an interaction design. Wireframes are embodiments of maps of

screen or other state transitions during usage, depicting envisioned task flows in

terms of user actions on user interface objects.

The drawing aspects of wireframes are often simple, offeringmainly the use of

rectangular objects that can be labeled, moved, and resized. Text and graphics

Figure 9-3

The path from ideation
and sketching, task
interaction models, and
envisioned design
scenarios to wireframes.

340 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

representing content and data in the design is placed in those objects. Drawing

templates, or stencils, are used to provide quick means to represent the more

common kinds of user interface objects (more on this in the following sections).

Wireframes are often deliberately unfinished looking; during early stages of

design they may not even be to scale. They usually do not contain much visual

content, such as finished graphics, colors, or font choices. The idea is to create

design representations quickly and inexpensively by just drawing boxes, lines,

and other shapes.

As an example of using wireframes to illustrate high-level conceptual designs,

see Figure 9-4. The design concept depicted in this figure is comprised of a

three-column pattern for a photo manipulation application. A primary

navigation pane (the “nav bar”) on the left-hand side is intended to show a list of

all the user’s photo collections. The center column is the main content display

area for details, thumbnail images and individual photos, from the collection

selected in the left pane.

The column on the right in Figure 9-4 is envisioned to show related

contextual information for the selected collection. Note how a simple wireframe

using just boxes, lines, and a little text can be effective in describing a broad

Figure 9-4

An example wireframe
illustrating a high-level
conceptual design.

341DES IGN PRODUCTION

interaction conceptual design pattern. Often these kinds of patterns are

explored during ideation and sketching, and selected sketches are translated

into wireframes.

While wireframes can be used to illustrate high-level ideas, they are usedmore

commonly to illustrate medium-fidelity interaction designs. For example, the

idea of Figure 9-4 is elaborated further in Figure 9-5. The navigation bar in the

left column now shows several picture collections and a default “work bench”

where all uploaded images are collected. The selected item in this column, “Italy

trip,” is shown as the active collection using another box with the same label and

a fill color of gray, for example, overlaid on the navigation bar. The center

content area is also elaborated more using boxes and a few icons to show a

scrollable grid of thumbnail images with some controls on the top right. Note

how certain details pertaining to the different manipulation options are left

incomplete while showing where they are located on the screen.

Wireframes can also be used to show behavior. For example, in Figure 9-6 we

show what happens when a user clicks on the vertical “Related information” bar

in Figure 9-5: a pane with contextual information for this collection (or

individual photo) slides out. In Figure 9-7 we show a different view of the content

Figure 9-5

Further elaboration of the
conceptual design and
layout of Figure 9-4.

342 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Figure 9-6

The display that results
when a user clicks on the
“Related information” bar.

Figure 9-7

The display that results
when a user clicks on the
“One-up” view button.

343DES IGN PRODUCTION

pane, this time as a result of a user clicking on the “One-up” view switcher button

in Figure 9-5 to see a single photo in the context pane. Double-clicking a

thumbnail image will also expand that image into a one-up view to fill the

content pane.

9.5.2 How Are Wireframes Used?
Wireframes are used as conversational props to discuss designs and design

alternatives. They are effective tools to elicit feedback from potential users and

other stakeholders. A designer can move through a deck of wireframes one

slide at a time, simulating a potential scenario by pretending to click on

interaction widgets on the screen. These page sequences can represent the

flow of user activity within a scenario, but cannot show all possible navigational

paths.

For example, if Figures 9-5, 9-6, and 9-7 are in a deck, a designer can

narrate a design scenario where user actions cause the deck to progress

through the corresponding images. Such wireframes can be used for rapid

and early lab-based evaluation by printing and converting them into low-fidelity

paper prototypes (Chapter 11). A rough low- to medium-fidelity prototype,

using screens like the ones shown in Figures 9-5, 9-6, and 9-7, can also be

used for design walkthroughs and expert evaluations. In the course of such

an evaluation, the expert can extrapolate intermediate states between

wireframes.

What we have described so far is easy to do with almost all wireframing tools.

Most wireframing tools also provide hyperlinking capabilities tomake the deck a

click-through prototype.While this takes more effort to create, and evenmore to

maintain as the deck changes, it provides a more realistic representation of the

envisioned behavior of the design. However, the use of this kind of prototype in

an evaluation might require elaborating all the states of the design in the

workflow that is the focus of the evaluation.

Finally, after the design ideas are iterated and agreed upon by relevant

stakeholders, wireframes can be used as interaction design specifications. When

wireframes are used as inputs to design production, they are annotated with

details to describe the different states of the design and widgets, including

mouse-over states, keyboard inputs, and active focus states. Edge cases and

transition effects are also described. The goal here is completeness, to enable a

developer to implement the designs without the need for any interpretation.

Such specifications are usually accompanied by high-fidelity visual comps,

discussed previously in this chapter.

344 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

9.5.3 How to Build Wireframes?
Wireframes can be built using any drawing or word processing software

package that supports creating and manipulating shapes, such as iWork Pages,

Keynote, Microsoft PowerPoint, or Word. While such applications suffice for

simple wireframing, we recommend tools designed specifically for this

purpose, such as OmniGraffle (for Mac), Microsoft Visio (for PC), and

Adobe InDesign.

Many tools and templates for making wireframes are used in combination—

truly an invent-as-you-go approach serving the specific needs of prototyping. For

example, some tools are available to combine the generic-looking placeholders

in wireframes with more detailed mockups of some screens or parts of screens.

In essence they allow you to add color, graphics, and real fonts, as well as

representations of real content, to the wireframe scaffolding structure.

In early stages of design, during ideation and sketching, you started with

thinking about the high-level conceptual design. It makes sense to start with that

here, too, first by wireframing the design concept and then by going top down to

address major parts of the concept. Identify the interaction conceptual design

using boxes with labels, as shown in Figure 9-4.

Take each box and start fleshing out the design details. What are the

different kinds of interaction needed to support each part of the design, and

what kinds of widgets work best in each case? What are the best ways to lay

them out? Think about relationships among the widgets and any data that

need to go with them. Leverage design patterns, metaphors, and other ideas

and concepts from the work domain ontology. Do not spend too much time

with exact locations of these widgets or on their alignment yet. Such

refinement will come in later iterations after all the key elements of the design

are represented.

As you flesh out all the major areas in the design, be mindful of the

information architecture on the screen. Make sure the wireframes convey that

inherent information architecture. For example, do elements on the screen

follow a logical information hierarchy? Are related elements on the screen

positioned in such a way that those relationships are evident? Are content areas

indented appropriately? Are margins and indents communicating the hierarchy

of the content in the screen?

Next it is time to think about sequencing. If you are representing a workflow,

start with the “wake-up” state for that workflow. Then make a wireframe

representing the next state, for example, to show the result of a user action such

as clicking on a button. In Figure 9-6 we showed what happens when a user clicks

345DES IGN PRODUCTION

on the “Related information” expander widget. In Figure 9-7 we showed what

happens if the user clicks on the “One-up” view switcher button.

Once you create the key screens to depict the workflow, it is time to review

and refine each screen. Start by specifying all the options that go on the

screen (even those not related to this workflow). For example, if you have a

toolbar, what are all the options that go into that toolbar? What are all the

buttons, view switchers, window controllers (e.g., scrollbars), and so on that

need to go on the screen? At this time you are looking at scalability of your

design. Is the design pattern and layout still working after you add all the widgets

that need to go on this screen?

Think of cases when the windows or other container elements such as

navigation bars in the design are resized or when different data elements that

need to be supported are larger than shown in the wireframe. For example, in

Figures 9-5 and 9-6, what must happen if the number of photo collections is

greater than what fits in the default size of that container? Should the entire

page scroll or should new scrollbars appear on the left-hand navigation bar

alone? How about situations where the number of people identified in a

collection are large? Should we show the first few (perhaps ones with most

number of associated photos) with a “more” option, should we use an

independent scrollbar for that pane, or should we scroll the entire page? You

may want to make wireframes for such edge cases; remember they are less

expensive and easier to do using boxes and lines than in code.

As you iterate your wireframes, refine them further, increasing the fidelity of

the deck. Think about proportions, alignments, spacing, and so on for all the

widgets. Refine the wording and language aspects of the design. Get the

wireframe as close to the envisioned design as possible within the constraints of

using boxes and lines.

9.5.4 Hints and Tips for Wireframing
Because the point of wireframing is to make quick prototypes for exploring

design ideas, one of the most important things to remember about wireframing

is modularity. Just as in paper prototyping, you want to be able to create multiple

design representations quickly.

Being modular means not having too many concepts or details “hard coded”

in any one wireframe. Build up concepts and details using “layers.” Most good

wireframing tools provide support for layers that can be used to abstract related

design elements into reusable groups. Use a separate layer for each repeating

set of widgets on the screen. For example, the container “window” of the

346 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

application with its different controls can be specified once as a layer and this

layer can be reused in all subsequent screens that use that window control.

Similarly, if there is anavigationarea that isnotgoing tochange inthiswireframe

deck, for example, the left-handcollectionspane inFigure9-5,useone shared layer

for that. Layers can be stackeduponone another to construct a slide. This stacking

also provides support for ordering in the Z axis to show overlapping widgets.

Selection highlights, for example, showing that “Italy trip” is the currently selected

collection in Figure 9-5, can also created using a separate “highlight” layer.

Another tip for efficient wireframing is to use stencils, templates, and libraries

of widgets. Good wireframing tools often have a strong community following of

users who share wireframing stencils and libraries for most popular domains—

for example, for interaction design—and platforms—for example, Web, Apple

iOS, Google’s Android, Microsoft’s Windows, and Apple’s Macintosh. Using

these libraries, wireframing becomes as easy as dragging and dropping different

widgets onto layers on a canvas.

Create your own stencil if your design is geared toward a proprietary platform

or system. Start with your organization’s style guide and build a library of all

common design patterns and elements. Apart from efficiency, stencils and

libraries afford consistency in wireframing.

Some advanced wireframing tools even provide support for shared objects in

a library. When these objects are modified, it is possible to automatically update

all instances of those objects in all linked wireframe decks. This makes

maintenance and updates to wireframes easier.

Sketchy wireframes
Sometimes, when using wireframes to elicit feedback from users, if you want to

convey the impression that the design is still amenable to changes, make

wireframes look like sketches. We know from Buxton (2007a) that the style or

“language” of a sketch should not convey the perception that it is more

developed than it really is. Straight lines and coloring within the lines give the

false impression that the design is almost finished and, therefore, constructive

criticism and new ideas are no longer appropriate.

However, conventional drawing tools, such as Microsoft Visio, Adobe

Illustrator, OmniGraffle, and Adobe inDesign, produce rigid, computer-drawn

boxes, lines, and text. In response, “There is a growing popularity toward

something in the middle: Computer-based sketchy wireframes. These allow

computer wireframes to look more like quick, hand-drawn sketches while

retaining the reusability and polish that we expect from digital artifacts”

(Travis, 2009).

347DES IGN PRODUCTION

Fortunately, there are now a number of templates and tools such as Balsamic

Mockups1 that let you use the standard drawing packages to draw user interface

objects in a “sketchy” style thatmakes lines and text have a look as if done by hand.

9.6 MAINTAIN A CUSTOM STYLE GUIDE

9.6.1 What Is a Custom Style Guide?
A custom style guide is a document that is fashioned and maintained by

designers to capture and describe details of visual and other general design

decisions that can be applied in multiple places. Its contents can be specific to

one project or an umbrella guide across all projects on a given platform or over a

whole organization.

A custom style guide is a kind of internal documentation integral to the

design process. Every project needs one. Your custom style guide documents all

the design decisions you make about style issues in your interaction design,

especially your screen designs.

Because your design decisions continue to be made throughout the project

and because you sometimes change your mind about design decisions, the

custom style guide is a living document that grows and is refined along with the

design. Typically this document is private to the project team and is used only

internally within the development organization.

Although style guides and design guidelines (Chapter 22) both give guidance

for design, they are otherwise almost exact opposites. Guidelines are usually

suggestions to be interpreted; compliance with style guides is often required.

Guidelines are very general and broad in their applicability and usually

independent of implementation platforms and interaction styles. Style guides

are usually very specific to a platform and interaction style and even to a

particular device.

9.6.2 Why Use a Custom Style Guide?
Among the reasons for designers to use a custom style guide within a project are:

n It helps with project control and communication. Without documentation of the large

numbers of design decisions, projects—especially large projects—get out of control.

Everyone invents and introduces his or her own design ideas, possibly different

each day. The result almost inevitably is poor design and a maintenance nightmare.

1http://balsamiq.com/products/mockups

348 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

n It is a reliable force toward design consistency. An effective custom style guide helps

reducevariationsof thedetails ofwidgetdesign, layout, formatting, color choices, andso

on, giving you consistency of details throughout a product and across product lines.

n A custom style guide is a productivity booster through reuse of well-considered

design ideas. It helps avoid the waste of reinvention.

9.6.3 What to Put in a Custom Style Guide?
Your custom style guide should include all the kinds of user interface objects

where your organization cares the most about consistency (Meads, 2010). Most

style guides are very detailed, spelling out the parameters of graphic layouts and

grids, including the size, location, and spacing of user interface elements. This

includes widget (e.g., dialogue boxes, menus, message windows, toolbars) usage,

position, and design. Also important are the layouts of forms, including the

fields, their formatting, and their location on forms.

Your style guide is the appropriate place to standardize fonts, color schemes,

background graphics, and other common design elements. Other elements of a

style guide include interaction procedures, interaction styles, message and

dialogue fonts, text styles and tone, labeling standards, vocabulary control for

terminology and message wording, and schemes for deciding how to use

defaults and what defaults to use. It should be worded very specifically, and you

should spell out interpretations and conditions of applicability.

You should include as many sample design sketches and pictures taken from

designs on screens as possible tomake it communicate visually. Supplement with

clear explanatory text. Incorporate lots of examples of good and bad design,

including specific examples of UX problems found in evaluation related to style

guide violations.

Your style guide is also an excellent place to catalog design “patterns”

(Borchers, 2001), your “standard” ways of constructing menus, icons, dialogue

boxes, and so on. Perhaps one of the most important parts of a style guide are

rules for organizational signature elements for branding.

Example: Make up Your Minds
At the Social Security Administration (SSA), we encountered a design discussion

about whether to put the client’s name or the client’s social security number first

on a form used in telephone interviews. The current system had the social

security number first, but some designers changed it because they thought it

would be friendlier to ask the name first.

Later, another group of designers had to change it back to social security

number first because the SSA’s policy for contact with clients requires first

349DES IGN PRODUCTION

asking the social security number in order to retrieve a unique SSA record for

that person. Then the record is used to verify all the other variables, such as

name and address. This policy, in fact, was the reason it had been done this

way in the beginning, but because that first design group did not document

the design decision about field placement in this type of form or the

rationale behind it in their custom style guide, others had to reinvent and

redesign—twice.

9.7 INTERACTION DESIGN SPECIFICATIONS

9.7.1 What Is an Interaction Design Specification?
Interaction design specifications are descriptions of user interface look and feel

and behavior at a level of completeness that will allow a software programmer to

implement it precisely.

Discussions of “specifications” often lead to a diversity of strongly felt

opinions. By definition, a specification is a complete and correct description of

something. Specifications play an indispensable role in software engineering.

However, because it is difficult or impossible to construct complete and correct

descriptions of large complex systems, it is not uncommon to find incomplete

and ambiguous specifications in the software development world. Also, there are

no standards for interaction design specifications.

As a result, this connection between the two domains persists as one of the

great mysteries in the trade, one of the things people on both sides seem to

know the least about. In each organization, people in project roles on both

sides figure out their own ways to handle this communication, to varying

degrees of effectiveness, but there is no one general or broadly shared

approach. See Chapter 23 for a more in-depth discussion about this

communication problem.

In human–computer interaction (HCI), some argue that it is not practical

to create a design specification because as soon as they invest the effort, the

specification is more or less rendered useless by changes in the design due to

our iterative lifecycle concept. However, there is no reason that a design

specification cannot be just as dynamic as the design itself. In fact, a series of

versions of a design specification can be valuable in tracking the trajectory of

the evolving design and as a way to reflect on the process. In addition, by

maintaining the interaction design specifications as the design progresses,

it is possible to give the SE team periodic previews, avoiding surprises at

the end.

350 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

9.7.2 Why Should We Care about Interaction
Design Specifications?
Well, when we have devoted our resources to design and iterative refinement of

the interaction part of a system, we would really like to get that design into

the software of the system itself. To do that, we have to tell the SE people, the

ones who will implement our designs, what to build for the interaction part.

The user interaction design on the UX side becomes the user interface software

requirements for the user interface software design on the SE side.

In simple terms, we UX folks need a design representation because the SE

folks need a requirements specification for the user interface software. You want

it to be a very specific specification so there is no room for the SE people to do

interaction design on their own.

Without some kind of interaction design specifications, the software result

could be almost anything. However, in practice, it is prohibitively expensive to

produce specifications that are “complete.” Designers usually infuse enough

graphical and textual details for a programmer to understand design intent, and

issues that are not clear in the specification are handled on the social back

channels. If programmers are part of the process early on, they will have a better

understanding on the design as it evolved and therefore have less need for

explanations outside of the specification.

9.7.3 What about Using a Prototype as a
Design Specification?
The case for prototypes as interaction design representations is built on the

fact that prototypes already exist naturally as concrete, living design

representations. Abstract textual design specifications do not lend themselves to

visualization of the design, whereas a prototype can be “touched” and

manipulated to examine the design in action. Plus, prototypes capture all that

design detail in a way that no descriptive kind of representation can.

It is especially easy to view an iteratively refined and relatively complete

high-fidelity prototype as a wonderfully rich and natural way to represent an

interaction design. And it looks even better when compared to the enormous,

tedious, and cumbersome additional task of writing a complete specification

document describing the same design in text. For example, just one dialogue

box in an interaction would typically require voluminous narrative text,

including declarative definitions of all objects and their attributes. The resulting

long litany of descriptor attributes and values, which when read (or if read),

would fail to convey the simple idea conveyed by seeing and “trying” the dialogue

box itself.

351DES IGN PRODUCTION

However, while prototypes make for good demonstrations of the design, they

are not effective as reference documents. A prototype cannot be “searched” to

find where a specific design point or requirement is addressed. A prototype

does not have an “index” with which to look up specific concepts. A prototype

cannot be treated as a list of features to be implemented. Some say there is no

substitute for having a formal document that spells everything out and that can be

used to resolve arguments and answer questions about the requirements.

Also, some prototypes are not complete or even 100% accurate in all details.

Taken as a specification, this kind of prototype does not reveal which parts are

incomplete or only representative.

A prototype requires interpretation as a specification. There is still a great deal

about adialoguebox, forexample,notnecessarily conveyedbyapicture. Is it every

detail that you see, including the text on the labels, the font and colors, and soon?

For example, is the font size of a particular button label within a complicated

dialogue box the exact font style and size that shall beused or just something used

because they had touse some font. It does not say.Of course, themorehigh fidelity

it is, the more literally it is to be taken, but the dividing line is not always explicit.

9.7.4 Multiple, Overlapping Representation Techniques
as a Possible Solution
Because no single representation technique serves all purposes as a interaction

design specification, we must do our best to compile sets of representations to

includeasmuchof the interactiondesignaspossible. In thecurrent stateof theart

this can mean coalescing descriptions in multiple and sometimes overlapping

dimensions, each of which requires a different kind of representation technique.

These multiple descriptions come from the many work products that have

evolved in parallel as we moved through the formulation of requirements and

early design-informing models (Chapter 6), including hierarchical task

inventory (HTI) diagrams, usage scenarios, screen designs, user interface object

details (graphical user interface objects, not the OO software kind), wireframes,

lists of pull-down menu options, commands, dialogue boxes, messages, and

behaviors, and of course the prototype.

9.8 MORE ABOUT PARTICIPATORY DESIGN

Although we do not describe participatory design as a specific technique in the

main part of this chapter, users certainly can and should participate in the entire

design process, starting from ideation and sketching to refinement. Because the

specific technique of participatory design is an important part of HCI history

and literature, we touch on it here.

352 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

9.8.1 Basics of Participatory Design
At the very beginning of a design project, you often have the user and customers

on one side and system designers on the other. Participatory design is a way to

combine the knowledge of work practice of the users and customers with the

process skills of system designers.

It is interesting that although participatory design has a lot in common with,

including its origins, contextual inquiry and contextual analysis, many

applications of participatory design have been in the absence of upfront

contextual inquiry or contextual analysis processes. Regardless of how it gets

started,many design teams end up realizing that although participatory design is

a good way to get at real user needs by involving users in design, it is not a

substitute for involving users in defining requirements, the objective of

contextual inquiry and contextual analysis.

A participatory design session usually starts with reciprocal learning in which

the users and the designers learn about each others’ roles; designers learn

about work practices and users learn about technical constraints (Carmel,

Whitaker, & George, 1993). The session itself is a democratic process. Rank or

job title has no effect; anyone can post a new design idea or change an

existing feature. Only positive and supportive attitudes are tolerated. No one

can criticize or attack another person or their ideas. This leads to an atmosphere

of freedom to express even the farthest out ideas; creativity rules.

In our own experience, we have found participatory design very effective

for specific kinds of interaction situations. For example, we think it could be a

good approach, especially if used in conjunction with design scenarios, to

sketching out the first few levels of screens of the Ticket Kiosk System

interaction. These first screens are very important to the user experience, where

first impressions formed by users and where we can least afford to have users

get lost and customers turn away. However, in our experience, the technique

sometimes does not scale up well to complete designs of large and complex

systems.

9.8.2 PICTIVE2—An Example of an Approach
to Participatory Design
Inspired by the mockup methods of the Scandinavian project called UTOPIA

(B�dker et al., 1987), which provided opportunities for workers to give inputs to

workplace technology and organizational work practices, PICTIVE (Muller,

1991; Muller, Wildman, & White, 1993) is an example of how participatory

design has been operationalized in HCI. PICTIVE supports rapid group

2Plastic Interface for Collaborative Technology Initiatives through Video Exploration.

353DES IGN PRODUCTION

prototype design using paper and pencil and other “low technology” materials

on a large table top in combination with video recording.

The objective is for the group to work together to find technological design

solutions to support work practice and, sometimes, to redesign the work practice

in the process. Video recording is used to chronicle and communicate the

design process and to record walkthroughs used to summarize the designs.

PICTIVE is, as are most participatory design approaches, a hands-on design-

by-doing technique using low-tech tools, such as those used for paper

prototyping: blackboards, large sheets of paper, bulletin boards, push pins, Post-

it notes, colored marking pens, index cards, scissors, and tape. PICTIVE

deliberately uses these low-tech (noncomputer, nonsoftware) representations to

level the playing field between users and technical design team members.

Otherwise using even the most primitive programming tools for building

prototypes on the fly can cast the users as outsiders and the design practitioners

as intermediaries through whom all user ideas must flow. It then is no longer a

collaborative storytelling activity.

After the mutual introduction to each others’ backgrounds and perspectives,

the group typically discusses the task at hand and the design objectives to get on

the same page for doing the design. Then they gather around a table on which

there is a large paper representation of a generic computer “window.” Anyone can

step forward and “post” a design feature, for example, button, icon, menu,

dialogue box, ormessage, by writing or drawing it on a Post-it note or similar piece

of paper, sticking it on the “window” working space, and explaining the rationale.

The group can then discuss refinements and improvements. Someone else can

edit the text on the object, for example, and change its location in the window.

The group works collaboratively to expand and modify, adding new objects,

changing objects, and moving objects to create new layouts and groupings and

changing wording of labels andmessages, and so on, all the while communicating

their thinking and reasons behind each change. The results can be evaluated

immediately as low-fidelity prototypes with walkthroughs (usually recorded as

video for further sharing and evaluation). In most project environments that use

this kind of participatory design, it is often used in the consultative design mode,

where users participate in forming parts of the design but the professional design

practitioners have the final responsibility for the overall design.

PICTIVE has been evaluated informally in the context of several real product

design projects (Muller, 1992). User participants report getting enjoyment from

the process and great satisfaction in having a receptive audience for their own

design ideas and, especially, in seeing those design ideas included in the group’s

output.

354 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

9.8.3 History and Origins
Participatory design entails user participation in design for work practice.

Participatory design is a democratic process for design (social and

technological) of systems involving human work, based on the argument that

users should be involved in designs they will be using, and that all stakeholders,

including and especially users, have equal inputs into interaction design (Muller

& Kuhn, 1993).

The idea of user participation in system design harkens back (as does the

work on contextual studies) at least to a body of effort called work activity

theory (B�dker, 1991; Ehn, 1990). Originating in Russia and Germany, it

flourished in Scandinavia in the 1980s where it was closely related to the

workplace democracy movement. These early versions of participatory design

embraced a view of design based on work practice situated in a worker’s own

complete environment, but also espoused empowerment of workers to

“codetermine the development of the information system and of their

workplace” (Clement & Besselaar, 1993).

Going back to the 1980s and earlier, probably the most well-known

participatory design project was the Scandinavian project called

UTOPIA (B�dker et al., 1987). A main goal of Project UTOPIA was to

overcome limitations on opportunities for workers to affect workplace

technology and organizational work practices. UTOPIA was one of the

first such projects intended to produce a commercial product at the end of

the day.

Participatory design has been practiced inmany different forms with different

rules of engagement. In some projects, participatory design limits user power to

creating only inputs for the professional designers to consider, an approach

called consultative design by Mumford (1981). Other approaches give the users

full power to share in the responsibility for the final outcome, in what Mumford

calls consensus design.

Also beginning in the 1970s and 1980s, an approach to user involvement in

design (but probably developed apart from the participatory design history in

Scandinavia) called Joint Application Design was emerging from IBM in the

United States and Canada (August 1991). Joint Application Design falls between

consultative design and consensus design in the category of representative

design (Mumford, 1981), a commonly used approach in industry in which user

representatives become official members of the design teams, often for the

duration of the project. In comparison with participatory design, Joint

Application Design is often a bit more about group dynamics, brainstorming,

and organized group meetings.

355DES IGN PRODUCTION

In the early 1990s, the Scandinavian approach to democratic design was

adapted and extended within the HCI community in the form of participatory

design. Muller’s (1991) vision of participatory design as embodied in his

PICTIVE approach is the most well-known adaptation of the general concept

specifically to HCI. The first Participatory Design Conference met in 1990 and it

has been held biannually ever since. Participatory design has since been codified

for practice (Greenbaum & Kyng, 1991), reviewed (Clement & Besselaar, 1993),

and summarized (Muller, 2003a,b).

356 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Summary of the Flow of
Actitives in Chapters 3
through 9

Intentionally left as blank

CHAPTER

UX Goals, Metrics,
and Targets 10
Objectives

After reading this chapter, you will:

1. Understand the concepts of UX goals, metrics, and targets

2. Appreciate the need for setting UX target values for the envisioned system

3. Understand the influence of user classes, business goals, and UX goals on UX targets

4. Be able to create UX target tables, including identifying measuring instruments

and setting target values

5. Know how UX targets help manage the UX lifecycle process

10.1 INTRODUCTION

10.1.1 You Are Here
We are making splendid progress in moving through the Wheel UX lifecycle

template. In this chapter we establish operational targets for user experience to

assess the level of success in your designs so that you know when you canmove on

to the next iteration. UX goals, metrics, and targets help you plan for evaluation

that will successfully reveal the user performance and emotional satisfaction

bottlenecks. Because UX goals, metrics, and targets are used to guide much of

the process from analysis through evaluation, we show it as an arc around the

entire lifecycle template, as you can see in Figure 10-1.

10.1.2 Project Context for UX Metrics and Targets
In early stages, evaluation usually focuses on qualitative data for finding UX

problems. In these early evaluations the absence of quantitative data precludes

the use of UXmetrics and targets. But youmay still want to establish them at this

point if you intend to use them in later evaluations.

However, there is another need why you might forego UX metrics and targets.

Inmost practical contexts, specifyingUXmetrics and targets and following upwith

them may be too expensive.

This level of completeness is

only possible in a few

organizations where there are

established UX resources.

In most places, one round

of evaluation is all one gets.

Also, as designers, we can

know which parts of the

design need further

investigation just by lookingat

the results of the first round

of evaluation. In such cases,

quantitative UX metrics and

targets may not be useful

but benchmark tasks are

still essential as vehicles for

driving evaluation.

Regardless, the trend in the UX field is moving away from a focus on user

performance and more toward user satisfaction and enjoyment. We include

the full treatment of UX goals, metrics, and targets here and quantitative

data collection and analysis in the later UX evaluation chapters for completeness

and because some readers and practitioners still want coverage of the topic.

In any case, we find that this pivotal interaction design process activity of

specifying UX goals, metrics, and targets is often overlooked, either because of

lack of knowledge or because of lack of time. Sometimes this can be unfortunate

because it can diminish the potential of what can be accomplished with the

resources you will be putting into user experience evaluation. This chapter will

help you avoid that pitfall by showing you techniques for specifying UX goals,

metrics, and targets.

Fortunately, creating UX metrics and targets, after a little practice, does not

take much time. You will then have specific quantified UX goals against which

to test rather than just waiting to see what happens when you put users in front

of your interaction design. Because UX metrics and targets provide feasible

objectives for formative evaluation efforts, the results can help you pinpoint

where to focus on redesign most profitably.

And, finally, UX goals, metrics, and targets offer a way to help manage the

lifecycle by defining a quantifiable end to what can otherwise seem like endless

iteration. Of course, designers and managers can run out of time, money, and

Benchmark Task

A benchmark task is a

description of a task

performed by a participant

in formative evaluation so

that UX measures such as

time-on-task and error rates

can be obtained and

compared to a baseline

value across the

performances of multiple

participants.

Figure 10-1

You are here; the chapter on
UX goals, metrics, and
targets in the context of the
overall Wheel lifecycle
template.

360 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

patience before they meet their UX targets—sometimes after just one round

of evaluation—but at least then they know where things stand.

10.1.3 Roots for UX Metrics and Targets
The concept of formal UX measurement specifications in tabular form, with

various metrics operationally defining success, was originally developed by Gilb

(1987). The focus of Gilb’s work was on using measurements in managing

software development resources. Bennett (1984) adapted this approach to

usability specifications as a technique for setting planned usability levels and

managing the process to meet those levels.

These ideas were integrated into usability engineering practice by Good et al.

(1986) and further refined by Whiteside, Bennett, and Holtzblatt (1988).

Usability engineering, as defined by Good et al. (1986), is a process through

which quantitative usability characteristics are specified early and measured

throughout the lifecycle process.

Carroll and Rosson (1985) also stressed the need for quantifiable usability

specifications, associated with appropriate benchmark tasks, in iterative

refinement of user interaction designs. And now we have extended the concept

to UX targets. Without measurable targets, it is difficult to determine, at least

quantitatively, whether the interaction design for a system or product is meeting

your UX goals.

10.2 UX GOALS

UX goals are high-level objectives for an interaction design, stated in terms

of anticipated user experience. UX goals can be driven by business goals and

reflect real use of a product and identify what is important to an organization, its

customers, and its users. They are expressed as desired effects to be experienced in

usage by users of features in the design and they translate into a set of UX

measures. AUXmeasure is a usage attribute to be assessed in evaluating aUXgoal.

You will extract your UX goals from user concerns captured in work activity

notes, the flow model, social models, and work objectives, some of which will be

market driven, reflecting competitive imperatives for the product. User

experience goals can be stated for all users in general or in terms of a specific

work role or user class or for specific kinds of tasks.

Examples of user experience goals include ease-of-use, power performance

for experts, avoiding errors for intermittent users, safety for life-critical systems,

high customer satisfaction, walk-up-and-use learnability for new users, and so on.

361UX GOALS , METR ICS , AND TARGETS

Example: User Experience Goals for Ticket Kiosk System

We can define the primary high-level UX goals for the ticket buyer to include:

n Fast and easy walk-up-and-use user experience, with absolutely no user training

n Fast learning so new user performance (after limited experience) is on par with that

of an experienced user [from AB-4-8]

n High customer satisfaction leading to high rate of repeat customers [from BC-6-16]

Some other possibilities:

n High learnability for more advanced tasks [from BB-1-5]

n Draw, engagement, attraction

n Low error rate for completing transactions correctly, especially in the interaction for

payment [from CG-13-17]

10.3 UX TARGET TABLES

Through years of working with real-world UX practitioners and doing our own

user experience evaluations, we have refined the concept of a UX target table, in

the form shown in Table 10-1, from the original conception of a usability

specification table, as presented by Whiteside, Bennett, and Holtzblatt (1988).

A spreadsheet is an obvious way to implement these tables.

For convenience, one row in the table is called a “UX target.” The first three

columns are for the work role and related user class to which this UX target

applies, the associated UX goal, and the UX measure. The three go together

because each UXmeasure is aimed at supporting a UX goal and is specified with

respect to a work role and user class combination. Next, we will see where you get

the information for these three columns.

As a running example to illustrate the use of each column in the UX target

table, we will progressively set some UX targets for the Ticket Kiosk System.

Exercise

See Exercise 10-1,

Identifying User Experience

Goals for Your System

Table 10-1

Our UX target table, as evolved from the Whiteside, Bennett, and Holtzblatt (1988) usability specification table

Work Role: User Class UX
Goal

UX
Measure

Measuring
Instrument

UX
Metric

Baseline
Level

Target
Level

Observed
Results

362 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

10.4 WORK ROLES, USER CLASSES, AND UX GOALS

Because UX targets are aimed at specific work roles, we label each UX target by

work role. Recall that different work roles in the user models perform different

task sets.

So the key task sets for a given work role will have associated usage scenarios,

which will inform benchmark task descriptions we create as measuring

instruments to go with UX targets. Within a given work role, different user

classes will generally be expected to perform to different standards, that is, at

different target levels.

Example: A Work Role, User Class, and UX Goal
for the Ticket Kiosk System
In Table 10-1, we see that the first values to enter for a UX target are work role, a

corresponding user class, and related UX goal. As we saw earlier, user class

definitions can be based on, among other things, level of expertise, disabilities

and limitations, and other demographics.

For the Ticket Kiosk System, we are focusing primarily on the ticket buyer. For

this work role, user classes include a casual town resident user from Middleburg

and a student user from the Middleburg University. In this example, we feature

the casual town user.

Translating the goal of “fast-and-easy walk-up-and-use user experience” into a

UX target table entry is straightforward. This goal refers to the ability of a typical

occasional user to do at least the basic tasks on the first try, certainly without

training ormanuals. Typing them in, we see the beginnings of a UX target in the

first row of Table 10-2.

Measuring
Instrument

A measuring instrument is

the means for providing

values for a particular UX

measure; it is the vehicle

through which values are

generated and measured. A

typical measuring

instrument for generating

objective UX data is a

benchmark task—for

example, user performance

of a task gives time and

error data—while a typical

measuring instrument for

generating subjective UX

data is a questionnaire.

Table 10-2

Choosing a work role, user class, and UX goal for a UX target

Work Role: User Class UX Goal UX
Measure

Measuring
Instrument

UX
Metric

Baseline
Level

Target
Level

Observed
Results

Ticket buyer: Casual
new user, for
occasional personal use

Walk-up ease of
use for new user

363UX GOALS , METR ICS , AND TARGETS

10.5 UX MEASURES

Within a UX target, the UX measure is the general user experience

characteristic to be measured with respect to usage of your interaction design.

The choice of UX measure implies something about which types of measuring

instruments and UX metrics are appropriate.

UX targets are based on quantitative data—both objective data, such as

observable user performance, and subjective data, such as user opinion and

satisfaction.

Some common UX measures that can be paired with quantitative metrics

include:

n Objective UX measures (directly measurable by evaluators)

n Initial performance

n Long-term performance (longitudinal, experienced, steady state)

n Learnability

n Retainability

n Advanced feature usage

n Subjective UX measures (based on user opinions)

n First impression (initial opinion, initial satisfaction)

n Long-term (longitudinal) user satisfaction

Initial performance refers to a user’s performance during the very first use

(somewhere between the first fewminutes and the first few hours, depending on

the complexity of the system). Long-term performance typically refers to

performance during more constant use over a longer period of time (fairly

regular use over several weeks, perhaps). Long-term usage usually implies a

steady-state learning plateau by the user; the user has become familiar with the

system and is no longer constantly in a learning state.

Initial performance is a key UXmeasure because any user of a systemmust, at

some point, use it for the first time. Learnability and retainability refer,

respectively, to how quickly and easily users can learn to use a system and how

well they retain what they have learned over some period of time.

Advanced feature usage is a UX measure that helps determine user

experience of more complicated functions of a system. The user’s initial opinion

of the system can be captured by a first impression UX measure, whereas

long-term user satisfaction refers, as the term implies, to the user’s opinion

after using the system for some greater period of time, after some allowance

for learning.

364 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Initial performance and first impression are appropriate UX measures for

virtually every interaction design. Other UXmeasures often play support roles to

address more specialized UX needs. Conflicts among UX measures are not

unheard of. For example, you may need both good learnability and good expert

performance. In the design, those requirements can work against each other.

This, however, just reflects a normal kind of design trade-off. UX targets based

on the two different UXmeasures imply user performance requirements pulling

in two different directions, forcing the designers to stretch the design and face

the trade-off honestly.

Example: UX Measures for the Ticket Kiosk System
For the walk-up ease-of-use goal of our casual new user, let us start simply with

just two UX measures: initial performance and first impression. Each UX

measure will appear in a separate UX target in the UX target table, with the user

class of the work role and UX goal repeated, as in Table 10-3.

10.6 MEASURING INSTRUMENTS

Within a UX target, themeasuring instrument is a description of the method for

providing values for the particular UX measure. The measuring instrument

is how data are generated; it is the vehicle through which values are measured

for the UX measure.

Although you can get creative in choosing your measuring instruments,

objective measures are commonly associated with a benchmark task—for

example, a time-on-task measure as timed on a stopwatch, or an error rate

measure made by counting user errors—and subjective measures are commonly

associated with a user questionnaire—for example, the average user rating-scale

scores for a specific set of questions.

Table 10-3

Choosing initial performance and first impression as UX measures

Work Role: User Class UX Goal UX Measure Measuring
Instrument

UX
Metric

Baseline
Level

Target
Level

Observed
Results

Ticket buyer: Casual new
user, for occasional
personal use

Walk-up ease
of use for
new user

Initial user
performance

Ticket buyer: Casual new
user, for occasional
personal use

Initial
customer
satisfaction

First
impression

365UX GOALS , METR ICS , AND TARGETS

For example, we will see that the objective “initial user performance” UX

measure in the UX target table for the Ticket Kiosk System is associated with a

benchmark task and the “first impression” UX measure is associated with a

questionnaire. Both subjective and objective measures and data can be

important for establishing and evaluating user experience coming from a

design.

10.6.1 Benchmark Tasks
According to Reference.com, the term “benchmark” originates in surveying,

referring to:

Chiseled horizontal marks that surveyors made in stone structures, into which an

angle-iron could be placed to form a “bench” for a leveling rod, thus ensuring that

a leveling rod could be accurately repositioned in the same place in future. These

marks were usually indicated with a chiseled arrow below the horizontal line.

As a measuring instrument for an objective UX measure, a benchmark task

is a representative task that you will have user participants perform in

evaluation where you can observe their performance and behavior and take

qualitative data (on observations of critical incidents and user experience

problems) and quantitative data (user performance data to compare with

UX targets). As such, a benchmark task is a “standardized” task that can be

used to compare (as an engineering comparison, not a rigorous scientific

comparison) performance among different users and across different design

versions.

Address designer questions with benchmark tasks
and UX targets
As designers work on interaction designs, questions arise constantly. Sometimes

the design team simply cannot decide an issue for themselves and they defer

it to UX testing (“let the users decide”). Perhaps the team does not agree on a

way to treat one design feature, but they have to pick something in order tomove

forward.

Maybe you do agree on the design for a feature but you are very curious

about how it will play out with real users. Perchance you do not believe an input

you got in your requirements from contextual analysis but you used it,

anyway, and now you want to see if it pans out in the design.

We have suggested that you keep a list of design questions as they came up

in design activities. Now they play a role in setting benchmark tasks to get

366 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

feedback from users regarding these questions. Benchmark tasks based on

designer issues are often the only way this kind of issue will get considered in

evaluation.

Selecting benchmark tasks
In general, of course, the benchmark tasks you choose as measuring

instruments should closely represent tasks real users will perform in a real work

context. Pick tasks where you think or know the design has weaknesses.

Avoiding such tasks violates the spirit of UX targets and user experience

evaluation; it is about finding user experience problems so that you can fix

them, not about proving you are the best designer. If you think of UX targets as

a measure of how good you are as a designer, you will have a conflict of interest

because you are setting your own evaluation criteria. That is not the point of

UX targets at all.

Here are some guidelines for creating effective benchmark tasks.

Create benchmark tasks for a representative spectrum of user

tasks. Choose realistic tasks intended to be used by each user class of a work role

across the system. To get the best coverage for your evaluation investment, your

choices should represent the cross section of real tasks with respect to frequency

of performance and criticality to goals of the users of the envisioned product.

Benchmark tasks are also selected to evaluate new features, “edge cases” (usage

at extreme conditions), and business-critical and mission-critical tasks. While

some of these tasks may not be performed frequently, getting them wrong could

cause serious consequences.

Start with short and easy tasks and then increase difficulty progressively.

Because your benchmark tasks will be faced by participant users in a

sequence, you should consider their presentation order. Inmost cases, start with

relatively easy ones to get users accustomed to the design and feeling

comfortable in their role as evaluators. After building user confidence and

engagement, especially with the tasks for the “initial performance” UXmeasure,

you can introduce more features, more breadth, variety, complexity, and higher

levels of difficulty.

In some cases, youmight have your user participants repeat a benchmark task,

only using a different task path, to see how users get around in multiple ways.

The more advanced benchmark tasks are also a place to try your creativity

by introducing intervening circumstances. For example, youmight lead the user

367UX GOALS , METR ICS , AND TARGETS

down a path and then say “At this point, you change your mind and want to do

such and such, departing from where you are now.”

For our ticket kiosk system, maybe start with finding a movie that is currently

playing. Then follow with searching for and reserving tickets for amovie that is to

be showing 20 days from now and then go to more complex tasks such as

purchasing concert tickets with seat and ticket type selection.

Include some navigation where appropriate. In real usage, because users

usually have to navigate to get to where they will do the operations specific to

performing a task, you want to include the need for this navigation even in your

earliest benchmark tasks. It tests their knowledge of the fact that they do need to

go elsewhere, where they need to go, and how to get there.

Avoid large amounts of typing (unless typing skill is being evaluated).

Avoid anything in your benchmark task descriptions that causes large user

performance variation not related to user experience in the design. For

example, large amounts of typing within a benchmark task can cause large

variations in user performance, but the variations will be based on

differences in typing skills and can obscure performance differences due to

user experience or usability issues.

Match the benchmark task to the UXmeasure.Obviously, if the UX measure

is “initial user performance,” the task should be among those a first-time user

realistically would face. If the UX measure is about advanced feature usage,

then, of course, the task should involve use of that feature to match this

requirement. If the UX measure is “long-term usage,” then the benchmark

task should be faced by the user after considerable practice with the system. For a

UX measure of “learnability,” a set of benchmark tasks of increasing complexity

might be appropriate.

Adapt scenarios already developed for design. Design scenarios clearly

represent important tasks to evaluate because they have already been selected as

key tasks in the design. However, you must remember to remove information

about how to perform the tasks, which is usually abundant in a scenario. See

guideline “Tell the user what task to do, but not how to do it” in the next section

for more discussion.

Use tasks in realistic combinations to evaluate task flow. To measure

user performance related to task flow, use combinations of tasks such as those

that will occur together frequently. In these cases, you should set UX targets

368 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

for such combinations because difficulties related to user experience that

appear during performance of the combined tasks can be different than for the

same tasks performed separately. For example, in the Ticket Kiosk System, you

may wish to measure user performance on the task thread of searching for

an event and then buying tickets for that event.

As another example, a benchmark task might require users to buy four

tickets for a concert under a total of $200 while showing tickets in this price

range for the upcoming few days as sold out. This would force users to perform

the task of searching through other future concert days, looking for the first

available day with tickets in this price range.

Do not forget to evaluate with your power users.Often user experience for

power users is addressed inadequately in product testing (Karn, Perry, &

Krolczyk, 1997). Do your product business and UX goals include power use by a

trained user population? Do they require support for rapid repetition of tasks,

complex and possibly very long tasks? Does their need for productivity demand

shortcuts and direct commands over interactive hand-holding?

If any of these are true, you must include benchmark tasks that match this

kind of skilled and demanding power use. And, of course, these benchmark

tasks must be used as themeasuring instrument inUX targets thatmatch up with

the corresponding user classes and UX goals.

To evaluate error recovery, a benchmark task can begin in an error state.

Effective error recovery is a kind of “feature” that designers and evaluators can

easily forget to include. Yet no interaction design can guarantee error-free

usage, and trying to recover from errors is somethingmost users are familiar with

and can relate to. A “forgiving” design will allow users to recover from errors

relatively effortlessly. This ability is definitely an aspect of your design that

should be evaluated by one or more benchmark tasks.

Consider tasks to evaluate performance in “degraded modes” due to

partial equipment failure. In large interconnected, networked systems such as

military systems or large commercial banking systems, especially involving

multiple kinds of hardware, subsystems can go down. When this happens, will

your part of the system give up and die or can it at least continue some of its

intended functionality and give partial service in a “degraded mode?” If your

application fits this description, you should include benchmark tasks to evaluate

the user’s perspective of this ability accordingly.

369UX GOALS , METR ICS , AND TARGETS

Do not try to make a benchmark task for everything. Evaluation driven by

UX targets is only an engineering sampling process. It will not be possible to

establish UX targets for all possible classes of users doing all possible tasks.

It is often stated that about 20% of the tasks in an interactive system account for

80% of the usage and vice versa. While these figures are obviously folkloric

guesses, they carry a grain of truth to guide in targeting users and tasks in

establishing UX targets.

Constructing benchmark task content
Here we list a number of tips and hints to consider when creating benchmark

task content.

Remove any ambiguities with clear, precise, specific, and repeatable

instructions. Unless resolving ambiguity is what we want users to do as part of

the task, we must make the instructions in benchmark task descriptions clear

and not confusing. Unambiguous benchmark tasks are necessary for consistent

results; we want differences in user performance to be due to differences in

users or differences in designs but usually not due to different interpretations

of the same benchmark task.

As a subtle example, consider this “add appointment” benchmark task for the

“initial performance” UX measure for an interdepartmental event scheduling

system. Schedule a meeting with Dr. Ehrich for a month from today at 10 AM

in 133 McBryde Hall concerning the HCI research project.

For some users, the phrase “1 month from today” can be ambiguous. Why? It

can mean, for example, on the same date next month or it can mean exactly 4

weeks from now, putting it on the same day of the week. If that difference in

meaning can make a difference in user task performance, you need to make the

wording more specific to the intended meaning.

You also want to make your benchmark tasks specific so that participants do

not get sidetracked on irrelevant details during testing. If, for example, a “find

event” benchmark task is stated simply as “Find an entertainment event for

sometime next week,” some participants might make it a long, elaborate task,

searching around for some “best” combination of event type and date, whereas

others would do the minimum and take the first event they see on the screen. To

mitigate such differences, add specific information about event selection criteria.

Tell the user what task to do, but not how to do it. This guideline is

very important; the success of user experience evaluation based on this task

will depend on it. Sometimes we find students in early evaluation exercises

370 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

presenting users with task instructions that spell out a series of steps to perform.

They should not be surprised when the evaluation session leads to uninteresting

results.

The users are just giving a rote performance of the steps as they read them

from the benchmark task description. If you wish to test whether your

interaction design helps users discover how to do a given task on their own, you

must avoid giving any information about how to do it. Just tell them what task to

do and let them figure out how.

Example (to do): “Buy two student tickets for available adjacent seats as close to the stage as

possible for the upcoming Ben King concert and pay with a credit card.”

Example (not to do): “Click on the Special Events button on the home screen; then select

More at the bottom of the screen. Select the Ben King concert and click on Seating

Options. . . .”

Example (not to do): “Starting at the Main Menu, go to the Music Menu and set it as a

Bookmark. Then go back to the Main Menu and use the Bookmark feature to jump

back to the Music Menu.”

Do not use words in benchmark tasks that appear specifically in the

interaction design. In your benchmark task descriptions, you must avoid using

any words that appear in menu headings, menu choices, button labels, icon

pop-ups, or any place in the interaction design itself. For example, do not say

“Find the first event (that has such and such a characteristic)” when there is

a button in the interaction design labeled “Find.” Instead, you should use words

such as “Look for . . .” or “Locate . . .”

Otherwise it is very convenient for your users to use a button labeled “Find”

when they are told to “Find” something. It does not require them to think and,

therefore, does not evaluate whether the design would have helped them

find the right button on their own in the course of real usage.

Use work context and usage-centered wording, not system-oriented

wording. Because benchmark task descriptions are, in fact, descriptions of user

tasks and not system functionality, you should use usage-centered words from

the user’s work context and not system-centered wording. For example, “Find

information about xyz” is better than “Submit query about xyz.” The former is

task oriented; the latter is more about a system view of the task.

Have clear start and end points for timing. In your own mind, be sure that

you have clearly observable and distinguishable start and end points for each

benchmark task and make sure you word the benchmark task description

371UX GOALS , METR ICS , AND TARGETS

to use these end points effectively. These will ensure your ability to measure the

time on task accurately, for example.

At evaluation time, not only must the evaluators know for sure when the

task is completed, but the participant must know when the task is completed. For

purposes of evaluation, the task cannot be considered completed until the user

experiences closure.

The evaluator must also know when the user knows that the task has been

completed. Do not depend on the user to say when the task is done, even

if you explicitly ask for that in the benchmark task description or user

instructions. Therefore, rather than ending task performance with a mental

or sensory state (i.e., the user knowing or seeing something), it is better to

incorporate a user action confirming the end of the task, as in the (to do)

examples that follow.

Example (not to do): “Find out how to set the orientation of the printer paper to

“landscape.” Completion of this task depends on the user knowing something and

that is not a directly observable state. Instead, you could have the user actually set

the paper orientation; this is something you can observe directly.

Example (not to do): “View next week’s events.” Completion of this task depends on the

user seeing something, an action that youmay not be able to confirm. Perhaps you could

have the user view and read aloud the contents of the first music event next week. Then

you know whether and when the user has seen the correct event.

Example (to do): “Find next week’s music event featuring Rachel Snow and add it to the

shopping cart.”

Example (to do): Or, to include knowing or learning how to select seats, “Find the closest

available seat to the stage and add to shopping cart.”

Example (to do): “Find the local weather forecast for tomorrow and read it aloud.”

Keep somemystery in it for the user.Do not always be too specific about what

the users will see or the parameters they will encounter. Remember that real

first-time users will approach your application without necessarily knowing

how it works. Sometimes try to use benchmark tasks that give approximate values

for some parameters to look for, letting the rest be up to the user. You can

still create a prototype in such a way that there is only one possible “solution” to

this task if you want to avoid different users in the evaluation ending in a

different state in the system.

Example (to do): “Purchase two movie tickets to Bee Movie within 1.5 hours of the current

time and showing at a theatre within 5 miles of this kiosk location.”

372 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Annotate situations where evaluators must ensure pre-conditions for

running benchmark tasks. Suppose you write this benchmark task: “Your dog,

Mutt, has just eaten your favorite book and you have decided that he is not worth

spending money on. Delete your appointment with the vet for Mutt’s annual

checkup from your calendar.”

Every time a user performs this task during evaluation, the evaluator must be

sure to have an existing appointment already in your prototype calendar so that

each user can find it and delete it. You must attach a note in the form of rubrics

(next point later) to this benchmark task to that effect—a note that will be read

and followed much later, in the evaluation activity.

Use “rubrics” for special instructions to evaluators. When necessary or

useful, add a “rubrics” section to your benchmark task descriptions as special

instructions to evaluators, not to be given to participants in evaluation sessions.

Use these rubrics to communicate a heads-up about anything that needs to be

done or set up in advance to establish task preconditions, such as an existing

event in the kiosk system, work context for ecological validity, or a particular

starting state for a task.

Benchmark tasks for addressing designer questions are especially good

candidates for rubrics. In a note accompanying your benchmark task you can

alert evaluators to watch for user performance or behavior that might shed light

on these specific designer questions.

Put each benchmark task on a separate sheet of paper. Yes, we want to

save trees but, in this case, it is necessary to present the benchmark tasks to

the participant only one at a time. Otherwise, the participant will surely

read ahead, if only out of curiosity, and can become distracted from the task

at hand.

If a task has a surprise step, such as a midtask change of intention, that step

should be on a separate piece of paper, not shown to the participant initially. To

save trees you can cut (with scissors) a list of benchmark tasks so that only one

task appears on one piece of paper.

Write a “task script” for each benchmark task. You should write a “task script”

describing the steps of a representative or typical way to do the task and include

it in the benchmark task document “package.” This is just for use by the

evaluator and is definitely not given to the participant. The evaluator may not

have been amember of the design team and initially may not be too familiar with

how to perform the benchmark tasks, and it helps the evaluator to be able to

Ecological Validity

Ecological validity refers to

the realism with which a

design of evaluation setup

matches the user’s real work

context. It is about how

accurately the design or

evaluation reflects the

relevant characteristics of

the ecology of interaction,

i.e., its context in the world

or its environment.

373UX GOALS , METR ICS , AND TARGETS

anticipate a possible task performance path. This is especially useful in cases

where the participant cannot determine a way to do the task; then, the

evaluation facilitator knows at least one way.

Example: Benchmark Tasks as Measuring Instruments
for the Ticket Kiosk System
For the Ticket Kiosk System, the first UX target in Table 10-3 contains an

objective UX measure for “Initial user performance.” An obvious choice for the

corresponding measuring instrument is a benchmark task. Here we need a

simple and frequently used task that can be done in a short time by a casual new

user in a walk-up ease-of-use situation. An appropriate benchmark task would

involve buying tickets to an event. Here is a possible description to give the user

participant:

“BT1: Go to the Ticket Kiosk System and buy three tickets for the Monster Truck Pull on

February 28 at 7:00 PM. Get three seats together as close to the front as possible. Pay with

a major credit card.”

In Table 10-4 we add this to the table as the measuring instrument for the first

UX target.

Let us say we want to add another UX target for the “initial performance”

UX measure, but this time we want to add some variety and use a

different benchmark task as the measuring instrument—namely, the task

of buying a movie ticket. In Table 10-5 we have entered this benchmark

task in the second UX target, pushing the “first impression” UX target

down by one.

Table 10-4

Choosing “buy special event ticket” benchmark task as measuring instrument for “initial performance” UX measure in first UX target

Work Role: User Class UX Goal UX Measure Measuring
Instrument

UX
Metric

Baseline
Level

Target
Level

Observed
Results

Ticket buyer: Casual
new user, for occasional
personal use

Walk-up ease
of use for new
user

Initial user
performance

BT1: Buy
special
event ticket

Ticket buyer: Casual
new user, for occasional
personal use

Initial
customer
satisfaction

First
impression

374 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

How many benchmark tasks and UX targets
do you need?
As in most things regarding human–computer interaction, it depends. The size

and complexity of the system should be reflected in the quantity and complexity

of the benchmark tasks and UX targets. We cannot even give you an estimate

of a typical number of benchmark tasks.

You have to use your engineering judgment and make enough benchmark

tasks for reasonable, representative coverage without overburdening the

evaluation process. If you are new to this, we can say that we have often seen a

dozen UX targets, but 50 would probably be too much—not worth the cost to

pursue in evaluation.

How long should your benchmark tasks be (in terms of time to perform)?

The typical benchmark task takes a range of a couple of minutes to 10 or

15 minutes. Some short and some long are good. Longer sequences of related

tasks are needed to evaluate transitions among tasks. Try to avoid really long

benchmark tasks because they may be tiring to participants and evaluators

during testing.

Ensure ecological validity
The extent to which your evaluation setup matches the user’s real work

context is called ecological validity (Thomas & Kellogg, 1989). One of the

valid criticisms of lab-based user experience testing is that a UX lab can be

kind of a sterile environment, not a realistic setting for the user and the tasks.

But you can take steps to add ecological validity by asking yourself, as you

Table 10-5

Choosing “buy movie ticket” benchmark task as measuring instrument for second initial performance UX measure

Work Role: User Class UX Goal UX Measure Measuring
Instrument

UX
Metric

Baseline
Level

Target
Level

Observed
Results

Ticket buyer: Casual
new user, for occasional
personal use

Walk-up ease
of use for new
user

Initial user
performance

BT1: Buy
special
event ticket

Ticket buyer: Casual
new user, for occasional
personal use

Walk-up ease
of use for new
user

Initial user
performance

BT2: Buy
movie ticket

Ticket buyer: Casual
new user, for occasional
personal use

Initial
customer
satisfaction

First
impression

375UX GOALS , METR ICS , AND TARGETS

write your benchmark task descriptions, how can the setting be made

more realistic?

n What are constraints in user or work context?

n Does the task involve more than one person or role?

n Does the task require a telephone or other physical props?

n Does the task involve background noise?

n Does the task involve interference or interruption?

n Does the user have to deal with multiple simultaneous inputs, for example, multiple

audio feeds through headsets?

As an example for a task that might be triggered by a telephone call, instead of

writing your benchmark task description on a piece of paper, try calling the

participant on a telephonewith a request that will trigger thedesired task. Rarely do

task triggers arrive written on a piece of paper someone hands you. Of course, you

will have to translate the usual boring imperative statements of the benchmark task

description to a more lively and realistic dialogue: “Hi, I am Fred Ferbergen and

I have an appointment with Dr. Strangeglove for a physical exam tomorrow, but

I have to be out of town. Can you change my appointment to next week?”

Telephones can be used in other ways, too, to add realism to work context.

A second telephone ringing incessantly at the desk next door or someone

talking loudly on the phone next door can add realistic task distraction that you

would not get from a “pure” lab-based evaluation.

Example: Ecological Validity in Benchmark Tasks
for the Ticket Kiosk System
To evaluate use of the Ticket Kiosk System to manage the work activity of ticket

buying, you can make good use of physical prototypes and representative

locations. By this we mean building a touchscreen display into a cardboard or

wooden kiosk structure and place it in the hallway of a relatively busy work area.

Users will be subject to the gawking and questions of curiosity seekers. Having

co-workers join the kiosk queue will add extra realism.

10.6.2 User Satisfaction Questionnaires
As a measuring instrument for a subjective UXmeasure, a questionnaire related

to various user interaction design features can be used to determine a user’s

satisfaction with the interaction design. Measuring a user’s satisfaction provides

a subjective, but still quantitative, UX metric for the related UX measure.

376 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

As an aside, we should point out that objective and subjective measures are

not always orthogonal.

As an example of a way they can intertwine, user satisfaction can actually

affect user performance over a long period of time. The better users like

the system, the more likely they are to experience good performance with it over

the long term. In the following examples we use the QUIS questionnaire

(description in Chapter 12), but there are other excellent choices, including the

System Usability Scale or SUS (description in Chapter 12).

Example: Questionnaire as Measuring Instrument
for the Ticket Kiosk System
If you think the first two benchmark tasks (buying tickets) make a good

foundation for assessing the “first-impression” UXmeasure, then you can specify

that a particular user satisfaction questionnaire or a specific subset thereof be

administered following those two initial tasks, stipulating it as the measuring

instrument in the third UX target of the growing UX target table, as we have

done in Table 10-6.

Example: Goals, Measures, and Measuring Instruments
Before moving on to UX metrics, in Table 10-7 we show some examples of the

close connections among UX goals, UX measures, and measuring instruments.

Table 10-6

Choosing questionnaire as measuring instrument for first-impression UX measure

Work Role: User
Class

UX Goal UX Measure Measuring
Instrument

UX
Metric

Baseline
Level

Target
Level

Observed
Results

Ticket buyer:
Casual new user, for
occasional personal
use

Walk-up
ease of use
for new user

Initial user
performance

BT1: Buy special
event ticket

Ticket buyer: Casual
new user, for
occasional personal
use

Walk-up
ease of use
for new user

Initial user
performance

BT2: Buy movie
ticket

Ticket buyer: Casual
new user, for
occasional
personal use

Initial
customer
satisfaction

First
impression

Questions
Q1–Q10 in
the QUIS
questionnaire

377UX GOALS , METR ICS , AND TARGETS

10.7 UX METRICS

A UX metric describes the kind of value to be obtained for a UXmeasure. It states

what is beingmeasured. There can bemore than onemetric for a givenmeasure.

As an example from the software engineering world, software complexity is a

Table 10-7

Close connections among
UX goals, UX measures,
and measuring
instruments

UX Goal UX Measure Potential Metrics

Ease of first-time use Initial performance Time on task

Ease of learning Learnability Time on task or error rate, after
given amount of use and compared with
initial performance

High performance for
experienced users

Long-term
performance

Time and error rates

Low error rates Error-related
performance

Error rates

Error avoidance in
safety critical tasks

Task-specific error
performance

Error count,with strict target levels (much
more important than time on task)

Error recovery
performance

Task-specific time
performance

Time on recovery portion of the task

Overall user satisfaction User satisfaction Average score on questionnaire

User attraction to
product

User opinion of
attractiveness

Average score on questionnaire, with
questions focusedon the effectiveness of
the “draw” factor

Quality of user
experience

User opinion of
overall experience

Average score on questionnaire, with
questions focused on quality of the
overall user experience, including
specific points about your product that
might be associated most closely with
emotional impact factors

Overall user satisfaction User satisfaction Average score on questionnaire, with
questions focusing onwillingness to be a
repeat customer and to recommend
product to others

Continuing ability
of users to perform
without relearning

Retainability Time on task and error rates re-evaluated
after a period of time off (e.g., a week)

Avoid having user walk
away in dissatisfaction

User satisfaction,
especially initial
satisfaction

Average score on questionnaire, with
questions focusing on initial impressions
and satisfaction

378 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

measure; one metric for the software complexity measure (one way to obtain

values for the measure) is “counting lines of code.”

Most commonly, UX metrics are objective, performance-oriented, and taken

while the participant is doing a benchmark task. Other UX metrics can be

subjective, based on a rating or score computed from questionnaire results.

Typical objective UX metrics include time to complete task1 and number of

errors made by the user. Others include frequency of help or documentation

use; time spent in errors and recovery; number of repetitions of failed

commands (what are users trying to tell us by repeating an action that did not

work before?); and the number of commands, mouse-clicks, or other user

actions to perform task(s).

If you are feeling adventurous you can use a count of the number of times the

user expresses frustration or satisfaction (the “aha and cuss count”) during his or

her first session as an indicator of his or her initial impression of the interaction

design. Of course, because the number of remarks is directly related to the

length of the session, plan your levels accordingly or you can set your levels as a

count per unit time, such as comments per minute, to factor out the time

differences. Admittedly, this measuring instrument is rather participant

dependent, depending on how demonstrative a participant feels during a

session, whether a participant is generally a complainer, and so on, but this

metric can produce some interesting results.

Typically, subjective UX metrics will represent the kind of numeric outcome

you want from a questionnaire, usually based on simple arithmetic statistical

measures such as the numeric average. Remember that you are going only for an

engineering indicator of user experience, not for statistical significance.

Interestingly, user perceptions of elapsed time, captured via a questionnaire

or post-session interview, can sometimes be an important UXmeasure. We know

of such a case that occurred during evaluation of a new software installation

procedure. The old installation procedure required the user to perform

repeated disk (CD-ROM) swaps during installation, while the new installation

procedure required only one swap. Although the new procedure took less time,

users thought it took them longer because they were not kept busy swapping disks.

And do not overlook a combination of measures for situations where

you have performance trade-offs. If you specify your UXmetric as some function,

such as a sum or an average, of two other performance-related metrics, for

1Although the time on task often makes a useful UX metric, it clearly is not appropriate in some cases. For

example, if the task performance time is affected by factors beyond the user’s control, then time on task is

not a good measure of user performance. This exception includes cases of long and/or unpredictable

communication and response-time delays, such as might be experienced in some Website usage.

379UX GOALS , METR ICS , AND TARGETS

example, time on task and error rate, you are saying that you are willing to give

up some performance in one area if you get more in the other.

We hope you will explore many other possibilities for UX metrics, extending

beyond what we have mentioned here, including:

n percentage of task completed in a given time

n ratio of successes to failures

n time spent moving cursor (would have to be measured using software instrumentation,

but would give information about the efficiency of such physical actions, necessary for

some specialized applications)

n for visibility and other issues, fixations on the screen, cognitive load as indicated by

correlation to pupil diameter, and so on using eye-tracking

Finally, be sure you match up your UX measures, measuring instruments, and

metrics tomakesense inaUXtarget.Forexample, if youplantouseaquestionnaire

in a UX target, do not call the UXmeasure “initial performance.” A questionnaire

does not measure performance; it measures user satisfaction or opinion.

Example: UX Metrics for the Ticket Kiosk System
For the initial performance UX measure in the first UX target of Table 10-6, as

already discussed in the previous section, the length of time to buy a special

event ticket is an appropriate value to measure. We specify this by adding “time

on task” as the metric in the first UX target of Table 10-8.

Table 10-8

Choosing UX metrics for UX measures

Work Role: User
Class

UX goal UX Measure Measuring
Instrument

UX Metric Baseline
Level

Target
Level

Observed
Results

Ticket buyer:
Casual new user,
for occasional
personal use

Walk-up
ease of use
for new
user

Initial user
performance

BT1: Buy
special event
ticket

Average time
on task

Ticket buyer:
Casual new user,
for occasional
personal use

Walk-up
ease of use
for new
user

Initial user
performance

BT2: Buy
movie ticket

Average
number of
errors

Ticket buyer:
Casual new user,
for occasional
personal use

Initial
customer
satisfaction

First
impression

Questions
Q1–Q10 in
the QUIS
questionnaire

Average rating
across users
and across
questions

380 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

As a different objective performance measure, you might measure the

number of errors a user makes while buying a movie ticket. This was chosen

as the value to measure in the second UX target of Table 10-8. You will

often want to measure both of these metrics during a participant’s single

performance of the same single task. A participant does not, for

example, need to perform one “buy ticket” task while you time performance

and then do a different (or repeat the same) “buy ticket” task while you

count errors.

Finally, for the UX metric in the third UX target of Table 10-8, the subjective

UX target for the first impression UX measure, let us use the simple average

of the numeric ratings given across all users and across all the questions for

which ratings were given (i.e., Q1 to Q10).

10.8 BASELINE LEVEL

The baseline level is the benchmark level of the UX metric; it is the “talking

point” level against which other levels are compared. It is often the level that has

been measured for the current version of the system (automated or manual).

For example, the Ticket Kiosk System might be replacing the ticket counter in

the ticket office.

The baseline level for time on task can be an average of measured times to

do the task in person over the ticket counter. That might be quite different

from what you expect users will be able to achieve using our new system, but

it is a stake in the sand, something for comparison. Measuring a baseline level

helps ensure that the UX metric is, in fact, measurable.

10.9 TARGET LEVEL

A UX target is a quantitative statement of an aimed-at or hoped-for value for a

UX metric. Thus, a UX target is an operationally defined criterion for success

of user experience stemming from an interaction design, an engineering

judgment about the quality of user experience expected from an interactive

system.

The target level for a UX metric is the value indicating attainment of user

experience success. It is a quantification of the UX goal for each specific

UX measure and UX metric. UX metrics for which you have not yet achieved

the target levels in evaluation serve as focal points for improvement by

designers.

381UX GOALS , METR ICS , AND TARGETS

Just barely meeting a target level is the minimum performance acceptable

for any UX measure; it technically meets the UX goals—but only barely. In

theory, you hope to achieve better than the target level on most UX measures;

in reality, you are usually happy to pass regardless of by how much.

Because “passing” the user experience test means meeting all your target

levels simultaneously, you have to ensure that the target levels for all UX

measures in the entire table must be, in fact, simultaneously attainable. That is,

do not build in trade-offs of the kind where meeting one target level goal might

make it much more difficult to meet another related target level.

So how do you come up with reasonable values for your target levels? As a

general rule of thumb, a target level is usually set to be an improvement over the

corresponding baseline level. Why build a new system if it is not going to be

better? Of course, improved user performance is not the only motivation for

building a new system; increased functionality or just meeting user needs at a

higher level in the design can also bemotivating factors. However, the focus here

is on improving user experience, which often means improved user

performance and satisfaction.

For initial performance measures, you should set target levels that allow

enough time, for example, for unfamiliar users to read menus and labels,

think a bit, and look around each screen to get their bearings. So do not use

levels for initial performance measures that assume users are familiar with

the design.

10.10 SETTING LEVELS

The baseline level and target level in the UX target table are key to quantifying

user experience metrics. But sometimes setting baseline and target levels can be

a challenge. The answer requires determining what level of user performance

and user experience the system is to support.

Obviously, level values are often “best guesses” but with practice UX people

become quite skilled at establishing reasonable and credible target levels and

setting reasonable values. This is not an exact science; it is an engineering

endeavor and you get better at it with experience.

Among the yardsticks you can use to set both baseline and target levels are:

n an existing system or previous version of the new system being designed

n competing systems, such as those with a large market share or with a widely acclaimed

user experience

382 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

What if there are no existing or competing systems? Be creative and use your

problem-solving skills. Look at manual ways of doing things and adjust for

automation. For example, if there were no calendar systems, use a paper

calendar. Start with some good educated engineering estimates and improve

with experience from there.

Although it may not always be explicitly indicated in a UX target table, the

baseline and target levels shown are the mean over all participants of the

corresponding measure. That is, the levels shown do not have to be achieved by

every participant in the formative evaluation sessions. So, for example, if we

specify a target level of four errors for benchmark task BT 2 in the second

UX target of Table 10-8 as a worst acceptable level of performance, theremust be

no more than an average of four errors, as averaged across all participants

who perform the “buy movie ticket” task.

Example: Baseline Level Values for the Ticket Kiosk System
To determine the values for the first two UX target baseline levels for the

Ticket Kiosk System, we can have someone perform the benchmark tasks

for buying a ticket for a special event and a movie using MUTTS. Suppose

that buying a ticket for a special event takes about 3 minutes. If so, this

value, 3 minutes, makes a plausible baseline level for the first UX target in

Table 10-9. Because most people are already experienced with ticket offices,

this value is not really for initial performance, but it gives some idea for

that value.

To set a baseline value for the second UX target, for buying a movie

ticket, it can be assumed that almost no one should make any errors doing

this at a ticket counter, so let us set the baseline level as less than 1, as in

Table 10-9.

To establish a baseline value for the first impression UX measure in

the third UX target, we could administer the questionnaire to some

users of MUTTS. Let us say we have done that and got an average score of

a 7.5 out of 10 for the first impression UX measure (a value we put in

Table 10-9).

Example: Target Level Values for the Ticket Kiosk System
In Table 10-10, for the first initial performance UX measure, let us set the

target level to 2.5 minutes. In the absence of anything else to go on, this is a

reasonable choice with respect to our baseline level of 3 minutes. We enter this

383UX GOALS , METR ICS , AND TARGETS

value into the “Target level” column for the first UX target of the UX target table

in Table 10-10.

With a baseline level of less than one error for the “Buy movie ticket” task, it

would again be tempting to set the target level at zero, but that does not

allow for anyone ever to commit an error. So let us retain the existing level,

<1, as the target level for error rates, as entered into the second UX target

of Table 10-10.

For the first impression UXmeasure, let us be somewhat conservative and set

a target level of a mean score of 8 out of 10 on the questionnaire. Surely 80% is

passing in most anyone’s book or course. This goes in the third UX target of

Table 10-10.

Just for illustration purposes, we have added a few additional UX targets

to Table 10-10. The UX target in the fourth row is for a regular music patron’s

task of buying a concert ticket using a frequent-customer discount coupon.

The UX measure for this one is to measure experienced usage error rates

using the “Buy concert ticket” benchmark task, with a target level of

0.5 (average).

Additional benchmark tasks used in the last two UX targets of the table are:

BT5: You want to buy a ticket for the movie Almost Famous for between 7:00 and 8:00 PM

tonight at a theater within a 10-minute walk from the Metro station. First check to

be sure this movie is rated PG-13 because you will be with your 15-year-old son. Then

Table 10-9

Setting baseline levels for UX measures

Key User Role:
User Class

UX goal UX Measure Measuring
Instrument

UX Metric Baseline
Level

Target
Level

Observed
Results

Ticket buyer:
Casual new user,
for occasional
personal use

Walk-up
ease of use
for new
user

Initial user
performance

BT1: Buy
special event
ticket

Average time
on task

3
minutes

Ticket buyer:
Casual new user,
for occasional
personal use

Walk-up
ease of use
for new
user

Initial user
performance

BT2: Buy
movie ticket

Average
number of
errors

<1

Ticket buyer:
Casual new user,
for occasional
personal use

Initial
customer
satisfaction

First
impression

Questions
Q1–Q10 in
questionnaire
XYZ

Average
rating across
user and
across
questions

7.5/10

384 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Table 10-10

Setting target levels for UX metrics

Work Role:
User Class

UX Goal UX Measure Measuring
Instrument

UX Metric Baseline
Level

Target
Level

Observed
Results

Ticket buyer:
Casual new
user, for
occasional
personal use

Walk-up
ease of use

Initial user
performance

BT1: Buy
special event
ticket

Average
time on
task

3 min, as
measured
at the
MUTTS
ticket
counter

2.5 min

Ticket buyer:
Casual new
user, for
occasional
personal use

Walk-up
ease of use
for new user

Initial user
performance

BT2: Buy
movie ticket

Average
number of
errors

<1 <1

Ticket buyer:
Casual new
user, for
occasional
personal use

Initial
customer
satisfaction

First
impression

Questions
Q1–Q10 in
questionnaire
XYZ

Average
rating
across users
and across
questions

7.5/10 8/10

Ticket buyer:
Frequent
music
patron

Accuracy Experienced
usage error
rate

BT3: Buy
concert ticket

Average
number of
errors

<1 <1

Casual
public ticket
buyer

Walk-up
ease of use
for new user

Initial user
performance

BT4: Buy
Monster Truck
Pull tickets

Average
time on
task

5 min
(online
system)

2.5 min

Casual
public ticket
buyer

Walk-up
ease of use
for new user

Initial user
performance

BT4: Buy
Monster Truck
Pull tickets

Average
number of
errors

< 1 <1

Casual
public ticket
buyer

Initial
customer
satisfaction

First
impression

QUIS
questions 4–7,
10, 13

Average
rating
across users
and across
questions

6/10 8/10

Casual
public ticket
buyer

Walk-up
ease of use
for user with
a little
experience

Just post-
initial
performance

BT5: Buy
Almost
Famous movie
tickets

Average
time on
task

5 min
(including
review)

2 min

Casual
public ticket
buyer

Walk-up
ease of use
for user with
a little
experience

Just post-
initial
performance

BT6: Buy Ben
Harper
concert tickets

Average
number of
errors

<1 <1

385UX GOALS , METR ICS , AND TARGETS

go to the reviews for this movie (to show us you can find the reviews, but you do not have

to spend time reading them now) and then buy two general admission tickets.

BT6: Buy three tickets to the Ben Harper concert on any of the nights on the weekend

of September 29th–October 1st. Get the best seats you can for up to $50 per ticket.

Print out the directions for taking the Metro to the concert.

10.11 OBSERVED RESULTS

The final column in Table 10-10 is for observed results, a space reserved for

recording values measured while observing users performing the prescribed tasks

during formative evaluation sessions. As part of the UX target table, this column

affords direct comparisons between specified levels and actual results of testing.

Because you typically will have more than one user from which observed

results are obtained, you can either record multiple values in a single observed

results column or, if desired, add more columns for observed results and use

this column for the average of the observed values. If you maintain your UX

target tables in spreadsheets, as we recommend, it is easier to manage observed

data and results (Chapter 16).

10.12 PRACTICAL TIPS AND CAUTIONS FOR CREATING
UX TARGETS

Here we present some hints about filling out your UX target table, some of

which were adapted from Whiteside, Bennett, and Holtzblatt (1988). These

suggestions are not intended to be requirements, but rather to show the range of

possibilities.

Are user classes for each work role specified
clearly enough?
User class definitions are important in identifying representative users who will

serve as participants in evaluation sessions (Chapter 15). As already mentioned,

the characteristics of users playing a work role may affect the setting of UX

targets, resulting in different measuring instruments and UX metrics for

different user classes while performing the same task. If there are several user

classes for which different UX targets are appropriate, you will address themwith

separate and different UX targets in the table.

Exercise

See Exercise 10-2, Creating

Benchmark Tasks and UX

Targets for Your System

386 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Have you taken into account potential trade-offs among user groups? For

example, youmust consider the trade-offs between learnability for new users and

the possibility that “help” for these new users might get in the way of power

performance by experienced users.

Are the values for the various levels reasonable? This may be one of the

hardest questions to answer. In fact, the first few times you create UX targets, you

will probably be making a lot of guesses. You do get better at it with practice.

Be prepared to adjust your target level values, based on initial observed

results. Sometimes in evaluation you observe that users perform dramatically

differently than you had expected when you set the levels. These cases can help

you refine the target levels in UX targets, too. While it is possible to set the levels

too leniently, it is also possible that you make your initial UX targets too

demanding, especially in early cycles of iteration.

When your observed results aremuchworse than specified levels, there typically

are two possibilities. In the first (and preferable) case, the process of evaluation

and refinement is working just as it should; the UX targets are reasonable, and

evaluation has shown that there are serious UX problems with the design. When

these problems are solved, the design will meet the specified UX goals.

In the secondcase, theUXtargets havebeen set for anunrealistically high level

of expectation, and no matter how much you improve the design and its user

experience, the UX goals might never be met. Sometimes, for example, a task

simply takes longer than its designers first anticipated, even with a good design.

If you are not meeting your levels, especially after a few rounds of iteration,

you will need to assess them to see whether they are simply too difficult to attain

or whether the design just needs a great deal of work. Determining which of

these cases you have is, of course, not always easy. You will have to rely on your

knowledge of interaction design, experience, intuition, and ultimately your

best judgment to decide where the problem lies—with the UX target levels or

with the design.

Remember that the target level values are averages. So do not set impossible

average goals such as zero errors.

How well do the UX measures capture the UX goals for the design? Again,

this can be elusive. It is entirely possible to establish UX targets that have little

or nothing to do with assessing the real user experience of a design. For

example, a benchmark task might be very non-representative, leading to design

improvements in parts of the application that will rarely be used.

387UX GOALS , METR ICS , AND TARGETS

It is equally easy to omit inadvertently UX targets that are critical to assessing

user experience. Again, with experience, you will gain a better understanding of

when you have established UX measures and levels that capture the user

experience of the design.

What if the design is in its early stages and you know the design will

change significantly in the next version, anyway?Will it be a waste of time to

create benchmark tasks and UX targets if the system is expected to undergo

major changes in the near future? A UX representative of one project team we

worked with sent email saying “We spent 2 days evaluating the XXX tool

(first version) only to discover that the more recent version was significantly

different and many of the issues we identified were no longer valid.”

Our answer: As long as the tasks have not changed significantly, as long as

users would still do those same tasks with the new design (even if they are

now done in a different way), your work in creating benchmark tasks and UX

targets should not have been wasted. Benchmark tasks and level settings are

supposed to be independent of the design details.

What about UX goals, metrics, and targets for usefulness and emotional

impact? Quantitative measures and metrics for UX goals about usefulness and

emotional impact, including phenomenological aspects and social or cultural

impact, and value-sensitive design are more limited. The principal measuring

instrument for these measures is the questionnaire and, possibly, post-session

interviews.

And, of course, there are experimental data collection techniques for detecting

and/ormeasuring emotional responses (Chapter 12). You can use the number of

smilesper interactionasaUXmetric if youcandetect, and therefore, count, smiles.

Phenomenological aspects require longer term measures (also in Chapter 12).

Questionnaires and interviews can also be used to assess branding issues. For

example, you can ask if the user thinks this product is “on-brand” or you

can show two variations and ask which is better associated with the brand

and why. Although this kind of data collection leans more toward qualitative,

you can find ways to quantify it, if desired.

10.13 HOW UX TARGETS HELP MANAGE THE USER
EXPERIENCE ENGINEERING PROCESS

First of all, the end of evaluation activity in each iteration of the lifecycle is a good

time to evaluate your benchmark task descriptions and UX targets. How well

did they work for you? If you think they should be improved, do it now.

388 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Also, after each iteration of evaluation, we have to decide whether to continue

iterating. But we cannot keep iterating forever. So how do we know when to stop?

We tell how the project manager can use the evaluation results in conjunction

with UX targets to decide when to stop iterating in Chapter 16.

10.14 AN ABRIDGED APPROACH TO UX GOALS,
METRICS, AND TARGETS

As in most of the other process chapters, the process here can be abridged,

trading completeness for speed and lower cost. Possible steps of increasing

abridgement include:

n Eliminate objective UX measures and metrics, but retain UX goals and quantitative

subjective measures. Metrics obtained with questionnaires are easier and far less costly

than metrics requiring empirical testing, lab based or in the field.

n Eliminate all UXmeasures and metrics and UX target tables. Retain benchmark tasks as

a basis for user task performance and behavior to observe in limited empirical testing for

gathering qualitative data (UX problem data).

n Ignore UX goals, metrics, and targets altogether and use only rapid evaluation methods

later, producing only qualitative data.

389UX GOALS , METR ICS , AND TARGETS

Intentionally left as blank

CHAPTER

Prototyping 11
Objectives

After reading this chapter, you will:

1. Be able to articulate what prototyping is and why it is needed

2. Understand how to choose the appropriate depth and breadth, level of fidelity, and

amount of interactivity of prototypes

3. Understand special types of prototypes, such as physical mockups and Wizard of Oz

prototypes

4. Understand the appropriate type of prototype for a given stage of design evolution

5. Understand the role of prototypes in the transition to a product

6. Know how to make effective paper prototypes

11.1 INTRODUCTION

11.1.1 You Are Here
We begin each process chapter with a “you are here” picture of the chapter topic

in the context of the overall Wheel lifecycle template; see Figure 11-1. Although

prototyping is a kind of implementation, design and prototyping in practice

often overlap and occur simultaneously. A prototype in that sense is a design

representation.

So, as you create the design and its representation, you are creating the

prototype. Therefore, although in Figure 11-1 it might seem that prototyping is

limited to a particular place within a cycle of other process activities, like all other

activities, prototyping does not happen only at some point in a rigid sequence.

11.1.2 A Dilemma, and a Solution
Have you ever rushed to deliver a product version without enough time to check

it out? Then realized the design needed fixing? Sorry, but that ship has already

left the station. The sooner you fail and understand why, the sooner you can

succeed. As Frishberg (2006) tells us, “the faster you go, the sooner you know.” If

only you hadmade some early prototypes to work out the design changes before

releasing it! In this chapter we show you

how to use prototyping as a hatching

oven for partially baked designs within

the overall UX lifecycle process.

Traditional development approaches

such as the waterfall method were

heavyweight processes that required

enormous investment of time, money,

andpersonnel.Those lineardevelopment

processes have tended to force a

commitment to significant amounts of

design detail without any means for

visualizing and evaluating the product

until it was too late to make any major

changes.

Construction and modification of

software by ordinary programming

techniques in the past have been

notoriously expensive and time-consuming activities. Little wonder there have

been so many failed software development projects (Cobb, 1995; The Standish

Group, 1994, 2001)—wrong requirements, not meeting requirements,

imbalanced emphasis within functionality, poor user experience, and so much

customer and user dissatisfaction.

In thinking about how to overcome these problems, we are faced with a

dilemma. The only way to be sure that your system design is the right design and

that your design is the best it can be is to evaluate it with real users. However, at

the beginning you have a design but no system yet to evaluate. But after it is

implemented, changes are much more difficult.

Enter the prototype. A prototype gives you something to evaluate before you

have to commit resources to build the real thing. Because prototyping provides

an early version of the system that can be constructed much faster and is less

expensive, something to stand in stead of the real system to evaluate and inform

refinement of the design, it has become a principal technique of the iterative

lifecycle.

Universality of prototyping
The idea of prototyping is timeless and universal. Automobile designers build

and test mockups, architects and sculptors make models, circuit designers use

“bread-boards,” artists work with sketches, and aircraft designers build and fly

Figure 11-1

You are here; the chapter on
prototyping in the context
of the overall Wheel lifecycle
template.

392 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

experimental designs. Even Leonardo da Vinci and Alexander Graham Bell

made prototypes.

Thomas Edison sometimes made 10,000 prototypes before getting just the

right design. In each case the concept of a prototype was the key to affording the

design team and others an early ability to observe something about the final

product—evaluating ideas, weighing alternatives, and seeing what works and

what does not.

Alfred Hitchcock, master of dramatic dialogue design, is known for using

prototyping to refine the plots of his movies. Hitchcock would tell variations of

stories at cocktail parties and observe reactions of his listeners. He would

experiment with various sequences and mechanisms for revealing the story line.

Refinement of the story was based on listener reactions as an evaluation

criterion. Psycho is a notable example of the results of this technique.

Scandinavian origins
Like a large number of other parts of this overall lifecycle process, the origins of

prototyping, especially low-fidelity prototyping, go back to the Scandinavian

work activity theory research and practice of Ehn, Kyng, and others (Bjerknes,

Ehn, & Kyng, 1987; Ehn, 1988) and participatory design work (Kyng, 1994).

These formative works emphasized the need to foster early and detailed

communication about design and participation in understanding the

requirements for that design.

11.2 DEPTH AND BREADTH OF A PROTOTYPE

The idea of prototypes is to provide a fast and easily changed early view of

the envisioned interaction design. To be fast and easily changed, a prototype

must be something less than the real system. The choices for your approach

to prototyping are about how to make it less. You can make it less by focusing on

just the breadth or just the depth of the system or by focusing on less than full

fidelity of details in the prototype (discussed later in this chapter).

11.2.1 Horizontal vs. Vertical Prototypes
Horizontal and vertical prototypes represent the difference between slicing the

system by breadth and by depth in the features and functionality of a prototype

(Hartson & Smith, 1991). Nielsen (1987) also describes types of prototypes

based on how a target system is sliced in the prototype. In his usability

393PROTOTYP ING

engineering book (1993), Nielsen

illustrates the relative concepts of

horizontal and vertical prototyping,

which we show as Figure 11-2.

A horizontal prototype is very broad

in the features it incorporates, but offers

less depth in its coverage of functionality.

A vertical prototype contains as much

depth of functionality as possible in the

current state of progress, but only for a

narrow breadth of features.

A horizontal prototype is a good place to start with your prototyping,

as it provides an overview on which you can base a top-down approach.

A horizontal prototype is effective in demonstrating the product concept and

for conveying an early product overview to managers, customers, and users

(Kensing & Munk-Madsen, 1993) but, because of the lack of details in depth,

horizontal prototypes usually do not support complete workflows, and user

experience evaluation with this kind of prototype is generally less realistic.

A horizontal prototype can also be used to explore how much functionality

will really be used by a certain class of users to expose typical users to the

breadth of proposed functionality and get feedback on which functions

would be used or not.

A vertical prototype allows testing a limited range of features but those

functions that are included are evolved in enough detail to support realistic user

experience evaluation. Often the functionality of a vertical prototype can

include a stub for or an actual working back-end database.

A vertical prototype is ideal for times when you need to represent completely

the details of an isolated part of an individual interaction workflow in order to

understand how those details play out in actual usage. For example, you may

wish to study a new design for the checkout part of the workflow for an

e-commerce Website. A vertical prototype would show that one task sequence

and associated user actions, in depth.

11.2.2 “T” Prototypes
A “T” prototype combines the advantages of both horizontal and vertical,

offering a good compromise for system evaluation. Much of the interface is

realized at a shallow level (the horizontal top of the T), but a few parts are done

in depth (the vertical part of the T). This makes a T prototype essentially a

Figure 11-2

Horizontal and vertical
prototyping concepts, from
Nielsen (1993), with
permission.

394 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

horizontal prototype, but with the functionality details filled out vertically for

some parts of the design.

In the early going, the T prototype provides a nice balance between the two

extremes, giving you some advantages of each. Once you have established a

system overview in your horizontal prototype, as a practical matter the T

prototype is the next step toward achieving some depth. In time, the horizontal

foundation supports evolving vertical growth across the whole prototype.

11.2.3 Local Prototypes
We call the small area where horizontal and vertical slices intersect a “local

prototype” because the depth and breadth are both limited to a very localized

interaction design issue. A local prototype is used to evaluate design alternatives

for particular isolated interaction details, such as the appearance of an icon,

wording of a message, or behavior of an individual function. It is so narrow and

shallow that it is about just one isolated design issue and it does not support

any depth of task flow.

A local prototype is the solution for those times when your design team

encounters an impasse in design discussions where, after a while, there is no

agreement and people are starting to repeat themselves. Contextual data are

not clear on the question and further arguing is a waste of time. It is time to put

the specific design issue on a list for testing, letting the user or customer speak to

it in a kind of “feature face-off” to help decide among the alternatives.

For example, your design team might not be able to agree on the details of

a “Save” dialogue box and you want to compare two different approaches. So

you can mockup the two dialogue box designs and ask for user opinions about

how they behave.

Local prototypes are used independently from other prototypes and have very

short life spans, useful only briefly when specific details of one or two particular

design issues are being worked out. If a bit more depth or breadth becomes

needed in the process, a local prototype can easily grow into a horizontal,

vertical, or T prototype.

11.3 FIDELITY OF PROTOTYPES

The level of fidelity of a prototype is another dimension along which prototype

content can be controlled. The fidelity of a prototype reflects how “finished”

it is perceived to be by customers and users, not how authentic or correct

the underlying code is (Tullis, 1990).

395PROTOTYP ING

11.3.1 Low-Fidelity Prototypes
Low-fidelity prototypes are, as the term implies, prototypes that are not faithful

representations of the details of look, feel, and behavior, but give rather high-

level, more abstract impressions of the intended design. Low-fidelity prototypes

are appropriate when design details have not been decided or when they are

likely to change and it is a waste of effort and maybe even misleading to try and

flesh out the details.

Because low-fidelity prototypes are sometimes not taken seriously, the case for

low-fidelity prototyping, especially using paper, bears some explaining. In fact, it

is perhaps at this lowest end of the fidelity spectrum, paper prototypes, that

dwells the highest potential ratio of value in user experience gained per unit of

effort expended. A low-fidelity prototype is much less evolved and therefore

far less expensive. It can be constructed and iterated in a fraction of the time it

takes to produce a good high-fidelity prototype.

But can a low-fidelity prototype, a prototype that does not look like the final

system, really work? The experience of many has shown that despite the vast

difference between a prototype and the finished product, low-fidelity prototypes

can be surprisingly effective.

Virzi, Sokolov, and Karis (1996) found that people, customers, and users do

take paper prototypes seriously and that low-fidelity prototypes do reveal many

user experience problems, including the more severe problems. You can get

your project team to take them seriously, too. Your team may be reluctant about

doing a “kindergarten” activity, but they will see that users and customers love

them and that they have discovered a powerful tool for their design projects.

But will not the low-fidelity appearance bias users about the perceived user

experience? Apparently not, according to Wiklund, Thurrott, and Dumas

(1992), who concluded in a study that aesthetic quality (level of finish) did not

bias users (positively or negatively) about the prototype’s perceived user

experience. As long as they understand what you are doing and why, they will go

along with it.

Sometimes it takes a successful personal experience to overcome a bias

against low fidelity. In one of our UX classes, we had an experienced software

developer who did not believe in using low-fidelity prototypes. Because it was a

requirement in the project for the course, he did use the technique anyway, and

it was an eye-opener for him, as this email he sent us a few months later attests:

After doing some of the tests I have to concede that paper prototypes are useful.

Reviewing screenshots with the customer did not catch some pretty obvious

usability problems and now it is hard to modify the computer prototype. Another

396 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

problem is that we did not get as complete a coverage with the screenshots of the

system as we thought and had to improvise some functionality pretty quickly. I

think someone had told me about that

Low-fidelity prototyping has long been a well-known design technique and, as

Rettig (1994) says, if your organization or project team has not been using

low-fidelity prototypes, you are in for a pleasant surprise; it can be a big

breakthrough tool for you.

11.3.2 Medium-Fidelity Prototypes
Sometimes you need a prototype with a level in between low fidelity and high

fidelity. Sometimes you have to choose one level of fidelity to stick with because

you do not have time or other resources for your prototype to evolve from low

fidelity to high-fidelity. For teams that want a bit more fidelity in their design

representations than you can get with paper and want to step up to computer-

based representations, medium-fidelity prototypes can be the answer.

In Chapter 9, for example, this occurs about when you undertake

intermediate design and early detailed design. As a mechanism for medium-

fidelity prototypes, wireframes (also in Chapter 9) are an effective way to show

layout and the breadth of user interface objects and are fast becoming the most

popular approach in many development organizations.

11.3.3 High-Fidelity Prototypes
In contrast, high-fidelity prototypes are more detailed representations of

designs, including details of appearance and interaction behavior. High-fidelity

is required to evaluate design details and it is how the users can see the complete

(in the sense of realism) design. High-fidelity prototypes are the vehicle for

refining the design details to get them just right as they go into the final

implementation.

As the term implies, a high-fidelity prototype is faithful to the details, the

look, feel, and behavior of an interaction design and possibly even system

functionality. A high-fidelity prototype, if and when you can afford the added

expense and time to produce it, is still less expensive and faster than programming

the final product and will be so much more realistic, more interactive, more

responsive, and so much more representative of a real software product than a

low-fidelity prototype. High-fidelity prototypes can also be useful as advance sales

demos for marketing and even as demos for raising venture capital for the

company.

397PROTOTYP ING

An extreme case of a high-fidelity prototype is the fully-programmed, whole-

system prototype, discussed soon later, including both interaction design and

non-user-interface functionality working together. Whole system prototypes

can be as expensive and time-consuming as an implementation of an early

version of the system itself and entail a lot of the software engineering

management issues of non-prototype system development, including UX and

SE collaboration about system functionality and overall design much earlier

in the project than usual.

11.4 INTERACTIVITY OF PROTOTYPES

The amount of interactivity allowed by a prototype is not independent of the

level of fidelity. In general, high interactivity requires high-fidelity. Here we

discuss various ways to accomplish interactivity within a prototype.

11.4.1 Scripted and “Click-Through” Prototypes
The first prototypes to have any “behavior,” or ability to respond to user actions,

are usually scripted prototypes, meaning programmed with a scripting language.

Scripting languages are easy to learn and use and, being high-level languages,

can be used to produce some kinds of behavior very rapidly. But they are not

effective tools for implementing much functionality. So scripted prototypes will

be low or medium fidelity, but they can produce nice live-action storyboards of

screens.

A “click-through” prototype is a medium-fidelity prototype with some active

links or buttons that allow sequencing through screens by clicking, but usually

with no more functionality than that. Wireframes can be used to make click-

through prototypes by adding links that respond in simple ways to clicking, such

as moving to the next screen.

11.4.2 A Fully Programmed Prototype
Even the prototypes of large systems can themselves be large and complex. On

rare occasions and in very special circumstances, where time and resources

permit and there is a genuine need, a project team is required to produce a high-

fidelity full-system operational prototype of a large system, including at least

some back-end functionality.

One such occasion did occur in the early 1990s when the FAA sought

proposals from large development organizations for a big 10-year air traffic

control system development project. Bidders successful in the first phase of

398 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

proposals would be required to design and build a full-function proof-of-

concept prototype in a project that itself took nearly 2 years and cost millions of

dollars. On the basis of this prototype phase, even larger multiyear contracts

would be awarded for construction of the real system.

Such large and fully functional prototypes call for the power of a real

programming language. Although the resulting prototype is still not intended to

be the final system, a real programming language gives the most flexibility to

produce exactly the desired look and feel. And, of course, a real programming

language is essential for implementing extensive functionality. The process,

of course, will not be as fast, low in cost, or easy to change.

11.4.3 “Wizard of Oz” Prototypes: Pay No Attention
to the Man Behind the Curtain
TheWizard of Oz prototyping technique is a deceptively simple approach to the

appearance of a high degree of interactivity and highly flexible prototype

behavior in complex situations where user inputs are unpredictable. The setup

requires two connected computers, each in a different room. The user’s

computer is connected as a “slave” to the evaluator’s computer. The user makes

input actions on one computer, which are sent directly to a human team

member at the evaluator’s computer, hidden in the second room.

The human evaluator sees the user inputs on the hidden computer and sends

appropriate simulated output back to the user’s computer. This approach has

particular advantages, one of which is the apparently high level of interactivity as

seen by the user. It is especially effective when flexible and adaptive “computer”

behavior is of the essence, as with artificial intelligence and other difficult-to-

implement systems. Within the limits of the cleverness of the human evaluator,

the “system” should never break down or crash.

In one of the earliest uses of the Wizard of Oz technique that we know of,

Good and colleagues (1984) designed empirically a command-driven email

interface to accommodate natural novice user actions. Users were given no

menus, help, no documentation, and no instruction.

Users were unaware that a hidden operator was intercepting commands when

the system itself could not interpret the input. The design was modified

iteratively so that it would have recognized and responded to previously

intercepted inputs. The design progressed from recognizing only 7% of inputs

to recognizing about 76% of user commands.

TheWizard of Oz prototyping technique is especially useful when your design

ideas are still wide open and you want to see how users behave naturally in the

course of simulated interaction. It could work well, for example, with a kiosk.

399PROTOTYP ING

You would set up the general scope of usage expected and let users at it.

You will see what they want to do. Because you have a human at the other end,

you do not have to worry about whether you programmed the application to

handle any given situation.

11.4.4 Physical MockUps for Physical Interactivity
If a primary characteristic of a product or system is physicality, such as you have

with a handheld device, then an effective prototype will also have to offer

physical interactivity. Programming new applications on physical devices with

real software means complex and lengthy implementation on a challenging

hardware and software platform. Prototypes afford designers and others insight

into the product look and feel without complicated specialized device

programming.

Some products or devices are “physical” in the sense that they are something

like a mobile device that users might hold in their hands. Or a system might be

“physical” like a kiosk. A physical prototype for such products goes beyond

screen simulation on a computer; the prototype encompasses the whole device.

Pering (2002) describes a case study of such an approach for a handheld

communicator device that combines the functionality of a PDA and a cellphone.

If the product is to be handheld, make a prototype from cardboard, wood, or

metal that can also be handheld. If the product, such as a kiosk, is to sit on the

floor, put the prototype in a cardboard box and add physical buttons or a

touchscreen.

You can use materials at hand or craft the prototype with realistic hardware.

Start off with glued-on shirt buttons and progress to real push-button switches.

Scrounge up hardware buttons and other controls that are as close to those

in your envisioned design as possible: push buttons, tilt buttons, sliders, for

example, from a light dimmer, knobs and dials, rocker switch, or a joystick from

an old Nintendo game.

Even if details are low fidelity, these are higher fidelity in some ways because

they are typically 3D, embodied, and tangible. You can hold them in your hands.

You can touch them and manipulate them physically. Also, physical prototypes

are excellent media for supporting evaluation of emotional impact and other

user experience characteristics beyond just usability.

And just because physical product prototyping usually involves a model of

physical hardware does not rule out being a low-fidelity prototype. Designers

of the original Palm PDA carried around a block of wood as a physical prototype

of the envisioned personal digital assistant. They used it to explore the physical

400 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

feel and other requirements for such a device and its interaction possibilities

(Moggridge, 2007, p. 204).

Physical prototyping is now being used for cellphones, PDAs, consumer

electronics, and products beyond interactive electronics, employing found

objects, “junk” (paper plates, pipe cleaners, and other playful materials)

from the recycle bin, thrift stores, dollar stores, and school supply shops

(N. Frishberg, 2006). Perhaps IDEO1 is the companymost famous for its physical

prototyping for product ideation; see their shopping cart project video (ABC

News Nightline, 1999) for a good example.

Wright (2005) describes the power of a physical mockup that users can

see and hold as a real object over just pictures on a screen, however powerful and

fancy the graphics. Users get a real feeling that this is the product. The kind

of embodied user experience projected by this approach can lead to a product

that generates user surprise and delight, product praise in the media, and

must-have cachet in the market.

Paper-in-device mockup prototype, especially
for mobile applications
The usual paper prototype needs an “executor,” a person playing computer to

change screens and do all the other actions of the system in response to a user’s

actions. This role of mediator between user and device will necessarily interfere

with the usage experience, especially when a large part of that experience

involves, holding, feeling, and manipulating the device itself.

Bolchini, Pulido, and Faiola (2009) and others devised a solution by which

they placed the paper prototype inside the device, leveraging the advantages

of paper prototyping in evaluatingmobile device interfaces with the real physical

device. They drew the prototype screens on paper, scanned them, and loaded

them into the device as a sequence of digital images that the device can

display. During evaluation, users can move through this sequential navigation

by making touches or gestures that the device already can recognize.

This is an agile and inexpensive technique, and the authors reported that

their testing showed that even this limited amount of interactivity generated a lot

of useful feedback and discussion with evaluation users. Also, by adding page

annotations about user interactions, possible user thoughts, and other behind-

the-scenes information, the progression of pages can become like a design

storyboard of the usage scenario.

1http://www.ideo.com

401PROTOTYP ING

11.4.5 Animated Prototypes
Most prototypes are static in that they depend on user interaction to

show what they can do. Video animation can bring a prototype to life for

concept demos, to visualize new interaction designs, and to communicate

design ideas. While animated prototypes are not interactive, they are at

least active.

Löwgren (2004) shows how video animations based on a series of sketches can

carry the advantages of low-fidelity prototypes to new dimensions where a static

paper prototype cannot tread. Animated sketches are still “rough” enough to

invite engagement and design suggestions but, being more like scenarios or

storyboards, animations can convey flow and sequencing better in the context

of usage.

HCI designers have been using video to bring prototypes to life as early as

the 1980s (Vertelney, 1989). A simple approach is to use storyboard frames

in a “flip book” style sequence on video or, if you already have a fairly

complete low-fidelity prototype, you can film it in motion by making a kind

of “claymation” frame-by-frame video of its parts moving within an

interaction task.

11.5 CHOOSING THE RIGHT BREADTH, DEPTH, LEVEL
OF FIDELITY, AND AMOUNT OF INTERACTIVITY

There are twomajor factors to consider when choosing the right breadth, depth,

level of fidelity, and amount of interactivity of your prototypes: the stage of

progress you are in within the overall project and the design perspective in which

you are prototyping. These two factors are interrelated, as stages of progress

occur within each of the design perspectives.

11.5.1 Using the Right Level of Fidelity for the Current
Stage of Progress

Choosing your audience and explaining the prototype
In general, low-fidelity prototypes are a tool to be used within the project

team. Low-fidelity prototypes are shown to people outside the team only

to get feedback on very specific aspects of the design. If low-fidelity

prototypes are shown casually around to users and customer personnel

without careful explanation, they can be misinterpreted. To someone not

familiar with their use, a paper prototype can look like the product of an

inexperienced amateur.

402 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Even if they do get beyond the rough appearance, without guidance as to what

kind of feedback you want, “sophisticated” users and customers will immediately

see missing features and think that you do not know what you are doing, possibly

creating a credibility gap. Therefore, low-fidelity prototypes are often

considered “private” to the project team and reserved for your own use for early

exploration and iterative refinement of the conceptual design and early

workflow.

Therefore, when a project is deliverable-oriented and the customer expects to

evaluate your progress based on what they see developing as a product, a

medium- or high-fidelity prototype can be used as a design demo. Practitioners

often construct pixel-perfect representations of envisioned designs for these

prototypes to show off designs to customers, users, and other non-team

stakeholders. Such realistic-looking demos, however, carry the risk of being

interpreted as complete designs, as versions of the final product. If something is

wrong or missing, the designers are still blamed. Explaining everything in

advance can head off these complications.

A progression of increasing fidelity to match your stage
of progress
As a general rule, as you move through stages of progress in your project,

you will require increasing levels of fidelity in your prototypes. For example,

the goal in an early stage might be to determine if your design approach is even

a good idea or a feasible one.

The goal of a later stage might simply be to show off: “Look at what a cool

design we have!” In Table 11-1 we describe the appropriate time and place to use

each kind of prototype in terms of various kinds of iteration within design

production (Chapter 9). The types of prototypes mentioned in Table 11-1 are

described in various places, mostly in this chapter.

11.5.2 Using the Right Level of Fidelity for the Design
Perspective Being Addressed
For each design perspective in which you make a prototype, you must decide

which kind of prototype, horizontal or vertical and at what fidelity, is needed,

requiring you to consider what aspects of the design you are worried about and

what aspects need to be tested in that perspective. In large part, this means

asking about the audience for and the purpose of your prototype in the context

of that perspective. What do you hope to accomplish with a prototype in the

design perspective being addressed? What questions will the prototype help you

answer?

403PROTOTYP ING

Prototyping for the ecological perspective
To support exploration of the high-level system structure, a prototype in the

ecological perspective is a kind of concept map to how the different parts of the

system will work at the conceptual level and how it fits in with the rest of the

world—other systems and products and other users.

As you evaluate the conceptual design, remember that you are looking at the

big picture so the prototypes do not need to be high fidelity or detailed. If

evaluation with early conceptual prototypes shows that users do not get along

well with the basic metaphor, then the designers will not have wasted all the time

it takes to work out design details of interaction objects such as screen icons,

messages, and so on.

The development of IBM’s Olympic Message System (Gould et al., 1987) was

an avant garde example of product prototyping with emphasis on the ecological

setting. IBM was tasked to provide a communications system for the 1984

Olympics in Los Angeles to keep athletes, officials, families, and friends in

immediate contact during the games. For their earliest concept testing they used

a “Wizard of Oz” technique whereby participants pressed keys on a computer

terminal and spoke outgoing messages. The experimenter read aloud the

incoming messages and gave other outputs as the interaction required.

Ecological
Perspective

The ecological design

perspective is about how

the system or product works

within its external

environment. It is about

how the systemor product is

used in its context and how

the system or product

interacts or communicates

with its environment in the

process.

Table 11-1

Summary of the uses for
various levels of fidelity
and types of prototypes

Kind of Iteration Purpose Types of Prototypes

Ideation and
sketching

To support exploring ideas,
brainstorming, and discussion (so
design details are inappropriate)

Sketches, fast and disposable
mockups, ultralow fidelity

Conceptual
design

To support exploration and
creation of conceptual design,
the high-level system structure,
and the overall interaction
metaphor

Evolution from hand-drawn
paper, computer-printed paper,
low-fidelity wireframes, high-
fidelity wireframes, to pixel-
perfect interactive mockups (to
communicate with customer)

Intermediate
design

To support interaction design
for tasks and task threads

Evolution from paper to
wireframes

Detailed design Support for deciding navigation
details, screen design and layout,
including pixel-perfect visual
comps complete specification
for look and feel of the “skin”

Detailed wireframes and/or
pixel-perfect interactive
mockups

Design
refinement

To support evaluation to refine
a chosen design by finding and
removing as many UX problems
as possible

Medium to high fidelity, lots
of design detail, possibly a
programmed prototype

404 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

For enhanced ecological validity they used a “hallway methodology” that

started with a hollow wooden cylinder set in IBM building hallways, with pictures

of screens and controls pasted on. They quickly learned a lot about the best

height, location, labeling, and wording for displays. Real interactive displays

housed in more finished kiosk prototypes led to even more feedback from

visitors and corporate passersby. The resulting system was a big success at the

Olympics.

Prototyping for the interaction perspective
For conceptual design, support early exploration with ideation and sketching

using rapid and disposable low-fidelity prototypes. As you evaluate the

conceptual design, remember that you are looking at the big picture so the

fidelity of prototypes can be low. Use many rapid iterations to refine candidate

conceptual design ideas.

As you move into intermediate design iteration, start by choosing a few tasks

that are the most important and prototype them fairly completely. Mockup a

typical task so that a user can follow a representative task thread.

Use medium-fidelity prototypes, such as wireframes, to flesh out behavior,

including sequencing and responses to user actions. As we will see in later

chapters on formative evaluation, a great deal can be learned from an

incomplete design in a prototype.

For detailed design, after you have exhausted possibilities in evaluating the

conceptual model and early screen design ideas with your low-fidelity, possibly

paper, prototype, you will move on. You might next use a computer-printed

paper prototype or a computer-based mockup to test increasing amounts of

design detail.

You will flesh out your prototype with more complete task threads, well-

designed icons, and carefully worded messages. Representing and evaluating

full design details require high-fidelity prototypes, possibly programmed

and possibly connected with some working functionality, such as database

functions.

Prototyping for the emotional perspective
A prototype to support evaluation of emotional impact needs certain kinds

of details. High fidelity and high interactivity are usually required to support

this perspective. Although full details at the interaction level may not always

be required, you do need details relating to fun, joy of use, and user

satisfaction. Further, the emotional perspective for physical devices more or

less demands physical mockups for a real feeling of holding and manipulating

the device.

Ecological Validity

Ecological validity refers to

the realism with which a

design of evaluation setup

matches the user’s real work

context. It is about how

accurately the design or

evaluation reflects the

relevant characteristics of

the ecology of interaction,

i.e., its context in the world

or its environment.

Interaction
Perspective

The interaction design

perspective is about how

users operate the system or

product. It is a task and

intention view, where user

and system come together.

It is where users look at

displays and manipulate

controls, doing sensory,

cognitive, and physical

actions.

Emotional
Perspective

The emotional design

perspective is about

emotional impact and

value-sensitive aspects of

design. It is about social and

cultural implications, as well

as the aesthetics and joy of

use.

405PROTOTYP ING

11.5.3 Managing Risk and Cost within Stages of Progress
and within Design Perspectives
There has beenmuch debate over the relativemerits of low-fidelity prototypes vs.

high-fidelity prototypes, but Buxton (2007a) has put it in a better light: It is not

so much about high-fidelity prototypes vs. low-fidelity prototypes as it is about

getting the right prototype. But, of course, part of getting it right is in

determining the right level of abstraction for the purpose.

One way to look at the horizontal vs. vertical and low-fidelity vs. high-fidelity

question is with respect to the three design perspectives (Chapter 7). For each of

these perspectives, it is about managing risk, particularly the risk (in terms of

cost) of getting the design wrong (with respect to the corresponding

perspective) and the cost of having to change it.

A user interaction design can be thought of in two parts:

n the appearance, especially the visual aspects of the user interface objects

n the behavior, including sequencing and responses to user actions

Of these, which has the biggest risk in terms of cost to change late in the

schedule? It is the behavior and sequencing. The behavior is the part that

corresponds roughly to the design metaphor envisioned to support the user

workflow. Therefore, we should try to get the best design we can for the behavior

before we worry about details of appearance. That means our earliest and easiest

to change prototypes should represent interaction design behavior and that

means having a low-fidelity prototype first. This interaction structure and

sequencing is very easy to change with paper screens, but becomes increasingly

more difficult to modify as it is committed to programming code.

In low-fidelity prototypes it can even be a disadvantage to show too many

details that appear refined. As Rettig (1994) points out, if you have a nice

slick look and feel, you will naturally get most of your feedback on the look

and feel details rather than on high-level issues such as workflow, task flow,

overall layout, and the metaphor. Also, some users may be less willing to suggest

changes for a prototype that even appears to be high fidelity because of the

impression that the design process is completed and that any feedback they

provide is probably too late (Rudd, Stern, & Isensee, 1996).

Later, however, increasingly higher fidelity prototypes can be used to

establish and refine the exact appearance, the visual and manipulation aspects

of interface objects such as colors, fonts, button design, highlighting an object,

and so on, and eventually to bring in some depth in terms of functionality,

for example, more detail about checking and handling errors in user inputs.

As shown in Table 11-2, there is a place for both low-fidelity and high-fidelity

prototypes in most design projects.

406 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Finally, and just as an aside, prototyping is a technique that can help manage

and reduce risks on the software engineering side as well on the UX side of

a project.

11.5.4 Summary of the Effects of Breadth, Depth,
and Fidelity Factors
In the graph in Figure 11-3 we show roughly how scope (vertical vs. horizontal)

and fidelity issues play out in the choice of prototyping approaches based on

what the designer needs.

11.6 PAPER PROTOTYPES

Soon after you have a conceptual design mapped out, give it life as a low-fidelity

prototype and try out the concept. This is the time to start with a horizontal

prototype, showing the possible breadth of features without much depth. The

facility of paper prototypes enables you, in a day or two, to create a new design

idea, implement it in a prototype,

evaluate it with users, and modify it.

Low fidelity usually means paper

prototypes. You should construct your

early paper prototypes as quickly and

efficiently as possible. Early versions

are just about interaction, not

functionality. You do not even have to

use “real” widgets.

Sometimes a paper prototype can

act as a “coding blocker” to prevent

time wasted on coding too early. At

this critical juncture, when the

design is starting to come together,

Table 11-2

Summary of comparison of
low-fidelity and high-
fidelity prototypes

Type of
Prototype

"Strength" When in
Lifecycle to
Apply
"Strength"

Cost to Fix
Appearance

Cost to Fix
Sequencing

Low fidelity
(e.g., paper)

Flexibility; easy to
change sequencing,
overall behavior

Early Almost none Low

High fidelity
(e.g., computer)

Fidelity of
appearance

Later Intermediate High

Figure 11-3

Depth, breadth, and fidelity
considerations in choosing
a type of prototype.

407PROTOTYP ING

programmers are likely to suffer from the WISCY syndrome (Why Isn’t Sam

Coding Yet?). They naturally want to run off and start coding.

You need a way to keep people from writing code until we can get the

design to the point where we should invest in it. Once any code gets written,

there will be ownership attached and it will get protected and will stay around

longer than it should. Even though it is just a prototype, people will begin to

resist making changes to “their baby”; they will be too invested in it. And

other team members, knowing that it is getting harder to get changes through,

will be less willing to suggest changes.

11.6.1 Paper Prototypes for Design Reviews and Demos
Your earliest paper prototypes will have no functionality or interaction, no

ability to respond to any user actions. You can demonstrate some predefined

sequences of screen sketches as storyboards or “movies” of envisioned

interaction. For the earliest design reviews, you just want to show what it looks

like and a little of the sequencing behavior. The goal is to see some of the

interaction design very quickly—in the time frame of hours, not days or weeks.

11.6.2 Hand-Drawn Paper Prototypes
The next level of paper prototypes will support some simulated “interaction.”

As the user views screens and pretends to click buttons, a human “executor”

plays computer and moves paper pieces in response to those mock user actions.

11.6.3 Computer-Printed Paper Prototypes
Paper prototypes, with user interface objects and text on paper printed via a

computer, are essentially the same as hand-drawn paper prototypes, except

slightly higher fidelity in appearance. You get fast, easy, and effective prototypes

with added realism at very low cost. Tomake computer-printable screens for low-

fidelity prototypes, you can use tools such as OmniGraffle (for the Mac) or

Microsoft Visio.

Berger (2006) describes one successful case of using a software tool not

intended for prototyping. When used as a prototyping tool, Excel provides grid

alignment for objects and text, tabbed pages to contain a library of designs,

a hypertext feature used for interactive links, and a built-in primitive database

capability.

Cells can contain graphical images, which can also be copied and pasted, thus

the concept of templates for dialogue box, buttons, and so on can be thought of

as native to Excel. Berger claimed fast turnarounds, typically on a daily basis.

408 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

11.6.4 Is not paper just a stopgap medium?
Is not paper prototyping a technique necessary just because we do not yet have

good enough software prototyping tools? Yes and no. There is always hope for a

future software prototyping tool that can match the fluency and spontaneity

afforded by the paper medium. That would be a welcome tool indeed and

perhaps wireframing is heading in that direction but, given the current software

technology for programming prototypes even for low-fidelity prototypes, there is

no comparison with the ease and speed with which paper prototypes can be

modified and refined, even if changes are needed on the fly in the midst of an

evaluation session.

Therefore, at least for the foreseeable future, paper prototyping has to be

considered as more than just a stopgap measure or a low-tech substitute for that

as yet chimerical software tool; it is a legitimate technology on its own.

Paper prototyping is an embodied effort that involves the brain in the

creative hand–eye feedback loop. When you use any kind of programming, your

brain is diverted from the design to the programming. When you are writing

or drawing on the paper with your hands and your eyes and moving sheets

of paper around manually, you are thinking about design. When you are

programming, you are thinking about the software tool.

Rettig (1994) says that with paper, “. . . interface designers spend 95% of

their time thinking about the design and only 5% thinking about the

mechanisms of the tool. Software-based tools, no matter how well executed,

reverse this ratio.”

11.6.5 Why Not Just Program a Low-Fidelity Prototype?
At “run-time” (or evaluation time), it is often useful to write on the paper

pages, something you cannot do with a programmed prototype. Also, we have

found that paper has much broader visual bandwidth, which is a boon when

you want to look at and compare multiple screens at once. When it comes

time to change the interaction sequencing in a design, it is done faster and

visualized more easily by shuffling paper on a table.

Another subtle difference is that a paper prototype is always available for

“execution,” but a software prototype is only intermittently executable—only

between sessions of programming to make changes. Between versions, there

is a need for fast turnaround to the next version, but the slightest error in

the code will disable the prototype completely. Being software, your

prototype is susceptible to a single bug that can bring it crashing down and

you may be caught in a position where you have to debug in front of your

demo audience or users.

409PROTOTYP ING

The result of early programmed prototypes is almost always slow prototyping,

not useful for evaluating numerous different alternatives while the trail to

interaction design evolution is still hot. Fewer iterations are possible, with more

“dead time” in between where users and evaluators can lose interest and have

correspondingly less opportunity to participate in the design process. Also, of

course, as the prototype grows in size, more and more delay is incurred from

programming and keeping it executable.

Because programmed prototypes are not always immediately available for

evaluation and design discussion, sometimes the prototyping activity cannot

keep up with the need for fast iteration. Berger (2006) relates an anecdote about

a project in which the user interface software developer had the job of

implementing design sketches and design changes in a Web page production

tool. It took about 2 weeks to convert the designs to active Web pages for the

prototype and in the interim the design had already changed again and the

beautiful prototypes were useless.

11.6.6 How to Make an Effective Paper Prototype
Almost all you ever wanted to know about prototyping, you learned in Kindergarten.

Get out your paper and pencil, some duct tape, and WD-40. Decide who on your

team can be trusted with sharp instruments, and we are off on another

adventure. There are many possible approaches to building paper prototypes.

The following are some general guidelines that have worked for us and that we

have refined over many, many iterations.

Start by setting a realistic deadline. This is one kind of activity that can go on

forever. Time management is an important part of any prototyping activity.

There is no end to the features, polishing, and tweaking that can be added to a

paper prototype. And watch out for design iteration occurring before you even

get the first prototype finished. You can go around in circles before you get user

inputs and it probably will not add much value to the design. Why polish a

feature that might well change within the next day anyway?

Gather a set of paper prototyping materials. As you work with paper

prototypes, you will gather a set of construction materials customized to your

approach. Here is a starter list to get you going:

n Blank plastic transparency sheets, 8½ � 11; the very inexpensive write-on kind

works fine; you do not need the expensive copier-type plastic

n An assortment of different colored, fine-pointed, erasable and permanent

marking pens

410 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

n A supply of plain copier-type paper (or a pad of plain, unlined, white paper)

n Assorted pencils and pens

n Scissors

n “Scotch” tape (with dispensers)

n A bottle of Wite-out or other correction fluid

n Rulers or straight edges

n A yellow and/or pink highlighter

n “Sticky” (e.g., Post-it) note pads in a variety of sizes and colors

Keep these in a box so that you have them handy for the next time you need to

make a paper prototype.

Work fast and do not color within the lines. If they told you in school to

use straight lines and color only within the boxes, here is a chance to revolt,

a chance to heal your psyche. Change your personality and live dangerously,

breaking the bonds of grade school tyranny and dogmatism, something you can

gloat about in the usual postprototype cocktail party.

Draw on everything you have worked on so far for the design. Use

your conceptual design, design scenarios, ideation, personas,

storyboards, and everything else you have created in working up to this

exciting moment of putting it into the first real materialization of your

design ideas.

Make an easel to register (align) your screen and user interface object

sheets of paper and plastic. Use an “easel” to register each interaction sheet

with the others. The simple foam-core board easels we make for our short

courses are economical and serviceable. On a piece of foam-core board slightly

larger than 8½� 11, on at least two (of the four)

adjacent sides add some small pieces of

additional foam-core board as “stops,” as seen in

Figures 11-4 and 11-5, against which each

interaction sheet can be pushed to ensure

proper positioning. When the prototype is

being “executed” during UX evaluation, the

easel will usually be taped to the tabletop for

stability.

Make underlying paper foundation

“screens.” Start with simplest possible

background for each screen in pencil or pen

Figure 11-4

Foam-core board paper
prototype easel with “stops”
to align the interaction
sheets.

411PROTOTYP ING

on full-size paper (usually 8½ � 11) as a

base for all moving parts. Include only parts

that never change. For example, in a calendar

system prototype, show a monthly “grid,” leaving

a blank space for the month name). See

Figure 11-6.

Use paper cutouts taped onto full-size

plastic “interaction sheets” for all moving

parts. Everything else, besides the paper

foundation, will be taped to transparent plastic

sheets. Draw everything else (e.g., interaction

objects, highlights, dialogue boxes, labels) in pencil, pen, or colored markers

on smaller pieces of paper and cut them out. Tape them onto separate full-size

8½ � 11 blank plastic sheets in the appropriate position aligned relative to

objects in the foundation screen and to objects taped to other plastic sheets.

We call this full-size plastic sheet, with paper user interface object(s) taped in

position, an “interaction sheet.” The appearance of a given screen in your

prototype is made up of multiple overlays of these interaction sheets. See

Figure 11-7.

When these interaction sheets are aligned against the stops in the easel, they

appear to be part of the user interface, as in the case of the pop-up dialogue box

in Figure 11-8.

Be creative. Think broadly about how to

add useful features to your prototype

without too much extra effort. In addition

to drawing by hand, you can use simple

graphics or paint programs to import

images such as buttons, and resize, label,

and print them in color. Fasten some

objects such as pull-down lists to the top or

side of an interaction sheet with transparent

tape hinges so that they can “flap down” to

overlay the screen when they are selected.

See Figure 11-9.

Scrolling can be done by cutting slits

in your paper menu, which is taped to a

plastic sheet. Then a slightly smaller slip

Figure 11-5

Another style of “stops” on
a foam-core board paper
prototype easel.

Figure 11-6

Underlying paper
foundation “screen.”

412 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

of paper with the menu choices can be slid through the slots. See

Figure 11-10.

Use any creative techniques to demonstrate motion, dynamics, and

feedback.

Do not write or mark on plastic interaction sheets. The plastic interaction

sheets are almost exclusively for mounting and positioning the paper pieces.

The plastic is supposed to be transparent; that is how layering works. Do not

write or draw on the plastic. The only exception is for making transparent

objects such as highlights or as an input

medium on which users write input values.

Later we will discuss completely blank sheets

for writing inputs.

Make highlights on plastic with “handles”

for holding during prototype execution.

Make a highlight to fit each major selectable

object. Cut out a plastic square or

rectangle with a long handle and color in

the highlight (usually just an outline so as

not to obscure the object or text being

highlighted) with a permanent marking

pen. See Figure 11-11.

Figure 11-7

Paper cutouts taped to full-
size plastic for moving
parts.

Figure 11-8

A “Preferences” dialogue
box taped to plastic and
aligned in easel.

413PROTOTYP ING

Make your interaction sheets highly modular by including only a small

amount on each one. Instead of customizing a single screen or page, build up

each screen or display in layers. The less you put on each layer, the moremodular

and, therefore, the more reuse you will get. With every feature and every variation

of appearance taped to a different sheet of plastic, you have the best chance at

being able to show the most variation of appearances and user interface object

configurations you might encounter. Be

suspicious of a lot of writing/drawing on one

interaction sheet. When a prototype user

gives an input, it usually makes a change in

the display. Each possible change should go

on a separate interaction sheet.

Get modularity by thinking about

whatever needs to appear by itself.When

you make an interaction sheet, ask yourself:

Will every single detail on here always appear

together? If there is a chance two items on the

same interaction sheet will ever appear

separately, it is best to put them on separate

interaction sheets. They come back together

when you overlay them together, but they can

still be used separately, too. See Figure 11-12.

Figure 11-9

Pull-down menu on a tape
“hinge.”

Figure 11-10

Paper sliding through a slit
for scrolling.

414 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Do lots of sketching and

storyboarding before making

interaction sheets. This will save

time and work.

Use every stratagem for

minimizing work and time.

Focus on design, not writing and

paper cutting.

Reuse at every level. Make it a

goal to not draw or write anything

twice; use templates for the

common parts of similar objects.

Use a copy machine or scanner to reproduce common parts of similar

interaction objects and write in only the differences. For example, for a

calendar, use copies of a blank month template, filling in the days for each

month. The idea is to capture in a template everything that does not have to

change from one instance to another.

Cut corners when it does not hurt things. Always trade off accuracy (when

it is not needed) for efficiency (that is always needed). As an example, if it is

not important to have the days and dates

be exactly right for a given month on a

calendar, use the same date numbers

for each month in your early prototype.

Then you can put the numbers in

your month template and not have to

write any in.

Make the prototype support key tasks.

Prototype at least all benchmark tasks from

your UX target table, as this prototype will be

used in the formative evaluation exercise.

Make a “this feature not yet

implemented” message. This is the

prototype’s response to a user action that was

not anticipated or that has not yet been

included in the design. You will be surprised

Figure 11-11

Selection highlight on
plastic with a long handle.

Figure 11-12

Lots of pieces of dialogue as
paper cutouts aligned on
plastic sheets.

415PROTOTYP ING

how often you may use this in user

experience evaluation with early prototypes.

See Figure 11-13.

Include “decoy” user interface objects.

If you include only user interface objects

needed to do your initial benchmark tasks, it

may be unrealistically easy for users to do just

those tasks. Doing user experience testingwith

this kind of initial interaction design does not

give a good idea of the ease of use of thedesign

when it is complete and contains many more

user interfaceobjects tochoose fromandmany

more other choices to make during a task.

Therefore, you should include many

other “decoy” buttons, menu choices, etc., even if they do not do anything

(so participants see more than just the “happy path” for their benchmark

tasks). Your decoy objects should look plausible and should, as much as

possible, anticipate other tasks and other paths. Users performing tasks with

your prototype will be faced with a more realistic array of user interface

objects about which they will have to think as they make choices about what

user actions are next. And when they click on a decoy object, that is when

you get to use your “not implemented” message. (Later, in the evaluation

chapters, we while discuss probing the users on why they clicked on that

object when it is not part of your

envisioned task sequence.)

Accommodate data value entry by users.

When users need to enter a value (e.g., a

credit card number) into a paper prototype,

it is usually sufficient to use a clear sheet of

plastic (a blank interaction sheet) on top of

the layers and let them write the value in with

amarking pen; see Figure 11-14. Of course, if

your design requires them to enter that

number using a touchscreen on an iPad, for

example, you have to create a “text input”

interaction sheet.

Figure 11-13

“Not yet implemented”
message.

Figure 11-14

Data entry on clear plastic
overlay sheet.

416 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Create a way to manage complex task

threads. Before an evaluation session,

the prototype “executor” will have all the

paper sheets and overlays all lined up and

ready to put on the easel in response to

user actions. When the number of

prototype pieces gets very large, however,

it is difficult to know what stack of pieces

to use at any point in the interaction, and

it is even more difficult to clean it all up

after the session to make it ready for the

next session.

As an organizing technique that works

most of the time, we have taken to

attaching colored dots to the pieces,

color coding them according to task

threads. Sheets of adhesive-backed colored circles are available at

most office supply stores. See Figure 11-15. Numbers written on the

circles indicate the approximate expected order of usage in the

corresponding task thread, which is the order to sort them in when cleaning

up after a session.

Pilot test thoroughly. Before your prototype is ready to be used in real

user experience evaluation sessions, you must give it a good shake-down.

Pilot test your prototype to be sure that it will support all your benchmark

tasks. You do not want to make the rookie mistake of “burning” a user

participant (subject) by getting them started only to discover the prototype

“blows up” and prevents benchmark task performance.

Simulate user experience evaluation conditions by having one member of

your team “execute” the prototype while another member plays “user” and

tries out all benchmark tasks. The user person should go through each task in

as many ways as anyone thinks possible to head off the “oh, we never thought

they would try that” syndrome later in testing. Do not assume error-free

performance by your users; try to have appropriate error messages where user

errors might occur. When you think your prototype is ready, get someone

from outside your group and have them play the user role in more pilot

testing.

Figure 11-15

Adhesive-backed circles for
color coding task threads
on prototype pieces.

Exercise

See Exercise 11-1, Building a

Low-Fidelity Paper

Prototype for Your System

417PROTOTYP ING

11.7 ADVANTAGES OF AND CAUTIONS ABOUT
USING PROTOTYPES

11.7.1 Advantages of Prototyping
In sum, prototypes have these advantages:

n Offer concrete baseline for communication between users and designers

n Provide conversational “prop” to support communication of concepts not easily

conveyed verbally

n Allow users to “take the design for a spin” (who would buy a car without taking it for

a test drive or buy a stereo system without first listening to it?)

n Give project visibility and buy-in within customer and developer organizations

n Encourage early user participation and involvement

n Give impression that design is easy to change because a prototype is obviously not

finished

n Afford designers immediate observation of user performance and consequences of

design decisions

n Help sell management an idea for new product

n Help affect a paradigm shift from existing system to new system

11.7.2 Potential Pitfalls of Prototyping
Prototyping, however, is not without potential drawbacks that, with some

caution, can be avoided.

Get cooperation, buy-in, and understanding
To ensure your best chances of success with a process based on prototyping,

especially if your organization is not experienced with the technique, the UX

team must first secure cooperation and buy-in from all parties involved,

including management.

Be sure you sell prototyping as the vehicle through which you will apply an

iterative process and eventually come to an acceptable level of user experience in

the design. Otherwise, managers may view allocation of resources to building a

prototype, especially a throw-away one, as wasteful.

In a small contract we had many years ago with a nationally known retail

chain, we were asked to help redesign the in-store point-of-sale software. The

process was discussed only generally because theUX people did not think others

needed to know much about what, after all, they would be doing. So when there

seemed to be agreement upfront, it seemed like the client had bought into the

process. But it turned out to not be a real buy-in.

418 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

When we presented the first prototype, one that had never been evaluated

or iterated, the client’s software people immediately took over the prototype

and the interaction designers were powerless to apply their process further

to arrive at a better design. Later, when the design proved inferior, the

interaction designers were blamed, validating the software people’s view

that a UX process does not add value. “We just implemented what you

designed.”

If at least project management, if not the SE people, had understood the

process and the place of the prototype within that process, and if the UX people

had been empowered to carry out their process, this unfortunate scenario could

have been avoided.

Be honest about limitations and do not overpromise
However, you must present a design prototype to any audience—management,

customers, users, other professionals—with the utmost of professional honesty.

It is your responsibility not even passively to allow your audience to assume

or believe that it is the real product, especially for design exploration prototypes

and prototypes promising features that do not yet exist and, possibly, cannot

be delivered.

The ease of making a low-fidelity prototype makes it easy to add bells

and whistles that you may not be able to deliver in the final product.

Remember that a prototype can be perceived to make promises about

features and functionality. And a slick prototype can cause management to

believe that you are further along in development than you really are in the

project schedule.

Do not overwork your prototype
The engineering maxim to “make it good enough” applies particularly to

prototypes. A programmed prototype can seduce designers into the trap of

overdesign or wasting resources on overworking a prototype, only eventually to

have it scrapped.

Do not “fall in love” with your prototype and continue to expand and polish it

after it has served its usefulness. Establish formative evaluation goals for

prototyping and stick to them.

Finally, it may not be you, but your boss or manager who falls in love with your

prototype. You might be expected to “baby sit” the prototype and keep it

updated to the minute so you can trot it out without notice to demonstrate it to

the next visiting dignitary or visitor. Our advice is to find a way to be busy on

something more important.

419PROTOTYP ING

11.8 PROTOTYPES IN TRANSITION TO THE PRODUCT

If you have a high-fidelity prototype near the end of the iterative UX lifecycle,

you will be thinking next about making the transition from prototype to real

product. Do you keep the prototype or do you scrap it and start over? The answer

often is that you do some of each.

Perhaps the most important consideration is the investment you have made

in the iterative refinement of your design. To protect that investment, you

should do everything possible to preserve the details of the user interface

objects, the “look” or appearance part of the design—the layout and design of all

screens and the exact wording of all labels, menus, and text. If a single detail

changes in the transition, it could impact the user experience—user experience

that you bought and paid for during evaluation and iteration.

Similarly, you will want to preserve the feel and sequencing behavior of your

well-tested prototype. However, this will require careful recoding from the

ground up. Your prototype code for the sequencing always was “spaghetti” code

and was never intended to be anything else.

11.8.1 Graduation Day in the Trenches: The Sacred Passing
of the Prototype
After all your iteration, the day will arrive in each project where all attention

will “graduate” from prototypes to the current version or release of the final

software product. There is no longer an independent UX lifecycle, and all the

action in this “tail” of the lifecycle will be on the SE side because they own

the code.

Some formative evaluation can still be done, but it will be with the real

software system and not the prototype. Further changes on either side will be

much slower and more expensive. As marketing circles in, and perhaps after a

little bubbly for celebration/commiseration, the UX team will either disband or

start working on their next great design.

What happens to the prototype code?
If you do, as we suggest you might, use your interaction design prototype as part

or all of your interaction design specifications. What are the conditions that

determine how you offer it to the SE folks? Howmuch of the prototype software,

especially for a high-fidelity prototype, is to be thrown away and how much is

reused? In most cases, the technical answer is that it all should be thrown away;

the design is what you reuse.

420 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

You cannot just keep the prototype
Despite the urge to say “Hey, we have a prototype that works, let us just use that as

the first version of the product,” in almost all cases the prototype cannot be

gussied up into the final product, for a number of reasons. Rarely is the best

software platform for fast mockups and flexibility of cut-and-try changes to

prototypes the best platform for production software. Furthermore the prototype

code is never production quality; if it is, you were doing prototyping wrong.

How do you reuse the interaction design of the prototype?
Expectations for the implementation of your prototype in production software

are that it will be generally faithful to the intent and behavior of the prototype,

including sequencing and connections to functionality, and literally and

absolutely faithful to every detail of the look, feel, and design of the user

interface objects.

The need for faithfulness of conversion in the second point just given is

paramount. Details such as font size or location of a dialogue box have been

finely honed through significant investment in iterative design and evaluation.

These details are to be treated as sacrosanct and taken literally to an extreme;

they are too valuable to risk being “lost in translation” at this point in the project.

One way that many practitioners get this result is to use a prototype that is a

wireframe plus a visual comp “skin,” a graphical appearance created by visual

designers and often constrained to an exacting visual style guide dictating color

choices (often with great precision down to the RGB increments), branding,

and so on.

An important tool for capturing and communicating much of the interaction

design detail is the custom project style guide (Chapter 9). Your project style

guide, if maintained to capture detailed design decisions, can serve as a

reference to enforce consistency in similar other designs and will go a long way

toward preventing loss of details in the transition from one platform to another.

The need for UX and SE collaboration and respect
At this point of the overall project, the process requires even more collaboration

across the UX–SE aisle. The UX people “own” the interaction design but not the

software that implements it. It is a little like owning a home but not the land

upon which it sits. The “hand-off” point is a serious nexus in the two lifecycles. As

the hand-off occurs across the boundaries of the two domains, there is a

tendency on both sides to think that full responsibility has passed from one team

to another. But a successful hand-off has to be much more of a collaborative

421PROTOTYP ING

event. Both sides face the challenge of connecting the interaction design

representations to existing software development processes.

UX interests are vested in the design, and SE interests are vested in what will

become the implementation code. Mutual preservation of those interests

demands careful collaboration, tempered with mutual respect (Chapter 23).

Do not think the UX team is now done
There are no standards governing the translation from prototype to product

implementation. Because preserving quality user experience in the design is not

in the purview of the SE people, the UX people have a strong responsibility to

ensure that their interaction design comes through with fidelity. If the SE people

are the sole interpreters of this process, there is no way to predict the

assiduousness at the task.

There are important reasons why the UX team cannot just hand it off and

walk away, confident that it is now entirely within the SE bailiwick. There are

currently no major software development lifecycle concepts that include

adequate support for including the UX lifecycle or its work products, such as

interaction design specifications, as a serious part of the overall system

development process.

The SE people do not have, and should not be expected to have, the UX skills

and knowledge to interpret the interaction design specifications thoroughly and

accurately enough to get a perfect translation to software requirements

specifications. The SE people did not participate in the interaction

requirements and design processes and, therefore, do not know its inner details,

boundaries, and supporting rationale.

The SE people cannot know all of what is contained in and communicated by

the prototype (as part of the interaction design specifications) without guidance

from the UX people who created and refined it. Anyway, if your interaction

design matriculates from prototype to implementation successfully,

congratulations!

11.9 SOFTWARE TOOLS FOR PROTOTYPING

In a previous section we mentioned a hope for the future about tools that would

allow us to replace paper prototypes with low-fidelity programmed prototypes,

but with the same ease of building, modifying, and executing low-fidelity

prototypes as we had in the paper medium. The human–computer interaction

(HCI) research community has not been unaware of this need and has tried

422 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

to address it over the years (Carey & Mason, 1989; Gutierrez, 1989; Hix &

Schulman, 1991; Landay & Myers, 1995). However, the technical challenges of

designing and building such a software tool have been steep. We are not there

yet, but such a software tool would certainly be valuable.

In the 1990s, user interface management systems (UIMSs), broad tool suites

for defining, implementing, and executing interaction designs and prototypes

(Myers, 1989, 1993, 1995; Myers, Hudson, & Pausch, 2000), and software

prototyping tools were hot topics. Hix and Schulman (1991) also did some work

on software tool evaluation methods.

There were different and competing looks, feels, and interaction styles built

into many of these tools, such as CUA (IBM), OpenLook (Next), Toolbook

(Asymetrix), Altia design (Altia, Inc.), Delphi (Borlund), Visual Basic (Microsoft

Windows), and Dreamweaver (from Macromedia, for Web-based interaction).

Some were not available commercially but were developed by the organizations

that used them (e.g., TAE Plus by NASA). And some tools depended on a variety

of different “standards,” such as OSF Motif, not to mention Windows vs.

Macintosh.

Many of the first tools for prototyping of interactive systems required a great

deal of programming. Thus, interaction designers lacking programming skills

could not use them directly, and “compiling” a new design iteration into

executable form could be lengthy, complex, and fraught with bugs. Because

many of the early UIMSs had a strong connection to computer graphics,

resulting prototypes could be very realistic and could exhibit rather complex

graphical behavior.

Some tools were, and some still are, based on interpretable interface

definitions of the design entered declaratively, possibly along with some

behavior structuring code. The interpretive approach offered more speed and

flexibility in accommodating changes but, because of early hardware limitations,

almost always caused the prototype execution to suffer slow performance. As the

ability to produce user interface façades advanced in the tools, provision was

made to program or at least stub non-interface functionality, moving the

technology slowly toward whole system prototypes.

There is still no single prototyping platform capable of facilitating rapid

prototype construction whilemeeting requirements to simulate today’s complex

interaction paradigms. This has been a persistent problem in HCI, where the

prototyping tools are always a little behind on the state of the art of interaction

possibilities.

For example, in a study we conducted with eight student teams working on

building a real-world software system, we observed a situation where the

423PROTOTYP ING

interaction designers in the team needed an autocomplete feature in a pull-

down menu as a core feature of their prototype. But because they could not get

autocompletion in a prototype without a database, the software engineers in the

team ended up having to build the database to support this one interaction

design feature.

That software investment could not be used in the product itself, however,

because it was on the wrong platform. We have to keep repeating the difficult

prototype programming it takes to provide the functional behaviors that are

becoming expected in any interactive software system, such as log-in sequences,

auto-completion functions, or data entry validation sequences. Nowadays more

and more of these complex interaction patterns are being communicated using

static or click-through wireframes. We hope the state of the art in prototyping

tools will soon evolve to support such patterns more effectively.

11.9.1 Desiderata for Prototyping Tools
As we have said, prototyping tools so far have almost always shared the same

downside: it takes too long to make changes, as even the smallest amount of

programming distracts from the purpose of a low-fidelity prototype and, as the

prototype grows in size, it becomes less amenable to changes. Therefore, we

(especially the user interface software community) continue on a quest for the

perfect software prototyping tool, among the desired features of which are:

n Fast and effortless changes

n Ease on the order of that of paper prototypes: as natural as changing a paper

prototype

n Tool transparency: Needs so little focus on the software that it does not distract

from the design and prototype building

n Fast turnaround to executability so there is almost no wait before it can be

executed again

n Non-programmer ease of prototype definition and use

n Non-programmers must be able to define and modify design features

n Built-in common behaviors and access to large varieties of other behaviors via

a library of plug-ins

n Easily include realism of features and behavior commensurate with expectations

for modern interaction styles

n Supports a wide variety of interaction styles and devices, including various pointing

and selecting devices, touchscreens, speech/audio, tactile/haptic, and gesture

424 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

n Ease of creating and modifying links to various points within the interaction design

(e.g., buttons, icons, and menu choices to particular screens) to simulate user

navigational behavior

n Communication with external procedures and programs (e.g., calls, call-backs, data

transfer) to include some functionality and additional application behavior

n Capability to import text, graphics, and other media from other sources

n Capability to export look and feel components for eventual transition to final

product code

425PROTOTYP ING

Intentionally left as blank

CHAPTER

UX Evaluation Introduction 12
Objectives

After reading this chapter, you will:

1. Understand the difference between formative and summative evaluation and the

strengths and limitations of each

2. Understand the difference between analytic and empirical methods

3. Understand the difference between rigorous and rapid methods

4. Know the strengths and weaknesses of various data collection techniques, such as

critical incident identification, thinking aloud, and questionnaires

5. Distinguish evaluation techniques oriented toward usability and emotional impact

6. Understand the concept of the evaluator effect and its impact on evaluation results

12.1 INTRODUCTION

12.1.1 You Are Here
We begin each process chapter with a “you are here” picture of the chapter topic

in the context of the overall Wheel lifecycle template; see Figure 12-1. This

chapter is an introduction that will lead us into the types and parts of UX

evaluation of the following chapters.

12.1.2 Evaluate with a Prototype on Your Own Terms
Users will evaluate the interaction design sooner or later, so why not have themdo

it sooner—working with your team, using the proper techniques, and under the

appropriate conditions—or you can wait until it is in the field, where you cannot

control the outcome—visualize bad rumors about your product and huge costs

to fix the problems because you have already committed the design to software.

12.1.3 Measurability of User Experience
But can you evaluate usability or user experience? This may come as a surprise,

but neither usability nor user experience is directly measurable. In fact, most

interesting phenomenon, such as teaching and learning, share the same

difficulty. So we resort to measuring things we can measure and use those

measurements as indicators of our more abstract and less measurable notions.

For example, we can understand usability effects such as productivity or ease

of use bymeasuring observable user performance-based indicators such as time to

task completion and error counts. You can design a feature so that the

performance of a certain task in a usability lab will yield a desirable objective

measurement of, say, time on task. In almost any work context this translates to

good user performance.

Questionnaires also provide indicators of user satisfaction from their answers

to questions we think are closely related to satisfaction. Similarly, emotional

impact factors such as user satisfaction and joy of use also cannot be measured

directly but only through indirect indicators.

12.1.4 User Testing? No!
Before we get into the different types of evaluation, let us first calibrate our

perspective on what we are testing here. Ask yourself honestly: Do you use the

term “user testing?” If you do, you are not alone: the term appears inmany books

Figure 12-1

You are here, at the
evaluation activity in the
context of the overall Wheel
lifecycle template.

428 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

and papers on human–computer interaction (HCI) as it does in a large volume

of online discussions and practitioner conversations.

You know what it means and we know what it means, but no user will like

the idea of being tested and, thereby, possibly made to look ridiculous. No, we

are not testing users, so let us not use those words. We might be testing or

evaluating the design for usability or the full user experience it engenders in

users, but we are not testing the user. We call it UX evaluation or even UX testing,

but not “user testing!”

It might seem like a trivial PC issue, but it goes beyond being polite or

“correct.” When you are working with users, projecting the right attitude and

making them comfortable in their role can make a big difference in how well

they help you with evaluation. UX evaluation must be an ego-free process; you

are improving designs, not judging users, designers, or developers.

We know of a case where users at a customer location were forced to play

the user role for evaluation, but were so worried that it was a ruse to find

candidates for layoffs and staff reductions that they were of no real value for the

evaluation activities. If your user participants are employees of the customer

organization, it is especially important to be sure they know you are not testing

them. Your user participants should be made to feel they are part of a design

process partnership.

12.2 FORMATIVE VS. SUMMATIVE EVALUATION

In simplest terms, formative evaluation helps you form the design and

summative evaluation helps you sum up the design. A cute, but apropos, way to

look at the difference: “When the cook tastes the soup, that’s formative; when

the guests taste the soup, that’s summative” (Stake, 2004, p. 17).

The earliest reference to the terms formative evaluation and summative

evaluation we know of stems from their use by Scriven (1967) in education and

curriculum evaluation. Perhaps more well known is the follow-up usage by Dick

and Carey (1978) in the area of instructional design.Williges (1984) andCarroll,

Rosson, and Singley (1992) were among the first to use the terms in an HCI

context.

Formative evaluation is primarily diagnostic; it is about collecting qualitative

data to identify and fix UX problems and their causes in the design. Summative

evaluation is about collecting quantitative data for assessing a level of quality due

to a design, especially for assessing improvement in the user experience due to

formative evaluation.

Qualitative Data

Qualitative data are non-

numeric and descriptive

data, usually describing a

UX problem or issue

observed or experienced

during usage.

Quantitative Data

Quantitative data are

numeric data, such as user

performance metrics or

opinion ratings.

429UX EVALUAT ION INTRODUCTION

Formal summative evaluation is typified by an empirical competitive benchmark

study based on formal, rigorous experimental design aimed at comparing design

hypothesis factors. Formal summative evaluation is a kind of controlled

hypothesis testing with an m by n factorial design with y independent variables,

the results of which are subjected to statistical tests for significance. Formal

summative evaluation is an important HCI skill, but we do not cover it in

this book.

Informal summative evaluation is used, as a partner of formative evaluation, for

quantitatively summing up or assessing UX levels using metrics for user

performance (such as the time on task), for example, as indicators of progress in

UX improvement, usually in comparison with pre-established UX target levels

(Chapter 10).

However, informal summative evaluation is done without experimental

controls, with smaller numbers of user participants, and with only

summary descriptive statistics (such as average values). We include informal

summative evaluation in this book as a companion activity to formative

evaluation.

12.2.1 Engineering Evaluation of UX: Formative Plus
Informal Summative

Life is one big, long formative evaluation.

– Anonymous

Try as you might in the design phase, the first version of your interaction

design is unlikely to be the best it can be in meeting your business goals of

pleasing customers and your UX goals of pleasing users. Thus the reason for

iteration and refinement cycles, to which evaluation is central.

You do not expect your first design to stand for long. Our friend and

colleague, George Casaday calls it: “Waffle Wisdom” or “Pancake Philosophy”—

like the first waffle or pancake, you expect from the start to throw away the first

design, and maybe the next few. Formative evaluation is how you find out how

to make the next ones better and better.

In UX engineering, formative UX evaluation includes any method that

meets the definition of helping to form the design. Most, if not all, rapid UX

evaluation methods (Chapter 13) have only a formative UX evaluation

component and do not have a summative component. In lab-based UX testing

sessions we also often use only formative evaluation, especially in early cycles

of iteration when we are defining and refining the design and are not yet

interested in performance numbers.

430 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

In rigorous UX evaluation we often add an informal summative evaluation

component to formative evaluation, the combination being used to improve an

interaction design and to assess how well it has been improved. We call this

combination “UX engineering evaluation” or just “UX evaluation,” as shown in

Figure 12-2.

At the end of each iteration for a product version, the informal summative

evaluation is used as a kind of acceptance test to compare with our UX targets

and ensure that we meet our UX and business goals with the product design.

12.2.2 Engineering vs. Science

It’s all very well in practice but it will never work in theory.

– French management saying

Sometimes empirical lab-based UX testing that includes quantitative metrics is

the source of controversy with respect to “validity.” Sometimes we hear “If you do

not include formal summative evaluation, are you not missing an opportunity to

add some science?” “Since your informal summative evaluation was not

controlled testing, why should we not dismiss your results as too ‘soft’?” “Your

informal studies just are not good science. You cannot draw any conclusions.”

These questions ignore the fundamental difference between formal and

informal summative evaluation and the fact that they have completely different

goals and methods. This may be due, in part, to the fact that the fields of

HCI and UX were formed as a melting pot of people from widely varying

backgrounds. From their own far-flung cultures in psychology, human factors

Figure 12-2

UX evaluation is a
combination of formative
and informal summative
evaluation.

431UX EVALUAT ION INTRODUCTION

engineering, systems engineering, software engineering, marketing, and

management they arrived at the docks of HCI with their baggage containing

their own perspectives and mind-sets.

Thus, it is known that formal summative evaluations are judged on a number

of rigorous criteria, such as validity, and that formal summative evaluation

contributes to our science base. But informal summative evaluation may be less

known as an important engineering tool in the HCI bag and that the only

criterion for judging this kind of summative evaluation method is whether it

works as part of an engineering process.

12.2.3 What Happens in Engineering Stays in Engineering
Because informal summative evaluation is engineering, it comes with some very

strict limitations, particularly on sharing informal summative results.

Informal summative evaluation results are only for internal use as

engineering tools to do an engineering job by the project team and cannot be

shared outside the team. Because of the lack of statistical rigor, these results

especially cannot be used to make any claims inside or outside the team. To

make claims about UX levels achieved, for example, from informal summative

results, would be a violation of professional ethics.

We read of a case where a CEO of a company got a UX report from a project

team, but discounted the results because they were not statistically significant.

This problem could have been avoided by following our simple rules and not

distributing formative evaluation reports outside the team or by writing the

report with careful caveats.

But what if you are required to produce a formative evaluation report for

consumption beyond the team or what if you need results to convince the team

to fix the problems you find in a formative evaluation? We address those

questions and more in Chapter 17, evaluation reporting.

12.3 TYPES OF FORMATIVE AND INFORMAL
SUMMATIVE EVALUATION METHODS

12.3.1 Dimensions for Classifying Formative UX Evaluation
Methods
In practice, there are two orthogonal dimensions for classifying types of

formative UX evaluation methods:

n empirical method vs. analytic method

n rigorous method vs. rapid method

432 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

12.3.2 Rigorous Method vs. Rapid Method
Formative UX evaluation methods can be either rigorous or rapid. We define

rigorous UX evaluation methods to be those methods that maximize

effectiveness and minimize the risk of errors regardless of speed or cost,

meaning to refrain from shortcuts or abridgements.

Rigorous empirical UX evaluation methods entail a full process of

preparation, data collection, data analysis, and reporting (Chapters 12 and 14

through 18). In practical terms, this kind of rigorous evaluation is usually

conducted in the UX lab. Similarly, the same kind of evaluation can be

conducted at the customer’s location in the field.

Rigorous empirical methods such as lab-based evaluation, while certainly not

perfect, are the yardstick by which other evaluation methods are compared.

Rigorous and rapid methods exist mainly as quality vs. cost trade-offs.

n Choose a rigorous empirical method such as lab-based testing when you need

effectiveness and thoroughness, but expect it to be more expensive and time-

consuming.

n Choose the lab-based method to assess quantitative UX measures and metrics, such as

time-on-task and error rates, as indications of how well the user does in a performance-

oriented context.

n Choose lab-based testing if you need a controlled environment to limit distractions.

n Choose empirical testing in the field if you need more realistic usage conditions for

ecological validity than you can establish in a lab.

However, UX evaluation methods can be faster and less expensive.

n Choose a rapid evaluation method for speed and cost savings, but expect it to be

(possibly acceptably) less effective.

n Choose a rapid UX evaluation method for early stages of progress, when things are

changing a lot, anyway, and investing in detailed evaluation is not warranted.

n Choose a rapid method, such as a design walkthrough, an informal demonstration of

design concepts, as a platform for getting initial reactions and early feedback from the

rest of the design team, customers, and potential users.

12.3.3 Analytic Method vs. Empirical Method
On a dimension orthogonal to rapid vs. rigorous, formative UX evaluation

methods can be either empirical or analytic (Hix & Hartson, 1993; Hartson,

Andre, & Williges, 2003). Empirical methods employ data observed in the

performance of real user participants, usually data collected in lab-based testing.

Ecological Validity

Ecological validity refers to

the realism with which a

design of evaluation setup

matches the user’s real work

context. It is about how

accurately the design or

evaluation reflects the

relevant characteristics of

the ecology of interaction,

i.e., its context in the world

or its environment.

433UX EVALUAT ION INTRODUCTION

Analytical methods are based on looking at inherent attributes of the design

rather than seeing the design in use. Many of the rapid UX evaluation methods

(Chapter 13), such as design walkthroughs and UX inspection methods, are

analytic methods.

Somemethods in practice are a mix of analytical and empirical. For example,

expert UX inspection can involve “simulated empirical” aspects in which the

expert plays the role of the users, simultaneously performing tasks and

“observing” UX problems.

Empirical methods are sometimes called “payoff methods” (Carroll,

Singley, & Rosson, 1992; Scriven, 1967) because they are based on how a design

or design change pays off in terms of real observable usage. Examples of the kind

of data collected in empirical methods include quantitative user performance

data, such as time on task and error rates, and qualitative user data derived from

usage observation, such as UX problem data stemming from critical incident

identification and think-aloud remarks by user participants. Analytical methods

are sometimes called “intrinsic methods” because they are based on analyzing

intrinsic characteristics of the design rather than seeing the design in use.

In describing the distinction between payoff and intrinsic approaches to

evaluation, Scriven wrote an oft-quoted (Carroll, Singley, & Rosson, 1992;

Gray & Salzman, 1998, p. 215) analogy featuring an axe (Scriven, 1967, p. 53):

“If you want to evaluate a tool, say an axe, you might study the design of the bit,

the weight distribution, the steel alloy used, the grade of hickory in the handle,

etc., or you might just study the kind and speed of the cuts it makes in the hands

of a good axeman,” speaking of intrinsic and payoff evaluation, respectively.

In Hartson, Andre, and Williges (2003) we added our own embellishments,

which we paraphrase here.

Although this example served Scriven’s purpose well, it also offers us a chance

tomake a point about the need to identify UX goals carefully before establishing

evaluation criteria. Giving a UX perspective to the axe example, we note that

user performance observation in payoff evaluation does not necessarily require

an expert axeman (or axeperson). Expert usage might be one component of the

vision in axe design, but it is not an exclusive requirement in payoff evaluation.

UX goals depend on expected user classes of key work roles and the expected

kind of usage.

For example, an axe design that gives optimum performance in the hands of

an expert might be too dangerous for a novice user. For the weekend wood

whacker, safety might be a UX goal that transcends firewood production, calling

for a safer design that might necessarily sacrifice some efficiency. One hesitates

to contemplate the metric for this case, possibly counting the number of 911

Critical Incident

A critical incident is a UX

evaluation event that occurs

during user task

performance or other user

interaction, observed by the

facilitator or other

observers or sometimes

expressed by the user

participant, that indicates a

possible UX problem.

Critical incident

identification is arguably

the single most important

source of qualitative data.

Think Aloud
Technique

The think aloud technique is

a qualitative data collection

technique in which user

participants verbally

externalize their thoughts

about their interaction

experience, including their

motives, rationale, and

perceptions of UX

problems. By this method,

participants give the

evaluator access to an

understanding of their

thinking about the task and

the interaction design.

434 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

calls from a cellphone in the woods near Newport, Virginia, or the number

of visits to the ER. Analogously, UX goals for a novice user of a software

accounting system (e.g., TurboTax), for example, might place ease of use

and data integrity (error avoidance) above sheer expert productivity.

Emotional impact factors can also be evaluated analytically. For example, a

new axe in the hands of an expert might elicit an emotional response. Perhaps

the axe head is made of repurposed steel from the World Trade Center—what

patriotic and emotional impact that could afford! A beautiful, gleaming

polished steel head, a gorgeously finished hickory wood handle, and a fine

leather scabbard could elicit a strong admiration of the craftsmanship and

aesthetics, as well as great pride of ownership.

Emotional impact factors can also be evaluated empirically. One need only

observe the joy of use of a finely made, exquisitely sharpened axe. In a kind of

think-aloud technique, the user exclaims with pleasure about the perfect

balance as he or she hits the “sweet spot” with every fast-cutting stroke.

12.3.4 Where the Dimensions Intersect
Some example UX evaluation methods are shown in Figure 12-3 at the various

intersections between the two dimensions empirical vs. analytic and rigorous

vs. rapid.

We usually associate the rigorous empirical category with lab-based evaluation

(Chapters 14 through 17), but empirical UX evaluation in a conference room or

field setting can also be rigorous. The rapid evaluation methods (Chapter 13)

are mostly analytic methods but at least one rapid empirical method (RITE)

exists, designed to pick the low-hanging fruit at relatively low cost.

In addition, most practitioners in the field have their own versions of the lab-

basedmethod thatmight qualify as rapidbecauseof severe abridgements but also

still qualify as empirical because they involve data

collection using participants. Rigorous analytic

methods are beyond the scope of this book.

12.4 TYPES OF EVALUATION
DATA

Fundamentally, UX data can be objective or

subjective and it can be quantitative or

qualitative. Because the two dimensions are

orthogonal, you can see all four combinations,

Figure 12-3

Sample UX evaluation
methods at intersections
between the dimensions of
UX evaluation method
types.

435UX EVALUAT ION INTRODUCTION

objective and quantitative, subjective and quantitative, and so forth. When your

rigorous evaluation is driven by benchmark tasks, the kinds of data collected in

the process will mirror what is specified in UX targets and metrics.

12.4.1 Objective Data vs. Subjective Data
Objective UX data are data observed directly by either the evaluator or the

participant. Subjective UX data represent opinions, judgments, and other

subjective feedback usually from the user, concerning the user experience and

satisfaction with the interaction design.

12.4.2 Quantitative Data vs. Qualitative Data
Quantitative data are numeric data, such as data obtained by user performance

metrics or opinion ratings. Quantitative data are the basis of an informal

summative evaluation component and help the team assess UX achievements

and monitor convergence toward UX targets, usually in comparison with the

specified levels set in the UX targets (Chapter 10). The two main kinds of

quantitative data collected most often in formative evaluation are objective user

performance data measured using benchmark tasks (Chapter 10) and subjective

user-opinion data measured using questionnaires (coming up later).

Qualitativedata arenon-numeric anddescriptivedata, usually describing aUX

problem or issue observed or experienced during usage. Qualitative data are

usually collected via critical incident (also coming up later) and/or the think-

aloud technique (see later) and are the key to identifyingUXproblems and their

causes.Bothobjective andsubjectivedata canbeeitherqualitativeorquantitative.

12.5 SOME DATA COLLECTION TECHNIQUES

12.5.1 Critical Incident Identification
The key objective of formative evaluation is to identify defects in the interaction

design so that we can fix them. But during an evaluation session, you cannot

always see the interaction design flaws directly. What we can observe directly or

indirectly are the effects of those design flaws on the users. We refer to such

effects on the users during interaction as critical incidents. Much of the

attention of evaluators in evaluation sessions observing usage is spent looking for

and identifying critical incidents.

Critical incidents
Despite numerous variations in procedures for gathering and analyzing

critical incidents, researchers and practitioners agree about the definition of a

critical incident. A critical incident is an event observed within task performance

436 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

that is a significant indicator of some factor defining the objective of the study

(Anderssona & Nilsson, 1964).

In the UX literature (Castillo &Hartson, 2000; del Galdo, et al., 1986), critical

incidents are indicators of “something notable” about usability or the user

experience. Sometimes that notable indication is about something good in the

user experience, but the way we usually use it is as an indicator of things that go

wrong in the stream of interaction details, indicators of UX problems or features

that should be considered for redesign.

The best kind of critical incident data are detailed, observed during usage,

and associated closely with specific task performance. The biggest reason why

lab-based UX testing is effective is that it captures exactly that kind of detailed

usage data as it occurs.

Critical incidents are observed directly by the facilitator or other observers

and are sometimes expressed by the user participant. Some evaluators wait for an

obvious user error or task breakdown to record as a critical incident. But an

experienced facilitator can observe a user hesitation, a participant comment in

passing, a head shaking, a slight shrugging of the shoulders, or drumming of

fingers on the table. A timely facilitator request for clarification might help

determine if any of these subtle observations should be considered a symptom of

a UX problem.

Critical incident data about a UX problem should contain as much detail as

possible, including contextual information, such as:

n the user’s general activity or task

n objects or artifacts involved

n the specific user intention and action that led immediately to the critical incident

n expectations of the user about what the system was supposed to do when the critical

incident occurred

n what happened instead

n as much as possible about the mental and emotional state of the user

n indication of whether the user could recover from the critical incident and, if so, a

description of how the user did so

n additional comments or suggested solutions to the problem

Relevance of critical incident data
Critical incident identification is arguably the single most important source

of qualitative data in formative evaluation. These detailed data, perishable if

not captured immediately and precisely as they arise during usage, are essential

for isolating specific UX problems within the user interaction design.

437UX EVALUAT ION INTRODUCTION

History of critical incident data
The origins of the critical incident technique can be traced back at least to

studies performed in the Aviation Psychology Program of the U.S. Army Air

Forces in World War II to analyze and classify pilot error experiences in

reading and interpreting aircraft instruments. The technique was first formally

codified by the work of Fitts and Jones (1947). Flanagan (1954) synthesized

the landmark critical incident technique.

Mostly used as a variation
When Flanagan designed the critical incident technique in 1954, he did not see

it as a single rigid procedure. He was in favor ofmodifying this technique tomeet

different needs as long as original criteria were met. The variation occurring

over the years, however, may have been more than Flanagan anticipated.

Forty years after the introduction of Flanagan’s critical incident technique,

Shattuck and Woods (1994) reported a study that revealed that this technique

has rarely been used as originally published. In fact, numerous variations of

the method were found, each suited to a particular field of interest. In HCI, we

have continued this tradition of adaptation by using our own version of the

critical incident technique as a primary UX evaluation technique to identify UX

problems and their causes.

Critical incident reporting tools
Human factors and human–computer interaction researchers have developed

software tools to assist identifying and recording critical incident information.

del Galdo et al. (1986) investigated the use of critical incidents as a mechanism

to collect end-user reactions for simultaneous design and evaluation of both

online and hard-copy documentation. As part of this work, del Galdo et al.

(1986) designed a software tool to collect critical incidents from user subjects.

Who identifies critical incidents?
One factor in the variability of the critical incident technique is the issue of who

makes the critical incident identification. In the original work by Fitts and Jones

(1947), the user (an airplane pilot) reported the critical incidents after task

performance was completed. Flanagan (1954) used trained observers to collect

critical incident information while observing users performing tasks.

del Galdo et al. (1986) involved users in identifying their own critical

incidents, reporting during task performance. The technique was also used as a

self-reporting mechanism by Hartson and Castillo (1998, 2000) as the basis for

438 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

remote system or product usability evaluation. Further, Dzida, Wiethoff, and

Arnold (1993) and Koenemann-Belliveau et al. (1994) adopted the stance that

identifying critical incidents during task performance can be an individual

process by either the user or an evaluator or a mutual process between the user

and an evaluator.

Timing of critical incident data capture: The evaluator’s
awareness zone
While users are known to report major UX problems in alpha and beta testing

(sending software out for comments on how well it worked), one reason these

methods cannot be relied upon for thorough identification of UX problems to

fix is the retrospective nature of that kind of data collection. Lab-based UX

evaluation has the advantage of having the precious and volatile details right in

front of you as they happen. The key to this kind of UX data is in the details, and

details of these data are perishable; they must be captured immediately as they

arise during usage.

As a result, do not lose this advantage; capture and document the details while

they are fresh (and not just by letting the video recorder run). If you capture

them as they happen, we call it concurrent data capture. If you capture data

immediately after the task, we call it contemporaneous data capture. If you try to

capture data after the task is well over, through someone trying to remember the

details in an interview or survey after the session, this is retrospective data

capture and many of the once-fresh details can be lost.

It is not as easy, however, as just capturing critical incident data immediately

upon its occurrence. A critical incident is often not immediately recognized for

what it is. In Figure 12-4, the evaluator’s recognition of a critical incident will

Figure 12-4

Critical incident
description detail vs. time
after critical incident.

439UX EVALUAT ION INTRODUCTION

necessarily occur sometime after it begins to occur. And following the point of

initial awareness, after confirming that it is a critical incident, the evaluator

requires some time and thought in a kind of “awareness zone” to develop an

understanding of the problem, possibly through discussion with the participant.

The optimum time to report the problem, the time when the potential for

a quality problem report is highest, is at the peak of this problem understanding,

as seen in Figure 12-4. Before that point, the evaluator has not yet established

a full understanding of the problem. After that optimum point, natural

abstraction due to humanmemory limitations sets in and details drop off rapidly

with time, accelerated by proactive interference from any intervening tasks.

12.5.2 The Think-Aloud Technique
Also called “think-aloud protocol” or “verbal protocol,” the think-aloud

technique is a qualitative data collection technique in which user participants, as

the name implies, express verbally their thoughts about their interaction

experience, including their motives, rationale, and perceptions of UX

problems. By this method, participants let us in on their thinking, giving us

access to a precious understanding of their perspective of the task and the

interaction design, their expectations, strategies, biases, likes, and dislikes.

Why use the think-aloud technique?
General observational data are important during an evaluation session with a

participant attempting to perform a task. You can see what parts of a task the user

is having trouble with, you can see hesitations about using certain widgets, and so

on. But the bulk of real UX problem data is hidden from observation, in the

mind of the participant. What is really causing a hesitation and why does this

participant perceive it as a problem or barrier? To get the best qualitative data,

you have to tap into this hidden data, buried in the participant’s mind, which is

the goal of the think-aloud technique.

The think-aloud technique is simple to use, for both analyst and participant.

It is useful for when a participant walks through a prototype or helps you with a

UX inspection. Nielsen (1993, p. 195) says “thinking aloud may be the single

most valuable usability engineering method.” It is effective in accessing user

intentions, what they are doing or are trying to do, and their motivations, the

reasons why they are doing any particular actions. The think-aloud technique is

also effective in assessing emotional impact because emotional impact is felt

internally and the internal thoughts and feelings of the user are exactly what the

think-aloud technique accesses for you.

440 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

The think-aloud technique can be used in both rigorous empirical methods

(lab-based) and rapid empirical methods (quasi-empirical and RITE)—that

is, any UX evaluation method that involves a user “participant.” Variations

of this simple technique are rooted in psychological and human factors

experimentation well before it was used in usability engineering (Lewis, 1982).

What kind of participant works best?
Some participants can talk while working; get them if you can. The usual

participant for think-aloud techniques is someone who matches the work role

and user class definitions associated with the tasks you will use to drive the

evaluation. This kind of participant will not be trained as a UX practitioner, but

that usually will not deter them from offering opinions and theories about UX

problems and causes in your design, which is what you want.

You must remember, however, that it is your job to accept their comments as

inputs to your process and it is still up to you to filter and interpret all think-

aloud data in the context of your design. Participants and think-aloud

techniques are not a substitute for you doing your job.

So, if think-aloud participants are not typically trained UX practitioners, what

about using participants who are? You can use trained UX practitioners as

participants, if they are not stakeholders in your project. They will give a

different perspective on your design, often reflecting a better and deeper

understanding and analysis. But their analysis may not be accurate from a work-

domain or task perspective, so you are still responsible for filtering and

interpreting their comments.

Is thinking aloud natural for participants?
It depends on the participant. Some people find it natural to talk while they

work. Some people are able and only too willing to share their thoughts while

working or while doing anything. Others are naturally quiet or contemplative

and must be prompted to verbalize their thoughts as they work.

Some people, in the cannot-walk-and-chew-gum category, have difficulty

expressing themselves while performing a physical task—activities that require

help from different parts of the brain. For these people, you should slow things

down and let them “rest” and talk only between actions. Even the most

loquacious of participants at times will need prompting, “what are you thinking

about?” or “what do you think you should do next?”

Also, sometimes participants ask questions, such as “what if I click on this?,” to

which your reply should encourage them to think it through themselves, “what

do you think will happen?” When an interaction sequence leads a participant to

441UX EVALUAT ION INTRODUCTION

surprise, confusion, or bewilderment—even fleetingly—ask them, “was that

what you expected?” or “what did you expect?”

How to manage the think-aloud protocol?
The think-aloud technique is intended to draw out cognitive activity, not to

confirm observable behavior. Therefore, your instructions to participants

should emphasize telling you what they are thinking, not describing what they

are doing. You want them to tell you why they are taking the actions that you can

observe.

Once your participants get into thinking aloud, they may tend to keep

the content at a chatty conversational level. You may need to encourage

them to get past the “it is fine” stage and get down into real engagement

and introspection. And sometimes you have to make an effort to keep the

think-aloud comments flowing; some participants will not naturally maintain

thinking aloud while they work and will have to be prodded gently.

Seeing a participant sit there silently struggling with an unknown problem

tells us nothing about the problem or the design. Because we are trying to extract

as much qualitative data as possible from each participant, elicitation of

participant thoughts is a valuable facilitator skill. Youmight even consider a brief

practice lesson on thinking aloud with each participant before you start the

session itself.

Retrospective think-aloud techniques
If, as facilitator, you perceive that the think-aloud technique, when used

concurrently with task performance, is interfering in some way with task

performance or task measurements, you can wait until after task completion

(hence the name “retrospective”) and review a video recording of the session

with the participant, asking for more complete “thinking aloud” during this

review of his or her own task performance. In this kind of retrospective think-

aloud technique, the participant is acting less as a task performer andmore as an

observer and outside “commentator,” but with detailed inside information. The

audio of this verbal review can be recorded on a second track in synchronism

with the video, for even further later analysis, if necessary.

This approach has the advantage of capturing themaximum amount of think-

aloud data but has the obvious downside of requiring a total of at least twice as

much time as just the session itself. It also suffers from the time lag after the

actual events. While better than a retrospective review even later, some details

will already be fading from the participant’s memory.

442 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Co-discovery think-aloud techniques
Using a single participant is the dominant paradigm in usability and UX testing

literature. Single users often represent typical usage and you want to be sure

that single users can work their way through the tasks. However, you may also

wish to try the increasingly common practice of using two ormore participants in

a team approach, a technique that originated with O’Malley, Draper, and

Riley (1984). Kennedy (1989) named it “co-discovery” and that name has stuck.

While it can seem unnatural and inhibiting for a lone participant to be

thinking aloud, essentially talking to oneself, there is more ease in talking in

a natural conversation with another person (Wildman, 1995). A single individual

participant can have trouble remembering to verbalize, but it is just natural

with a partner. When the other person is also verbalizing in a problem-solving

context, it amounts to a real and natural conversation, making this approach

increasingly popular with practitioners and organizations.

Hackman and Biers (1992) found that multiple participants, while slightly

more expensive, resulted in more time spent in verbalizing and, more

importantly, participant teams spent more time verbalizing statements that had

high value as feedback for designers.

Co-discovery is an especially good method for early low-fidelity prototypes; it

gets you more viewpoints. And there is less need for the facilitator to interact,

intervene, or give hints. The participants ask each other the questions and give

themselves the guidance and prodding. When one participant gets stuck, the

other can suggest things to try. When two people act as a real team, they are

more willing to try new things and less intimidated than if they had been

working solo.

Co-discovery pays off best when their thinking aloud becomes an interactive

conversation between the participants, but this can produce qualitative data at a

prodigious rate, at times more than twice as fast as from one participant. Two

co-participants can bounce thoughts and comments back and forth. You may

have to switch from zone defense, where each data collector does their best to

catch what comes their way, to a person-to-person arrangement where each

data collector is assigned to focus on comments by just one of the participants.

This is where video capture makes for a good back-up to review selectively

if you think you might have missed something.

There aremany ways for a co-discovery session to play out. The scenarios often

depend on participant personalities and who takes the lead. You should let

them take turns at driving; both still have to pay attention. In cases where one

participant has a dominant personality to the point where that person wants

443UX EVALUAT ION INTRODUCTION

to run things and perhaps thinks he or she knows it all, try to get the other

participant to drive asmuch as possible, to give them some control. If one person

seems to drift off and lose attention or interest, you may have to use the usual

techniques for getting school children re-engaged in an activity, “Johnny, what

do you think about that problem?”

Finally, as a very practical bonus from planning a co-discovery session, if

one participant does not show up, you can still do the session. You avoid the cost

of an idle slot in the lab and having to reschedule.

Does thinking aloud affect quantitative task performance
metrics in lab-based evaluation?
It depends on the participant. Some participants can naturally chat about what

they are doing as they work. For these participants, the concurrent think-aloud

technique usually does not affect task performance when used with measured

benchmark tasks.

This is especially true if the participant is just thinking aloud and not engaged

with questions and answers by the facilitator. But for some participants, the

think-aloud protocol does affect task performance. This is especially true for

non-native speakers because their verbalizations just take longer.

12.5.3 Questionnaires
A questionnaire is the primary instrument for collecting subjective data from

participants in all types of evaluations. It can be used to supplement objective

(directly observable) data from lab-based or other data collection methods or as

an evaluation method on its own. A questionnaire can contain probing

questions about the total user experience. Although post-session questionnaires

have been used primarily to assess user satisfaction, they can also contain

effective questions oriented specifically toward evaluating broader emotional

impact and usefulness of the design.

Questionnaires are a self-reporting data collection technique and, as Shih and

Liu (2007) say, semantic differential questionnaires (see next section) are used

most commonly because they are a product-independent method that can yield

reliable quantitative subjective data. This kind of questionnaire is inexpensive to

administer but requires skill to produce so that data are valid and reliable.

In the days of traditional usability, questionnaires were used mostly to

assess self-reported user satisfaction. And they were “seen as a poor cousin to

[measures of] efficiency” (Winograd & Flores, 1986), but Lund (2001, 2004),

points out that subjective metrics, such as the kind one gets from questionnaire

results, are often effective at getting at the core of the user experience and can

444 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

access “aspects of the user experience that are most closely tied to user behavior

and purchase decisions.”

Semantic differential scales
A semantic differential scale, or Likert scale (1932), is a range of values

describing an attribute. Each value on the scale represents a different level of

that attribute. The most extreme value in each direction on the scale is called

an anchor. The scale is then divided, usually in equal divisions, with points

between the anchors that divide up the difference between the meanings of

the two anchors.

Thenumber of discrete points we have on the scale between and including the

anchors is the granularity of the scale, or the number of choices we allow users in

expressing their own levels of the attribute.Themost typical labelingof apoint on

a scale is a verbal label with anassociatednumeric valuebut it canalso bepictorial.

For example, consider the following statement for which we wish to get an

assessment of agreement by the user: “The checkout process on this Website was

easy to use.” A corresponding semantic differential scale for the “agreement”

attribute to assess the user’s level of agreementmight have these anchors: strongly

agreeand stronglydisagree. If the scalehas five values, including theanchors, there

are three points on the scale between the anchors. For example, the agreement

scale might include strongly agree, agree, neutral, disagree, and strongly disagree

with the associated values, respectively, of þ2, þ1, 0, �1, and �2.

The Questionnaire for User Interface Satisfaction (QUIS)
The QUIS, developed at the University of Maryland (Chin, Diehl, & Norman,

1988) is one of the earliest available user satisfaction questionnaires for use with

usability evaluation. It was the most extensive and most thoroughly validated

questionnaire at the time of its development for determining subjective

interaction design usability.

The QUIS is organized around such general categories as screen, terminology

and system information, learning, and system capabilities. Within each of these

general categories are sets of questions about detailed features, with Likert scales

from which a participant chooses a rating. It also elicits some demographic

information, as well as general user comments about the interaction design

being evaluated. Many practitioners supplement the QUIS with some of their

own questions, specific to the interaction design being evaluated.

The original QUIS had 27 questions (Tullis & Stetson, 2004), but there have

been many extensions and variations. Although developed originally for screen-

based designs, the QUIS is resilient and can be extended easily, for example, by

replacing the term “system” with “Website” and “screen” with “Web page.”

445UX EVALUAT ION INTRODUCTION

Practitioners are free to use the results of a QUIS questionnaire in any

reasonable way. In much of our use of this instrument, we calculated the average

scores, averaged over all the participants and all the questions in a specified subset

of the questionnaire. Each such subset was selected to correspond to the goal of a

UXtarget, andthenumeric valueof this scoreaveragedover the subsetofquestions

was compared to the target performance values stated in the UX target table.

Although the QUIS is quite thorough, it can be administered in a relatively

short time. For many years, a subset of the QUIS was our own choice as the

questionnaire to use in both teaching and consulting.

The QUIS is still being updated and maintained and can be licensed1 for a

modest fee from the University of Maryland Office of Technology Liaison. In

Table 12-1 we show a sample excerpted and adapted with permission from the

QUIS with fairly general applicability, at least to desktop applications.

Table 12-1

An excerpt from QUIS,
with permission

User Evaluation of Interactive Computer Systems

For each question, please circle the number that most appropriately reflects your
impressions about this topic with respect to using this computer system or product.

1. Terminology relates
to task domain

[distantly] 0 1 2 3 4 5 6 7 8 9 10 [closely] NA

2. Instructions describing tasks [confusing] 0 1 2 3 4 5 6 7 8 9 10 [clear] NA

3. Instructions are consistent [never] 0 1 2 3 4 5 6 7 8 9 10 [always] NA

4. Operations relate to tasks [distantly] 0 1 2 3 4 5 6 7 8 9 10 [closely] NA

5. Informative feedback [never] 0 1 2 3 4 5 6 7 8 9 10 [always] NA

6. Display layouts simplify tasks [never] 0 1 2 3 4 5 6 7 8 9 10 [always] NA

7. Sequence of displays [confusing] 0 1 2 3 4 5 6 7 8 9 10 [clear] NA

8. Error messages are helpful [never] 0 1 2 3 4 5 6 7 8 9 10 [always] NA

9. Error correction [confusing] 0 1 2 3 4 5 6 7 8 9 10 [clear] NA

10. Learning the operation [difficult] 0 1 2 3 4 5 6 7 8 9 10 [easy] NA

11. Human memory limitations [overwhelmed] 0 1 2 3 4 5 6 7 8 9 10 [are
respected]

NA

12. Exploration of features [discouraged] 0 1 2 3 4 5 6 7 8 9 10 [encouraged] NA

13. Overall reactions [terrible] 0 1 2 3 4 5 6 7 8 9 10 [wonderful] NA
[frustrating] 0 1 2 3 4 5 6 7 8 9 10 [satisfying] NA
[uninteresting] 0 1 2 3 4 5 6 7 8 9 10 [interesting] NA
[dull] 0 1 2 3 4 5 6 7 8 9 10 [stimulating] NA
[difficult] 0 1 2 3 4 5 6 7 8 9 10 [easy] NA

1http://lap.umd.edu/quis/

446 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

The System Usability Scale (SUS)
The SUS was developed by John Brooke while at Digital Equipment

Corporation (Brooke, 1996) in the United Kingdom. The SUS questionnaire

contains 10 questions. As an interesting variation from the usual questionnaire,

the SUS alternates positively worded questions with negatively worded

questions to prevent quick answers without the responder really considering

the questions.

The questions are presented as simple declarative statements, each with a five-

point Likert scale anchored with “strongly disagree” and “strongly agree” and

with values of 1 through 5. These 10 statements are (used with permission):

n I think that I would like to use this system frequently

n I found the system unnecessarily complex

n I thought the system was easy to use

n I think that I would need the support of a technical person to be able to use this

system

n I found the various functions in this system were well integrated

n I thought there was too much inconsistency in this system

n I would imagine that most people would learn to use this system very quickly

n I found the system very cumbersome to use

n I felt very confident using the system

n I needed to learn a lot of things before I could get going with this system

The 10 items in the SUS were selected from a list of 50 possibilities, chosen

for their perceived discriminating power.

The bottom line for the SUS is that it is robust, extensively used, widely

adapted, and in the public domain. It has been a very popular questionnaire

for complementing a usability testing session because it can be applied at any

stage in the UX lifecycle and is intended for practical use in an industry context.

The SUS is technology independent; can be used across a broad range of

kinds of systems, products, and interaction styles; and is fast and easy for both

analyst and participant. The single numeric score (see later) is easy to

understand by everyone. Per Usability Net (2006), it is the most highly

recommended of all the publically available questionnaires.

There is theoretical debate in the literature about the dimensionality of

SUS scoring methods (Bangor, Kortum, & Miller, 2008; Borsci, Federici, &

Lauriola, 2009; J. Lewis & Sauro, 2009). However, the practical bottom line for

the SUS, regardless of these formal conclusions, is that the unidimensional

approach to scoring of SUS (see later) has been working well for many

447UX EVALUAT ION INTRODUCTION

practitioners over the years and is seen as a distinct advantage. The single score

that this questionnaire yields is understood easily by almost everyone.

The analysis of SUS scores begins with calculating the single numeric score

for the instance of the questionnaire marked up by a participant. First, for any

unanswered items, assign a middle rating value of 3 so that it does not affect the

outcome on either side.

Next we calculate the adjusted score for positively worded items. Because we

want the range to begin with 0 (so that the overall score can range from 0),

we shift the scores for positively worded items down by subtracting 1, giving us a

new range of 0 to 4.

To calculate the adjusted score for negatively worded items, we must

compensate for the fact that these scales go in the opposite direction of

positively worded scales. We do this by giving the negatively worded items an

adjusted score of 5 minus the rating value given, also a giving us a range of 0 to 4.

Next, add up the adjusted item scores for all 10 questions, giving a range of

0 to 40. Finally, multiply by 2.5 to get a final SUS score in the range of 0 to 100.

What about interpreting the SUS score? Often a numerical score yielded by

any evaluation instrument is difficult to interpret by anyone outside the

evaluation team, including project managers and the rest of your project team.

Given a single number out of context, it is difficult to know what it means about

the user experience. The score provided by the SUS questionnaire, however, has

the distinct advantage of being in the range of zero to 100.

By using an analogy with numerical grading schemes in schools based on a

range of 0 to 100, Bangor, Kortum, and Miller (2008) found it practical and

feasible to extend the school grading interpretation of numeric scores into letter

grades, by the usual 90 to 100 being an “A”, and so on (using whatever numeric

to letter grade mapping you wish). Although this translation has no theoretical

or empirical basis, this simple notion does seem to be an effective way to

communicate the results, and using a one-number score normalized to a base of

100 allows you even to compare systems that are dissimilar.

Clearly, an evaluation grade of “A”means it was good and an evaluation of “D”

or lower means the need for some improvement is indicated. At the end of the

day, each project team will have to decide what the SUS scores mean to them.

The Usefulness, Satisfaction, and Ease of Use (USE)
Questionnaire
With the goal of measuring the most important dimensions of usability for

users across many different domains, Lund (2001, 2004) developed USE, a

questionnaire for evaluating the user experience on three dimensions:

448 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

usefulness, satisfaction, and ease of use. USE is based on a seven-point Likert

scale.

Through a process of factor analysis and partial correlation, the questions in

Table 12-2 were chosen for inclusion in USE per Lund. As the questionnaire is

still under development, this set of questions is a bit of a moving target.

The bottom line for USE is that it is widely applicable, for example, to systems,

products, and Websites, and has been used successfully. It is available in the

public domain and has good face validity for both users and practitioners, that is,

it looks right intuitively and people agree that it should work.

Other questionnaires
Here are some other questionnaires that are beyond our scope but might be of

interest to some readers.

Table 12-2

Questions in USE
questionnaire

Usefulness It helps me be more effective.
It helps me be more productive.
It is useful.
It gives me more control over the activities in my life.
It makes the things I want to accomplish easier to get done.
It saves me time when I use it.
It meets my needs.
It does everything I would expect it to do.

Ease of use It is easy to use.
It is simple to use.
It is user-friendly.
It requires the fewest steps possible to accomplishwhat I want to dowith it.
It is flexible.
Using it is effortless.
I can use it without written instructions.
I do not notice any inconsistencies as I use it.
Both occasional and regular users would like it.
I can recover from mistakes quickly and easily.
I can use it successfully every time.

Ease of learning I learned to use it quickly.
I easily remember how to use it.
It is easy to learn to use it.
I quickly became skillful with it.

Satisfaction I am satisfied with it.
I would recommend it to a friend.
It is fun to use.
It works the way I want it to work.
It is wonderful.
I feel I need to have it.
It is pleasant to use.

449UX EVALUAT ION INTRODUCTION

General-purpose usability questionnaires:

n Computer System Usability Questionnaire (CSUQ), developed by Jim Lewis (1995,

2002) at IBM, is well-regarded and available in the public domain.

n Software Usability Measurement Inventory (SUMI) is “a rigorously tested and proven

method of measuring software quality from the end user’s point of view” (Human

Factor Research Group, 1990).2 According to Usability Net,3 SUMI is “a mature

questionnaire whose standardization base andmanual have been regularly updated.”

It is applicable to a range of application types from desk-top applications to large

domain-complex applications.

n After Scenario Questionnaire (ASQ), developed by IBM, is available in the public

domain (Bangor, Kortum, & Miller, 2008, p. 575).

n Post-Study System Usability Questionnaire (PSSUQ), developed by IBM, is available

in the public domain (Bangor, Kortum, & Miller, 2008, p. 575).

Web evaluation questionnaires:

n Website Analysis and MeasureMent Inventory (WAMMI) is “a short but very reliable

questionnaire that tells you what your visitors think about your web site” (Human

Factor Research Group, 1996b).

Multimedia system evaluation questionnaires:

n Measuring the Usability of Multi-Media Systems (MUMMS) is a questionnaire

“designed for evaluating quality of use of multimedia software products” (Human

Factor Research Group, 1996a).

Hedonic quality evaluation questionnaires:

n The Lavie and Tractinsky (2004) questionnaire

n The Kim and Moon (1998) questionnaire with differential emotions scale

Modifying questionnaires for your evaluation
As an example of adapting a data collection technique, you can make up a

questionnaire of your own or you can modify an existing questionnaire for your

own use by:

n choosing a subset of the questions

n changing the wording in some of the questions

n adding questions of your own to address specific areas of concern

n using different scale values

2Human Factors Research Group (http://www.ucc.ie/hfrg/) questionnaires are available commercially as a

service, on a per report basis or for purchase, including scoring and report-generating software.
3http://www.usabilitynet.org/tools/r_questionnaire.htm

450 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

On any questionnaire that does not already have its scale values centered

on zero, you might consider making the scale something such as �2, �1, 0, 1,

2 to center it on the neutral value of zero. If the existing scale has an odd

number of rating points, you can change it to an even number to force

respondents to choose one side or the other of a middle value, but that is not

essential here.

Finally, one of the downsides of any questionnaire based only on semantic

differential scales is that it does not allow the participant to give indications of why

any rating is given,which is important forunderstandingwhatdesign featureswork

and which ones do not, and how to improve designs. Therefore, we recommend

you consider supplementing key questions (or do it once at the end) with a free-

form question, such as “If notable, please describe why you gave that rating.”

Modifying the Questionnaire for User Interface Satisfaction. We have found an

adaptation of the QUIS to work well. In this adaptation, we reduce the

granularity of the scale from 12 choices (0 through 10 and NA) to 6 (–2, –1, 0, 1,

2, and NA) for each question, reducing the granularity of choices faced by the

participant. We felt a midscale value of zero was an appropriately neutral value,

while negative scale values corresponded to negative user opinions and positive

scale values corresponded to positive user opinions. Some argue for an even

number of numeric ratings to force users to make positive or negative choices.

This is also an easy adaptation to the scale.

Modifying the System Usability Scale. In the course of their study of SUS, Bangor,

Kortum, and Miller (2008) provided an additional useful item for the

questionnaire that you can use as an overall quality question, based on an

adjective description. Getting away from the “strongly disagree” and “strongly

agree” anchors, this adjective rating statement is: “Overall, I would rate the user-

friendliness of this product as worst imaginable, awful, poor, ok, good, excellent,

and best imaginable.”

Not caring for the term “user-friendliness,” we would add the

recommendation to change that phrase to something else that works well for

you. In studies by Bangor, Kortum, and Miller (2008), ratings assigned

to this one additional item correlated well with scores of the original 10 items in

the questionnaire. So, for the ultimate in inexpensive evaluation, this one

questionnaire item could be used as a soft estimator of SUS scores.

In application, most users of the SUS recommend a couple of minor

modifications. The first is to substitute the term “awkward” for the term

“cumbersome” in item 8. Apparently, in practice, there has been uncertainty,

especially among participants who were not native English speakers, about the

meaning of “cumbersome” in this context. The second modification is to

Semantic
Differential Scale

A semantic differential,

or Likert, scale is a range

of values describing an

attribute that is the

focus of a question in a

questionnaire. The extreme

values of the attribute are

called anchors and other

discrete points on the scale

divide up the difference

between the meanings of

the two anchors. Users

choose values on the scale

to give ratings in answering

the questionnaire question.

451UX EVALUAT ION INTRODUCTION

substitute the term “product” for the term “system” in each item, if the

questionnaire is being used to evaluate a commercial product.

Along these same lines, you should substitute “Website” for “system” when

using the SUS to evaluate a Website. However, use caution when choosing the

SUS as ameasuring instrument for evaluatingWebsites. According to Kirakowski

and Murphy (2009), the SUS is inappropriate for evaluating Websites because it

tends to yield erroneously high ratings. They recommend using the WAMMI

instead (mentioned previously). As one final caveat about using the SUS,

Bangor, Kortum, and Miller (2008) warn that in an empirical study they found

that SUS scores did not always correlate with their observations of success in task

performance.

Warning: Modifying a questionnaire can damage its validity. At this point, the

purist may be worried about validity. Ready-made questionnaires are usually

created and tested carefully for statistical validity. A number of already

developed and validated questionnaires are available for assessing usability,

usefulness, and emotional impact.

For most things in this book, we encourage you to improvise and adapt and

that includes questionnaires. However, you must do so armed with the

knowledge that any modification, especially by one not expert in making

questionnaires, carries the risk of undoing the questionnaire validity. The more

modifications, the more the risk. The methods for, and issues concerning,

questionnaire validation are beyond the scope of this book.

Because of this risk to validity, homemade questionnaires and unvalidated

modifications to questionnaires are not allowed in summative evaluation but are

often used in formative evaluation. This is not an invitation to be slipshod; we are

just allowing ourselves to not have to go through validation for sensible

modifications made responsibly. Damage resulting from unvalidated

modifications is less consequential in formative evaluation. UX practitioners

modify and adapt existing questionnaires to their own formative needs, usually

without much risk of damaging validity.

12.5.4 Data Collection Techniques Especially for Evaluating
Emotional Impact
Shih and Liu (2007), citing Dormann (2003), describe emotional impact in

terms of its indicators: “Emotion is a multifaceted phenomenon which people

deliver through feeling states, verbal and non-verbal languages, facial

expressions, behaviors, and so on.” Therefore, these are the things to “measure”

or at least observe or ask about. Tullis and Albert devote an entire chapter (2008,

Chapter 7) to the subject. For a “Usability Test Observation Form,” a

452 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

comprehensive list of verbal and non-verbal behaviors to be noted during

observation, see Tullis and Albert (2008, p. 170).

Indicators of emotional impact are usually either self-reported via verbal

techniques, such as questionnaires, or physiological responses observed and

measured in participants with non-verbal techniques.

Self-reported indicators of emotional impact
While extreme reactions to a bad user experience can be easy to observe and

understand, we suspect that the majority of emotional impact involving

aesthetics, emotional values, and simple joy of use may be perceived and felt by

the user but not necessarily by the evaluator or other practitioner. To access

these emotional reactions, we must tap into the user’s subjective feelings; one

effective way to do that is to have the user or participant do the reporting. Thus,

verbal participant self-reporting techniques are a primary way that we collect

emotional impact indicators.

Participants can report on emotional impact within their usage experience

duringusagevia theirdirectcommentarycollectedwith the think-aloudtechnique.

The think-aloud technique is especially effective in accessing the emotional impact

within user experience because users can describe their own feelings and

emotional reactions and can explain their causes in the usage experience.

Questionnaires, primarily those using semantic differential scales, are also an

effective and frequently used technique for collecting self-reported

retrospective emotional impact data by surveying user opinions about

specific predefined aspects of user experience, especially emotional impact.

Other self-reporting techniques include written diaries or logs describing

emotional impact encounters within usage experience. As a perhaps more

spontaneous alternative to written reports, participants can report these

encounters via voice recorders or phone messages.

Being subjective, quantitative, and product independent, questionnaires as a

self-reporting technique have the advantages of being easy to use for both

practitioners and users, inexpensive, applicable from earliest design sketches

andmockups to fully operational systems, and high in face validity, whichmeans

that intuitively they seem as though they should work (Westerman, Gardner, &

Sutherland, 2006).

However, self-reporting can be subject to bias because human users

cannot always access the relevant parts of their own emotions. Obviously,

self-reporting techniques depend on the participant’s ability for conscious

awareness of subjective emotional states and to articulate the same in a report.

453UX EVALUAT ION INTRODUCTION

Questionnaires as a verbal self-reporting technique for
collecting emotional impact data (AttrakDiff and others)
Questionnaires about emotional impact allow you to pose to participants

probing questions based on any of the emotional impact factors, such as joy of

use, fun, and aesthetics, offering a way for users to express their feelings about

this part of the user experience.

AttrakDiff, developed by Hazzenzahl, Burmester, and Koller (2003), is an

example of a questionnaire especially developed for getting at user perceptions

of emotional impact. AttrakDiff (now AttrakDiff2), based on Likert (semantic

differential) scales, is aimed at evaluating both pragmatic (usability plus

usefulness) and hedonic4 (emotional impact) quality in a product or system.

Reasons for using the AttrakDiff questionnaire for UX data collection include

the following:

n AttrakDiff is freely available.

n AttrakDiff is short and easy to administer, and the verbal scale is easy to understand

(Hassenzahl, Beu, & Burmester, 2001; Hassenzahl, et al., 2000).

n AttrakDiff is backed with research and statistical validation. Although only the German-

language version of AttrakDiff was validated, there is no reason to believe that the

English version will not also be effective.

n AttrakDiff has a track record of successful application.

With permission, we show it in full in Table 12-3 as it appears in Hassenzahl,

Schöbel, and Trautman (2008, Table 1).

Across the many versions of AttrakDiff that have been used and studied, there

are broad variations in the number of questionnaire items, the questions used,

and the language for expressing the questions (Hassenzahl et al., 2000).

Table 12-4 contains a variation of AttrakDiff developed by Schrepp, Held, and

Laugwitz (2006), shown here with permission.

For a description of using AttrakDiff in an affective evaluation of a music

television channel, see Chorianoipoulos and Spinellis (2004).

Once an AttrakDiff questionnaire has been administered to participants, it

is time to calculate the average scores. Begin by adding up all the values given

by the participant, excluding all unanswered questions. If you used a numeric

scale of 1 to 7 between the anchors for each question the total will be in the

range of 1 to 7 times the number of questions the participant answered.

4“Hedonic” is a term used mainly in the European literature that means about the same as emotional

impact.

454 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

For example, because there are 22 questions in the sample in Table 12-3, the

total summed-up score will be in the range of 22 to 154 if all questions were

answered. If you used a scale from �3 toþ3 centered on zero, the range for the

sum of 22 question scores would be �66 to þ66. The final result for the

questionnaire is the average score per question.

Modifying AttrakDiff. In applying the AttrakDiff questionnaire in your own

project, you can first make a choice among the different existing versions of

AttrakDiff. You can then choose how many of those questions or items, and

which ones, you wish to have in your version.

Table 12-3

AttrakDiff emotional
impact questionnaire as
listed by Hassenzahl,
Schöbel, and Trautman
(2008), with permission

Scale Item Semantic Anchors

Pragmatic Quality 1 Comprehensible Incomprehensible

Pragmatic Quality 2 Supporting Obstructing

Pragmatic Quality 3 Simple Complex

Pragmatic Quality 4 Predictable Unpredictable

Pragmatic Quality 5 Clear Confusing

Pragmatic Quality 6 Trustworthy Shady

Pragmatic Quality 7 Controllable Uncontrollable

Hedonic Quality 1 Interesting Boring

Hedonic Quality 2 Costly Cheap

Hedonic Quality 3 Exciting Dull

Hedonic Quality 4 Exclusive Standard

Hedonic Quality 5 Impressive Nondescript

Hedonic Quality 6 Original Ordinary

Hedonic Quality 7 Innovative Conservative

Appeal 1 Pleasant Unpleasant

Appeal 2 Good Bad

Appeal 3 Aesthetic Unaesthetic

Appeal 4 Inviting Rejecting

Appeal 5 Attractive Unattractive

Appeal 6 Sympathetic Unsympathetic

Appeal 7 Motivating Discouraging

Appeal 8 Desirable Undesirable

455UX EVALUAT ION INTRODUCTION

You then need to review the word choices and terminology used for each of

the anchors and decide on the words that you think will be understood most

easily and universally. For example, you might find “Pretty – Ugly” of the

Schrepp et al. (2006) version a better set of anchors than “Aesthetic –

Table 12-4

A variation of the AttrakDiff emotional impact questionnaire, as listed in Appendix A1 of Schrepp, Held, and Laugwitz (2006),
reordered to group related items together, with permission

Scale Item English Anchor 1 English Anchor 2

Pragmatic quality PQ1 People centric Technical

Pragmatic quality PQ2 Simple Complex

Pragmatic quality PQ3 Practical Impractical

Pragmatic quality PQ4 Cumbersome Facile

Pragmatic quality PQ5 Predictable Unpredictable

Pragmatic quality PQ6 Confusing Clear

Pragmatic quality PQ7 Unmanageable Manageable

Hedonic – identity HQI1 Isolates Connects

Hedonic – identity HQI2 Professional Unprofessional

Hedonic – identity HQI3 Stylish Lacking style

Hedonic – identity HQI4 Poor quality High quality

Hedonic – identity HQI5 Excludes Draws you in

Hedonic – identity HQI6 Brings me closer to people Separates me from people

Hedonic – identity HQI7 Not presentable Presentable

Hedonic – stimulation HQS1 Original Conventional

Hedonic – stimulation HQS2 Unimaginative Creative

Hedonic – stimulation HQS3 Bold Cautious

Hedonic – stimulation HQS4 Innovative Conservative

Hedonic – stimulation HQS5 Dull Absorbing

Hedonic – stimulation HQS6 Harmless Challenging

Hedonic – stimulation HQS7 Novel Conventional

Attractiveness ATT1 Pleasant Unpleasant

Attractiveness ATT2 Ugly Pretty

Attractiveness ATT3 Appealing Unappealing

Attractiveness ATT4 Rejecting Inviting

Attractiveness ATT5 Good Bad

Attractiveness ATT6 Repulsive Pleasing

Attractiveness ATT7 Motivating Discouraging

456 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Unaesthetic” of the Hassenzahl version or you may wish to add “Interesting –

Boring” to “Exciting – Dull” as suggested in Hassenzahl, Beu, and Burmester

(2001).

Note also that the questions in AttrakDiff (or any questionnaire) represent

strictly operationaldefinitionsofpragmatic andhedonicquality, andbecause you

may have missed some aspects of these measures that are important to you, you

can add your own questions to address issues you think are missing.

Alternatives to AttrakDiff. As an alternative to the AttrakDiff questionnaire,

Hassenzahl, Beu, and Burmester (2001) have created simple questionnaire of

their own for evaluating emotional impact, also based on semantic differential

scales. Their scales have the following easy-to-apply anchors (from their

Figure 1):

n outstanding vs. second rate

n exclusive vs. standard

n impressive vs. nondescript

n unique vs. ordinary

n innovative vs. conservative

n exciting vs. dull

n interesting vs. boring

Like AttrakDiff, each scale in this questionnaire has seven possible ratings,

including these end points, and the words were originally in German.

Verbal emotion measurement instruments, such as questionnaires, can assess

mixed emotions because questions and scales in a questionnaire or images in

pictorial tools can be made up to represent sets of emotions (Desmet, 2003).

PrEmo, developed by Desmet, uses seven animated pictorial representations of

pleasant emotions and seven unpleasant ones. Desmet concludes that “PrEmo is

a satisfactory, reliable emotion measurement instrument in terms of applying it

across cultures.”

There is a limitation, however. Verbal instruments tend to be language

dependent and, sometimes, culture dependent. For example, the vocabulary for

different dimensions of a questionnaire and their end points are difficult to

translate precisely. Pictorial tools can be the exception, as the language of

pictures is more universal. Pictograms of facial expressions can sometimes

express emotions elicited more effectively than verbal expression, but the

question of how to draw the various pictograms most effectively is still an

unresolved research challenge.

An example of another emotional impact measuring instrument is the Self-

Assessment Manikin (SAM) (Bradley & Lang, 1994). SAM contains nine symbols

457UX EVALUAT ION INTRODUCTION

indicating positive emotions and nine indicating negative emotions. Often used

for Websites and print advertisements, the SAM is administered during or

immediately after user interaction. One problem with application after usage is

that emotions can be fleeting and perishable.

Observing physiological responses as indicators
of emotional impact
In contrast to self-reporting techniques, UX practitioners can obtain emotional

impact indicator data through monitoring of participant physiological

responses to emotional impact encounters as usage occurs. Usage can be

teeming with user behaviors, including facial expressions, such as ephemeral

grimaces or smiles, and body language, such as tapping of fingers, fidgeting, or

scratching one’s head, that indicate emotional impact.

Physiological responses can be “captured” either by direct behavioral

observation or by instrumented measurements. Behavioral observations include

those of facial expressions, gestural behavior, and body posture.

The emotional “tells” of facial and bodily expressions can be fleeting and

subliminal, easily missed in real-time observation. Therefore, to capture facial

expressions data and other similar observational data reliably, practitioners

usually need to make video recordings of participant usage behavior and do

frame-by-frame analysis. Methods for interpreting facial expressions have been

developed, including one called the Facial Action Coding System (Ekman &

Friesen, 1975).

Kim et al. (2008) remind us that while we can measure physiological effects, it

is difficult to connect the measurements with specific emotions and with

causes within the interaction. Their solution is to supplement with traditional

synchronized video-recording techniques to correlate measurements with

usage occurrences and behavioral events. But this kind of video review has

disadvantages: the reviewing process is usually tedious and time-consuming, you

may need an analyst trained in identifying and interpreting these expressions

often within a frame-by-frame analysis, and even a trained analyst cannot always

make the right call.

Fortunately, software-assisted recognition of facial expressions and gestures

in video images is beginning to be feasible for practical applications. Software

tools are now becoming available to automate real-time recognition and

interpretation of facial expressions. A system called “faceAPI”5 from Seeing

Machines is advertised to both track and understand faces. It comes as a software

5http://www.seeingmachines.com/product/faceapi/

458 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

module that you embed in your own product or application. An ordinary

Webcam, focused on the user’s face, feeds both faceAPI and any digital video-

recording programwith software-accessible time stamps and/or frame numbers.

Facial expressions do seem to be mostly culture independent, and you can

capture expressions without interruption of the usage. However, there are

limitations that generally preclude their use. The main limitation is that they are

useful for only a limited set of basic emotions such as anger or happiness, but

not mixed emotions. Dormann (2003) says it is, therefore, difficult to be precise

about what kind of emotion is being observed.

In order to identify facial expressions, faceAPI must track the user’s face

during head movement that occurs in 3D with usage. The head-tracking feature

outputs X, Y, Z position and head orientation coordinates for every video frame.

The facial feature detection component of faceAPI tracks three points on each

eyebrow and eight points around the lips.

The detection algorithm is “robust to occlusions, fast movements, large head

rotations, lighting, facial deformation, skin color, beards, and glasses.” This part

of faceAPI outputs a real-time stream of facial feature data, time coordinated

with the recorded video, that can be understood and interpreted via a suite of

image-processing modules. The faceAPI system is a commercial product, but a

free version is available to qualified users for non-commercial use.

Bio-metrics to detect physiological responses
to emotional impact
The use of instrumented measurement of physiological responses in

participants is called biometrics. Biometrics are about detection and

measurement of autonomic or involuntary bodily changes triggered by nervous

system responses to emotional impact within interaction events. Examples

include changes in heart rate, respiration, perspiration, and eye pupil dilation.

Changes in perspiration are measured by galvanic skin response measurements

to detect changes in electrical conductivity.

Such nervous system changes can be correlated with emotional responses

to interaction events. Pupillary dilation is an autonomous indication especially

of interest, engagement, and excitement and is known to correlate with a

number of emotional states (Tullis & Albert, 2008).

The downside of biometrics is the need for specialized monitoring

equipment. If you can get some good measuring instruments and are trained to

use them to get good measures, it does not get more “embodied” than this. But

most equipment for measuring physiological changes is out of reach for the

average UX practitioner.

459UX EVALUAT ION INTRODUCTION

It is possible to adapt a polygraph or lie detector, for example, to detect

changes in pulse, respiration, and skin conductivity that could be correlated

with emotional responses to interaction events. However, the operation of most

of this equipment requires skills and experience in medical technology, and

interpretation of raw data can require specialized training in psychology, all

beyond our scope. Finally, the extent of culture independence of facial

expressions and other physiological responses is not entirely known.

12.5.5 Data Collection Techniques to Evaluate
Phenomenological Aspects of Interaction

Long-term studies required for phenomenological evaluation
Phenomenological aspects of interaction involve emotional impact, but

emotional impact over time not emotional impact in snapshots of usage as you

might be used to observing in other kinds of UX evaluation. The new perspective

that the phenomenological view brings to user experience requires a new

kind of evaluation (Thomas & Macredie, 2002).

Phenomenological usage is a longitudinal effect in which users invite the

product into their lives, giving it a presence in daily activities. As an example of

aproductwithpresenceon someone’s life, weknow someonewhocarries adigital

voice recorder in his pocket everywhere he goes. He uses it to capture thoughts,

notes, and reminders for just about everything. He keeps it at his bedside while

sleeping and always has it in his car when driving. It is an essential in his lifestyle.

Thus, phenomenological usage is not about tasks but about human activities.

Systems and products with phenomenological impact are understood through

usage over time as users assimilate them into their lifestyles (Thomas &

Macredie, 2002). Users build perceptions and judgment through exploration

and learning as usage expands and emerges.

The timeline defining the user experience for this kind of usage starts even

before first meeting the product, perhaps with the desire to own or use the

product, researching the product and comparing similar products, visiting a

store (physical or online), shopping for it, and beholding the packaging and

product presentation. By the time long-term physiological studies are done, they

really end up being case studies. The length of these studies does not necessarily

mean large amounts of person-hours, but it can mean significant calendar time.

Therefore, the technique will not fit with an agile method or any other approach

based on a very short turnaround time.

It is clear that methods for studying and evaluating phenomenological

aspects of interaction must be situated in the real activities of users to encounter

a broad range of user experience occurring “in the wild.” This means that you

460 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

cannot just schedule a session, bring in user participants, have them “perform,”

and take your data. Rather, this deeper importance of context usually means

collecting data in the field rather than in the lab.

Thebestrawphenomenologicaldatawouldcomefromconstantattentiontothe

user and usage, but it is seldom, if ever, possible to live with a participant 24/7 and

be in all the places that a busy life takes a participant. Even if you could be with the

participant all the time, you would find that most of the time you will observe just

dead time when nothing interesting or useful is happening or when the

participants are not even using the product. When events of interest do happen,

they tend to be episodic in bursts, requiring special techniques to capture

phenomenological data.

But, in fact, the only ones who can be there all the times and places where

usage occurs are the participants. Therefore, most of the phenomenological

data collection techniques are self-reporting techniques or at least have self-

reporting components—the participants themselves report on their own

activities, thoughts, problems, and kinds of usage. Self-reporting techniques are

not as objective as direct observation, but they do offer practical solutions to the

problem of accessing data that occur in your absence.

These longer term user experience studies are, in some ways, similar to

contextual inquiry and even approach traditional ethnography in that they

require “living with the users.” The Petersen, Madsen, and Kjaer (2002) study of

two families’ usage of TV sets over 4 to 6 months is a good example of a

phenomenological study in the context of HCI and UX.

The iPod is an example of a device that illustrates how usage can expand

over time. At first it might be mostly a novelty to play with and to show friends.

Then theuser will add someapplications, let us say the iBird Explorer: An Interactive

Field Guide to Birds of North America.6 Suddenly usage is extended out to the deck

andperhapseventually into thewoods.Then theuserwants to consolidatedevices

by exporting contact information (address book) from an old PDA.

Finally, of course, the user will start loading it up with all kinds of music and

books on audio. This latter usage activity, which might come along after several

months of product ownership, could become the most fun and the most

enjoyable part of the whole usage experience.

Goals of phenomenological data collection techniques
Regardless of which technique is used for phenomenological data collection, the

objective is to look for occurrences within long-term usage that are indicators of:

6http://www.ibird.com/

461UX EVALUAT ION INTRODUCTION

n ways people tend to use the product

n high points of joy in use, revealing what it is in the design that yields joy of use and

opportunities to make it even better

n problems and difficulties people have in usage that interfere with a high-quality user

experience

n usage people want but is not supported by the product

n how the basic mode of usage changes, evolves, or emerges over time

n how usage is adapted; new and unusual kinds of usage people come up with on

their own

The idea is to be able to tell stories of usage and emotional impact

over time.

Diaries in situated longitudinal studies
In one kind of self-reporting technique, each participant maintains a “diary,”

documenting problems, experiences, and phenomenological occurrences

within long-term usage. There are many ways to facilitate this kind of data

capture within self-reporting, including:

n paper and pencil notes

n online reporting, such as in a blog

n cellphone voice-mail messages

n pocket digital voice recorder

We believe that the use of voice-mail diaries for self-reporting on usage has

importance that goes well beyond mobile phone studies. In another study

(Petersen, Madsen, & Kjaer, 2002), phone reporting proved more successful

than paper diaries because it could occur in the moment and had a much

lower incremental effort for the participant. The key to this success is readiness

at hand.

A mobile phone is, well, very mobile and can be kept ready to use at all

times. Participants do not need to carry paper forms and a pen or pencil and can

make the calls any time day or night and under conditions not conducive to

writing reports by hand. Cellphones keep users in control during reporting; they

can control the amount of time they devote to each report.

As Palen and Salzman (2002) learned, the mobile phone voice-mail method

of data collection over time is also low in cost for analysts. Unlike paper reports,

recorded voice reports are available immediately after their creation and

462 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

systematic transcription is fairly easy. They found that unstructured verbal data

supplemented their other data very well and helped explain some of the

observations or measurements they made.

Users often expressed subjective feelings, bolstering the phenomenological

aspects of the study and relating phone usage to other aspects of their daily

lives. These verbal reports, made at the crucial time following an incident,

often mentioned issues that users forgot to bring up in later interviews, making

voice-mail reports a rich source of issues to follow up on in subsequent in-person

interviews.

If a mobile phone is not an option for self-reporting, a compact and portable

handheld digital voice recorder is a viable alternative. If you can train the

participants to carry it essentially at all times, a dedicated personal digital

recorder is an effective and low-cost tool for self-reporting usage phenomena in

a long-term study.

Evaluator triggered reporting for more representative data
Regardless of the reporting medium, there is still the question of when the self-

reporting is to be done during long-term phenomenological evaluation. If you

allow the participant to decide when to report, it could bias reporting toward

times when it is convenient or times when things are going well with the

product, or the participant might forget and you will lose opportunities to

collect data.

To make the reporting a bit more randomly timed and according to your

choice of frequency, thereby possibly beingmore likely to capture representative

phenomenological activity, you can be proactive in requesting reports.

Buchanan and Suri (2000) suggest that the participant be given a dedicated

pager to carry at all times. You can then use the pager to signal randomly timed

“events” to the participant “in the wild.” As soon as possible after receiving the

pager signal, the participant is to report on current or most recent product

usage, including specific real-world usage context and any emotional impact

being felt.

Periodic questionnaires over time
Periodically administered questionnaires are another self-reporting technique

for collecting phenomenological data. Questionnaires can be used efficiently

with a large number of participants and can yield both quantitative and

qualitative data. This is a less costly method that can get answers to predefined

questions, but it cannot be used easily to give you a window into usage in context

to reveal growth and emergence of use over time. As a last resort, you can use a

463UX EVALUAT ION INTRODUCTION

series of questionnaires spaced over time and designed to elicit understanding

of changes in usage over those time periods.

Direct observation and interviews in simulated
real usage situations
The aforementioned techniques of self reporting, triggered reporting, and

periodic questionnaires are ways of sampling long-term phenomenological

usage activity. As another alternative, the analyst team can simulate real long-

term usage within a series of direct observations and interviews. The idea is to

meet with participant(s) periodically, each time setting up conditions to

encourage episodes of phenomenological activity to occur during these

observational periods. The primary techniques for data collection during these

simulated real usage sessions are direct observation and interviews.

We described an example of using this technique in Chapter 15. Petersen,

Madsen, and Kjaer (2002) conducted a longitudinal study of the use of a TV and

video recorder by two families in their own homes. During the time of usage,

analysts scheduled periodic interviews within which they posed numerous usage

scenarios and had the participants do their best to enact the usage, while giving

their feedback, especially about emotional impact. The idea is to set up

conditions so you can capture the essence of real usage and reflect real usage in a

tractable time-frame.

12.6 VARIATIONS IN FORMATIVE EVALUATION
RESULTS

Before we conclude this chapter and move on to rapid and rigorous evaluation

methods, we have to be sure that you do not entertain unrealistically high

expectations for the reliability of formative evaluation results. The reality of

formative evaluation is that, if you repeat an evaluation of a design, prototype, or

system applying the same method but different evaluators, different

participants, different tasks, or different conditions, you will get different

results. Even if you use the same tasks, or the same evaluators, or the same

participants, you will get different results. And you certainly get even more

variation in results if you apply different methods. It is just not a repeatable

process. When the variation is due to using different evaluators, it is called

the “evaluator effect” (Hertzum & Jacobsen, 2003; Vermeeren, van Kesteren, &

Bekker, 2003).

464 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Reasons given by Hertzum and Jacobsen (2003) for the wide variation in

results of “discount” and other inspection methods include:

n vague goals (varying evaluation focus)

n vague evaluation procedures (the methods do not pin down the procedures so each

application is a variation and an adaptation)

n vague problem criteria (it is not clear how to decide when an issue represents a real

problem)

The most important reason for this effect is due to the individual

differences among people. Different people see usage and problems differently.

Different people have different detection rates. They naturally see different UX

problems in the same design. Also in most of the methods, issues found are not

questioned for validity. This results in numerous false positives, and there is no

approach for scrutinizing and weeding them out. Further, because of the

vagueness of the methods, intra-evaluator variability can contribute as much as

inter-evaluator variability. The same person can get different results in two

successive evaluations of the same system.

As said earlier, much of this explanation of limited effectiveness applies

equally well to lab-based testing, too. That is because many of the phenomena

and principles are the same and the working concepts are not that different.

In our humble opinion, the biggest reason for the limitations of our current

methods is that the problem—evaluating UX in large system designs—is very

difficult.The challenge is enormous—pickingawayat amassive application suchas

MS Word or a huge Website with our Lilliputian UX tweezers. And this is true

regardless of the UX method, including lab-based testing. Of course, for these

massive and complex systems, everything else is alsomoredifficult andmore costly.

How can you ever hope to find your way through it all, let alone do a thorough

job of UX evaluation? There are just so many issues and difficulties, so many

places for UX problems to hide. It brings to mind the image of a person with a

metal detector, searching over a large beach. There is no chance of finding all

the detectable items, not even close, but often the person does find many things

of value.

No one has the resources to look everywhere and test every possible feature

on every possible screen or Web page in every possible task. You are just not

going to find all the UX problems in all those places. One evaluator might find a

problem in a place that other evaluators did not even look. Why are we surprised

that each evaluator does not come up with the same comprehensive problem

list? It would take a miracle.

465UX EVALUAT ION INTRODUCTION

Intentionally left as blank

CHAPTER

Rapid Evaluation Methods 13
Objectives

After reading this chapter, you will:

1. Understand design walkthroughs, demonstrations, and reviews as early rapid

evaluation methods

2. Understand and apply inspection techniques for user experience, such as heuristic

evaluation

3. Understand and apply rapid lab-based UX evaluation methods, such as RITE and

quasi-empirical evaluation

4. Know how to use questionnaires as a rapid UX evaluation method

5. Appreciate the trade-offs involved with “discount” formative UX evaluation methods

13.1 INTRODUCTION

13.1.1 You Are Here
We begin each process chapter with a “you are here” picture of the chapter topic

in the context of the overall Wheel lifecycle template; see Figure 13-1. This

chapter, about rapid UX evaluation methods, is a very important side excursion

along the way to the rest of the fully rigorous evaluation chapters.

Some projects, especially large domain-complex system projects, require the

rigorous lab-based UX evaluation process (Chapters 14 through 17). However,

many smaller fast-track projects, including those for developing commercial

products, often demand techniques that are faster and less costly than lab-based

evaluation in the hope of achieving much of the effectiveness but at a lower cost.

We call these techniques “rapid” because they are about being fast, which means

saving cost.

Here are some of the general characteristics of rapid evaluation methods:

n Rapid evaluation techniques are aimed almost exclusively at finding qualitative data—

finding UX problems that are cost-effective to fix.

n Seldom, if ever, is attention given to quantitative measurements.

n There is a heavy dependency on practical techniques, such as the “think-aloud”

technique.

n Everything is less formal, with less protocol and fewer rules.

n There is much more variability in the process, with almost every evaluation “session”

being different, tailored to the prevailing conditions.

n This freedom to adapt to conditions creates more room for spontaneous ingenuity,

something experienced practitioners do best.

In early stages of a project you will have only your conceptual design,

scenarios, storyboards, and maybe some screen sketches or wireframes—usually

not enough for interacting with customers or users. Still, you can use an informal

rapid evaluation method to get your design on track. You can use interaction

design demonstrations, focus groups, or walkthroughs where you do the driving.

Beyond these early approaches, when you have an interactive prototype—

either a low-fidelity paper prototype or a medium-fidelity or high-fidelity

prototype—most rapid evaluation techniques are abridged variations of what

have generally been known as inspection techniques or of the lab-based

Think-Aloud
Technique

The think aloud technique is

a qualitative data collection

technique in which user

participants verbally

externalize their thoughts

about their interaction

experience, including their

motives, rationale, and

perceptions of UX

problems. By this method,

participants give the

evaluator access to an

understanding of their

thinking about the task and

the interaction design.

Figure 13-1

You are here, the chapter on
rapid evaluation, within
the evaluation activity in
the context of the overall
Wheel lifecycle template.

468 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

approach. If you employ participants, engage in a give and take of questions and

answers, comments, and feedback. In addition, you can be proactive with

prescripted interview questions, which you can ask in a kind of structured think-

aloud data-gathering technique during or after a walkthrough.

Veryfewpractitionersor teamstodayuseanyone“pure”rapidevaluationmethod;

they adapt and combine to suit their own processes, schedules, and resource

limitations. We highlight some of the most popular techniques, the suitability of

which for yourproject dependson yourdesign andevaluation context. Inspection is

probably the primary rapid evaluation technique, but quasi-empirical methods,

abridged versions of lab-based evaluation, are also very popular and effective.

13.2 DESIGN WALKTHROUGHS AND REVIEWS

A design walkthrough is an easy and quick evaluation method that can be used

with almost any stage of progress but which is especially effective for early

interaction design evaluation before a prototype exists (Bias, 1991). Memmel,

Gundelsweiler, and Reiterer (2007, Table 8) declare that user and expert

reviews are less time-consuming and more cost-effective than participant-based

testing and that their flexibility and scalability mean the effort can be adjusted

to match the needs of the situation. Even early lab-based tests can include

walkthroughs (Bias, 1991). Sometimes the term is used to refer to a more

comprehensive team evaluation, more like a team-based UX inspection.

Who is involved? Design walkthroughs usually entail a group working

collaboratively under the guidance of a leader. The group can include the

design team, UX analysts, subject-matter experts, customer representatives, and

potential users.

The goal of a design walkthrough is to explore a design on behalf of users to

simulate the user’s view of moving through the design, but to see it with an

expert’s eye. The team is trying to anticipate problems that users might have if

they were the ones using the design.

What materials do you need upfront? You should prepare for a design

walkthrough by gathering at least these items:

n Design representation(s), including storyboards, screen sketches, illustrated scenarios

(scenario text interspersed with storyboard frames and/or screen sketches), paper

prototypes, and/or higher fidelity prototypes

n Descriptions of relevant users, work roles, and user classes

n Usage or design scenarios to drive the walkthrough

Inspection (UX)

A UX inspection is an

analytical evaluation

method in which a UX

expert evaluates an

interaction design by

looking at it or trying it out,

sometimes in the context of

a set of abstracted design

guidelines. Expert

evaluators are both

participant surrogates and

observers, asking

themselves questions about

what would cause users

problems and giving an

expert opinion predicting

UX problems.

Quasi-Empirical
Evaluation

Quasi-empirical UX

evaluation methods are

empirical because they

involve taking some kind of

data using volunteer

participants, but they are

quick and dirty versions of

empirical methods, being

very informal and not

following a strict protocol.

Quasi-empirical methods

focus on qualitative data

to identify UX problems

that can be fixed and

usually do not involve

quantitative data.

469RAP ID EVALUATION METHODS

Here is how it works. It is usually more realistic and engaging to explore

the design through the lens of usage or design scenarios. The leader walks the

group through key workflow patterns that the system is intended to support.

A characteristic that distinguishes design walkthroughs from various kinds of

user-based testing is that the practitioner in charge does the “driving” instead

of the customer or users.

As the team follows the scenarios, looking systematically at parts of the design

and discussing the merits and potential problems, the leader tells stories about

users and usage, user intentions and actions, and expected outcomes. The

leader explains what the user will be doing, what the user might be thinking, and

how the task fits in the work practice, workflow, and context. As potential UX

problems arise, someone records them on a list for further consideration.

Walkthroughs may also include considerations of compliance with design

guidelines and style guides as well as questions about emotional impact,

including aesthetics and fun. Beyond just the details of UX and other design

problems that might emerge, it is a good way to communicate about the design

and keep on the same page within the project.

13.3 UX INSPECTION

When we use the term “UX inspection,” we are aware that you cannot inspect UX

but must inspect a design for user experience issues. However, because it is

awkward to spell it out that way every time, we use “UX inspection” as a short-

hand for the longer phrase. As an analogy, if you hire someone to do a safety

inspection of your house, you want them to “inspect the house for safety issues”

just as we want a UX inspection to be an inspection of the design for user

experience issues. This is consistent with our explanation of how we use the term

“UX” in a broader denotation than that of the term “user experience.”

13.3.1 What Is UX Inspection?
A UX inspection is an “analytical” evaluation method in that it involves

evaluating by looking at and trying out the design yourself as a UX expert instead

of having participants exercise it while you observe. Here we generalize the

original concept of usability inspection to include inspection of both usability

characteristics and emotional impact factors and we call it UX inspection.

The evaluator is both participant surrogate and observer. Inspectors ask

themselves questions about what would cause users problems. So, the essence of

these methods is the inspector giving an expert opinion predicting UX problems.

UX

“UX” is an almost

ubiquitous term that we use

to refer to most things that

have to do with designing

for a high quality user

experience. So this means

wewill use terms like the UX

field, UX work, a UX

practitioner, the UX team,

the UX role, UX design or UX

design process.

470 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Because the process depends on the evaluator’s judgment, it requires an

expert, a UX practitioner or consultant, which is why this kind of evaluation

method is also sometimes called “expert evaluation” or “expert inspection.”

These evaluationmethods are also sometimes called “heuristic evaluation (HE)”

but that term technically applies only to one particular version, “the heuristic

evaluation method” (Nielsen, 1994b), in which “heuristics” or generalized

design guidelines are used to drive an inspection (see later).

13.3.2 Inspection Is a Valuable Tool in the UX Toolbox
Not all human–computer interaction (HCI) literature is supportive of

inspection as an evaluation tool, but practitioners in the field have been using

it for years with great success. In our own practice, we definitely find value in

inspection methods and highly recommend their use in cases (for example):

n Where they are applied in early stages and early design iterations. It is an excellent way

to begin UX evaluation and pick the low-hanging fruit and clear out the mass of

obvious problems.

n Where you should save the more expensive and more powerful tools, such as lab-based

testing, for later to dig out the more subtle and difficult problems. Starting with lab-

based testing on an immature and quickly evolving design can be like using a precision

shovel on a large snow drift.

n Where you have not yet done any other kind of evaluation. It is especially appropriate

when you are brought in to evaluate an existing system that has not undergone

previous UX evaluation and iterative redesign.

n Where you cannot afford or cannot do lab-based testing for some reason but still want to

do some evaluation. UX inspection can still do a good job for you when you do not

have the time or other resources to do a more thorough job.

13.3.3 How Many Inspectors Are Needed?
In lab-based UX testing, you can improve evaluation effectiveness by adding

more participants until you get diminishing returns. Similarly, in UX inspection,

to improve effectiveness you can add more inspectors. But does it help? Yes, for

inspections, a team approach is beneficial, maybe even necessary, because low

individual detection rates preclude finding enough problems by one person.

Experience has shown that different experts find different problems. But this

diversity of opinion is valuable because the union of problems found over a

group of inspectors is much larger than the set of problems found by any

individual. Most heuristic inspections are done by a teamof two ormore usability

inspectors, typically two or three inspectors.

Heuristic

A heuristic is an informal

maxim, rule of thumb, or

generalized guideline

about interaction design.

Heuristic Evaluation

A heuristic evaluation is a

kind of UX evaluation

involving expert inspection

guided by a set of heuristics.

471RAP ID EVALUATION METHODS

But what is the optimal number? It depends on conditions and a great deal on

the system you are inspecting. Nielsen and Landauer (1993) found that,

under some conditions, a small set of experts, in the range of 3 to 5, is optimal

before diminishing returns. See the end of Chapter 14 for further discussion

about the “3 to 5 users” rule and its limitations. As with almost any kind of

evaluation, some is better than none and, for early project stages, we often are

satisfied with a single inspection by one or two inspectors working together.

13.3.4 What Kind of Inspectors Are Needed?
Not surprisingly, Nielsen (1992a) found that UX experts (practitioners or

consultants) make the best inspection evaluators. Sometimes it is best to get a

fresh view by using an expert evaluator who is not on the project team. If those

UX experts also have knowledge in the subject-matter domain of the interface

being evaluated, all the better. Those people are called dual experts and can

evaluate through both a design guidelines perspective and a work activity,

workflow, and task perspective. The equivalent of having a dual expert can be

approximated by a team approach—pairing up a UX expert with a work domain

expert.

13.4 HEURISTIC EVALUATION, A UX INSPECTION
METHOD

13.4.1 Introduction to Heuristic Evaluation
For most development projects in the 1990s, the “default usability person,” the

unqualified software developer pressed into usability service, was the rule. Few

trained UX specialists actually worked in design projects. Now the default

practitioner is slowly moving toward becoming the exception. As more people

specifically prepared for the UX practitioner role became available, the

definition of “novice evaluator” has shifted from the default practitioner who

perhaps had an SE day job to a trained practitioner, just with less experience

than an expert.

But in reality there still is, and will be for some time, a shortage of good UX

practitioners, and the heuristic method is intended to help these novices

perform acceptably good usability inspections. It has been described as a

method that novices can grab onto and use without a great deal of training. The

effectiveness of a rule-based method used by a novice, of course, cannot be

expected to be on a par with a more sophisticated approach or by any approach

used by an expert practitioner.

472 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

As Nielsen (1992a; Nielsen & Molich, 1990) states, the heuristic evaluation

(HE) method has the advantages of being inexpensive, intuitive, and easy to

motivate practitioners to do, and it is effective for use early in the UX

process. Therefore, it is no surprise that of all the inspection methods, the

HE method is the best known and the most popular. Another important

point about the heuristics is that they teach the designers about criteria to

keep in mind while doing their own designs so they will not violate these

guidelines.

A word of caution, however: Although the HE method is popular and

successful, there will always be some UX problems that show up in real live

user-based interaction that you will not see in a heuristic, or any other,

inspection or design review.

13.4.2 How-to-Do-It: Heuristic Evaluation

Heuristics
Following publication of the original heuristics, Nielsen (1994a) enhanced

the heuristics with a study based on factor analysis of a large number of real

usability problems. The resulting new heuristics (Nielsen, 1994b) are given in

Table 13-1.

Table 13-1

Nielsen’s refined heuristics,
quoted with permission
from www.useit.com

Visibility of System Status

The system should always keep users informed aboutwhat is going on through appropriate
feedback within reasonable time.

Match Between System and The Real World

The system should speak the users’ language, with words, phrases, and concepts familiar to
the user rather than system-oriented terms. Follow real-world conventions, making
information appear in a natural and logical order.

User Control and Freedom

Users often choose system functions by mistake andwill need a clearly marked “emergency
exit” to leave the unwanted state without having to go through an extended dialogue.
Support undo and redo.

Consistency and Standards

Users should not have to wonder whether different words, situations, or actions mean the
same thing. Follow platform conventions.

Continued

473RAP ID EVALUATION METHODS

The procedure
Despite the large number of variations in practice, we endeavor to describe what

roughly represents the “plain” or “standard” version. These inspection sessions

can take from a couple of hours for small systems to several days for larger

systems. Here is how to do it:

n The project team or manager selects a set of evaluators, typically three to five.

n The team selects a small, tractable set, about 10, of “heuristics,” generalized and

simplified design guidelines in the form of inspection questions, for example, “Does the

Error Prevention

Even better than good error messages is a careful design that prevents a problem from
occurring in the first place. Either eliminate error-prone conditions or check for them and
present users with a confirmation option before they commit to the action.

Recognition Rather Than Recall

Minimize the user’s memory load by making objects, actions, and options visible. The user
should not have to remember information from one part of the dialogue to another.
Instructions for use of the system should be visible or easily retrievable whenever
appropriate.

Flexibility and Efficiency of Use

Accelerators—unseen by the novice user—may often speed up the interaction for the
expert user such that the system can cater to both inexperienced and experienced users.
Allow users to tailor frequent actions.

Aesthetic and Minimalist Design

Dialogues should not contain information that is irrelevant or rarely needed. Every extra
unit of information in a dialogue competes with the relevant units of information and
diminishes their relative visibility.

Help Users Recognize, Diagnose, and Recover from Errors

Error messages should be expressed in plain language (no codes), indicate the problem
precisely, and suggest a solution constructively.

Help and Documentation

Even though it is better if the system can be used without documentation, it may be
necessary to provide help and documentation. Any such information should be easy to
search, focused on the user’s task, list concrete steps to be carried out, and not be too large.

474 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

interaction design use the natural language that is familiar to the target user?” The set of

heuristics given in the previous section are a good start.

n Each inspector individually browses through each part of the interaction design, asking

the heuristic questions about that part:

n assesses the compliance of each part of the design

n notes places where a heuristic is violated as candidate usability problems

n notes places where heuristics are supported (things done well)

n identifies the context of each instance noted previously, usually by capturing an

image of the screen or part of the screen where the problem or good design

feature occurs

n All the inspectors get together and, as a team, they:

n merge their problem lists

n select the most important ones to fix

n brainstorm suggested solutions

n decide on recommendations for the designers based on the most frequently visited

screens, screens with themost usability problems, guidelines violatedmost often, and

resources available to make changes

n issue a group report

A heuristic evaluation report should:

n start with an overview of the system being evaluated

n give an overview explanation of inspection process

n list the inspection questions based on heuristics used

n report on potential usability problems revealed by the inspection, either:

n by heuristic—for each heuristic, give examples of design violations and of ways the

design supports the heuristic

n by part of the design—for each part, give specific examples of heuristics violated and/

or supported

n include as many illustrative screen images or other visual examples as possible.

The team then puts forward the recommendations they agreed on for design

modifications, using language that will motivate others to want to make these

changes. They highlight a realistic list of the “Top 3” (or 4 or 5) suggestions for

modificationsandprioritizesuggestions, togivethebiggest improvement inusability

for the least cost (perhaps using the cost-importance analysis of Chapter 16).

Reporting
Wehave found it best to keepHE reporting simple. Long forms with lots of fields

can capture more information, but tend to be tedious for practitioners who

have to report large numbers of problems. Table 13-2 is a simple HE reporting

475RAP ID EVALUATION METHODS

Table 13-2

Simple HE reporting form, adapted from Brad Myers

Heuristic Evaluation Report

Dated:

MM/DD/YYYY

Prepared By:

NAME:

SIGNATURE:

Evaluation Of:

Name of system being evaluated: XYZ Website

Other information about the system being evaluated:

Problem #: 1

Prototype screen, page, location of problem:

Name of heuristic: Consistency

Reason for reporting as negative or positive: Inconsistent placement of “Add to Cart” buttons: The “Add to Cart” button
is below the item in CDW but above in CDW-G.

Scope of problem: Every product page

Severity of problem (high/medium/low): Low—minor, cosmetic problem

Justification for severity rating: Unlikely that users will have trouble with finding or recognizing the button

Suggestions to fix: Move the button on one of the sites to be in the same place as on the other site.

Possible trade-offs (why fixmight notwork): This may result in an inconsistencywith something else, but unknownwhat
that might be.

476 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

form that we have adapted, with permission, from one developed by Brad Myers.

You can make up a Word document or spreadsheet form to put these headings

in columns as an efficient way to report multiple problems, but they do not fit

that way in the format of our book.

Description of columns in Table 13-2 is as follows:

Prototype screen, page, location of problem:On which screen and/or which location on a screen

of the user interface was critical incident or problem located?

Name of heuristic:Which of the 10 heuristics is being referenced? Enter the full name of the

heuristic.

Reason for reporting as negative or positive: Explain reasons why the interface violates or

upholds this heuristic. Be sure to be clear about where in the screen you are referencing.

Scope of problem: Describe the scope of the feedback or the problem; include whether

the scope of the issue is throughout the product or within a specific screen or screens. If

the problems are specific to a page, include the appropriate page numbers.

Severity of problem (high/medium/low): Your assessment as to whether the implication of the

feedback is high, medium, or low severity.

Justification of severity rating: The reason why you gave it that rating.

Suggestions to fix: Suggestion for the modifications that might be made to the interaction

design to address the issue or issues.

Possible trade-offs (why fix might not work): Mentioning trade-offs adds to your credibility.

Be specific and insightful; include subtlety and depth. Saying “the system does

not have good color choices because it does not use color” is pretty trivial and is

not helpful. Also, if you evaluated a prototype, saying that functions are not

implemented is obvious and unhelpful.

Variations abound
The one “constant” about the HE method and most other related rapid and

inspection methods is the variation with which they are used in practice. These

methods are adapted and customized by almost every team that ever uses them

usually in undocumented and unpublished ways.

Task-based or heuristic-based expert UX inspections can be conducted with

just one evaluator or with two or more evaluators, each acting independently or

all working together. Other expert UX inspections can be scenario based,

persona based, checklist based, or as a kind of “can you break it?” test.

As an example of a variation that was described in the literature, participatory

heuristic evaluation extends the HE method with additional heuristics to

address broader issues of task and workflow, beyond just the design of user

Critical Incident

A critical incident is a UX

evaluation event that occurs

during user task

performance or other user

interaction, observed by the

facilitator or other

observers or sometimes

expressed by the user

participant, that indicates a

possible UX problem.

Critical incident

identification is arguably

the single most important

source of qualitative data.

477RAP ID EVALUATION METHODS

interface artifacts to “consider how the system can contribute to human goals

and human experience” (Muller et al., 1998, p. 16). The definitive difference

in participatory HE is the addition of users, work domain experts, to the

inspection team.

Sears (1997) extended the HE method with what he calls heuristic

walkthroughs. Several lists are prepared and given to each practitioner doing the

inspection: user tasks, inspection heuristics, and “thought-focusing questions.”

Each inspector performs two inspections, one using the tasks as a guide and

supported by the thought-focusing questions. The second inspection is themore

traditional kind, using the heuristics. Their studies showed that “heuristic

walkthroughs resulted in finding more problems than cognitive walkthroughs

and fewer false positives than heuristic evaluations.”

Perspective-based usability inspection (Zhang, Basili, & Shneiderman, 1999)

is another published variation on the HE method. Because a large system

can present a scope too broad for any given inspection session, Zhang et al.

(1999) proposed “perspective-based usability inspection,” allowing inspectors to

focus on a subset of usability issues in each inspection. The resulting focus of

attention afforded a higher problem detection rate within that narrower

perspective.

Examples of perspectives that can be used to guide usability inspections are

novice use, expert use, and error handling. In their study, Zhang et al. (1999)

found that their perspective-based approach did lead to significant

improvement in detection of usability problems in a Web-based application.

Persona-based UX inspection is a variation on the perspective-based inspection

in that it includes consideration of context of use via the needs of personas

(Wilson, 2011).

As our final example, Cockton et al. (2003) developed an extended problem-

reporting format that improves heuristic inspection methods by finding and

eliminating many of the false positives typical of the usability inspection

approach. Traditional heuristic methods poorly support problem discovery and

analysis. Their Discovery and Analysis Resource (DARe) model allows analysts to

bring distinct discovery and analysis resources to bear to isolate and analyze false

negatives as well as false positives.

Limitations
While a helpful guide for inexperienced practitioners, we find that heuristics

usually get in the way of the experts. To be fair to the heuristic method, the

heuristic method was intended as a kind of “scaffolding” to help novice

practitioners do usability inspections so it should not really be compared with

expert usability inspection methods anyway.

478 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

It was perhaps self-confirming when we read that others found the actual

heuristics to be similarly unhelpful (Cockton, Lavery, & Woolrych, 2003;

Cockton &Woolrych, 2001). In their studies, Cockton et al. (2003) found that it

is experts who find problems with inspection, not experts using heuristics.

Cockton andWoolrych (2002, p. 15) also claim that the “inspection methods do

not encourage analysts to take a rich or comprehensive view of interaction.”

While this may be true for heuristic methods, it does not have to be true for all

inspection methods.

A major drawback with any inspection method, including the HE method, is

the danger that novice practitioners will get too comfortable with it and

think the heuristics are enough for any evaluation situation. There are few

indications in its usage that let the novice practitioner know when it is not

working well and when a different method should be tried.

Also, like all UX inspection methods, the HE method can generate a lot of

false negatives, situations in which inspectors identified “problems” that turned

out to be not real problems or not very important UX problems. Finally, like

most other rapid UX evaluation methods, the HE method is not particularly

effective in finding usability problems below the surface—problems about

sequencing and workflow.

13.5 OUR PRACTICAL APPROACH TO UX INSPECTION

Wehave synthesized existing UX inspectionmethods into a relatively simple and

straightforward method that, unlike the heuristic method, is definitely for

UX experts and not for novices. Sometimes we have novices sit in and observe

the process as a kind of apprentice training, but they do not perform these

inspections on their own.

13.5.1 The Knock on Your Door
It is the boss. You, the practitioner, are being called in and asked to do a

quick UX assessment of a prototype, an early product, or an existing product

being considered for revision. You have 1 or 2 days to check it out and give

feedback. You feel that if you can give some valuable feedback on UX flaws,

you will gain some credibility and maybe get a bigger role in the project

next time.

What method should you use? No time to go to the lab, and even the

“standard” inspection techniques will take too long, with too much overhead.

What you need is a practical, fast, and efficient approach to UX inspection. As a

solution, we offer an approach that evolved over time in our own practice. You

479RAP ID EVALUATION METHODS

can apply this approach at almost any stage of progress, but it usually works

better in the early stages. We believe that most real-world UX inspections are

more like our approach than like the somewhat more elaborate techniques to

inspection described in the literature.

13.5.2 Driven by Experience, Not Heuristics or Guidelines
We should say upfront that we do not explicitly use design guidelines or even

“heuristics” to drive or guide this kind of UX inspection. In our own industry and

consulting experience, we have just not found specific heuristics as useful as we

would like.

To be clear, we are saying that we do not employ user design guidelines to

drive the inspection process. The driving perspective is usage. We focus on tasks,

work activities, and work context. We do insist, however, that an expert working

and practical knowledge of design guidelines is essential to support the rapid

analysis used to decide what issues are real problems and to understand the

underlying nature of the problems and potential solutions. For this analysis,

intertwined with inspection activities, we depend on our knowledge of design

guidelines and their interpretation within the design.

We like a usage-based approach because it allows the practitioner to take

on the role of user better, taking the process from purely analytic to include at

least a little “empirical” flavor. Using this approach, and our UX intuition

honed over the years, we can see, and even anticipate, UX problems, many of

which might not have been revealed under the heuristic spotlight.

13.5.3 Use a Co-Discovery or Team Approach in UX Inspection
ExpertUXpractitioners as inspectors are in the role of “UXdetectives.” To aid the

detective work, it can help to use two practitioners, working together as mutual

sounding boards in a give-and-take interplay, potentiating each other’s efforts to

keep the juices flowing, to promote a constant flow of think-aloud comments from

the inspectors, and to maintain a barrage of problem notes flying.

It is also often useful to have a non-UX person with you to look at the

design from a global point of view. Teaming up with customers, users, designers,

and other people familiar with the overall system can help make up for any lack

of system knowledge you may have, especially if you have not been with the

team during the entire project. Teaming up with users or work domain experts

(which you might already have on your team) can reinforce your user-surrogate

role and bring in more work-domain expertise (Muller et al., 1998).

480 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

13.5.4 Explore Systematically with a Rich and Comprehensive
Usage-Oriented View
As an inspector, you should not just look for individual little problems associated

with individual tasks or functions. Use all your experience and knowledge to

see the big picture. Keep an expert eye on the high-level view of workflow,

the overall integration of functionality, and emotional impact factors that go

beyond usability.

For example, how are the three design perspectives covered in Chapter 8

accounted for by the system? Does the system ecology make sense? Is the

conceptual design for interaction appropriate for envisioned workflows? What

about the conceptual design for emotional impact?

Representative user tasks help us put ourselves in the users’ shoes. By

exploring the tasks ourselves and taking our own think-aloud data, we can

imagine what real users might encounter in their usage. This aspect of our

inspections is driven as systematically as possible by two things: the task structure

and the interaction design itself. A hierarchical task inventory (Chapter 6) is

helpful in attaining a good understanding of the task structure and to ensure

broad coverage of the range of tasks.

If the system is highly specialized and complex and you are not a work domain

expert, youmight not be able to comprehend it in a short time so get help from a

subject-matter expert. Usage scenarios and design scenarios (Chapter 6) are

fruitful places to look to focus on key user work roles and key user tasks that must

be supported in the design.

Driving the inspection with the interaction design itself means trying all

possible actions on all the user interface artifacts, trying out all user interface

objects such as buttons, icons, and menus. It also means being opportunistic in

following leads and hunches triggered by parts of the design.

The time and effort required for a good inspection are more or less

proportional to the size of the system (i.e., the number of user tasks, choices, and

system functions). System complexity can have an even bigger impact on

inspection time and effort.

The main skill you need for finding UX problems as you inspect the design is

your detective’s “eagle eye” for curious or suspicious incidents or phenomena.

The knowledge requirement centers on design guidelines and principles and

your mental inventory of typical interaction design flaws you have seen before.

You really have to know the design guidelines cold, and the storehouse of

problem examples helps you anticipate and rapidly spot new occurrences of the

same types of problems.

481RAP ID EVALUATION METHODS

Soon you will find the inspection process blossoming into a fast-moving

narration of critical incidents, UX problems, and guidelines. By following

various threads of UX clues, you can even uncover problems that you do not

encounter directly within the tasks.

13.5.5 Emotional Impact Inspection
In the past, inspections for evaluating interaction designs have been almost

exclusively usability inspections. But this kind of evaluation can easily be

extended to a more complete UX inspection by addressing issues of emotional

impact, too. The process is essentially the same, but you need to look beyond a

task view to the overall usage experience. Ask additional questions.

Among the emotional impact questions to have in mind in a UX

inspection are:

n Is usage fun?

n Is the visual design attractive (e.g., colors, shapes, layout) and creative?

n Will the design delight the user visually, aurally, or tactilely?

n If the target is a product:

n Is the packaging and product presentation aesthetic?

n Is the out-of-the-box experience exciting?

n Does the product feel robust and good to hold?

n Can the product add to the user’s self-esteem?

n Does the product embody environmental and sustainable practices?

n Does the product convey the branding of the organization?

n Does the brand stand for progressive, social, and civic values?

n Are there opportunities to improve emotional impact in any of the aforementioned

areas?

Most of the questions in a questionnaire for assessing emotional impact are

also applicable as inspection questions here. As an example, using attributes

from AttrakDiff:

n Is the system or product interesting?

n Is it exciting?

n Is it innovative?

n Is it engaging?

n Is it motivating?

n Is it desirable?

482 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

13.5.6 Use All Your Personalities
Roses are red;

Violets are blue.

I’m schizophrenic, . . .

And I am, too.

You need to be at least a dual personality, with a slightly schizophrenic

melding of the UX expert perspective and a user orientation. As a surrogate

for users, you must think like a user and act like a user. But you must

simultaneously think and act like an expert, observing and analyzing yourself

in the user role.

Your UX expert credentials have never been in doubt, but demands of the

user surrogate role can take you outside your comfort zone. You have to shed

the designer and analyst mind-sets in favor of design-informing views of the

world. Youmust immerse yourself in the usage-oriented perspective; become the

user and live usage!

If you have doubts about your ability to play the user-surrogate role, as we said

in a previous section, you should recruit an experienced user (hopefully one

who is familiar withUXprinciples) or user representative to sit with you and help

direct the interaction, informing the process with their work domain, user goal,

and task knowledge.

13.5.7 Take Good Notes
As you do your inspection and play user, good note taking is essential for

capturing precious critical incidents and UX problem data in the moment

that they occur. Just as prompt capture of critical incidents is essential in

lab-based testing to capture the perishable details while they are still fresh, you

need to do the same during your inspections. You cannot rely on your

memory and write it all down at the end. Once you get going, things can

happen fast, just as they do in a lab-based evaluation session.

We often take our notes orally, dictating themon a handheld digital recorder.

Because we can talk much faster than we can write or type, we can record our

thoughts with minimal interruption of the flow or of your intense cognitive

focus. Try to include as much analysis and diagnosis as you can, stating causes in

the design in terms of design guidelines violated. As with most skill-based

activities, you get better with practice.

You may not be able to suggest immediate solutions for more complex

problems (e.g., reorganizing workflow) that require significant thought and

483RAP ID EVALUATION METHODS

discussion. However, you can usually suggest a cause and a fix formost problems.

Given enough detail in the problem description, the solutions are often self-

suggesting. For example, if a label has low color contrast between the text and

the background, the solution is to increase the color contrast.

Dumas and Redish (1999) suggest that you should be more specific in

suggesting this kind of solution, including what particular colors to use. It is a

good idea to capture these design solution ideas, but treat them only as points of

departure. Those decisions still need to be thought out carefully by someone

with the requisite training in the use of colors and with knowledge of

organizational style standards concerning color, branding, and so on. If you give

an example of some colors that might work, you need to ensure that the

designers do not take those colors as the exact solution without thinking about

it further.

13.5.8 Analyze Your Notes
Sort out your inspection notes and organize them by problem type or design

feature. If necessary, you can use a fast affinity diagram approach (see Chapter 4)

on the top of a large work table. Print all notes on small pieces of paper and

organize them by topic. Prioritize your recommendations for fixing, maybe with

cost-importance analysis (Chapter 16).

13.5.9 Report Your Results
Your inspection report (Chapter 17) will be a lot like the one we described for

the heuristic method earlier in this chapter, only you will not refer to heuristics.

Tell about how you did the process in enough detail for your audience to

understand the evaluation context.

Sometimes UX inspection, as does any evaluation method, raises questions.

In your report, you should include recommendations for further evaluation,

with specific points to look for and specific questions to answer.

13.6 DO UX EVALUATION RITE

13.6.1 Introduction to the Rapid Iterative Testing
and Evaluation (RITE) UX Evaluation Method
There are many variations of rapid UX evaluation techniques. Most are some

variation of inspection methods, but one in particular that stands out is not

based on inspection: the approach that Medlock, Wixon, and colleagues

(Medlock et al., 2002, 2005; Wixon, 2003) call RITE, for “rapid iterative testing

and evaluation,” is an empirical rapid evaluation method and is one of the best.

Exercise

See Exercise 13-1, Formative

UX Inspection

484 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

RITE employs user-based UX testing in a fast collaborative (team members

and participants) test-and-fix cycle designed to pick the low-hanging fruit at

relatively low cost. In other methods, the rest of the team is usually not present

to see the process, so problems found by UX evaluators in the mystical methods

are sometimes not believed. This is solved by the collaborative evaluation process

in RITE; the whole team is involved in arriving at the results.

The key feature of RITE is the fast turnaround.UXproblems are analyzed right

after the product is evaluated with a number of user participants and the whole

project team decides on which changes to make. Changes are then implemented

immediately. If warranted, another iteration of testing and fixing might ensue.

Because changes are included in all testing that occurs after that point,

further testing can determine the effectiveness of the changes—whether the

problem is, in fact, fixed and whether the fix introduces any new problems.

Fixing a problem immediately also gives access to any aspects of the product that

could not be tested earlier because they were blocked by that problem.

In his inimitable Wixonian wisdom, our friend Dennis reminds us that,

“In practice, the goal is to produce, in the quickest time, a successful product

that meets specifications with the fewest resources, while minimizing risk”

(Wixon, 2003).

13.6.2 How-to-Do-It: The RITE UX Evaluation Method
This description of the RITE UX evaluation method is based mainly on

Medlock et al. (2002).

The project team starts by selecting a UX practitioner, whom we call the

facilitator, to direct the testing session. The UX facilitator and the team

prepare by:

n identifying the characteristics needed in participants

n deciding on which tasks they will have the participants perform

n agreeing on critical tasks, the set of tasks that every user must be able to perform

n constructing a test script based on those tasks

n deciding how to collect qualitative user behavior data

n recruiting participants (Chapter 14) and scheduling them to come into the lab

The UX facilitator and the team conduct the evaluation session for one to

three participants, one at a time:

n gathering the entire project team and any other relevant project stakeholders, either in

the observation room of a UX lab or around a table in a conference room

n bringing in the participant playing the role of user

485RAP ID EVALUATION METHODS

n introducing everyone and setting the stage, explaining the process and expected

outcomes

n making sure that everyone knows the participant is helping evaluate the system and the

team is not in any way evaluating the participant

n having the participant perform a small number of selected tasks, while all project

stakeholders observe silently

n having the participants think aloud as they work

n working together with the participants to find UX problems and ways the design should

be improved

n taking thorough notes on problem indicators, such as task blocking and user errors

n focusing session notes on finding usability problems and noting their severity

The UX facilitator and other UX practitioners:

n identify from session notes the UX problems observed and their causes in the design

n give everyone on the team the list of UX problems and causes

The UX practitioner and the team address problems:

n identifying problems with obvious causes and obvious solutions, such as those

involving wording or labeling, to be fixed first

n determining which other problems can also reasonably be fixed

n determining which problems need more discussion

n determining which problems require more data (from more participants) to be sure

they are real problems

n sorting out which problems they cannot afford to fix right now

n deciding on feasible solutions for the problems to be addressed

n implementing fixes for problems with obvious causes and obvious solutions

n starting to implement other fixes and bringing them into the current prototype as

soon as feasible

TheUX practitioner and the team immediately conduct follow-up evaluation:

n bringing in new participants

n having them perform the tasks associated with the fixed problems, using the

modified design

n working with the participants to see if the fixes worked and to be sure the fixes did not

introduce any new UX problems

The entire process just described is repeated until you run out of resources or

the team decides it is done (all major problems found and addressed).

486 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

13.6.3 Variations in RITE Data Collection
Although RITE is unusual as a rapid evaluationmethod that employs UX testing

with user participants, what really distinguishes RITE is the fast turnaround

and tight coupling of testing and fixing. As a result, it is possible to consider

alternative data collection techniques within the RITE method. For example,

instead of testing with user participants, the team could employ a UX inspection

method, heuristic evaluation or otherwise, for data collection while retaining the

fast analysis and fixing parts of the cycle.

13.7 QUASI-EMPIRICAL UX EVALUATION

13.7.1 Introduction to Quasi-Empirical UX Evaluation
Quasi-empirical UX evaluation methods are empirical because they

involve taking some kind of data using volunteer participants. Beyond

that, their similarities to other empirical methods fade rapidly. Most

empirical methods are characterized by formal protocols and procedures;

rapid methods are anything but formal or protocol bound. Thus, the

qualifier “quasi.”

Most empirical methods have at least some focus on quantitative data; quasi-

empirical approaches have none. The single paramount mission is qualitative

data to identify UX problems that can be fixed efficiently.

Although formal empirical evaluations often take place in a UX lab or

similar setting, quasi-empirical testing can occur almost anywhere, including

UX lab space, a conference room, an office, a cafeteria, or in the field. Like

other rapid evaluation methods, practitioners using quasi-empirical techniques

thrive on going with what works. While most empirical methods require

controlled conditions for user performance, it is now not only acceptable but

recommended to interrupt and intervene at opportune moments to elicit

more thinking aloud and to ask for explanations and specifics.

Quasi-empirical methods are defined by the freedom given to the practitioner

to innovate, to make it up as they go. Quasi-empirical evaluation sessions mean

being flexible about goals and approaches. When conducted by the best

practitioners, quasi-empirical evaluation is punctuated with impromptu changes

of pace, changes of direction, and changes of focus—jumping on issues as they

arise andmilking them to get themost information about problems, their effects

on users, and potential solutions.

This innovation in real time is where experience counts. Because of the

ingenuity required and the need to adapt to each situation, experienced

practitioners are usually more effective at quasi-empirical techniques, as they are

487RAP ID EVALUATION METHODS

with all rapid evaluation techniques. Each quasi-empirical session is different

and can be tailored to the project conditions. Each session participant is

different—some are more knowledgeable whereas some are more helpful. You

must find ways to improvise, go with the flow, and learn the most you can about

the UX problems.

Unlike other empirical methods, there are no formal predefined

“benchmark tasks,” but a session can be task driven, drawing on usage scenarios,

essential use cases, step-by-step task interactionmodels, or other task data or task

models you collected and built up in contextual inquiry and analysis and

modeling. Quasi-empirical sessions can also be driven by exploration of features,

screens, widgets, or whatever suits.

13.7.2 How-to-Do-It: Quasi-Empirical UX Evaluation

Prepare
Begin by ensuring that you have a set of representative, frequently used, and

mission-critical tasks for your participants to explore. Draw on your contextual

data and task models (structure models and interaction models). Have some

exploratory questions ready (see next section).

Assign your UX evaluation team roles effectively, including evaluator,

facilitator, and data collectors. If necessary, use two evaluators for co-discovery.

Further prepare for your quasi-empirical session the same way you would for

a full empirical session, only less formally and less thoroughly, to match the

more rapid and more opportunistic nature of the quasi-empirical approach.

Thus preparation includes lightweight selection and recruiting of

participants, preparation of materials such as the informed consent form,

and establishment of protocols and procedures for the sessions. You should also

do pilot testing to shake down the prototype and the procedures, but getting

the prototype bug-free is a little less important for quasi-empirical evaluation,

as you can be very flexible during the session.

Conduct session and collect data
As you, the facilitator, sit with each participant:

n Cultivate a partnership; you get the best results from working closely in collaboration.

n Make extensive use of the think-aloud data collection technique. Encourage the

participant by prompting occasionally: “Remember to tell us what you are thinking

as you go.”

n Make sure that the participant understands the role as that of helping you evaluate

the UX.

Think-Aloud
Technique

The think aloud technique is

a qualitative data collection

technique in which user

participants verbally

externalize their thoughts

about their interaction

experience, including their

motives, rationale, and

perceptions of UX

problems. By this method,

participants give the

evaluator access to an

understanding of their

thinking about the task and

the interaction design.

488 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

n Although recording audio or video is sometimes helpful in rigorous evaluationmethods,

to retain a rapidness in this method, it is best not to record audio or video; just take

notes. Keep it simple and lightweight.

n Encourage the participant to explore the system for a few minutes and get familiarized

with it. This type of free-play is important because it is representative of what

happens when users first interact with a system (except in cases where walk up and use is

an issue).

n Use some of the tasks that you have at hand, from the preparation step given earlier,

more or less as props to support the action and the conversation. You are not interested

in user performance times or other quantitative data.

n Work together with the participant to find UX problems and ways the design should be

improved. Take thorough notes; they are sole raw data from the process.

n Let the user choose some tasks to do.

n Be ready to follow threads that arise rather than just following prescripted activities.

n Listen as much as you can to the participant; most of the time it is your job to listen,

not talk.

n It is also your job to lead the session, which means saying the right thing at the right time

to keep it on track and to switch tracks when useful.

At any time during the session, you can interact with the participant with

questions such as:

n Ask participants to describe initial reactions as they interact with this system.

n Ask questions such as “How would you describe this system to someone who has never

seen it before? What is the underlying “model” for this system? Is that model

appropriate? Where does it deviate? Does it meet your expectations? Why and how?

These questions get to the root of determining the user’s mental model for the system.

n Ask what parts of the design are not clear and why.

n Inquire about how the system compares with others they have used in the past.

n Ask if they have any suggestions for changing the designs.

n To place them in the context of their own work, ask them how they would use this system

in their daily work. In other words, ask them to walk you through some tasks they would

perform using this system in a typical workday.

Analyze and report results
Because the UX data analysis procedure (Chapter 16) pretty much applies

regardless of how you got data, use the parts of that chapter about analyzing

qualitative data.

489RAP ID EVALUATION METHODS

13.8 QUESTIONNAIRES

A questionnaire, discussed at length in Chapter 12, is a fast and easy way to

collect subjective UX data, either as a supplement to any other rapid UX

evaluation method or as a method on its own.

Questionnaires with good track records, such as the Questionnaire for User

Interface Satisfaction (QUIS), the System Usability Scale (SUS), or Usefulness,

Satisfaction, and Ease of Use (USE), are all easy and inexpensive to use and

can yield varying degrees of UX data. Perhaps the AttrakDiff questionnaire

might be the best choice for a rapid stand-alone method, as it is designed to

address both pragmatic (usability and usefulness) and hedonic (emotional

impact) issues.

For a general discussion of modifying questionnaires for your particular

evaluation session, see Chapter 12 about modifying the AttrakDiff

questionnaire.

13.9 SPECIALIZED RAPID UX EVALUATION METHODS

13.9.1 Alpha and Beta Testing and Field Surveys
Alpha and beta testing are useful post-deployment evaluation methods. After

almost all development is complete, manufacturers of software applications

sometimes send out alpha and beta (pre-release) versions of the application

software to select users, experts, customers, and professional reviewers as a

preview. In exchange for the early preview, users try it out and give feedback on

the experience. Often little or no guidance is given for the review process

beyond just “tell us what you think is good and bad and what needs fixing, what

additional features would you like to see, etc.”

An alpha version of a product is an earlier, less polished version, usually with

a smaller and more trusted “audience.” Beta is as close to the final product as

they can make it and is sent out to a larger community. Most companies develop

a beta trial mailing list of a community of early adopters and expert users,

mostly known to be friendly to the company and its products and helpful in their

comments.

Alpha and beta testing are easy and inexpensive ways to get feedback. But you

do not get the kind of detailed UX problem data observed during usage and

associated closely with user actions and their consequences in the context of

specific interaction design features—the kind of data essential for isolating

specific UX problems within the formative evaluation process.

490 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Alpha and beta testing are very much individualized to a given

development organization and environment. Full descriptions of how to do

alpha and beta testing are beyond our scope. Like alpha and beta testing,

user field survey information is retrospective and, while it can be good for

getting at user satisfaction, it does not capture the details of use within the

usage experience. Anything is better than nothing, but let us hope this is not

the only formative evaluation used within the product lifecycle in a given

organization.

13.9.2 Remote UX Evaluation
Remote UX evaluation methods (Dray & Siegel, 2004; Hartson & Castillo, 1998)

are good for evaluating systems after they have been deployed in the field.

Methods include:

n simulating lab-based UX testing using the Internet as a long extension cord to the

user (e.g., UserVue by TechSmith)

n online surveys for getting after-the-fact feedback

n software instrumentation of click stream and usage event information

n software plug-ins to capture user self-reporting of UX issues

The Hartson and Castillo (1998) approach uses self-reporting of UX

problems by users as the problems occur during their normal usage, allowing

you to get at the perishable details of the usage experience, especially in real-life

daily work usage. As always, the best feedback for design improvement is

feedback deriving from Carter’s (2007) “inquiry within experience,” or

formative data given concurrent with usage rather than retrospective

recollection. A full description of how to do remote UX testing is highly

dependent on the type of technology used to mediate the evaluation, and

therefore not possible to describe in detail here.

13.9.3 Local UX Evaluation
Local UX evaluation is UX evaluation using a local prototype. A local prototype

is very limited in both depth and breadth, restricted to a single interaction

design issue involving particular isolated interaction details, such as the

appearance of an icon, wording of a message, or behavior of an individual

function. If your design team cannot agree on the details of a single feature, such

as a particular dialogue box, you canmockup local prototypes of the alternatives

and take them to users to compare in local UX evaluation.

Local Prototype

A local prototype represents

the small area where

horizontal and vertical slices

intersect. A local prototype,

with depth and breadth

both limited, is used to

evaluate design alternatives

for a particular isolated

interaction detail.

491RAP ID EVALUATION METHODS

13.9.4 Automatic UX Evaluation
Lab-based and UX inspection methods are labor-intensive and, therefore,

limited in scope (small number of users exercising small portions of large

systems). But large and complex systems with large numbers of users offer the

potential for a vast volume of usage data. Think of “observing” a hundred

thousand users using Microsoft Word. Automatic methods have been devised to

take advantage of this boundless pool of data, collecting and analyzing usage

data without need for UX specialists to deal with each individual action.

The result is a massive amount of data about keystrokes, click-streams,

and pause/idle times. But all data are at the low level of user actions, without any

information about tasks, user intentions, cognitive processes, etc. There are

no direct indications of when the user is having a UX problem somewhere in

the midst of that torrent of user action data. Basing redesign on click counts and

low-level user navigation within a large software application could well lead

to low-level optimization of a system with a bad high-level design. A full

description of how to do automatic usability evaluation is beyond our scope.

13.10 MORE ABOUT “DISCOUNT” UX ENGINEERING
METHODS

13.10.1 Nielsen and Molich’s Original Heuristics
The first set of heuristics that Nielsen and Molich developed for usability

inspection (Molich & Nielsen, 1990; Nielsen & Molich, 1990) were 10 “general

principles” for interaction design. They called them heuristics because they are

not strict design guidelines. Table 13-3 lists these original heuristics from

Nielsen’s Usability Engineering book (Nielsen, 1993, Chapter 5).

13.10.2 “Discount” Formative UX Evaluation Methods
Although the concepts have been challenged, mainly by academics, as inferior

and scientifically unsound, we use the term “discount method” in a positive

sense. UX evaluation is the center of the iterative process and, despite its highly

varied effectiveness, somehow in practice it still works. Here we wholeheartedly

affirm the value of discount UX methods among your UX engineering tools!

What is a “discount” evaluation method?
Because UX inspection techniques are less costly, they have been called

“discount” evaluation techniques (Nielsen, 1989). Although the term was

intended to reflect the advantage of lower costs, it soon was used pejoratively to

connote inferior bargain-basement goods (Cockton & Woolrych, 2002;

492 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Gray & Salzman, 1998) because of the reduced effectiveness and susceptibility to

errors in identifying UX problems.

Inspection methods have been criticized as “damaged merchandise” (Gray &

Salzman, 1998) or “discount goods” (Cockton & Woolrych, 2002); however

we feel that, as in most things, the value of these methods depends on the

context of their use. Although the controversy could be viewed by those

outside of HCI research as academic fun and games, it could be important

to you because it is about very practical aspects of your choices of UX

evaluation methods and bounds in their use.

Do “discount” methods work?
It depends on what you mean by “work.” Much of the literature by researchers

studying the effectiveness of UX evaluation methods decries the shortcomings

of inspection methods when measured by a science-oriented yardstick.

Table 13-3

Original Nielsen and
Molich heuristics

The 10 Original Nielsen and Molich Usablity Inspection Heuristics

n Simple and natural dialogue
n Good graphic design and use of color
n Screen layout by gestalt rules of human perception
n Less is more; avoid extraneous information

n Speak the users’ language
n User-centered terminology, not system or technology centered
n Use words with standard meanings
n Vocabulary and meaning from work domain
n Use mappings and metaphors to support learning

n Minimize user memory load
n Clear labeling

n Consistency
n Help avoid errors, especially by novices

n Feedback
n Make it clear when an error has occurred
n Show user progress

n Clearly marked exits
n Provide escape from all dialogue boxes

n Shortcuts
n Help expert users without penalizing novices

n Good error messages
n Clear language, not obscure codes
n Be precise rather than vague or general
n Be constructive to help solve problem
n Be polite and not intimidating

n Prevent errors
n Many potential error situations can be avoided in design
n Select from lists, where possible, instead of requiring user to type in
n Avoid modes

n Help and documentation
n When users want to read the manual, they are usually desperate
n Be specific with online help

493RAP ID EVALUATION METHODS

Studies have established that even with a large number of evaluators, some

evaluations reveal only a percentage of the existing problems. We know that

there is a broad variability of results across methods and across people using the

same method. Different evaluators even report very different problems when

observing the same evaluation session. Different UX teams interpret the same

evaluation report in different ways.

However, in an engineering context, “working” means being effective and

being cost-effective, and in this context discount UX engineering methods have

a well-documented record of success. From a practical perspective, it is difficult

to avoid the conclusion that using these methods is still better than not doing

anything about evaluating UX.

Yes, you might miss many real user experience problems, but you will get

some good ones, too. That is the trade-off youmust be willing to accept if you use

“discount” methods. You might even get some false positives, things that look

like problems but really are not. It is hoped that you can sort those out. In any

case, the idea is that you will be able to achieve a good engineering result much

faster and with far less cost than a full empirical treatment that some authors

demand.

Finally, although lab-based evaluation is often held up as the “gold standard”

or yardstick against which other evaluation methods are compared, lab

testing is not perfect, either, and does not escape criticism for limitations in

effectiveness (Molich et al., 1998, 1999; Newman, 1998; Spool & Schroeder,

2001). The lab-based approach to UX testing suffers from many of the same

kinds of flaws as do discount and other inspection methods.

Pros and cons as engineering tools
Of course, with any discount approach, there are trade-offs. The upside is that, in

the hands of an experienced evaluator, inspection methods can be very

effective—you can get a lot of UX problems dealt with and out of the way at a low

cost. Another advantage is that UX inspection methods can be very fast, more

quickly responsive than lab testing, for example, to fast iteration. Under the

right conditions, you can do a UX inspection and its analysis, fix the major

problems, and update the prototype design in a day!

The major downsides are that because inspection methods do not employ

real users, they can be error-prone, can tend to find a higher proportion of lower

severity problems, and can suffer from validity problems. This means they will

yield some false positives (UX issues that turn out not to be real problems) and

will miss some UX problems because of false negatives. Having to deal with

494 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

low-severity problems and false positives can be distracting to UX practitioners

and can be wasteful of resources.

Another potential drawback is that the UX experts doing the inspection may

not know the subject-matter domain or the system in depth. This can lead to a

less effective inspection but can be offset somewhat by including a subject-matter

expert on the inspection team.

Evaluating UX evaluation methods
Some of the value of current methods for assessing and improving UX in

interactive software systems is somewhat offset by a general lack of

understanding of the capabilities and limitations of each. Practitioners need to

know which methods are more effective and in what ways and for what purposes.

Thus emerged the need to evaluate and compare usability evaluation methods.

The literature has a number of limited studies and commentaries on the

effectiveness of usability evaluation methods, each report with its own different

goals, results, and inferences.

However, there are no standard criteria for usability evaluation method

comparison from study to study. And researchers planning full formal

summative studies of competing methods in a real-world commercial

development project environment are faced with virtually prohibitive difficulty

and expense. It is hard enough to develop a system once, let alone redeveloping

it over and over with multiple different approaches.

So we have a few imperfect but still enlightening studies to go by, mostly

studies emerging as a by-product or afterthought attached to some other

primary effort. In sum, usability evaluation methods have not been evaluated

and compared reliably.

In the literature, usability inspection methods are often compared with lab-

based testing, but we do not see inspection as a one-or-the-other alternative or a

substitute for lab-based testing. Each method is one of the available UX

engineering tools, each appropriate under its own conditions.

Andrew Sears made some of the most important early contributions about

usability metrics (e.g., thoroughness, validity, and reliability) in usability

evaluation methods (Sears, 1997; Sears & Hess, 1999). Hartson, Andre, and

Williges (2003) introduced usability evaluation method comparison criteria and

extended themeasures of Sears to include effectiveness, an overall metric taking

into account both thoroughness and validity. Their weightings between

thoroughness and validity have the potential to enhance the possibilities for

usability evaluation method performance measures in comparison studies.

495RAP ID EVALUATION METHODS

Hartson, Andre, and Williges (2003) include a modest review of 18 comparative

usability evaluation method studies.

Gray and Salzman (1998) spoke to the weaknesses of most usability evaluation

method comparison studies conducted to that date. Their critical review of

usability evaluationmethod studies concluded that flaws in experimental design

and execution “call into serious question what we thought we knew regarding

the efficacy of various usability evaluation methods.” Using specific critiques of

well-known usability evaluationmethod studies to illustrate, they argued the case

that experimental validity (of various kinds) and other shortcomings of

statistical analyses posed a danger in using the “conclusions” to recommend

usability evaluation methods to practitioners.

To say that this paper was controversial is an understatement. Perhaps it was

in part the somewhat cynical title (“DamagedMerchandise”) or the overly severe

indictment of the research arm of HCI, but the comments, rebuttals, and

rejoinders that followed added more than a little fun and excitement into the

discipline.

Also, we have noticed a trend since this paper to transfer the blame from the

studies of discount usability evaluation methods to the methods themselves, a

subtle attempt to paint the methods with the same “damaged merchandise”

brush. The CHI’95 panel called “Discount or Disservice?” (Gray et al., 1995) is an

example. In Gray and Salzman (1998), the term “damaged merchandise” was, at

least ostensibly, aimed at flawed studies comparing usability evaluationmethods.

But many have taken the term to refer to the usability evaluation methods

themselves and this panel title does nothing to disabuse us of this semantic

sleight of hand.

More recently, in a comprehensive meta study of usability methods and

practice, Hornbaek (2006) looked at 180 (!) studies of usability evaluation

methods. Hornbaek proposed more meaningful usability measures, both

objective and subjective, and contributed a useful in-depth discussion of what

it means to measure usability, an elusive but fundamental concept in this

context.

Finally, one of the practical problems with evaluation methods and their

evaluation is the question of “Now that you have found the usability problems,

what is next?” John and Marks (1997) consider downstream (after usability data

gathering) utility, the usefulness of usability evaluation method outputs

(problem reports) in convincing team members of the need to fix a problem

and the usefulness in helping to effect the fixes. Only a few others also consider

this issue, including Medlock et al. (2005), Gunn (1995), and Sawyer, Flanders,

and Wixon (1996).

496 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

The Comparative Usability Evaluation (CUE) series
In a series of usability evaluation method evaluation studies that became

known as the Comparative Usability Evaluation series (seven studies that

we know of as of this writing), a number of usability evaluation methods

were tested under a variety of conditions and a major observation emerged

under the name of the evaluator effect (Hertzum & Jacobsen, 2003),

which essentially states that the variation among results from different

evaluators using the same method on the same target application can be

so large as to call into question the effectiveness of the methods. These

studies have been called by some the studies that discredit usability

engineering, but we think they just bring some important issues about

reality to light.

In CUE-1 (Molich et al., 1998), four professional usability labs performed

usability tests of a Windows calendar management application. Of the 141

usability problems reported overall, 90% were reported by only one lab and only

one problem was reported by as many as four labs.

In CUE-2 (Molich et al., 2004), nine organizations evaluated a Website,

focusing on a prescribed task set. Seventy-five percent of the 310 overall

problems were reported by just one team, while only 2 problems were reported

by as many as six groups.

CUE-3 (Hertzum, Jacobsen, & Molich, 2002) again evaluated a Website using

a specific task set. This time the experimenters began with 11 individuals. The

subject evaluators then met in four groups to combine their individual results.

Following group discussions, the individuals “felt that they were largely in

agreement,” despite only a 9% overlap in reported problems between any two

evaluators. This perception of agreement in the face of data apparently to the

contrary seemed to be based on the feeling that the different problem reports

were actually about similar underlying problems but coming at them from

different directions.

In a secondary part of CUE-4, the authors concluded that a large

proportion of recommendations given following a usability evaluation were

neither useful nor usable for making design changes to improve product

usability (Molich, Jeffries, & Dumas, 2007). The authors concluded that

designers have difficulty acting on most problem descriptions because

problem reports are often poorly written, unconvincing, and ineffective at

guiding a design solution. To make it worse, in many cases the entire outcome

rides on the report itself as there is no opportunity to explain the problems or

argue the case afterward.

As of this writing, the latest in the CUE series was CUE-9 (Molich, 2011).

497RAP ID EVALUATION METHODS

13.10.3 Yet Somehow Things Work

Press on
So what is all the fuss in the literature about damaged merchandise, discount

methods, heuristic methods, and so on? Scientifically, there are valid issues with

these methods. However, the evaluator effect applies to virtually all kinds of UX

evaluation, including our venerable yardstick of performance, the lab-based

formative evaluation. Formative evaluation, in general, just is not very reliable or

repeatable.

There is no one evaluation method that will reveal all the UX problems. So

what is a UX newbie to do? Give it up? No, this is engineering and we just have to

get over it, be practical, and do our best—and sometimes it works really well.

While researchers continue to pursue and validate better methods, we make

things work and we use tools and methods that are far less than perfect. We

always seem to get a better design by evaluating and iterating and that is the goal.

One application of our methods may not find all UX problems, but we usually

get some good ones. If we fix those, maybe we will get the others the next time.

We will find the important ones in other ways—we are not doing the whole

process with our eyes closed. In the meantime, experienced practitioners read

about how these evaluation methods do not work and smile as they head off to

the lab or to an inspection session.

Among the reasons we have to be optimistic in the long run about our UX

evaluation methods are:

n Goals are engineering goals, not scientific goals

n Iteration helps close the gap

n Disagreement in the studies was subject to interpretation

n Evaluation methods can be backed up with UX expertise

Practical engineering goals
Approaching perfection is expensive. In engineering, the goal is to make it good

enough. Wixon (2003) speaks up for the practitioner in the discussion of

usability evaluation methods. From an applied perspective, he points out that a

focus on validity and proper statistical analysis in these studies is not serving the

needs of practitioners in finding the most suitable usability evaluation method

and best practices for their work context in the business world.

Wixon (2003) would like to see more emphasis on usability evaluation

method comparison criteria that take into account factors that determine their

success in real product development organizations. As an example, the value of a

method might be less about absolute numbers of problems detected and more

498 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

about how well a usability evaluation method fits into the work style and

development process of the organization. And to this we can only say amen.

Managing risk by mitigating evaluation errors
Cockton and Woolrych (2002) cast errors made with usability evaluation

methods (discount inspection methods and “lite” lab-based usability testing

methods) in terms of risks, “But are discount methods really too risky to

justify the ‘low’ cost?” What kinds of risks are there? There is the risk of

not fixing usability issues missed by the method and the risk of “fixing”

false alarms.

To be sure, however, the risks associated with errors are real and are part

of any engineering activity involving evaluation and iterative improvement.

But we have to ask, how serious are the risks? Rarely can an error of these types

make or break the success of the system. As Cockton and Woolrych (2002,

pp. 17–18) point out, “errors . . . may be more costly in some contexts than

others.”

Where human lives are at risk, we are compelled to spend more resources to

be more thorough in all our process activities and will surely not allow an

evaluation error to weaken the design in the end. In most applications, though,

each error simply means that we missed an opportunity to improve usability in

one detail of the design.

Managing the risk of false negatives with iteration
Many of the comparisons of usability inspection methods point out the

susceptibility of these methods to making errors in identifying usability

problems, with disparaging conclusions. However, these conclusions are usually

made in the context of science, where evaluation errors can count heavily

against the method. In balance, others (Manning, 2002) question the working

assumptions of such problem validity arguments when examined in the light of

real-world development projects.

One kind of problem identification error, a false negative—failure to detect a

real usability problem—can lead to missing out on needed fixes. The risk here,

of course, is not greater than it would be if no evaluation is done. So every

problem you do find is one for the good. What, then, are the alternatives?

Discount methods are being used presumably because of budget constraints, so

the more expensive lab-based testing is not going to be the answer.

One important factor that some studies of evaluation methods neglect is

iteration. To temper the consequences of missing some problems the first time

around, you always have other iterations and other evaluation methods that

might well catch them by the end of the day. If we look at the results over a few

499RAP ID EVALUATION METHODS

iterations instead of each attempt in isolation, we are likely to see net

occurrences of false negatives reduced greatly.

If we find a set of bona fide problems and fix them, we remove them from

contention in the next cycle of evaluation, which helps us focus on the

remaining problems. If we combine different results (i.e., different problems

uncovered) from different evaluators or different iterations, the overall process

can still converge.

Managing the risk of false positives with UX expertise
Another kind of problem identification error is a false positive—identifying

something as a problem when it is not. The risk associated with this kind of error,

that of trying to fix a problem that is not real, could exact a penalty. For example,

false positives in problem identification can lead to unneeded and possibly

damaging “fixes.” But, as we said, this risk occurs with any kind of evaluation

method.

The important point to remember here is that UX inspection is only an

engineering tool. You, the practitioner, must maintain your engineering

judgment and not let evaluation results be interpreted as the final word. You are

still in charge.

Also, as many point out, this is just the initial finding of candidate problems.

To abate the effects of false positives, think of themethod as an engineering tool

not giving you absolute indicators of problems but suggesting possible problems,

possibilities that you, the expert practitioner, must still investigate, analyze, and

decide upon. Then, if there are still false positives, you can blame yourself

and not the inspectionmethod. In the discountmethods controversy, we lay a lot

of responsibility on the methods for finding problems without considering

that the UX evaluation methods are backed up by UX specialists.

One important way that a UX specialist can augment the limited power of a

UX evaluationmethod is by learning from problems that are found and keeping

alert for similar issues elsewhere in the design. An interaction design is a web of

features and relationships. If you detect one instance of a UX problem in a

particular design feature, you are likely to encounter similar problems in similar

situations elsewhere as you go about the fixes and redesign.

Suppose there are 10 instances of a UX problem of a certain general type in

your application, but our UX evaluation method finds only 1. There is still a

good chance that analysis and redesign for that problem will lead a dedicated

and observant UX specialist eventually to find and fix some other similar or

related problems, giving you a UX evaluation method/practitioner team with a

higher net problem detection rate.

500 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Look at the bright side of studies
In CUE-3 (Hertzum, Jacobsen, & Molich, 2002), the dissimilarity among results

across individual evaluators was not viewed as disagreements by the evaluators

but as different expressions of the same underlying problems. Although

statistically the evaluators had a relatively small overlap in problems reported,

after a group discussion the evaluators all felt they “were largely in agreement.”

The evaluators perceived their disparate observations as multiple sources of

evidence in support of the same issues, not as disagreements.

We have also experienced this in our consulting work when different

problem reports at first seemed not comparable, but further discussion

revealed that they were saying different things about essentially the same

underlying problems, and we felt that even if we had not detected this in the

analysis stage, the different views would have converged in the process of

fixing the problems.

This seems to say that the evaluation methods were not as bad at problem

detection as data initially implied. However, it also seems to shift the spotlight to

difficulties in how we analyze and report problems in those methods. There is a

large variation in the diagnoses and expressions used to describe problems.

Finally, in situations where thoroughness is low, low reliability across

evaluators can actually be an asset. As long as each evaluator is not finding most

or all of the problems, differences in detection across evaluators mean that, by

adding more evaluators, you can find more problems in their combined reports

through a diversity in detection abilities.

In sum, although criticized as false economy in some HCI literature,

especially the academic literature, these so-called “discount” methods are

practiced heavily and successfully in the field.

501RAP ID EVALUATION METHODS

Intentionally left as blank

CHAPTER

Rigorous Empirical
Evaluation: Preparation 14

Be prepared; that’s the Boy Scouts’ marching song. . . . Don’t be nervous, don’t be flustered,

don’t be scared. . . . Be prepared!

– Tom Lehrer

Objectives

After reading this chapter, you will:

1. Know how to plan for rigorous empirical UX evaluation in the lab and in the field

2. Be able to select people for team roles

3. Know how to select effective tasks for empirical UX evaluation

4. Be prepared to select an evaluation method and various data collection techniques,

including critical incident identification, think-aloud techniques, co-discovery, and

questionnaires

5. Have the working knowledge to select, recruit, and prepare for participants

6. Know how to perform pilot testing before evaluation

7. Understand the concepts and issues relating to determining the right number of

participants for a given evaluation situation

14.1 INTRODUCTION

14.1.1 You Are Here
We begin each process chapter with a “you are here” picture of the chapter topic

in the context of the overall Wheel lifecycle template; see Figure 14-1. This

chapter, about preparing for evaluation, begins a series of chapters about

rigorous empirical UX evaluation.

This chapter begins a series of four about rigorous empirical UX evaluation

methods, of which lab-based testing is the archetype example. Some of what is in

these chapters applies to either lab-based or in-the-field empirical evaluation,

but parts are specific to just lab based. Field-based rigorous empirical UX

evaluation is essentially the same as lab based except the work is done on

location in the field instead of in a lab.

Although we do include quantitative UX data collection and analysis, this is

emphasized less than it used to be in previous usability engineering books

because of less focus in practice on quantitative user performance measures and

more emphasis on evaluation to reveal UX problems to be fixed.

14.2 PLAN FOR RIGOROUS EMPIRICAL UX EVALUATION

Planning your empirical UX evaluation means making cost-effective decisions

and trade-offs. As Dray and Siegel (1999) warn, “Beware of expediency as a basis

for decision making.” In other words, do not let small short-term savings

undercut your larger investment in evaluation and in the whole process lifecycle.

Figure 14-1

You are here, at preparing
for evaluation, within the
evaluation activity in the
context of the overall Wheel
lifecycle template.

504 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

14.2.1 A Rigorous UX Evaluation Plan
The purpose of your plan for rigorous UX evaluation, whether lab based or in

the field, is to describe evaluation goals, methods, activities, conditions,

constraints, and expectations. Especially if the plan will be read by people

outside your immediate project group, you might want an upfront “boilerplate”

introduction with some topics like these, described very concisely:

n Goals and purpose of this UX evaluation

n Overview of plan

n Overviewof product or parts of product being evaluated (for peopleoutside the group)

n Goals of the product user interface (i.e., what will make for a successful user

experience)

n Description of the intended user population

n Overview of approach to informed consent

n Overview of how this evaluation fits into the overall iterative UX process lifecycle

n Overview of the UX evaluation process in general (e.g., preparation, data collection,

analysis, reporting, iteration)

n General evaluation methods and activities planned for this session

n Estimated schedule

n Responsible personnel

The body of the plan can include topics such as:

n Description of resources and constraints (e.g., time needed/available, state of

prototype, lab facilities and equipment)

n Pilot testing plan

n Approach to evaluation, choices of data collection techniques

n Mechanics of the evaluation (e.g., materials used, informed consent, location of

testing, UX goals and metrics involved, tasks to be explored, including applicable

benchmark tasks)

n All instruments to be used (e.g., benchmark task descriptions, questionnaires)

n Approaches to data analysis

n Specifics of your approach to evaluate emotional impact and, if appropriate,

phenomenological aspects of interaction

14.2.2 Goals for Rigorous UX Evaluation Session
One of the first things to do in an evaluation plan is to set, prioritize, and

document your evaluation goals. Identify the most important design issues and

user tasks to investigate. Decide which parts of the system or functionality

you simply will not have time to look at.

505R IGOROUS EMPIR ICAL EVALUATION : PREPARAT ION

Your evaluation goals, against which you should weigh all your evaluation

choices and activities, can include:

n Application scope (parts of the system to be covered by this evaluation)

n Types of data to collect (see Chapter 12)

n UX goals, targets, and metrics, if any, to be addressed

n Matching this evaluation to the current stage of product design evolution

14.3 TEAM ROLES FOR RIGOROUS EVALUATION

Select your team members for evaluation activities. Encourage your whole

project team to participate in at least some evaluation. The greater the extent

that the whole team is involved from the start, in both the planning and the

execution of the studies, the better chance you have at addressing everyone’s

concerns. Broad participation begets buy-in and ownership, necessary for your

results to be taken as a serious mandate to fix problems.

However, your evaluation team will practically be limited to practitioners with

active roles, perhaps plus a few observers from the rest of your project team or

organization. So, everyone on your evaluation team is an “evaluator,” but you

also need to establish who will play more specific roles, including the facilitator,

the prototype “executor,” and all observers and data collectors. Whether your

prototype is low or high fidelity, you will need to select appropriate team roles

for conducting evaluation.

14.3.1 Facilitator
Select your facilitator, the leader of the evaluation team. The facilitator is the

orchestrator, the one who makes sure it all works right. The facilitator has the

primary responsibility for planning and executing the testing sessions, and

the final responsibility to make sure the laboratory is set up properly. Because

the facilitator will be the principal contact for participants during a session and

responsible for putting the participant at ease, you should select someone

with good “people skills.”

14.3.2 Prototype Executor
If you are using a low-fidelity (e.g., paper) prototype, you need to select a

prototype executor, a person to “execute” the prototype as though it were being

run on a computer. The person in this role is the computer.

Participant

“Participant” is the term we

use for the subject or

outside person who helps

the team design and

evaluate interaction, usually

by performing tasks and

giving feedback.

506 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

The prototype executor must have a thorough technical knowledge of how

the design works. So that the prototype executor responds only to participant

actions, he or she must have a steady Vulcan sense of logic. The executor must

also have the discipline to maintain a poker face and not speak a single word

throughout the entire session.

14.3.3 Quantitative Data Collectors
If you intend to collect quantitative data, you will need quantitative data

collectors. Depending on your UX metrics and quantitative data collection

instruments, people in these roles may be walking around with stopwatches

and counters (mechanical, electronic, or paper and pencil). Whatever

quantitative data are called for by the UX metrics, these people must be ready

to take and record those data. Quantitative data collectors must be attentive

and not let data slip by without notice. They must have the ability to focus

and not let their minds wander during a session. If you can afford it, it is best

to let someone specialize in only taking quantitative data. Other duties and

distractions often lead to forgetting to turn on or off timers or forgetting to

count errors.

14.3.4 Qualitative Data Collectors
Although facilitators are usually experienced in data collection, they often do

not have time to take data or they need help in gathering all qualitative data.

When things are happening fast, the need for facilitation can trump data taking

for the facilitator.

Select one or more others as data collectors and recorders. No evaluation

team member should ever be idle during a session. Thoroughness will

improve with more people doing the job. Everyone should be ready to

collect qualitative data, especially critical incident data; the more

data collectors, the better.

14.3.5 Supporting Actors
Sometimes you need someone to interact with the participant as part of the

task setting or to manage the props needed in the evaluation. For example,

for task realism you may need someone to call the participant on a telephone in

the participant room or, if your user participant is an “agent” of some kind,

you may need a “client” to walk in with a specific need involving an agent

task using the system. Select team members to play supporting roles and

handle props.

Critical Incident

A critical incident is a UX

evaluation event that occurs

during user task

performance or other user

interaction, observed by the

facilitator or other

observers or sometimes

expressed by the user

participant, that indicates a

possible UX problem.

Critical incident

identification is arguably

the single most important

source of qualitative data.

507R IGOROUS EMPIR ICAL EVALUATION : PREPARAT ION

14.4 PREPARE AN EFFECTIVE RANGE OF TASKS

If evaluation is to be task based, including lab-based testing and task-driven UX

inspection methods, select appropriate tasks to support evaluation. Select

different kinds of tasks for different evaluation purposes.

14.4.1 Benchmark Tasks to Generate Quantitative Measures
If you plan to use UX goals and targets to drive your UX evaluation,

everyone in an evaluator role should have already participated with other

members of the project team in identifying benchmark tasks and UX target

attributes and metrics (Chapter 10). These attributes and metrics must be

ready and waiting as a comparison point with actual results to be observed

in the informal summative component of the evaluation sessions with

participants.

Be sure that descriptions of all benchmark tasks associated with your UX

targets andmetrics are in final form, printed off, and ready to use by participants

to generate data to be measured. Benchmark tasks portray representative,

frequent, and critical tasks that apply to the key work role and user class

represented by each participant (Chapter 10). Make sure each task description

says only what to do, with no hints about how to do it. Also, do not use any

language that telegraphs any part of the design (e.g., names of user interface

objects or user actions, or words from labels or menus).

14.4.2 Unmeasured Tasks
Like benchmark tasks, additional unmeasured tasks, used especially in early

cycles of evaluation, should be ones that users are expected to perform often.

Unmeasured tasks are tasks for which participant performance will not be

measured quantitatively but which will be used to add breadth to qualitative

evaluation. Evaluators can use these representative tasks to address aspects of the

design not covered in some way by the benchmark tasks.

In early stages, you might employ only unmeasured tasks, the sole goal of

which is to observe critical incidents and identify initial UX problems to root out,

to fix at least the most obvious and most severe problems before any measured

user performance data can be very useful.

Just as for benchmark tasks created for testing UX attributes, you should write

up representative unmeasured task descriptions, which should be just as specific

as the benchmark task descriptions, and give them to the participant to perform

in the evaluation sessions.

508 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

14.4.3 Exploratory Free Use
In addition to strictly specified benchmark and unmeasured tasks, the

evaluator may also find it useful to observe the participant in informal free use

of the interface, a free-play period without the constraints of predefined

tasks. This does not necessarily mean that they are even doing tasks, just

exploring.

Be prepared to ask your participants to explore and experiment with the

interaction design, beyond task performance. To engage a participant in free

use, the evaluator might simply say “play around with the interface for awhile,

doing anything you would like to, and talk aloud while you are playing.” Free use

is valuable for revealing participant expectations and system behavior in

situations not anticipated by designers, often situations that can break a poor

design.

14.4.4 User-Defined Tasks
Sometimes tasks that users come up with will address unexpected aspects of your

design (Cordes, 2001). You can include user-defined tasks by giving your

participants a system description in advance of the evaluation sessions and ask

them to write down some tasks they think are appropriate to try or you can wait

until the session is under way and ask each participant extemporaneously to

come up with tasks to try.

If you want a more uniform task set over your participants but still wish to

include user-defined tasks, you can ask a different set of potential users to come

up with a number of candidate task descriptions before starting any evaluation

session. This is a good application for a focus group. You can vet, edit, andmerge

these into a set of user-defined tasks to be given to each participant as part

of each evaluation session.

14.5 SELECT AND ADAPT EVALUATION METHOD
AND DATA COLLECTION TECHNIQUES

14.5.1 Select Evaluation Method and Data
Collection Techniques
Using the descriptions of the evaluationmethods and data collection techniques

in Chapter 12, including the descriptions of the kinds of evaluation each is used

for, select your evaluation method and data collection techniques to fit your

evaluation plan and goals and the particular evaluation needs of your system or

product.

509R IGOROUS EMPIR ICAL EVALUATION : PREPARAT ION

For example, at a high level, you should choose first between rigorous or

rapid evaluation methods (see Chapter 12). If you choose rigorous, you might

choose between a lab-based or in-the-fieldmethod. If you choose rapidmethods,

your next choice should be from among the many such evaluation methods

given in Chapter 13.

Your approach to choosing evaluation methods and techniques should be

goal driven. For example, when you wish to evaluate usefulness—the coverage,

completeness, and appropriateness of functionality and the coverage,

completeness, and appropriateness of its support in the user interface—

consider doing it:

n Objectively, by cross-checks of functionality implied by your hierarchical task inventory,

design scenarios, conceptual design, and task intention descriptions.

n Subjectively, by user questionnaires (Chapter 12).

n Longitudinally, by following up with real users in the field after a product or system is

released. Use downstream questionnaires directed at usefulness issues to guiding

functional design thinking for subsequent versions.

Your choices of specific data collection techniques should also be goal

driven. If you are using participants, as you will in rigorous evaluation, you

should strongly consider using the critical incident identification, think-aloud,

and co-discovery techniques (Chapter 12). If you are doing a task-driven expert

UX inspection (Chapter 13), you can collect data about your own critical

incidents.

Questionnaires (Chapter 12) are a good choice if you want to supplement

your objective UX evaluation data with subjective data directly from the user.

Questionnaires are simple to use, for both analyst and participant, and can be

used with or without a lab. Questionnaires can yield quantitative data as well as

qualitative user opinions.

For example, a questionnaire can have numerical choices that participants

must choose from to provide quantitative data or it can have open-ended

questions to elicit qualitative free-form feedback. Questionnaires are good for

evaluating specific predefined aspects of the user experience, including

perceived usability and usefulness.

If you want to collect data to evaluate emotional impact, questionnaires are

probably the least expensive choice and the easiest to administer. More

advanced data collection techniques for evaluating emotional impact include

biometrics and other ways to identify or measure physiological responses in

users (Chapter 12).

Think-Aloud
Technique

The think aloud technique is

a qualitative data collection

technique in which user

participants verbally

externalize their thoughts

about their interaction

experience, including their

motives, rationale, and

perceptions of UX

problems. By this method,

participants give the

evaluator access to an

understanding of their

thinking about the task and

the interaction design.

Co-Discovery

Co-discovery is the term for

using two or more

participants in a team

approach to evaluation,

usually with a think-aloud

data collection technique.

Two people can verbalize

more naturally, yielding

multiple viewpoints

expressed within

conversational interplay.

510 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

If you choose to use a questionnaire in your evaluation, your next step is to use

the information on questionnaires in Chapter 12 to decide which questionnaire

to use. For example, you might choose our old standby, the Questionnaire for

User Interface Satisfaction (QUIS), for subjective evaluation of, and user

satisfaction about, traditional user performance and usability issues in screen-

based interaction designs; the System Usability Scale (SUS) for a versatile and

broadly applicable general purpose subject user experience evaluation

instrument; or the Usefulness, Satisfaction, and Ease of Use (USE)

questionnaire for a general-purpose subjective user experience evaluation

instrument.

Part of choosing a questionnaire will involve deciding the timing of

administration, for example, after each task or at the end of each session.

14.5.2 Adapt Your Choice of Evaluation Method
and Data Collection Techniques
For UX evaluation, as perhaps for most UX work, our motto echoes that old

military imperative: Improvise, adapt, and overcome! Be flexible and customize

yourmethods and techniques, creating variations to fit your evaluation goals and

needs. This includes adapting any method by leaving out steps, adding new

steps, and changing the details of a step.

14.6 SELECT PARTICIPANTS

The selection and recruitment of participants are about finding representative

users outside your team and often outside your project organization to help with

evaluation. This section is mainly focused on participants for lab-based UX

evaluation, but also applies to other situations where participants are needed,

such as some non-lab-based methods for evaluating emotional impact and

phenomenological aspects.

In formal summative evaluation, this part of the process is referred to as

“sampling,” but that term is not appropriate here because what we are doing has

nothing to do with the implied statistical relationships and constraints.

14.6.1 Establish Need and Budget for Recruiting User
Participants Upfront
Finding and recruiting evaluation participants might be part of the process

where you are tempted to cut corners and save a little on the budget or might be

something you think to do at the last minute.

511R IGOROUS EMPIR ICAL EVALUATION : PREPARAT ION

In participant recruiting, to protect the larger investment alreadymade in the

UX lifecycle process and in setting up formative evaluation so far, you need to

secure a reasonable amount of resources, both budget money and schedule time

to recruit and remunerate the full range and number of evaluation participants

you will need. If you do this kind of evaluation infrequently, you can engage the

services of a UX evaluation consulting group or a professional recruiter to do

your participant recruiting.

14.6.2 Determine the Right Participants
Look for participants who are “representative users,” that is, participants who

match your target work activity role’s user class descriptions and who are

knowledgeable of the general target system domain. If you have multiple work

roles and corresponding multiple user classes, you must recruit participants

representing each category. Prepare a short written demographic survey to

administer to participants to confirm that each one meets the requirements of

your intended work activity role’s user class characteristics.

Participants must also match the user class attributes in any UX targets they

will help evaluate. For example, if initial usage is specified, you need participants

unfamiliar with your design. So, for example, even though a user may be a

perfect match to a given key work role’s user class characteristics, if theUX target

involved specifies “initial performance” as the UX attribute and this participant

has already seen and used the interaction design, maybe in a previous iteration,

this person is not the right participant for this part of the evaluation.

“Expert” participants
Recruit an expert user, someone who knows the system domain and knows your

particular system, if you have a session calling for experienced usage. Expert

users are good at generating qualitative data. These expert users will understand

the tasks and can tell you what they do not like about the design. But you cannot

necessarily depend on them to tell you how to make the design better.

Recruit a UX expert if you need a participant with broad UX knowledge and

who can speak to design flaws in terms of design guidelines. As participants,

these experts may not know the system domain as well and the tasks might not

make as much sense to them, but they can analyze user experience, find subtle

problems (e.g., small inconsistencies, poor use of color, confusing navigation),

and offer suggestions for solutions.

Consider recruiting a so-called double expert, a UX expert who also knows

your system very well, perhaps the most valuable kind of participant. But the

question of what constitutes being an expert of value to your evaluation is not

512 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

always clear-cut. Also, the distinction between expert and novice user is not a

simple dichotomy. Not all experts make good evaluation participants and not all

novices will perform poorly. And being an expert is relative: an expert in one

thing can very well be a novice at something else. And even the same person can

be an expert at one thing today and less of an expert in a month due to lack of

practice and retroactive interference (intervening activities of another type).

14.6.3 Determine the Right Number of Participants
The question of how many participants you need is entirely dependent on the

kind of evaluation you are doing and the conditions under which you are doing

it. There are some rules of thumb, such as the famous “three to five participants

is enough” maxim, which is quoted so often out of context as to be almost

meaningless. However, real answers are more difficult. See the end of this

chapter for further discussion about the “three to five users” rule and its

limitations.

The good news is that your experience and intuition will be good touchstones

for knowing when you have gotten themost of an iteration of UX evaluation and

when to move on. One telltale sign is the lack of many new critical incidents or

UX problems being discovered with additional participants.

You have to decide for yourself every time you do UX testing—how many

participants you can or want to afford. Sometimes it is just about achieving your

UX targets, regardless of how many participants and iterations it takes. More

often it is about getting in, getting some insight, and getting out.

14.7 RECRUIT PARTICIPANTS

Now the question arises as to where to find participants. Inform your customer

early on about how your evaluation process will proceed so you will have the best

chance of getting representative users from the customer organization at

appropriate times.

14.7.1 Recruiting Methods and Screening
Here are some hints for successful participant recruiting.

n Try to get the people around you (co-workers, colleagues elsewhere in your

organization, spouses, children, and so on) to volunteer their time to act as participants,

but be sure their characteristics fit your key work role and the corresponding user class

needs.

513R IGOROUS EMPIR ICAL EVALUATION : PREPARAT ION

n Newspaper ads and emailings can work to recruit participants, but these methods are

usually inefficient.

n If the average person off the street fits your participant profile (e.g., for a consumer

software application), hand out leaflets in shopping malls and parking lots or post

notices in grocery stores or in other public places (e.g., libraries).

n Use announcements at meetings of user groups and professional organizations if the

cross section of the groups matches your user class needs.

n Recruit students at universities, community colleges, or even K–12, if appropriate.

n Consider temporary employment agencies as another source for finding participants.

A possible pitfall with temporary employment agencies is that they usually

know nothing about UX evaluation, nor do they understand why it is so

important to choose appropriate people as participants. The agency goal, after

all, is to keep their pool of temporary workers employed, so screen their

candidates with your user classes.

14.7.2 Participant Recruiting Database
No matter how you get contact information for your potential participants

(advertising campaign, references frommarketing, previously used participants),

if you are going to be doing evaluation often, you should maintain a participant

recruiting database. Because all the participants you have used in the past should

be in this database, you can draw on the good ones for repeat performances.

You can also sometimes use your own customer base or your customer’s

contact lists as a participant recruiting source. Perhaps your marketing

department has its own contact database.

14.7.3 Incentives and Remuneration
Generally, you should not ask your participants to work for free, so you will

usually have to advertise some kind of remuneration. Try to determine the going

rate for evaluation participants in your local area.

You will usually pay a modest hourly fee (e.g., about a dollar above minimum

wage for an off-the-street volunteer). Expert participants cost more, depending

on your specialized requirements. Do not try to get by too cheaply; you might

get what you pay for.

Instead of or in addition to money, you can offer various kinds of premium

gifts, such as coffee mugs with your company logo, gift certificates for local

restaurants and shops, T-shirts proclaiming they survived your UX tests, free

pizza, or even chocolate chip cookies! Sometimes just having a chance to learn

about a new product before it is released or to help shape the design of some new

technology is motivation enough.

514 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

14.7.4 Difficult-to-Find User Participants
Be creative in arranging for hard-to-find participant types. Sometimes, the

customer—for whatever reasons—simply will not let the developer organization

have access to representative users. The Navy, for example, can be rightfully

hesitant about calling in its ships and shipboard personnel from the high seas to

evaluate a system being developed to go on board.

Specialized roles (such as an ER physician) have time constraints that make if

difficult, or impossible, to schedule them in advance. Sometimes you can have

an “on call” agreement through which they call you if they have some free time

and you do your best to work them in.

Sometimes when you cannot get a representative user, you can find a user

representative, someone who is not exactly in the same role but who knows the

role from some other angle. A domain expert is not necessarily the same as a

user, but might serve as a participant, especially in an early evaluation cycle. We

once were looking for a particular kind of agent of an organization who worked

with the public, but had to settle, at least at the beginning, for supervisors of

those agents.

14.7.5 Recruiting for Co-Discovery
Consider recruiting pairs of participants specifically for co-discovery

evaluation. Your goal is to find people who will work well together during

evaluation and, as a practical matter, who are available at the same time. We

have found it best not to use two people who are close friends or who work

together on a daily basis; such close relationships can lead to too much

wise-cracking and acting out.

In extreme cases, you might find two participants who are friends or work

together who exemplify a kind of “married couple” phenomenon. They finish

each other’s sentences and much of their communication is implicit because

they think alike. This is likely to yield less useful think-aloud data for you.

Look for people whose skills, work styles, and personality traits complement

each other. Sometimes this is a good place to give them the Myers–Briggs test

(Myers et al., 1998) for collaborative personality types.

14.7.6 Manage Participants as Any Other
Valuable Resource
Once you have gone through the trouble and expense to recruit participants,

do not let the process fail because a participant forgot to show up. Devise a

mechanism to manage participant contact to keep in touch, remind in advance

of appointments, and to follow up, if useful, afterward.

515R IGOROUS EMPIR ICAL EVALUATION : PREPARAT ION

You need a standard procedure, and fool-proof way to remind you to follow it,

for calling your participants in advance to remind them of their appointment,

just as they do in doctor’s offices. No-show participants cost money in unused lab

facilities, frustration in evaluators, wasted time in rescheduling, and delays in the

evaluation schedule.

14.7.7 Select Participants for Subsequent Iterations
A question that commonly arises is whether you should use the same

participants for more than one cycle of formative evaluation. Of course you

would not use a repeat participant for tasks addressing an “initial use” UX

attribute.

But sometimes reusing a participant (maybe one out of three to five) can

make sense. This way, you can get a reaction to design changes from the previous

cycle, in addition to a new set of data on the modified design from the two new

participants. Calling on a previously used participant tells them you value their

help and gives them a kind of empowerment, a feeling that they are helping to

make a difference in your design.

14.8 PREPARE FOR PARTICIPANTS

14.8.1 Lab and Equipment
If you are planning lab-based evaluation, the most obvious aspect of preparation

is to have the lab available and configured for your needs. If you plan to use

specialized equipment, such as for physiological measurement, you also need

to have that set up and an expert scheduled to operate it.

If you plan to collect quantitative UX data, prepare by having the right kind

of timers on hand, from simple stopwatches to instrumented software for

automatically extracting timing data. You can also get high-precision timing

data from video recordings of the session (Vermeeren et al., 2002).

Using video to compute timing originated with the British data

collection system called DRUM (Macleod & Rengger, 1993). DRUM was the

tool support for the larger usability evaluation methodology called MUSiC

(Macleod et al., 1997). Today, most software available to control and

analyze digital video streams (e.g., TechSmith’s Morae) can do this routinely.

As part of your post-session processing, you just tag the start and end

of task performance in the video stream and the elapsed time is computed

directly.

516 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

A Modern UX Lab at Bloomberg LP

Bloomberg LP, a leader in financial informatics, unveiled a modern UX evaluation lab in 2011. We describe some of the

main features of the lab in this sidebar.

The lab has two areas—a participant room and an observation room—separated by a one-way mirror. Each has an

independent entrance. The participant room has a multi-monitor workstation on which Bloomberg’s desktop

applications are evaluated. The following photos depict a formative evaluation session in progress at this station.

On the other side of this participant room, another station is designed for evaluations with paper prototypes or

mobile devices. In the following photo we show a formative evaluation session using paper prototypes where the

facilitator (left) is responding to the actions of the participant (center) as the note taker (right) observes.

In the photos that follow, we show the same station being used to evaluate a mobile prototype (left). The photo on

the right shows a close-up of the mobile device holder with a mounted camera. This setup allows the participant to

hold and move the mobile device as she interacts while allowing a full capture of the user interface and her actions

using the mounted camera.

The following photos are views of the observation room. This room is kept dark to prevent people in the participant

room from seeing through. The lab is set up to pipe up to five selections of the seven video sources and four screen

capture sources from the participant room to the large screens seen at the top in the observation room.

In the photo on the left you can see the participant room showing through the one-way mirror. In this photo we see

stakeholders observing and tagging the video stream of the ongoing evaluation at four different stations.

In the photo on the right, you can see a view of the evaluation using the mobile prototype. Note on the left-hand

screen above a close-up view of the evaluation from the overhead camera. The feed from the camera mounted on the

mobile device holder is not shown in this photo.

This UX lab has been instrumental in defining the interaction designs of Bloomberg’s flagship desktop and mobile

applications. Special thanks to Shawn Edwards, the CTO; Pam Snook; and Vera Newhouse at Bloomberg L.P. for

providing us these lab photos.

14.8.2 Session Parameters
Evaluators must determine protocol and procedures for conducting the

testing—exactly what will happen and for how long during an evaluation session

with a participant.

Task and session lengths
The typical length of time of evaluation session for one participant is anywhere

from 30 minutes to 4 hours. However, most of the time you should plan on an

average session length of 2 hours or less.

However, some real-world UX evaluation sessions can become a day-long

experience for a participant. The idea is to get as much as possible from each

user without burning him or her out.

If you require sessions longer than a couple of hours, it will be more difficult

for participants. In such cases, you should:

n Prepare participants for possible fatigue in long sessions by warning them in advance.

n Mitigate fatigue by scheduling breaks between tasks, where participants can get up and

walk around, leave the participant room, get some coffee or other refreshment, and even

run screaming back home.

n Have some granola bars and/or fruit available in case hunger becomes an issue.

n Always have water, and possibly other beverages, on hand to assuage thirst from the hard

work you are putting them through.

Number of full lifecycle iterations
Just as a loose rule of thumb from our experience, the typical number of full UX

engineering cycle iterations per version or release is about three, but resource

constraints often limit it to fewer iterations. Inmany projects you can expect only

one iteration. Of course, any iterations are better than none.

14.8.3 Informed Consent
As practitioners collecting empirical data involving human subjects, we have

certain legal and ethical responsibilities. There are studies, of course, in which

harm could come to a human participant, but the kinds of data collection

performed during formative evaluation of an interaction design are virtually

never of this kind.

Nonetheless, we have our professional obligations, which center on the

informed consent form, a document to establish explicitly the rights of your

participants and which also serves as legal protection for you and your

519R IGOROUS EMPIR ICAL EVALUATION : PREPARAT ION

organization. Therefore, you should always have all participants, anyone from

who you collect data of any kind, sign an informed consent form regardless of

whether data are collected in the lab, in the field, or anywhere else.

Informed consent permission application
Your preparation for informed consent begins with an application to your

institutional review board (IRB), an official group within your organization

responsible for the legal and ethical aspects of informed consent (see later). The

evaluator or project manager should prepare an IRB application that typically

will include:

n summary of the evaluation plan

n statement of complete evaluation protocol

n statement of exactly how human subjects will be involved

n your written subject/participant instructions

n a copy of your informed consent form

n any other standard IRB forms for your organization

Becausemost UX evaluation does not put participants at risk, the applications

are usually approved without question. The details of the approval process vary

by organization, but it can take up to weeks and can require changes in the

documents. The approval process is based on a review of the ethical and legal

issues, not the quality of the proposed evaluation plan.

Informed consent form
The informed consent form, an important part of your IRB application and an

important part of your lab-based UX evaluation, is a requirement; it is not

optional. The informed consent form is to be read and signed by each

participant and states that the participant is volunteering to participate in your

evaluation, that you are taking data that the participant helped generate, and

that the participant gives permission to use data—usually with the provision that

the participant’s name or identity will not be associated with data, that the

participant understands the evaluation is in no way harmful, and that the

participant may discontinue the session at any time. The consent form may also

include non-disclosure requirements.

This form must spell out participant rights and what you expect

the participants to do, even if there is overlap with the general instructions

sheet. The form they sign must be self-standing and must tell the

whole story.

520 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Be sure that your informed consent form contains:

n a statement that the participant can withdraw anytime, for any reason, or for no

reason at all

n a statement of any foreseeable risks or discomforts

n a statement of any benefits (e.g., educational benefit or just the satisfaction of helping

make a good design) or compensation to participants (if there is payment, state exactly

how much; if not, say so explicitly)

n a statement of confidentiality of data (that neither the name of the participant nor any

other kind of identification will be associated with data after it has been collected)

n all project/evaluator contact information

n a statement about any kind of recording (e.g., video, audio, photographic, or holodeck)

involving the participant you plan to make and how you intend to use it, who will view it

(and not), and by what date it will be erased or otherwise destroyed

n a statement that, if you want to use a video clip (for example) from the recording for any

other purpose, you will get their additional approval in writing

n clear writing in understandable language

An example of a simple informed consent form is shown in Figure 14-2.

Informed consent may or may not also be required in the case where your

participants are also organization employees. In any case you should have two

copies of the consent form ready for reading and signing by participants when

they arrive. One copy is for the participant to keep.

14.8.4 Other Paperwork

General instructions
In conjunction with developing evaluation procedures, you, as the evaluator,

should write introductory instructional remarks that will be read uniformly by each

participant at the beginning of the session. All participants thereby start with the

same level of knowledge about the system and the tasks they are to perform. This

uniform instruction for each participant will help ensure consistency across the

test sessions.

These introductory instructions should explain briefly the purpose of

the evaluation, tell a little bit about the system the participant will be using,

describe what the participant will be expected to do, and the procedure to

be followed by the participant. For example, instructions might state that a

participant will be asked to perform some benchmark tasks that will be given by

the evaluator, will be allowed to use the system freely for awhile, then will be

521R IGOROUS EMPIR ICAL EVALUATION : PREPARAT ION

Informed Consent for Participant of Development Project
<Name of your development organization> <Date or version number of form>

Title of Project: <Project title>
Project team member(s) directly involved: <Team member names>
Project manager: <Project manager name>

I. THE PURPOSE OF YOUR PARTICIPATION IN THIS PROJECT
As part of the <project title> project, you are invited to participate in evaluating and improving
various designs of <name of system or product>, <description of system or product>.

II. PROCEDURES
You will be asked to perform a set of tasks using the <name of system or product>. These
tasks consist of <description of range of tasks>. Your role in these tests is to help us evaluate
the designs. We are not evaluating you or your performance in any way. As you perform
various tasks with the system, your actions and comments will be noted and you will be asked
to describe verbally your learning process. You may be asked questions during and after the
evaluation, in order to clarify our understanding of your evaluation. You may also be asked to
fill out a questionnaire relating to your usage of the system.

The evaluation session will last no more than four hours, with the typical session being about
two hours. The tasks are not very tiring, but you are welcome to take rest breaks as needed. If
you prefer, the session may be divided into two shorter sessions.

III. RISKS
There are no known risks to the participants of this study.

IV. BENEFITS OF THIS PROJECT
Your participation in this project will provide information that may be used to improve our
designs for <name of system or product>. No guarantee of further benefits has been made to
encourage you to participate. (Change this, if a benefit such as payment or a gift is offered.)
You are requested to refrain from discussing the evaluation with other people who might be in
the candidate pool from which other participants might be drawn.

V. EXTENT OF ANONYMITY AND CONFIDENTIALITY
The results of this study will be kept strictly confidential. Your written consent is required for
the researchers to release any data identified with you as an individual to anyone other than
personnel working on the project. The information you provide will have your name removed
and only a subject number will identify you during analyses and any written reports of the
research.

The experiment may be videotaped. If it is taped, the tapes will be stored securely, viewed
only by the experimenters and erased after 3 months. If the experimenters wish to use a
portion of your videotape for any other purpose, they will get your written permission before
using it. Your signature on this form does not give them permission to show your videotape to
anyone else.
VI. COMPENSATION
Your participation is voluntary and unpaid. (Change this, if a benefit such as payment or a gift
is offered.)

VII. FREEDOM TO WITHDRAW
You are free to withdraw from this study at any time for any reason.

VIII. APPROVAL OF RESEARCH
This research has been approved, as required, by the Institutional Review Board <or the name
of your review committee> for projects involving human subjects at <your organization>.
IX. PARTICIPANT RESPONSIBILITIES AND PERMISSION
I voluntarily agree to participate in this study, and I know of no reason I cannot participate. I
have read and understand the informed consent and conditions of this project. I have had all
my questions answered. I hereby acknowledge the above and give my voluntary consent for
participation in this project. If I participate, I may withdraw at any time without penalty. I
agree to abide by the rules of this project

Signature Date

Name (please print) Contact: phone or address or email

Figure 14-2

Sample informed consent form for participants.

given some more benchmark tasks, and finally will be asked to complete an exit

questionnaire.

In your general instructions to participants, make it clear that the purpose of

the session is to evaluate the system, not to evaluate them. You should say

explicitly “You are helping us evaluate the system—we are not evaluating you!” Some

participants may be fearful that if somehow their performance is not up to

“expectations,” participation in this kind of test session could reflect poorly on

them or even be used in their employment performance evaluations (if, for

example, they work for the same organization that is designing the interface they

are helping evaluate). They should be reassured that this is not the case. This is

where it is important for you to reiterate your guarantee of confidentiality with

respect to individual information and anonymity of data.

The instructions may inform participants that you want them to think aloud

while working or, for example, may indicate that they can ask the evaluator

questions at any time. The expected length of time for the evaluation session, if

known (the evaluator should have some idea of how long a session will take after

performing pilot testing), should also be included. Finally, you should always

say, clearly and explicitly, that the participant is free to leave at any time.

Print out and copy the general instructions so that you can give one to each

participant.

Non-disclosure Agreements (NDAs)
Sometimes an NDA is required by the developer or customer organizations to

protect the intellectual property contained in the design. If you have an NDA,

print out copies for reading, signing, and sharing with the participant.

Questionnaires and surveys
If your evaluation plan includes administration of one or more participant

questionnaires, make sure that you have a good supply available. It is best to keep

blank questionnaires in the control room or away from where a newly arriving

participant could read them in advance.

Data collection forms
Make up a simple data collection form in advance. Your data collection form(s)

should contain fields suitable for all types of quantitative data you collect and,

probably separate, data collection forms for recording critical incidents and

UX problems observed during the sessions. The latter should include spaces for

the kind of supplementary data you like to keep, including associated task, effect

on user (e.g., minor or task-blocking), guidelines involved, potential cause of

523R IGOROUS EMPIR ICAL EVALUATION : PREPARAT ION

problem in design, relevant designer knowledge (e.g., how it was supposed to

work), etc. Keep your data collection forms simple and easy to use on the fly.

Consider a spreadsheet form on a laptop.

14.8.5 Training Materials
Use trainingmaterials for participants only if you anticipate that a user’s manual,

quick reference cards, or any sort of training material will be available to and

needed by users of the final system. If you do use trainingmaterials in evaluation,

make the use of these materials explicit in the task descriptions.

If extensive participant training is required, say for an experienced

participant role, it should have been administered in advance of evaluation.

In general, training the user how to use a system during the evaluation session

must be avoided unless you are evaluating the training. If the materials are used

more as reference materials than training materials, participants might be given

time to read any training material at the beginning of the session or might be

given the material and told they can refer to it, reading as necessary to find

information as needed during tasks. The number of times participants refer

to the training material, and the amount of assistance they are able to obtain

from the material, for example, can also be important data about overall UX of

the system.

14.8.6 Planning Room Usage
As part of the evaluation plan for each major set of evaluation sessions, you need

to document the configurations of rooms, equipment connections, and

evaluator roles plus the people in these roles. Post diagrams of room and

equipment setups so you do not have to figure this out at the last minute, when

participants are due to arrive.

14.8.7 Ecological Validity in Your Simulated Work Context
Thomas and Kellogg (1989) were among the first to warn us of the need for

realistic contextual conditions in usability testing. If an element of work or usage

context could not be addressed in the usability lab, they advised us to leave the

lab and seek other ways to assess these ecological concerns. The challenge is to

ensure that usability evaluation conditions reflect real-world usage conditions

well enough to evoke the corresponding kinds of user performance and

behavior. Your response to this challenge is especially important if you are

addressing issues beyond the usual UX concepts to the full user experience and

the out-of-the-box experience.

Ecological Validity

Ecological validity refers to

the realism with which a

design of evaluation setup

matches the user’s real work

context. It is about how

accurately the design or

evaluation reflects the

relevant characteristics of

the ecology of interaction,

i.e., its context in the world

or its environment.

524 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

How do you know what you need for ecological validity? Usage or design

scenarios are a good source of information about props and roles needed for

tasks. Does your service agent user talk with a person through a hole in a glass

panel or across a desk sitting down? Do they talk with patients, clients, or

customers on the telephone? How does holding a telephone affect simultaneous

computer task performance? Have your props and task aids ready at hand when

the sessions begin.

One interesting “far-out” example of a prop for ecological validity is the “third

age suit” developed at Loughborough University and used by architects,

automobile designers, and others whose users include older people. The suit is

like an exoskeleton of Velcro and stiff material, limiting mobility and simulating

stiffness, osteoarthritis, and other confining and restricting conditions. New

designs can be evaluated with this prop to appreciate their usability by older

populations.

The early A330 Airbus—An example of the need
for ecological validity in testing
We experienced a real-world example of a product that could have benefited

enormously from better ecological validity in its testing. We traveled in an A330

Airbus airplane when that model first came out; our plane was 1 week old.

(Advice: for many reasons, do not be the first to travel in a new airplane design.)

We were told that a human-centered approach was taken in the A330 Airbus

design, including UX testing of buttons, layout, and so on of the passenger

controls for the entertainment system. Apparently, though, they did not do

enough in situ testing. Each passenger had a personal viewing screen for movies

and other entertainment, considered an advantage over the screens hanging

from the ceiling. The controls for each seat were more or less like a TV remote

control, only tethered with a “pull-out” cord. When not in use, the remote

control snapped into a recessed space on the seat arm rest. Cool, eh?

The LCD screen had nice color and brightness but a low acceptable viewing

angle. Get far off the axis (away from perpendicular to the screen) and you lose

all brightness and, just before it disappears altogether, you see the picture as a

color negative image. But the screen is right in front of you, so no problem,

right? Right, until in a real flight the person in front of you tilts back the seat.

Then we could barely see it. We could tell it was affecting others, too, because we

could see many people leaning their heads down into an awkward position just

to see the screen. After a period of fatigue, many people gave up, turned it off,

and leaned back for comfort. If the display screen was used inUX testing, and we

have to assume it was, the question of tilting the seat never entered the

525R IGOROUS EMPIR ICAL EVALUATION : PREPARAT ION

discussion, probably because the screen was propped up on a stand in front of

each participant in theUX lab. Designers and evaluators just did not think about

passengers in front of screen users tilting back their seats. Testing in a more

realistic setting, better emulating the ecological conditions of real flight, would

have revealed this major flaw.

It does not end there. Once the movie got going, most people stowed the

remote control away in the arm rest. But, of course, what do you also rest on an

arm rest? Your arm. And in so doing, it was easy to bump a button on the control

and make some change in the “programming.” The design of this clever feature

almost always made the movie disappear at a crucial point in the plot. And

because we were syncing our movie viewing, the other one of us had to pause the

movie while the first one had to go back through far too many button pushes to

get the movie back and fast-forwarded to the current place.

It still does not end here. After the movie was over (or for some viewers, after

they gave up) and we wanted to sleep, a bump of the arm on the remote caused

the screen to light up brightly, instantly waking us to the wonderful world of

entertainment. The flight attendant in just 1 week with this design had already

come up with a creative workaround. She showed us how to pull the remote

out on its cord and dangle it down out of the way of the arm rest. Soon, and this is

the UX-gospel truth, almost everyone in the plane had a dangling remote

control swinging gracefully in the aisle like so many synchronized reeds in the

breeze as the plane moved about on its course. All very reminiscent of a

wonderful Gary Larson cartoon showing a passenger sitting in flight. Among the

entertainment controls on his arm rest is one switch, labeled “Wings stay on” and

“Wings fall off.” The caption reads, “Fumbling for his recline button, Ted

unwittingly instigates a disaster.”

The Social Security Administration (SSA) Model District
Office (MDO)—An extreme and successful example
In the mid-1990s we worked extensively with the SSA in Baltimore, mainly in UX

lifecycle training. A system we worked with there is used by a public service agent

who serves clients, people who walk in off the street or call on the phone. The

agent is the user, but the clients are essential to usage ecology; client needs

provide the impetus for the user to act, the need for a system task. For evaluation

then, they need people to act as clients, perhaps using scripts that detail the

services needed, which then drive the computer-based tasks of the agent. And

they need telephones and/or “offices” into which clients can come for service.

We worked with a small group pioneering the introduction of usability

engineering techniques into an “old school,” waterfall-oriented, mainframe

526 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

software development environment. Large Social Security systems were

migrating slowly from mainframes (in Baltimore) plus terminals (by the

thousands over the country) to client–server applications, some starting to run

on PCs, and they wanted UX to be a high priority. Sean Wheeler was the group

spark plug and UX champion, strongly supported by Annette Bryce and Pat

Stoos.

What impressed us the most about this organization was their Model District

Office. A decade earlier, as part of a large Claims Modernization Project, a

program of system design and training to “revolutionize the way that SSA serves

the public,” they had built a complete and detailed model of a Social Security

Administration district office from middle America right in the middle of

SSA headquarters building in Baltimore. The MDO, with its carpeting, office

furniture, and computer terminals, right down to the office lamps and

pictures on the wall, was indistinguishable from a typical agency office in

a typical town. They brought in real SSA employees from field offices from

all over the United States to sit in the MDO to pilot and test new systems and

procedures.

When SSA was ready to focus on UX, the MDO provided a perfect evaluation

environment; simply put, it was an extreme and successful example of leveraging

ecological validity for application development and testing, as well as for user

training. In the end, the group created a UX success story upstream against the

inertia and enormous weight of the rest of the organization and ended up

winning a federal award for the quality of their design!

As a testament to their seriousness about ecological validity and UX, the SSA

was spending about $1 million a year to bring employees in to stay and work at

the MDO, sometimes for a few months at a time. Their cost justification

calculations proved the activity was saving many times more.

14.8.8 The UX Evaluation Session Work Package
To summarize, as you do the evaluation preparation and planning described in

this chapter, you need to gather your evaluation session work package, all the

materials you will need in the evaluation session. Bring this evaluation session

work package to each evaluation session.

Examples of package contents include:

n The evaluation configuration plan, including diagrams of rooms, equipment, and

people in evaluation roles

n General instruction sheets

n Informed consent forms, with participant names and date entered

527R IGOROUS EMPIR ICAL EVALUATION : PREPARAT ION

n Any non-disclosure agreements

n All questionnaires and surveys, including any demographic survey

n All printed benchmark task descriptions, one task per sheet of paper

n All printed unmeasured task descriptions (these can be listed several to a page)

n For each evaluator, a print out (or laptop version) of the UX targets associated with the

day’s sessions

n All data collection forms, on paper or on laptops

n Any props needed to support tasks

n Any training materials to be used as part of the evaluation

n Any compensation to be given out (e.g., money, gift cards, T-shirts, coffee mugs,

used cars)

n Any special instructions to watch out for particular parts of the design, evaluation

scripts, things to do before each participant session (e.g., to reset browser caches so that

no auto complete entries from previous participant’s session interferes with the current

session), etc.

Why should benchmark tasks be printed just one per sheet of paper? What

about the trees? We want our participants to focus on just the task at hand. If you

give them descriptions of additional tasks, they will read them prematurely and

distract themselves by thinking about those, too. It is just human nature. You

need to control their mental focus.

Also, focusing on the participant, it is possible that not all participants will

complete all tasks. There is no need for anyone to see that they have not

accomplished them all. If they see only one at a time, they will never know and

never feel bad.

14.9 DO FINAL PILOT TESTING: FIX YOUR
WOBBLY WHEELS

If your UX evaluation plan involves using a prototype, low or high fidelity, make

sure it is robust before you do anything more to prepare for your UX evaluation,

regardless of whether your evaluation is lab based. If the evaluation team has not

yet performed thorough pilot testing of the product or prototype, now is the time

to give it a final shakedown. Exercise the prototype thoroughly. Pilot testing is

essential to remove any major weaknesses in the prototype and any “show stopper”

problems.

You need to be confident that the prototype will not “blow up”

unceremoniously the first time it is brought into the proximity of real user

Exercise

See Exercise 14-1, Formative

UX Evaluation Preparation

for Your System

528 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

participants. It is embarrassing to have to apologize and dismiss a participant

because the hardware or software wheels came off during an evaluation session.

And, because good representative participants may be hard to find, you do not

want to add to your time and expense by “burning” user participants

unnecessarily.

While pilot testing of the prototype may be obvious to prepare for lab-based

testing, it is similarly important prior to critical reviews and UX inspections

by outside human–computer interaction (HCI) experts. These experts do not

work for free, and you will not want things going amiss during a session, causing

delays while a hefty hourly fee is being paid for expert advice.

In addition to shaking down your prototype, think of your pilot testing as a

dress rehearsal to be sure of your lab equipment, benchmark tasks, procedures,

and personnel roles:

n Make sure all necessary equipment is available, installed, and working properly, whether

it be in the laboratory or in the field.

n Run through the evaluation tasks completely at least once using the intended hardware

and software (i.e., the interface prototype) by someone other than the person(s) who

created the task descriptions.

n Make sure the prototype supports all the necessary user actions.

n Make sure the participant instructions and benchmark task descriptions are worded

clearly and unambiguously.

n Make sure all session materials, such as any instruction sheets, the informed consent,

and so on, are sufficient.

n Make sure that the metrics the benchmark tasks are intended to produce are practically

measurable. Counting the number of tasks completed in either 5 seconds or 5 hours, for

example, is not reasonable.

n Be sure that everyone on the evaluation team understands his or her role.

n Be sure that all the roles work together in the fast-paced events associated with user

interaction.

14.10 MORE ABOUT DETERMINING THE RIGHT
NUMBER OF PARTICIPANTS

One of your activities in preparing for formative evaluation is finding

appropriate users for the evaluation sessions. In formal summative evaluation,

this part of the process is referred to as “sampling,” but that term is not

appropriate here because what we are doing has nothing to do with the implied

statistical relationships and constraints.

529R IGOROUS EMPIR ICAL EVALUATION : PREPARAT ION

14.10.1 How Many Are Needed? A Difficult Question
Howmany participants are enough? This is one of those issues that some novice

UX practitioners take so seriously and yet it is a question to which there is no

definitive answer. Indeed, there cannot be one answer. It depends so much on

the specific context and parameters of your individual situation that you have to

answer this question for yourself each time you do formative evaluation.

There are studies that lead UX gurus to proclaim various rules of thumb,

such as “three to five users are enough to find 80% of your UX problems,” but

when you see how many different assumptions are used to arrive at those “rules”

and how few of those assumptions are valid within your project, you realize

that this is one place in the process where it is most important for you to use your

own head and not follow vague generalizations.

And, of course, cost is often a limiting factor. Sometimes you just get one or two

participants in each of one or two iterations and you have to be satisfied with that

because it is all you can afford. The good news is that you can do a lot with only

a few good participants. There is no statistical requirement for large numbers of

“subjects” as there is for formal summative evaluation; rather, the goal is to

focus on extracting as much information as possible from every participant.

14.10.2 Rules of Thumb Abound
There are bona fide studies that predict the optimum number of participants

needed for UX testing under various conditions. Most “rules of thumb” are based

empirically but, because they are quoted and applied so broadly without regard to

the constraints and conditions under which the results were obtained, these rules

have become among the most folklorish of folklore out there.

Nielsen and Molich (1990) had an early paper about the number of users/

participants needed to find enough UX problems and found that 80% of their

known UX problems could be detected with four to five participants, and the

most severe problems were usually found with the first few participants. Virzi

(1990, 1992) more or less confirmed Nielsen and Molich’s study.

Nielsen and Landauer (1993) found that detection of problems as a

function of the number of participants is well modeled as a Poisson process,

supporting the ability to use early results to estimate the number problems left to

be found and the number of additional participants needed to find a certain

percentage.

Depending on the circumstances, though, some say that even five participants

is no way near enough (Hudson, 2001; Spool & Schroeder, 2001), especially for

complex applications or large Websites. In practice, each of these numbers has

530 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

proven to be right for some set of conditions, but the question is whether they

will work for you in your evaluation.

14.10.3 An Analytic Basis for the Three to Five Users Rule

The underlying probability function
InFigure14-3 youcan seegraphs, related to thebinomialprobability distribution,

of cumulative percentages of problems likely to be found for a given number of

participants used and at various detection rates, adapted from Lewis (1994).

Y-axis values in these curves are for “discovery likelihood,” expressed as a

cumulative percentage of problems likely to be found, as a function of the

number of participants or evaluators used. These curves are based on the

probability formula:

discovery likelihood (cumulative percentage of problems likely to be found ¼
1– (1 – p)n, where n is the number of participants used (X-axis values) and p is what

we call the “detection rate” of a certain category of participants.

As an example, this formula tells us that a sample size of five participant

evaluators (n) with an individual detection rate (p) of at least 0.30 is sufficient to

find approximately 80% of the UX problems in a system.

Figure 14-3

Graphs of cumulative
percentages of problems
likely to be found for a
given number of
participants used and
at various detection
rates [adapted from
Lewis (1994)].

531R IGOROUS EMPIR ICAL EVALUATION : PREPARAT ION

The old balls-in-an-urn analogy
Let us think of an interaction design containing flaws that cause UX

problems as analogous to the old probability setting of an urn containing

various colored balls. Among an unknown number of balls of all colors,

suppose there are a number of red balls, each representing a different UX

problem.

Suppose now that a participant or evaluator reaches in and grabs a big

handful of balls from the urn. This is analogous to an evaluation session using a

single expert evaluator, if it is a UX inspection evaluation, or a single participant,

if it is a lab-based empirical session. The number of red balls in that handful is

the number of UX problems identified in the session.

In a UX inspection, it is the expert evaluator, or inspector, who finds the UX

problems. In an empirical UX test, participants are a catalyst for UX problem

detection—not necessarily detecting problems themselves but encountering

critical incidents while performing tasks, enabling evaluators to identify the

corresponding UX problems. Because the effect is essentially the same, for

simplicity in this discussion we will use the term “participant” for both the

inspector and the testing participant and “find problems” for whatever way the

problems are found in a session.

Participant detection rates
The detection rate, p, of an individual participant is the percentage of existing

problems that this participant can find in one session. This corresponds to the

number of red balls a participant gets in one handful of balls. This is a function

of the individual participant. For example, in the case of the balls in the urn,

it might be related to the size of the participant’s hand. In the UX domain, it

is perhaps related to the participant’s evaluation skills.

In any case, in this analysis, if a participant has a detection rate of p ¼ 0.20, it

means that this participant will find 20% of the UX problems existing in the

design. The number of participants with that same individual detection rate

who, in turn, reach into the urn is the value on the X axis. The curve shown with a

green line is for a detection rate of p ¼ 0.20. The other curves are for different

detection rates, from p ¼ 0.15 up to p ¼ 0.45.

Most of the time we do not even know the detections rates of our participants.

To calculate the detection rate for a participant, we would have to know how

many total UX problems exist in a design. But that is just what we are trying to

find out with evaluation. You could, we guess, run a testing session with the

participant against a design with a certain number of known flaws. But that

532 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

would tell you that participant’s detection rate for that day, in that context, and

for that system. Unfortunately, a given participant’s detection rate is not

constant.

Cumulative percentage of problems to be found
The Y axis represents values of the cumulative percentage of problems to be

found. Let us look at this first for just one participant. The curve for p¼ 0.20, for

example, has a Y axis value of 20%, for n ¼ 1 (where the curve intersects the

Y axis). This is consistent with our expectation that one participant with p¼ 0.20

will find 20% of the problems, or get 20% of the red balls, in the first session.

Now what about the “cumulative” aspect? What happens when the second

participant reaches into the urn depends on whether you replaced the balls

from the first participant. This analysis is for the case where each participant

returns all the balls to the urn after each “session”; that is, none of the UX

problems are fixed between participants.

After the first participant has found some problems, there are fewer new

problems left to find by the second participant. If you look at the results with the

two participants independently, they each help you find a somewhat different

20% of the problems, but there is likely to be overlap, which reduces the

cumulative effect (the union of the sets of problems) of the two.

This is what we see in the curves of Figure 14-3 as the percentage of problems

likely to be found drops off with each new participant (moving to the right on

the X axis) because the marginal number of new problems found is decreasing.

That accounts for the leveling off of the curves until, at some high number of

participants, essentially no new problems are being found and the curve is

asymptotically flat.

Marginal added detection and cost–benefit
One thing we do notice in the curves of Figure 14-3 is that, despite the drop-off of

effective detection rates, as you continue to add more participants you will

continue to uncover more problems. At least for a while. Eventually, high

detection rates coupled with high numbers of participants will yield results that

asymptotically approach about 100% in the upper right-hand part of the figure

and virtually no new problems will be found with subsequent participants.

But what happens along the way? Each new participant helps you find fewer

new problems, but because the cost to run each participant is about the same,

with each successive participant the process becomes less efficient (fewer new

problems found for the same cost).

533R IGOROUS EMPIR ICAL EVALUATION : PREPARAT ION

As a pretty good approximation of the cost to run a UX testing session with

n participants, you have a fixed cost to set up the session plus a variable cost (or

cost per participant) ¼ a þ bn. The benefit of running a UX testing session with

n participants is the discovery likelihood. So the cost benefit is the ratio benefit/

cost, each as a function of n, or benefit/cost ¼ (1– (1 – pn)/ (a þ bn).

If you graph this function (with some specific values of a and b) against n¼ 1,

2, . . . , you will see a curve that climbs for the first few values of n and then starts

dropping off. The values of n around the peak of cost–benefit are the optimum

(from a cost–benefit perspective) number of participants to use. The range of

n for which the peak occurs depends on parameters a, b, and p of your setup;

your smileage can vary.

Nielsen and Landauer (1993) showed that real data for both UX inspections

and lab-based testing with participants didmatch this mathematical cost–benefit

model. Their results showed that, for their parameters, the peak occurred for

values of n around 3 to 5. Thus, the “three to five users” rule of thumb.

Assumptions do not always apply in the real world
This three-to-five users rule, with its tidy mathematical underpinning, can and

does apply to many situations similar to the conditions Nielsen and Landauer

(1993) used, and we believe their analysis brings insight into the discussion.

However, we know there are many cases where it just does not apply.

For starters, all of this analysis, including the analogy with the balls-in-an-urn

setting, depends on two assumptions:

n Each participant has a constant detection rate, p

n Each UX problem is equally likely to be found in testing

If UX problems were balls in an urn, our lives would be simpler. But neither of

these assumptions is true and the UX life is not simple.

Assumptions about detection rates. Each curve in Figure 14-3 is for a fixed

detection rate and the cost–benefit calculation given earlier was based on a fixed

detection rate, p. But the “evaluator effect” tells us not only will different

evaluators find different problems, but it tells us that even the detection rate can

vary widely over participants (Hertzum & Jacobsen, 2003).

In fact, a given individual does not even have a fixed “individual detection

rate”; it can be influenced from day to day or even from moment to moment by

how rested the participant is, blood caffeine and ethanol levels, attitude, the

system, how the evaluators conduct the evaluation, what tasks are used, the

evaluator’s skills, and so on.

534 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Also, what does it reallymean for a testing participant to have a detection rate

of p¼ 0.20? How long does it take in a session for that participant to achieve that

20% discovery? How many tasks? What kinds of tasks? What if that participant

continues to perform more tasks? Will no more critical incidents be

encountered after 20% detection is achieved?

Assumptions about problem detectability. The curves in Figure 14-3 are also

based on an assumption that all problems are equally detectable (like all

red balls in the urn are equally likely to be drawn out). But, of course, we

know that some problems are almost obvious on the surface and other

problems can be orders of magnitude more difficult to ferret out. So

detectability, or likelihood of being found, can vary dramatically across

various UX problems.

Task selection. One reason for the overlap in problems detected from one

participant to another, causing the cumulative detection likelihood to fall off

with additional participants, as it does in Figure 14-3, is the use of prescribed

tasks. Participants performing essentially the same sets of tasks are looking in the

same places for problems and are, therefore, more likely to uncover many of the

same problems.

However, if you employ user-directed tasks (Spool & Schroeder, 2001),

participants will be looking in different places and the overlap of problems

found could be much less. This keeps the benefit part of the curves growing

linearly for more participants, causing your optimum number of participants

to be larger.

Application system effects. Another factor that can torpedo the three-to-five

users rule is the application system being evaluated. Some systems are very

much larger than others. For example, an enormous Website or a large and

complex word processor will harbor many more possibilities for UX problems

than, say, a simple inter-office scheduling system. If each participant can explore

only a small portion of such an application, the overlap of problems among

participants may be insignificant. In such cases the cost–benefit function

will peak with many more participants than three to five.

You have to settle for a sensible approach with
a practical outcome
Okay, so what is the answer? What is the best number of participants to use

in testing? Our friend Jim Foley’s answer to any HCI question was never

more appropriate than it is here: It depends! It takes as many participants as it

takes for your situation, your application, your design, your resources, and

your goals.

535R IGOROUS EMPIR ICAL EVALUATION : PREPARAT ION

You have to decide for yourself every time you do UX testing—how many

participants can you afford. You cannot compute and graph all the curves we

have been talking about because you will never know how many UX problems

exist in the design so you will never know what percentage of the existing

problems you have found. You do not have to use those curves, anyway, to have a

pretty good intuitive feeling for whether you are still detecting useful new

problems with each new participant. Look at the results from each participant

and each iteration and ask if those results were worth it and whether it is worth

investing a little more. Based on how much time and money you can afford and

how easily you can recruit participants, use your UX practitioner thinking skills

and ask yourself, do you feel lucky? Huh? Do you think there are more

reasonably significant UX problems still out there that you can still find and fix

and thereby improve the product? Then go ahead; make the UX

practitioner’s day—iterate.

536 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

CHAPTER

Rigorous Empirical
Evaluation: Running
the Session 15
Objectives

After reading this chapter, you will:

1. Know the preliminaries and protocol issues in dealing with rigorous UX evaluation

participants

2. Be prepared to generate and collect objective and subjective quantitative UX

evaluation data

3. Know how to generate and collect qualitative UX data by critical incident

identification, think-aloud techniques, and post-session interviews and probing

4. Be able to use special techniques for gathering emotional impact and

phenomenological data

5. Know the mechanics of wrapping up a session

15.1 INTRODUCTION

15.1.1 You Are Here
We begin each process chapter with a “you are here” picture of the chapter

topic in the context of the overall Wheel lifecycle template; see Figure 15-1. This

chapter is about running a lab-based evaluation, a step of rigorous UX evaluation.

15.2 PRELIMINARIES WITH PARTICIPANTS

15.2.1 Introduce Yourself and the Lab: Be Sure Participants
Know What to Expect
In this chapter, our story opens with the arrival of participants at your UX lab. If

you have a separate reception room in your UX facility, this is where you meet

your participants before getting down to business with evaluation. Greet and

welcome each participant and thank him or her for helping. Bring them in and

show them around.

Introduce them to the

setup and show them the

lab. If you have one-way

glass, explain it and how it

will be used and show

them the other side—

what happens “behind

the curtain.” Openly

declare any video

recording you will do

(which should have been

explained in the consent

form, too). Make

participants feel that they

are partners in their role.

Tell your participants

all about the design being

evaluated and about the

process in which they are

participating. For

example, you might say

“We have early screen

designs for our product in the form of a low-fidelity prototype of a new system

for” Tell them how they can help and what you want them to do.

Do your best to relieve anxiety and satisfy curiosity. Be sure that your

participants have all their questions about the process answered before you

proceed into evaluation. Make it very clear that they are helping you evaluate

and are not evaluating them in any way. For example, “You are here to evaluate a

new design for . . . ; you will be asked to try some tasks using the computer, to

help us find places where the design is not supportive enough for you.”

15.2.2 Paperwork
While still in the reception room or as soon as the user has entered the

participant room:

n Have each participant read the general instructions and explain anything verbally, as

needed.

n Have the participant read the institutional review board consent form (Chapter 14) and

explain the consent form verbally as well.

Figure 15-1

You are here, at running
the session, within the
evaluation activity in the
context of the overall Wheel
lifecycle template.

538 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

n Have the participant sign the consent form (two copies); it must be signed “without

duress.” You keep one signed copy and give the participant the other signed copy. Your

copy must be retained for at least 3 years (the period may vary by organization).

n Have the participant sign a non-disclosure form, if needed.

n Have the participant fill out any demographic survey you have prepared.

A short written demographic survey can be used to confirm that each

participant does, indeed, meet the requirements of your intended work activity

role and corresponding user class characteristics.

15.2.3 The Session Begins
Give the participants a few minutes to familiarize themselves with the system

unless walk up and use is a goal. If you are using benchmark tasks, after the

preliminaries and when you both are ready to start, have the participant read the

first benchmark or other task description and ask if there are any questions.

If you are taking timing data, do not include the benchmark task reading time as

part of the task.

Once the evaluation session is under way, interesting things can start

happening quickly. Data you need to collect may start arriving in a flood. It can

be overwhelming, but, by being prepared, you can make it easy and fun,

especially if you know what kinds of data to collect. We will look at the possible

kinds of data and the methods for generating and collecting them. But first, we

need to get some protocol issues out of the way.

15.3 PROTOCOL ISSUES

Session protocol is about the mechanical details of session setup and your

relationship with participants and how you handle them throughout each

session.

15.3.1 Attitude toward UX Problems
and toward Participants
Before you actually do evaluation, it is easy to agree that this UX testing is a

positive thing and we are all working together to improve the design. However,

once you start hearing about problems participants are having with the design,

it can trigger unhelpful reactions in your ego, instincts, and pride. Proceed in

your testing with a positive attitude and it will pay off.

539R IGOROUS EMP IR ICAL EVALUAT ION : RUNNING THE SESS ION

15.3.2 Cultivating a Partnership with Participants
Take the time to build rapport with your participants. More important to

the success of your UX evaluation sessions than facilities and equipment is the

rapport you establish with participants, as partners in helping you evaluate

and improve the product design. Once in the participant room, the

facilitator should take a little time to “socialize” with the participant. If you

have taken the participant on a “tour” of your facilities, that will have been

a good start.

If you are using co-discovery techniques (Chapter 12), allow some time for

co-discovery partners to get to know each other and do a little bonding, perhaps

while you are setting things up. Starting the session as total strangers can make

them feel awkward and can interfere with their performance.

15.3.3 Interaction with Participant during the Session
So far, you have done the necessary preparation for your evaluation, including

preparation of benchmark task descriptions, procedures, and consent forms, as

well as participant preparation. It is finally time to get an evaluation session

underway. The facilitator helps ensure that the session runs smoothly and

efficiently.

It is generally the job of the facilitator to listen and not talk. But at key

junctures you might elicit important data, if it does not interfere with task

timing or if you are focusing on qualitative data. You can ask brief questions,

such as “What are you trying to do?” “What did you expect to happen when you

clicked on the such-and-such icon?” “What made you think that approach

would work?”

If you are focusing on qualitative data, the evaluator may also ask leading

questions, such as “How would you like to perform that task?” “What wouldmake

that icon easier to recognize?” If you are using the “think-aloud” technique for

qualitative data gathering, encourage the participant by prompting occasionally:

“Remember to tell us what you are thinking as you go.”

Do not “blow off” problems perceived by the participant as just, for example,

an anomaly in the prototype. If you think that an issue pointed out as a UX

problem by a participant is actually not a genuine issue, write it down as a

problem for the moment, anyway. Otherwise you will discourage them from

mentioning problems that might not be as real as they seem.

If participants show signs of stress or fatigue, give them a break. Let them

leave the participant room, walk around, and/or have some refreshments.

Do not be too up-tight about the session schedule. It is almost impossible to set a

time schedule for tasks and steps for the participant in a session. It is better

540 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

to present a list of objectives and let the participant know where you both are, as

a team, in working toward those goals. To the extent possible, let the participant

decide when to take breaks and when to stop for lunch.

15.3.4 To Help the Participant or Not to Help the Participant?
Give hints if necessary, but direct help almost always works against the goals of

the session. Sometimes when participants are not making progress, they can

benefit from a hint to get them back on track so that their session again becomes

useful. You want to see whether the participant can determine how to perform

the task. You should not give them information about how to complete a task. So,

if participants ask for help, how can you let them know you are there for them

without doing some coaching? Often the best way is to lead them to answer their

own questions.

For example, do not answer questions such as “is this right?” directly, but by

asking yourownquestions, directing them to think it through for themselves.With

experience, evaluators become very creative at being appropriately evasive while

still helping a participant out of a problem without adversely affecting data

collected. Sometimes it helps to tell the participant upfront that youwill decline to

answer design-related questions to see how the participant interacts with the

system. Make note of those questions and answer them at the end of the session.

15.3.5 Keeping Your Participant at Ease
Remind yourself and your whole team that you should never, never laugh at

anything during a UX evaluation session. You may be in the control room and

think you have a sound-proof setup but laughter has a way of piercing the glass.

Because participants cannot see people behind the glass, it is easy for

participants to assume that someone is laughing at them.

If participants become visibly flustered, frustrated, “zoned out,” or blame

themselves continually for problems in task performance, they may be suffering

from stress and you should intervene. Take a short break and reassure and calm

them. Remind them that “you are evaluating the design; we are not evaluating

you.” If participants become so discouraged that they want to quit the entire

session, there is little you can or should do but thank them, pay them, and let

them go.

15.3.6 Protocols for Evaluating with Low-Fidelity Prototypes
Have your paper prototype laid out and ready to go. Well before starting a

session using a paper prototype, the team should prepare for using the

prototype by assembling all the parts and pieces of the prototype. To prevent the

easel (Chapter 11) from moving during the action, consider taping it to the

541R IGOROUS EMP IR ICAL EVALUAT ION : RUNNING THE SESS ION

working table between the participant, the

facilitator, and the executor, as shown in

Figure 15-2.

“Boot up” the prototype by putting the

initial “screen” on the easel, having each

moving part ready at hand and convenient to

find and grab to enter it into the action.

Make sure that any changes made to data

and prototype internal states by previous

participants are reset to original values for

the current participant.

Before each participant enters, the

“executor” should arrange everything

necessary for running the prototype, including stacks of prototype parts and

other equipment (e.g., marking pens, extra paper or plastic, tape).

Have the whole evaluation team ready to assume their roles and be ready to

carry them out in the session.

n Evaluation facilitator, to keep the session moving, to interact with participants, and to take

notes on critical incidents (pick a person who has leadership abilities and “people” skills).

n Prototype executor, to move transparencies and provide “computer” responses to user

actions (pick a person who knows the design well and is good at the cold and consistent

logic of “playing” computer).

n User performance timer, to time participants performing tasks and/or count errors

(to collect quantitative data)—the timer person may want to practice with a stopwatch a

bit before getting into a real session.

n Critical incident note takers (for spotting and recording critical incidents and UX

problems).

Review your own in-session protocol. Some of the “rules” we suggest include:

n Team members must not coach participants as they perform tasks.

n The executor must not anticipate user actions and especially must not give the correct

computer response for a wrong user action! The person playing computer must respond

only to what the user actually does!

n The person playing computer may not speak, make gestures, etc.

n You may not change the design on the fly, unless that is a declared part of your process.

Figure 15-3 shows another view of a participant with a paper prototype.

Figure 15-2

Typical setup at the end of
a table for evaluation with
a paper prototype.

542 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

15.4 GENERATING AND
COLLECTING QUANTITATIVE
UX DATA

If your evaluation plan calls for taking

quantitative data, participants perform

prescribed benchmark tasks during a session

and evaluators take numeric data. For

example, an evaluator may measure the time

it takes the participant to perform a task,

count the number of errors a participant

makes while performing a task, count the

number of tasks a participant can perform

within a given time period, and so on,

depending on the measures established in

your UX targets.

15.4.1 Objective Quantitative Data
The main idea is to use participant performance of benchmark tasks as a

source of objective (observed) quantitative UX data.

Timing task performance
By far the simplest way to measure time on task is by using a stopwatch manually.

It is really the only sensible way for low-fidelity, especially paper, prototypes.

Timing with a stopwatch is also acceptable for software prototypes and is still the

de facto standard way, sufficing for all situations except those demanding the

most precision. If timing manually, you usually start the timer when the

participant has finished reading the benchmark task description, has no

questions, and you say “please start.”

Try not to use very short benchmark tasks. It can be difficult to get accurate

timings with a stopwatch on very short tasks. Something in the order of 5minutes

or more is easy to time.

If precise timing measurements are required, it is possible to embed software

timers to instrument the software internally. These routines keep time stamps

denoting when execution of the application software enters and exits key

software modules. Software timers also free up one data collector for other jobs,

such as observing critical incidents, but they do require more post-session work

to compile timing data.

Figure 15-3

Participant pondering a
paper prototype during
formative evaluation.

543R IGOROUS EMP IR ICAL EVALUAT ION : RUNNING THE SESS ION

Counting user errors
The key to counting errors correctly is in knowing what constitutes an error. Not

everything that goes wrong, not even everything a user does wrong, during

task performance should be counted as a user error. So what are we looking for?

A user error is usually considered to have occurred when the participant takes

any action that does not lead to progress in performing the desired task. The main

idea is to catch the times that a participant takes a “wrong turn” along the

expected path of task performance, especially including cases where the

design was inadequate to direct the interaction properly.

Wrong turns include choosing an incorrect item from amenu or selecting the

wrong button, choices that do not lead to progress in performing the desired

task. Other examples include selecting the wrong menu, button, or icon when

the user thought it was the right one, double-clicking when a single click is

needed, and vice versa.

If a participant takes a wrong turn but is able to back up and recover, an error

has still occurred. In addition, it is important to note the circumstances under

which the participant attempted to back up and whether the participant was

successful in figuring out what was wrong. These occasions can provide

qualitative data on user error recovery strategies that youmight not be able to get

in any other way.

The simplest way to count user errors during task performance is to use a

manual event counter such as a handheld “clicker” for counting people coming

through a gate for an event. Manual counters are perfect for low-fidelity,

especially paper, prototypes. For software prototypes and operational software

applications, if you use video to capture the interactions, you can tag the video

stream with error points and the video analysis software can tally the count easily.

What generally does not count as a user error?
Typically, we do not count accessing online help or other documentation as an

error. As a practical matter, we also want to exclude any random act of curiosity

or exploration that might be interjected by the user (e.g., “I know this is not

right, but I am curious what will happen if I click this”). Also a different

successful path “invented” by the user is not really an error, but still could be

noted as an important observation.

And we do not usually include “oops” errors, what Norman (1990, p. 105)

calls “slips.” These are errors that users make by accident when, in fact, they

know better. For example, the user knows the right button to click but clicks the

wrong one, perhaps through a slip of the hand, a brain burp, or being too hasty.

544 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

However, we do note an oops error and watch for it again. If it recurs, it may not

be random and you should look for a way the design might have caused it.

Finally, we do not usually include typing errors, unless their cause could

somehow be traced to a problem in the design or unless the application is about

typing.

15.4.2 Subjective Quantitative Data: Administering
Questionnaires
If you are using questionnaires, the data collection activity is when you

administer them. Have the participant fill out the questionnaires you have

chosen per the timing you have decided, such as after a task or at the end of

a session.

15.5 GENERATING AND COLLECTING QUALITATIVE
UX DATA

In Chapter 12 we discussed how the goal of qualitative data collection is to

identify usability problems and their causes within the design. In lab-based

testing with participants, this goal is achieved primarily through observation and

recording of critical incidents, often with the help of the think-aloud technique.

15.5.1 Collecting Critical Incident Information
The way that you collect and tag critical incident data as you go will havemuch to

say about the accuracy and efficiency of your subsequent data analysis. Get your

detailed critical incident and UX problem information recorded as clearly,

precisely, and completely as you can in real time during data collection.

Do not count on going back and reviewing video recordings to get the essence

of the problems. In the raw data stream, there are huge amounts of “noise,” data

not relevant to UX analysis. Important events, such as critical incident

occurrences, are embedded in and obscured by irrelevant data. The wheat is still

within the chaff.

Finding critical incidents within this event stream by viewing the video is

laborious and time-consuming, which is one important reason for using

direct (real-time) critical incident observation by an evaluator as a primary

data collection technique. Do as much filtering as possible at the moment

of data capture.

As events unfold, it is the job of the skilled evaluator to capture as much

information about each critical incident as possible, as they happen in real time.

Critical Incident

A critical incident is a UX

evaluation event that occurs

during user task

performance or other user

interaction, observed by the

facilitator or other

observers or sometimes

expressed by the user

participant, that indicates a

possible UX problem.

Critical incident

identification is arguably

the single most important

source of qualitative data.

Think-Aloud
Technique

The think aloud technique is

a qualitative data collection

technique in which user

participants verbally

externalize their thoughts

about their interaction

experience, including their

motives, rationale, and

perceptions of UX

problems. By this method,

participants give the

evaluator access to an

understanding of their

thinking about the task and

the interaction design.

545R IGOROUS EMP IR ICAL EVALUAT ION : RUNNING THE SESS ION

In early stages or when you do not have any software tool support, you can just

take notes on the critical incidents that you spot.

In Chapter 16 we discuss UX problem instance records. It is helpful to use

that as a template to support completeness in collecting critical incident data.

15.5.2 Critical Incident Data Collection Mechanisms
Video recording for critical incident data collection. In some labs, video recording is

used routinely to capture all user and screen actions and facilitator and

participant comments. Once you get into video recording, it is probably best to

use a software support tool to control the video equipment for recording, review,

and later analysis and for tagging the video with evaluator comments.

If you use video recording, the minimal video to capture is the real-time

sequencing of screen action, showing both user inputs and system reactions and

displays. Software support tools such as Morae™ or OVO™ can capture full-

resolution video streamof screen action automatically. This is adequate for a large

portion of the UX evaluation sessions we do. However, if participant physical

actions, gestures, and/or facial expressions are important, as theymight well be to

evaluate emotional impact, digital video streams from cameras can be added and

most capture software will synchronize all the video inputs automatically.

For some purposes, you can use one video camera aimed at the participant’s

hands to see details of physical actions and gestures and another at the

participant’s face to see expressions and, if useful, you can even have a third

camera to capture a wide-angle overview of evaluator, participant, the computer,

or other device being evaluated—the full context of the user experience.

Critical incident markers: Filtering raw data. Each critical incident marker

created by the evaluator points to a particular place in the raw video stream,

tagging the wheat as it still resides within the chaff. This real-time tagging

enables evaluators to ignore the chaff in any further analysis, boosting the

efficiency of the data analysis process enormously.

Tagging critical incidents is somewhat analogous to a similar kind of data

tagging in crime scene data collection and analysis: little flags or tags are

arranged in proximity to items that are identified as evidence so that the crime

scene analysts can focus on the important items easily. Each “start” and “stop”

tag (Figure 15-4) denotes a video clip, which constitutes filtered raw data

representing a critical incident.

Critical incident comments: Interpretive data. In addition to marking critical

incidents, evaluators sometimes want to make comments explaining critical

incidents. The comments are linked to the corresponding video clips so that

analysts subsequently can view the related clips as they read the comments.

546 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

The comments are an interpretive

“coating” on filtered raw data.

Figure 15-4 illustrates the video

stream tagged with critical incident

markers and associated evaluator

comments.

Working without a net: Not recording

raw data. It is more efficient if you do

not have to use video recording.

Although video recording of

interaction even with paper

prototypes can be appropriate and

useful, evaluators certainly do not

always record video of the

interaction events, especially for

evaluations of early prototypes

where the fast pace of iterative

design changes calls for lightweight

data collection and analysis.

Operating without the safety net

of a video recording results in

immediate loss of raw data.

Evaluators depend solely on the

comments, and the analysis process

begins with just the interpretive

accounts of data, but this if often fully adequate and appropriate for early

versions of a design or when rapid methods are required for all versions.

Manual note taking for critical incident data collection. Manual note taking is the

most basic mechanism and is still a useful and efficient approach in many UX

labs. Evaluators take comprehensive, real-time raw critical incident notes with a

laptop or with pencil and paper. When thoughts come faster than they can write,

they might make audio notes on a handheld digital voice recorder—anything to

capture raw data while it is still fresh.

Even if you are also making audio or video recordings, you should take notes

as though you are not. It is amistake to rely on your video recordings as a primary

method of raw data capture. It is just not practical to go back and get your raw

critical incident notes by reviewing the entire video. The video, however, can be a

good backup, something you can look at for missing data, to resolve a question,

or to clear up a misunderstanding.

Figure 15-4

Overview of raw data
filtering by tagging critical
incidents and adding
interpretive comments.

547R IGOROUS EMP IR ICAL EVALUAT ION : RUNNING THE SESS ION

15.5.3 Think-Aloud Data Collection
Although there are some points to watch for, in its simplest form this technique

could not be easier. It simply entails having participants think out loud and share

their thoughts verbally while they perform tasks or otherwise interact with a

product or system you want to evaluate. Within the UX evaluation method you

are using:

n At the beginning, explain the concept of thinking aloud and explain that you want

to use this technique with participants.

n Explain that this means you will expect them to talk while they work and think,

sharing their thoughts by verbalizing them to you.

n You might start with a little “exercise” to get warmed up and to get participants

acclimated to thinking aloud.

n Depending on your main UX evaluation method, you may capture think-aloud data

by audio recording, video recording, and/or written or typed notes.

n Among the thoughts you should encourage participants to express are descriptions

of their intentions, what they are doing or are trying to do, and their motivations,

the reasons why they are doing any particular actions.

n You especially want them to speak out when they get confused, frustrated, or blocked.

Depending on the individual, thinking aloud usually comes quite naturally;

it does not take much practice. Occasionally you might have to encourage or

remind the participant to keep up the flow of thinking aloud.

15.6 GENERATING AND COLLECTING EMOTIONAL
IMPACT DATA

Collecting emotional impact data depends on observing and measuring

indicators of emotional response through verbal communication, facial

expressions, body language, behaviors, and physiological changes.

15.6.1 Applying Self-Reporting Verbal Techniques
for Collecting Emotional Impact Data

Applying the think-aloud technique to evaluate
emotional impact
We have already talked about using the think-aloud technique for capturing the

participant’s view of interaction, critical incidents, and UX problems. The think-

aloud technique is also excellent for obtaining a window into the mind of the

user with respect to emotional feelings as they occur.

548 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Depending on the nature of the interaction, emotional impact indicatorsmay

be infrequent in the flow of task performance user actions, and you may see

them mainly as a by-product of your hunt for usability problem indicators. So,

when you do encounter an emotional impact indicator during observation in

task performance, you certainly should make a note of it. You can also make

emotional impact factors the primary focus during the think-aloud technique.

n When you explain the concept of thinking aloud, be sure participants understand

that you want to use this technique to explore emotional feelings resulting from

interaction and usage.

n Explain that this means you will expect them to share their emotions and feelings while

they work and think by talking about them to you.

n As you did when you used the think-aloud technique to capture qualitative UX data,

you may wish to begin with a little “exercise” to be sure participants are on the

same page about the technique.

n As before, you can capture think-aloud data by audio recording, video recording,

and/or written or typed notes.

n Also as before, you may have to remind participants occasionally to keep the thinking

aloud flowing.

During the flow of interaction:

n You can direct participants to focus their thinking aloud on comments about joy of use,

aesthetics, fun, and so on.

n You should observe and note the more obvious manifestations of emotional impact,

such as expressions like “I love this” and “this is really cool” and “wow” expressions,

annoyances, or irritation.

n You also need to watch out for themore subtle expressions that can provide insights into

the user experience, such as a slight intake of breath.

n As a practitioner, you also must be sensitive to detecting when emotional impact goes

flat, when there is no real joy of use. Ask participants about it, causes, and about how it

can be improved.

Finally, a caution about cultural dependency. Most emotions themselves are

pretty much the same across cultures, and non-verbal expressions of emotion,

such as facial expressions and gestures, are fairly universal. But cultural and

social factors can govern an individual’s willingness to communicate about

emotions. Different cultures may also have different vocabularies and different

perspectives on the meaning of emotions and the appropriateness of sharing

and revealing them to others.

549R IGOROUS EMP IR ICAL EVALUAT ION : RUNNING THE SESS ION

Applying questionnaires to evaluate emotional impact
Based on your project context and the type of application, use the discussion of

questionnaires in Chapter 12 to select and apply a questionnaire to evaluate

emotional impact.

15.6.2 Applying Direct Non-Verbal Techniques
for Collecting Emotional Impact Data
Using non-verbal techniques for collecting emotional impact usually means

deploying probes and instrumentation; see Chapter 12 for a discussion of

physiological measurements.

15.7 GENERATING AND COLLECTING
PHENOMENOLOGICAL EVALUATION DATA

Get ready for a study of emotional impact situated in the real activities of

users over time, if possible from the earliest thinking about the product to

adoption into their lifestyles. You will need to choose your data collection

techniques to compensate for not being able to be with your participants all

the time, which means including self-reporting.

We encourage you to improvise a self-reporting technique yourself, but

you should definitely consider a diary-based technique, in which each

participant maintains a “diary,” documenting problems, experiences, and

phenomenological occurrences within long-term usage. Diaries can be kept via

paper and pencil notes, online reports, cell-phone messages, or voice recorders.

For a diary-based technique to be effective, participants must be primed in

advance:

n Give your users a list of the kinds of things to report.

n Give them some practice exercises in identifying relevant situations and reporting

on them.

n Get them to internalize the need to post a report whenever they confront a usage

problem, use a new feature, or encounter anything interesting or fun within usage.

To encourage participants to use voice-mail for reporting, consider paying

them a per-call monetary compensation (in addition to whatever payment you

give them for participating in the study). In the Palen and Salzman study, they

found that a per-call payment encouraged participants to make calls. There is a

550 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

possibility that this incentive might bias participants into making some

unnecessary calls, but that did not seem to happen in this study.

To perhaps get more representative data, you might choose to trigger

reporting to control the timing (Chapter 12, under data collection technique

for phenomenological aspects), rather than letting your participant perform

reporting at when it is convenient or times when things are going well with the

product. For example, you can give your participant a dedicated pager

(Buchenau & Suri, 2000) to signal randomly timed “events” at which times

the participant is asked to report on their usage and context.

Another way you could choose to sample phenomenological usage is by

periodic questionnaires over time. You can use a series of such questionnaires to

elicit understanding of changes in usage over those time periods.

You can also choose to do direct observation and interviews in simulated

real usage situations (Chapter 12, under data collection technique for

phenomenological aspects). You will need to create conditions to encourage

episodes of phenomenological activity to occur during these observational

periods.

As an example of using this technique, Petersen, Madsen, and Kjaer (2002)

conducted a longitudinal study of the use of a TV and video recorder by

two families in their own homes. During the time of usage, periodic interviews

were scheduled in the analysts’ office, except in cases where users had difficulty

in getting there and, then, the interviews were conducted in the users’ homes.

During the interviews, the evaluators posed numerous usage scenarios and

had the participants do their best to enact the usage while giving their feedback,

especially about emotional impact. All interviews were videotaped. The idea

is to set up conditions so that you can capture the essence of real usage and

reflect real usage in a tractable time frame.

Here are some tips for success:

n Establish the interview schedule to take into account learning through usage by

implementing a sequence of sessions longitudinally over time.

n As in contextual inquiry, it is necessary to observe user activities rather than just to ask

about them. As we know, the way people talk about what they do is often not the same as

what they actually do.

n Be cautious and discreet with videotaping in more private settings, such as the

participant’s home, usually found in this kind of usage context.

As you collect data, you will be looking for indicators of all the different ways

your users involve the product in their lives, the high points of joy in use, how the

551R IGOROUS EMP IR ICAL EVALUAT ION : RUNNING THE SESS ION

basic mode of usage changes, evolves, or emerges over time, and especially how

usage is adapted to emerge as new and unusual kinds of usage. As said in

Chapter 12, you want to be able to tell stories of usage and good emotional

impact over time.

15.8 WRAPPING UP AN EVALUATION SESSION

Returning to the more traditional lab-based or similar evaluation methods, we

now need to do several things to wrap up an evaluation session.

15.8.1 Post-Session Probing Via Interviews
and Questionnaires
Immediately after the sessions, but while your participant is still present, is the

best opportunity to ask probing questions to clear up any confusion you have

about critical incidents or UX problems. Conduct post-session interviews and

administrator questionnaires to capture user thoughts and feelings while they

are fresh.

Clarify ambiguities about the nature of any problems. Be sure you understand

the real problems and their causes. Interact with your participant as a doctor

does in diagnosing a patient. If you wait until the participant is gone, you lose

the opportunity to ask further questions to disambiguate the diagnoses and

causes.

Facilitators often start with some kind of standard structured interview, asking a

series of preplanned questions aimed at probing the participant’s thoughts

about the product and the user experience. A typical post-session interview

might include, for example, the following general questions. “What did you like

best about the interface?” “What did you like least?” “How would you change so-

and-so?” An interesting question to ask is “What are the three most important

pieces of information that youmust know tomake the best use of this interface?”

For example, in one design, some of the results of a database query were

presented graphically to the user as a data plot, the data points of which were

displayed as small circles. Because most users did not at first realize that they

could get more information about a particular data point if they clicked on the

corresponding circle, one very important piece of information users needed to

know about the design was that they should treat a circle as an icon and that they

could manipulate it accordingly.

It can be even more effective to follow up with unstructured opportunistic

questioning. Find out why certain things happened. Be sure to ask about any

552 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

critical incidents that you are not sure about or potential UX problems for which

you do not yet completely understand the causes.

15.8.2 Reset for the Next Participant
After running an evaluation session with one participant, you should clean

up everything to be ready for the next participant. This means removing any

effects from the previous session that might affect the participant or task

performance in the next session. Often you will have to do this kind of cleanup

even between tasks for the same participant.

If you are using a paper prototype, you still must reset internal states and data

back to initial conditions needed by the first task using the prototype. For

example, if previous participants made changes to the prototype, such as filling

in information on a paper or plastic form, provide a fresh clean form. If the user

made changes to a “database,” recorded anywhere that will be visible to the next

participant, these have to be reset for a fresh participant.

For Web-based evaluation, clear out the browser history and browser

cache, delete temporary files, remove any saved passwords, and so on. For a

software prototype, save and backup any data you want to keep. Then reset the

prototype state and remove any artifacts introduced in the previous session.

Delete any temporary files or other saved settings. Reset any user-created

content on the prototype, such as any saved appointments, contacts, or files.

Reset any other tools, such as Web-based surveys or questionnaires, to make sure

one participant’s answers are not visible to the next one.

Finally, give the participant(s) their pay, gifts, and/or premiums, thank them,

and send them on their way.

15.9 THE HUMAINE PROJECT

The European community project HUMAINE (Human-Machine Interaction

Network on Emotions) issued a technical report detailing a taxonomy of

affective measurement techniques (Westerman, Gardner, & Sutherland, 2006).

They point out that there is a history of physiological and psychophysiological

measurement in human factors practice since the late 1970s to detect, for

example, stress due to operator overload, and an even longer history of this kind

of measurement in psychological research.

In the HUMAINE report, the authors discuss the role of medicine in

physiological measurement, including electroencephalograms and event-

related potential, measured with electroencephalography, a technique that

Exercise

See Exercise 15-1, UX

Evaluation Data Collection

for Your System

553R IGOROUS EMP IR ICAL EVALUAT ION : RUNNING THE SESS ION

detects and measures electrical activity of the brain through the skull and scalp.

Event-related potentials can be roughly correlated to cognitive functions

involving memory and attention and changes in mental state.

As the authors say, these physiological measurements have the advantage over

self-reporting methods in that they can monitor continuously, require no

conscious user actions, and do not interrupt task performance or usage activity.

To be meaningful, however, such physiological measurements have to be

associated with time stamps on a video of user activity.

A major disadvantage, ruling the approach out for most routine UX

evaluation, is the requirement for attached sensors. New, less intrusive

instrumentation is being developed. For example, Kapoor, Picard, and Ivanov

(2004) report being able to detect changes in user posture, for example, due to

fidgeting, with pressure sensors attached to a chair.

554 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

CHAPTER

Rigorous Empirical
Evaluation: Analysis 16

If it ain’t broke, it probably doesn’t have enough features.

–Anonymous

Objectives

After reading this chapter, you will:

1. Be able to analyze informal summative (quantitative) usability data, compare results

with usability targets, and decide whether you can stop iterating

2. Have the working knowledge to analyze formative (qualitative) critical incident and

UX problem data

3. Know how to perform cost-importance analysis to prioritize UX problems to fix

4. Be able to maintain and manage UX problem data

5. Know how to connect back to the UX process lifecycle

16.1 INTRODUCTION

16.1.1 You Are Here
We begin each process chapter with a “you are here” picture of the chapter topic

in the context of the overall Wheel lifecycle template; see Figure 16-1. This

chapter is about analyzing data collected during evaluation.

The focus of research and practice has slowly been shifting away from

methods for usability data collection and comparisons of those data collection

methods to issues about how best to use data generated or collected by these

methods (Howarth, Andre, & Hartson, 2007). So, now that we have data,

what’s next?

16.2 INFORMAL SUMMATIVE (QUANTITATIVE)
DATA ANALYSIS

As we have said, the quantitative data analysis for informal summative

evaluation associated with formative evaluation does not include inferential

statistical analyses, such as analyses of variance (ANOVAs), t tests, or F tests.

Rather, they use simple “descriptive” statistics (such as mean and standard

deviation) to make an engineering determination as to whether the interaction

design has met the UX target levels. If the design has not yet met those targets,

qualitative analysis will indicate how to modify the design to improve the UX

ratings and help converge toward those goals in subsequent cycles of formative

evaluation.

Iteration can seem to some like a process going around in circles, which can

be scary to managers. As we will see later, your informal summative analysis,

coupled with your UX targets and metrics, is a control mechanism to help

managers and other project roles know whether the iterative process is

converging toward a usable interaction design and when to stop iterating.

Figure 16-1

You are here; at data
analysis, within the
evaluation activity in the
context of the overall Wheel
lifecycle template.

556 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

16.2.1 Lining up Your Quantitative Ducks
The first step in analyzing quantitative data is to compute simple descriptive

statistics (e.g., averages) for timing, error counts, questionnaire ratings, and so on,

as stated in theUX targets. Be careful about computing onlymean values, though,

because the mean is not resistant to outliers and, therefore, can be a misleading

indicator. Becausewe are not doing formal quantitative analysis, the small number

of participants typical in formative evaluation can lead to amean value thatmeets a

reasonable UX target and you can still have serious UX problems.

It may help to include standard deviation values, for example, to indicate

something about the rough level of confidence you should have in data. For

example, if three participants are all very close in performance times for a

particular task, the numbers should give you pretty good confidence, and the

average is more meaningful. If there is a big spread, the average is not very

meaningful and you should find out why there is such a variance (e.g., one user

spent a huge amount of time in an error situation). Sometimes it can mean that

you should try to run a few more participants.

After you compute summary statistics of quantitative data, you add them to

the “Observed Results” column at the end of the UX target table. As an example,

partial results from a hypothetical evaluation of the Ticket Kiosk System are

shown in Table 16-1 using some of the UX targets established in Table 10-10.

Table 16-1

Example of partial informal quantitative testing results for the Ticket Kiosk System

Work Role:
User Class

UX Goal UX Measure Measuring
Instrument

UX Metric Baseline
Level

Target
Level

Observed
Results

Meet
Target?

Ticket buyer:
Casual new
user, for
occasional
personal use

Walk-up
ease of use

Initial user
performance

BT1: Buy
special event
ticket

Average
time on
task

3 min as
measured
at the
kiosk

2.5
min

3.5 min No

Ticket buyer:
Casual new
user, for
occasional
personal use

Walk-up
ease of use
for new
user

Initial user
performance

BT2: Buy
movie ticket

Average
number of
errors

<1 <1 2 No

Ticket buyer:
Casual new
user, for
occasional
personal use

Initial
customer
satisfaction

First
impression

Questions
Q1–Q10 in
questionnaire
XYZ

Average
rating
across users
and across
questions

7.5/10 8/10 7.5 No

557R IGOROUS EMP IR ICAL EVALUATION : ANALYS I S

Next, by directly comparing the observed results with the specified UX goals,

you can tell immediately which UX targets have been met, and which have not,

during this cycle of formative evaluation. It is useful to add, as we have done in

Table 16-1, yet one more column to the right-hand end of the UX target table,

for “Did you meet UX target?” Entries can be Yes, No, or Almost.

In looking at the example observed results in Table 16-1, you can see that our

example users did notmeet any of theUX target levels. This is not unusual for an

early evaluation of a still-evolving design. Again, we stress that this was only

informal summative analysis—it cannot be used anywhere for claims and cannot

be used for any kind of reporting outside the UX group or, at most, the

project team. It is only for managing the iterative UX engineering process

internally. If you want results from which you can make claims or that you can

make public, you need to do (and pay for) a formal summative evaluation.

Not All Errors Are Created Equal

Andrew Sears, Professor and Dean, B. Thomas Golisano

College of Computing and Information Sciences, Rochester Institute of Technology

As we design and evaluate user interfaces, we must decide what metrics will be used to assess the efficacy of our

design. Perhaps the most common choices are the speed–error–satisfaction triad that we see used not only in usability

studies but also in more formal evaluations such as those that appear in scholarly journals and conference

proceedings. After all, a fast system that leads to many errors is not particularly useful, and even a fast and error-free

system is not useful if nobody will use it (unless you are dealing with one of those less common situations where users

do not have a choice).

If we accept that each of these aspects of usability should be considered in some form and define how each will be

assessed, we can begin to evaluate how well a system performs along each dimension, we can introduce changes and

evaluate the impact of these changes, and we can fine-tune our designs. There are many techniques that help usability

engineers identify problems, including approaches that result in problems being classified in one way or another in an

effort to help prioritize the process of addressing the resulting collection of problems. Prioritization is important

because there may not be time to fix every problem given the time pressures often experienced as new products are

developed. Prioritization is even more important when one considers the variable nature of the “problems” that can

be identified when using different evaluation techniques.

While the severity of a problem may be considered when deciding which problems to fix, the focus is typically on

eliminating errors. However, through our research with several error-prone technologies, it has become clear that

focusing exclusively on eliminating errors may lead to less than optimal outcomes. These technologies, including

558 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

speech and gesture recognition, can produce unpredictable errors that can result in dramatically different

consequences for the user of the system. It was in this context that we began to rethink the need to eliminate errors.

This shift in focus was motivated, in part, by the fact that we could not necessarily eliminate all errors but we noticed

that there were opportunities to change what happened when errors did occur. It was also motivated by the

observation that people are really quite good at processing input where some details are missing or inaccurate.

Perhaps the simplest example would be when you are participating in a conversation, but the person you are talking to

mumbles or background noise masks a few words. Often, it is possible to fill in the gaps and reconstruct what was

missed originally.

Two specific examples may be useful in seeing how these ideas can be applied when designing or redesigning

information technologies. The first example considers what happens when an individual is interacting with a

speech-based system. At times, the speech recognition engine will misinterpret what was said. When using speech

to navigate within a text document, such errors can result in a variety of consequences, including ignoring what was

said, moving the cursor to the wrong location, or even inserting extra text. Recovering from each of these

consequences involves a different set of actions, which require different amounts of work. By recognizing that an

error has occurred, and using this information to change the consequences that an individual must overcome, we

can improve the usability of a system even without eliminating the error. At times, a slightly higher error rate may

be desirable if this allows the severity of the consequences to be reduced sufficiently. This example is explored in

more depth by Feng and Sears (2009). This article discusses the issue of designing for error-prone technologies and

the importance of considering not only the number of errors users encounter but the severity of the consequences

associated with those errors.

A second example looks at the issue of taking notes using mobile technologies. The process of entering text on

mobile devices is notorious for being slow and error prone. If someone tries to record a brief note while correcting

all errors, the process tends to be sufficiently slow to discourage many individuals. At the same time, people tend to

be quite good at dealing with many different types of errors. Because these brief notes tend to be used to remind

the user of important details, having an error-free note may not be that important as long as the erroneous note is

sufficient to remind the user of the information, event, or activity that inspired them originally to record the note.

Our studies found that a note-taking mechanism that did not allow users to review and correct their notes could

allow users to recall important details just as effectively as error-free notes while significantly reducing the time

they spent recording the note. Dai et al. (2009) explore this example in more detail, showing how users can

overcome errors.

Errors are inevitable, but not all errors result in the same consequences for the user. Some errors introduce

significant burdens, creating problems that the user must then fix before they can continue with their original task.

Other errors may be irritating, requiring users to repeat their actions, but do not introduce new problems. Still other

errors may be annoying but may not prevent the user from accomplishing his or her task. Understanding how an error

affects the user and when there are opportunities to reduce the consequences of errors (sometimes this can involve

increasing the number of errors but still results in an overall improvement in the usability of the system) can allow for

more effective systems to be designed even when errors cannot be prevented.

References

Dai, L., Sears, A., & Goldman, R. (2009). Shifting the focus from accuracy to recallability: A study of informal note-taking

on mobile information technologies. ACM Transactions on Computer-Human Interaction, 16(1), 46 Pages.

Feng, J., & Sears, A. (2009). Beyond errors: Measuring reliability for error-prone interaction devices. Behaviour and

Information Technology, 29(2), 149–163.

16.2.2 The Big Decision: Can We Stop Iterating?
Now it is time for a major project management decision: Should you continue to

iterate? This decision should be a team affair and made at a global level, not just

considering quantitative data. Here are some questions to consider:

n Did you simultaneously meet all your target-level goals?

n What is your general team feeling about the conceptual design, the overall interaction

design, the metaphor, and the user experiences they have observed?

If you can answer these questions positively, you can accept the design as is

and stop iterating. Resource limitations also can force you to stop iterating and

get on with pushing this version out in the hope of fixing known flaws in the next

version. If and when you do decide to stop iterating, do not throw your qualitative

data away, though; you paid to get it, so keep this round of problem data for

next time.

If your UX targets were not met—the most likely situation after the first

cycle(s) of testing—and resources permit (e.g., you are not out of time or

money), you need to iterate. This means analyzing the UX problems and

finding a way to solve them in order of their cost and effect on the user

experience.

Convergence toward a quality user experience
Following our recurring theme of using your own thinking and experience in

addition to following a process, we point out that this is a good place to use your

intuition. As you iterate, you should keep an eye on the quantitative results over

multiple iterations: Is your design at least moving in the right direction?

It is always possible for UX levels to get worse with any round of design

changes. If you are not converging toward improvement, why not? Are UX

problem fixes uncovering problems that existed but could not be seen before or

are UX problem fixes causing new problems?

16.3 ANALYSIS OF SUBJECTIVE QUESTIONNAIRE DATA

Depending on which questionnaire you used, apply the appropriate calculations

for the final scores (Chapter 12).

16.4 FORMATIVE (QUALITATIVE) DATA ANALYSIS

Our friend Whitney Quesenbery gave us this nutshell digest of her

approach to usability problem analysis, which she in turn adapted from

someone else:

The team usually includes all the stakeholders, not just UX folks, and we rarely

have much time. First, we agree on what we saw. No interpretation, just

observation. This gets us all on the same page. Then we brainstorm until we agree

on “what it means.” Then we brainstorm design solutions.

16.4.1 Introduction
Formative analysis of qualitative data is the bread and butter of UX evaluation.

The goal of formative data analysis is to identify UX problems and causes (design

flaws) so that they can be fixed, thereby improving product user experience. The

process of determining how to convert collected data into scheduled design and

implementation solutions is essentially one of negotiation in which, at various

times, all members of the project team are involved. In the first part of qualitative

analysis you should have all your qualitative data represented as a set of UX

problem instances so that you can proceed with diagnosis and problem

solutions.

Did not find many UX problems? Better look again at your data

collection process. We seldom, if ever, see an interaction design for which UX

testing does not reveal lots of UX problems. Absence of evidence is not evidence

of absence.

Figure 16-2 illustrates the steps of qualitative data analysis:

consolidating large sets of raw critical incident comments into UX problem

instances, merging UX problem instances into UX problem records, and

grouping of UX problem records so that we can fix related problems together.

For practical purposes we have to separate our material into chapters. In

practice, early analysis—especially for qualitative data—overlaps with the data

collection process. Because evaluator comments are interpretive, we have

Problem Instance
(UX)

A UX problem instance is a

single occurrence of an

encounter with a given

problem by a given user,

inspector, or participant.

When more than one

participant experiences

what is essentially the same

problem, the encounters

are counted as different

instances so they are not

reported as different

problems.

Critical Incident

A critical incident is a UX

evaluation event that occurs

during user task

performance or other user

interaction, observed by the

facilitator or other

observers or sometimes

expressed by the user

participant, that indicates a

possible UX problem.

Critical incident

identification is arguably

the single most important

source of qualitative data.

561R IGOROUS EMP IR ICAL EVALUATION : ANALYS I S

already begun to overlap analysis of qualitative data with their capture. The

earlier you think about UX problems and their causes, the better chance you

have at getting all the information you will need for problem diagnosis. In this

chapter, we move from this overlap with data collection into the whole story of

qualitative data analysis.

16.4.2 Get an Early Jump on Problem Analysis

Keep a participant around to help with early analysis
In a typical way of doing things, data collection is “completed,” the participant is

dismissed, and the team does high fives and cracks open the bubbly before

turning its attention to data analysis. But this DilbertianHFTAWR (high-frivolity-

to-actual-work ratio) approach puts the problem analyst at a disadvantage when

Figure 16-2

Consolidating, merging,
and grouping of UX
problem data.

562 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

the need inevitably arises to ask the participant questions and resolve

ambiguities. The analyst can sometimes ask the facilitator or others who

collected data, but often at significant communication effort.

Neither the facilitator nor the analyst now has access to the participant.

Too often the problem analyst can only try to interpret and reconstruct missing

UX data. The resulting completeness and accuracy become highly dependent

on the knowledge and experience of the problem analyst.

We suggest bringing in the problem analyst as early as possible, especially if

the analyst is not on the data collection team. And, to the extent it is practical,

start analyzing qualitative data while a participant is still present to fill in missing

data, clarify ambiguous issues, and answer questions.

Early UX problem data records
If data collectors used software support tools, the critical incident notes may

already be in rudimentary problem records, possibly with links to tagged video

sequences. With even minimal support from some kind of database tool,

evaluators can get a leg up on the process yet to come by entering their critical

incident descriptions directly into data records rather than, say, just a word

processor or spreadsheet. The earlier you can get your raw critical incident

notes packaged as data records, themore expedient the transition to subsequent

data analysis.

Clean up your raw data before your memory fades
However you get data, you still have mostly raw qualitative data at this point.

Many of the critical incident notes are likely to be terse observational comments

that will be difficult to integrate in subsequent analysis, particularly if the person

performing UX problem analysis is not the same person who observed the

incidents and recorded the comments.

Therefore, it is essential for data collectors to clean up the raw data as soon

after data collection as time and evaluator skills permit to capture as complete

a record of each critical incident as possible while perishable detailed data are

still fresh. In this transition from data collection to data analysis, experienced

data collectors will anticipate the need for certain kinds of content later in

problem analysis.

Clarify and amplify your emotional impact data
UX problems involving emotional impact are, by nature, usually broader in

scope and less about details than usability problems. Therefore, for UX

problems about emotional impact, it is important to get at the underlying

563R IGOROUS EMP IR ICAL EVALUATION : ANALYS I S

essence of the observations while the explanatory context is still fresh.

Otherwise, in our experience, you may end up with a vague problem description

of some symptoms too nebulous to use.

16.4.3 Sources of Raw Qualitative Data
We are talking primarily about data from lab-based UX testing here, but critical

incident data can come from other sources such as expert UX inspections. It is

our job to sort through these, often unstructured, data and extract the essential

critical incident and UX problem information. Regardless of the source of

the raw data, much of the data analysis we do in this chapter is essentially

the same.

Some sources are less detailed and some are more synoptic, for example,

evaluator problem notes from a session without video recording tend to bemore

summarized, or summary problem descriptions can come from aUX inspection,

in which there are no real critical incidents as there are no real users.

For these less detailed data, inputs to data analysis are often in the form of

narratives about perceived UX-related situations and you might have to work a

bit harder to extract the essence. These reports often roll up more than one

problem in one description and you need to unpack individual UX issues into

UX problem instances, as discussed next.

16.4.4 Isolate Individual Critical Incident Descriptions
Onoccasion, participants can experiencemore than one distinct UX problem at

the same time and a single critical incident comment can refer to all of these

problems. The first step in the sequence for refining raw data into UX problem

reports is to scan the raw critical incident notes, looking for such notes about

more than one UX problem, and separate them into multiple critical incident

notes, each about a single UX problem.

Here is an example from one of our UX evaluation sessions for a companion

Website for the Ticket Kiosk. The participant was in the middle of a benchmark

task that required her to order three tickets to a Three Tenors concert. As she

proceeded through the task, at one point she could not locate the button (which

was below the “fold”) to complete the transaction.

When she finally scrolled down and saw the button, the button label said

“Submit.” At this point she remarked “I am not sure if clicking on this button will

let me review my order or just send it in immediately.” This is an example of a

critical incident that indicates more than one UX problem: the button is located

where it is not immediately visible and the label is not clear enough to help the

user make a confident decision.

564 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

16.4.5 Consolidating Raw Critical Incident Notes into
UX Problem Instances

The UX problem instance concept
Howarth et al. (Howarth, Andre, & Hartson, 2007; Howarth, Smith-Jackson, &

Hartson, 2009) introduced the concept of UX problem instances to serve as

a bridge between raw critical incident descriptions and UX problem records.

A UX problem instance is a single occurrence of a particular problem

experienced by a single participant.

The same UX problem may be encountered and recorded in multiple

instances—occurring in the same or different sessions, observed by the same or

different evaluators, experienced by the same or different participants, within

the context of the same or of a different task. These are not each separate

problems, but several instances of the same problem.

Critical incidents vs. UX problem instances
We have been using the term “critical incident” for some time and now we are

introducing the idea of a UX problem instance. These two concepts are very

similar and, if used loosely, can be thought of as referring to more or less the

same thing. The difference rests on a bit of a nuance: A critical incident is an

observable event (that happens over time) made up of user actions and system

reactions, possibly accompanied by evaluator notes or comments, that indicates

a UX problem instance.

Critical incident data are raw data and just a record of what happened and are

not yet interpreted in terms of a problem or cause and, therefore, not in a form

used easily in the analysis that follows. The UX problem instance is a more

“processed” or more abstract (in the sense of capturing the essence) notion that

we do use in the analysis.

Gathering up parts of data for a critical incident
Raw data for a single critical incident can appear in parts in the video/data

stream interspersed with unrelated material. These data representing parts of a

critical incident may not necessarily be contiguous in a real-time stream because

the participant, for example, may be multitasking or interrupting the train of

thought.

Tobuild a correspondingUXproblem instance, weneed to consolidate all data

(e.g., raw notes, video and audio sequences) about each critical incident. The

second column from the left in Figure 16-2 shows sets of clips related to the same

critical incident being extracted from the video stream. This step pulls out all the

565R IGOROUS EMP IR ICAL EVALUATION : ANALYS I S

pieces of one single critical incident that then indicates (makes up) the UX

problem instance.

This extraction of related parts of a single critical incident description

will be fairly straightforward. Raw data related to a given critical incident instance,

if not contiguous in the stream of events, will usually be in close proximity.

Example: Consolidating Critical Incident Parts
of a Single UX Problem Instance
These abstract ideas are best conveyed by a simple example, one we borrow from

Howarth, Andre, and Hartson (2007), based on real raw data taken from a UX

evaluation of a photomanagement application. Using this application, users can

manage photographs, already on a PC or received via email, into albums

contained on their computers.

For this example, our user is trying to upload a picture to put in an album.

The transcript of raw data (video stream plus evaluator comments) goes

something like what you see in Figure 16-3.

Figure 16-3

Example “transcript” of
raw data stream showing
multiple critical incident
notes pertaining to a single
UX problem instance.

566 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

In consolidating the raw critical incident notes (and associated video and

audio clips) relating to this one UX problem instance, the practitioner would

include both parts of the transcript (the two parts next to the curly braces, for

CI-1, part 1 and CI-1, part 2) but would not include the intervening words and

actions of the participant not related to this UX problem instance.

Putting it into a UX problem instance
This is a good time for a reality check on the real value of this critical incident to

your iterative process. Using good UX engineering judgment, the practitioner

keeps only ones that represent “real” UX instances.

As you put the critical incident pieces into one UX problem instance, you

abstract out details of the data (the he-said/she-said details) and convert the

wording of observed interaction event(s) and think-aloud comments into the

wording of an interpretation as a problem/cause.

16.4.6 A Photo Album Example
Using the Howarth et al. (2007) example of a photo album management

application, consider the task of uploading a photo from email and importing

it into the album application.

16.4.7 UX Problem Instances

UX problem instance content
To begin with, in whatever scheme you use for maintaining UX data, each

UX problem instance should be linked back to its constituent critical

incident data parts, including evaluator comments and video clips, in order

to retain full details of the UX problem instance origins, if needed for

future reference.

The next thing to do is to give the problem a name so people can refer to this

problem in discussions. Next we want to include enough information to make

the UX problem instance as useful as possible for data analysis. Much has been

said in the literature about what information to include in a UX problem record,

but common sense can guide you. You need enough information to accomplish

the main goals:

n understand each problem

n glean insight into its causes and possible solutions

n be conscious of relationships among similar problems

567R IGOROUS EMP IR ICAL EVALUATION : ANALYS I S

You will support these goals by problem records fields containing the

following kinds of information.

Problem statement: A summary statement of the problem as an effect or outcome experienced

by the user, but not as a suggested solution. You want to keep your options flexible when

you do get to considering solutions.

User goals and task information: This information provides problem context to know

what the user was trying to do when the problem was encountered. In the photo

album example, the user has photos on a computer and had the goal of uploading

another picture from email to put in an album contained in the photo management

application.

Immediate intention:One of themost important pieces of information to include is the user’s

immediate intention (at a very detailed level) exactly when the problem was

encountered, for example, the user was trying to see a button label in a small font or the

user was trying to understand the wording of a label.

More detailed problem description:Here is where you record details that can harbor clues about

the nature of the problem, including a description of user actions and system reactions,

the interaction events that occurred.

Designer knowledge (interpretation and explanation of events): Another very important piece of

information is an “outside the user” explanation of what might have happened in this

problem encounter. This is usually based on what we call “designer knowledge.” If the

participant was proceeding on an incorrect assumption about the design or a

misunderstanding of how the design works, the correct interpretation (the designer

knowledge) can shed a lot of light on what the participant should have done andmaybe

how the design could be changed to lead to that outcome.

Designer knowledge is a kind of meta comment because it is not based on observed

actions. It is based on knowledge about the design possessed by the evaluator, but not the

participant, of why the systemdidnot work theway the user expected andhow it does work

in this situation. We set up the evaluator team to ensure that someone with the requisite

designer knowledge will be present during the evaluation session to include that

information in the UX problem instance content that we now need in this transition to

data analysis. Here is an example of designer knowledge, in this case about a critical

incident that occurred in evaluation of the photo album application, as shown near the

bottom left-hand side of Figure 16-3: “I think the participant doesn’t realize she has to

create or open an album first before she can upload a picture.”

Causes and potential solutions: Although you may not know the problem causes or potential

solutions at first, there should be a place in the problem record to record this diagnostic

information eventually.

568 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

UX problem instance project context
In addition to the problem parameters and interaction event context, it can be

useful to maintain links from a problem instance to its project context. Project

context is a rather voluminous and largely uninteresting (at least during the

session) body of data that gives a setting for UX data within administrative and

project-oriented parameters.

While completely out of the way during data collection and not used for most

of the usual analysis process, these project context data can be important for

keeping track of when and by whom problem data were generated and collected

and to which version or iteration of the design data apply. This information is

linked and cross-linked so that, if you need to, you can find out which evaluators

were conducting the session in which a given critical incident occurred and

on what date, and using which participant (participant id, if not the name).

Project context data can include (Howarth, Andre, & Hartson, 2007):

n organization (e.g., company, department)

n project (e.g., product or system, project management, dates, budget, personnel)

n version (e.g., design/product release, version number, iteration number)

n evaluation session (e.g., date, participants, evaluators, associated UX target table)

n task run (e.g., which task, associated UX targets)

16.4.8 Merge Congruent UX Problem Instances into
UX Problem Records
We use the term congruent to refer to multiple UX problem instances that

represent the same underlying UX problem (not just similar problems or

problems in the same category).

Find and merge multiple UX problem instances
representing the same problem
In general, the evaluator or analyst cannot be expected to know about or

remember previous instances of the same problem, so new critical incident

descriptions (and newUXproblem instances accordingly) are created each time

an instance is encountered. Now you should look through your problem

instances and find sets that are congruent.

How do you know if two problem descriptions are about the same underlying

problem? Capra (2006, p. 41) suggests one way using a practical solution-based

criterion: “Two problems, A and B, were considered the same [congruent] if

569R IGOROUS EMP IR ICAL EVALUATION : ANALYS I S

fixing problem A also fixes problem B and fixing problem B also fixes

problem A.” Capra’s approach is based on criteria used in the analysis of

UX reports collected in CUE-4 (Molich & Dumas, 2008). The symmetric aspect

of this criterion rules out a case where one problem is a subset of the other.

As an example from our Ticket Kiosk System evaluation, one UX problem

instance states that the participant was confused about the button labeled

“Submit” and did not know that this button should be clicked to move on in the

transaction to pay for the tickets. Another (congruent) UX problem instance

account of the same problem (encountered by a different participant) said that

the participant complained about the wording of the button label “Submit,”

saying it did not help understand where one would go if one clicked on that

button.

Create UX problem records
In the merging of congruent UX problem instances, the analyst creates one

single UX problem record for that problem. This merging combines the

descriptions of multiple instances to produce a single complete and

representative UX problem description.

The resulting problem description will usually be slightly more general by

virtue of filtering out irrelevant differences among instances while embracing

their common defining problem characteristics. In practice, merging is done by

taking the best words and ideas of each instance description to synthesize an

amalgam of the essential characteristics.

As an example of merging UX problem instances in the photo album

application example, we see UX problem instances UPI-1 and UPI-12 in the

middle of Figure 16-2, both about trying to find the upload link to upload

pictures before having created an album into which to upload. The problem in

UPI-1 is stated as: “The participant does not seem to understand that she must

first create an album.”

The problem in UPI-12 says “User can’t find link to upload pictures

because the target album has not yet been created.” Two users in different UX

evaluation sessions encountered the same problem, reported in slightly

different ways. When you merge the two descriptions, factoring out the

differences, you get a slightly more general statement of the problem,

seasoned with a pinch of designer knowledge, in the resulting UX problem

record, UP-1: “Participants don’t understand that the system model requires

them to create an album before pictures can be uploaded and stored in it.”

570 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

In your system for maintaining UX data (e.g., problem database), each UX

problem record should be linked back to its constituent instances in order to

retain full details of where merged data came from. The number of UX

problem instances merged to form a given UX problem is useful information

about the frequency of occurrence of that problem, which could contribute

to the weight of importance to fix in the cost-importance ratings (coming up

soon later).

If an instance has a particularly valuable associated video clip (linked to

the instance via the video stream tag), the UX problem record should also

contain a link to that video clip, as the visual documentation of an example

occurrence of the problem. Some UX problems will be represented by just

one UX problem instance, in which case it will just be “promoted” into a UX

problem record.

Thence, UX problem instances will be used only for occasional reference and

the UX problem records will be the basis for all further analysis.

16.4.9 Group Records of Related UX Problems
for Fixing Together
UX problems can be related in many different ways that call for you to consider

fixing them at the same time.

n Problems may be in physical or logical proximity (e.g., may involve objects or actions

within the same dialogue box).

n Problems may involve objects or actions used in the same task.

n Problems may be in the same category of issues or design features but scattered

throughout the user interaction design.

n Problems may have consistency issues that require similar treatments.

n Observed problem instances are indirect symptoms of common, more deeply rooted,

UX problems. A telling indicator of such a deeply rooted problem is complexity and

difficulty in its analysis.

By some means of association, for example, using an affinity diagram, group

together the related records for problems that should be fixed together, as

done with UP-1 and UP- 7 at the right-hand side of Figure 16-2. The idea is to

create a common solution that might be more general than required for a

single problem, but which will be the most efficient and consistent for the

whole group.

571R IGOROUS EMP IR ICAL EVALUATION : ANALYS I S

Example: Grouping Related Problems for the
Ticket Kiosk System
Consider the following UX problems, adapted with permission, from a student

team in one of our classes from an evaluation of the Ticket Kiosk System:

Problem 9: The participant expected a graphic of seat layout and missed seeing the button

for that at first; kept missing “View Seats” button.

Problem 13: For “Selected Seats,” there is no way to distinguish balcony from floor seats

because they both use the same numbering scheme and the shape/layout used was not

clear enough to help users disambiguate.

Problem 20: In “View Seats” view, the participant was not able to figure out which of the

individual seats were already sold because the color choices were confusing.

Problem 25: The participant did not understand that blue seat sections are clickable to get

detailed view of available seats. She commented that there was not enough information

about which seats are available.

Problem 26: Color-coding scheme used to distinguish availability of seats was problematic.

On detailed seat view, purple was not noticeable as a color due to bad contrast. Also, the

text labels were not readable because of contrast.

Suggested individual solutions were:

Problem 9 Solution: Create an icon or graphic to supplement “View Seats” option. Also

show this in the previous screen where the user selects the number of seats.

Problem 13 Solution: Distinguish balcony seats and floor seats with a different numbering

scheme and use better visual treatment to show these two as different.

Problem 20 Solution: Use different icons and colors to make the distinction between

sold and available seats clearer. Also add a legend to indicate what those icons/

colors mean.

Problem 25 Solution: Make the blue seat clickable with enhanced physical affordances,

and when one is clicked, display detailed seat information, such as location, price,

and so on.

Problem 26 Solution: Change the colors; find a better combination that can distinguish the

availability clearly. Consider using different fills instead of just colors. Probably should

have thicker font for labels (maybe bold would do it).

These problems may be indicative of a much broader design problem: a lack

of effective visual design elements in seat selection part of the workflow. We can

group and label all these problems into the problem group:

Group 1: Visual designs for seat selection workflow.

572 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

With a group solution of:

Group 1 Solution: Comprehensively revise all visual design elements for seat selection

workflow. Update style guide accordingly.

Higher level common issues within groups
When UX problem data include a number of critical incidents or problems that

are quite similar, you will group these instances together because they are closely

related. Then you usually look for common issues among the problems in the

group.

But sometimes the real problem is not explicit in the commonality within

the group, but the problems only represent symptoms of a higher level problem.

You might have to deduce that this higher level problem is the real underlying

cause of these common critical incidents.

For example, in one application we evaluated, users were having trouble

understanding several different quirky and application-specific labels. We first

tried changing the label wordings, but eventually we realized that the reason

they did not “get” these labels was that they did not understand an important

aspect of the conceptual design. Changing the labels without improving their

understanding of the model did not solve the problem.

16.4.10 Analyze Each Problem

Terminology
To begin with, there is some simple terminology that we should use consistently.

Technically, UX problems are not in the interaction design per se, but are usage

difficulties faced by users. That is, users experience UX problems such as the

inability to complete a task. Further, UX problems are caused by flaws in the

interaction design. Symptoms are observable manifestations of problems (e.g.,

user agitation, expressed frustration, or anger).

Thus, the things we actually seek to fix are design flaws, the causes of UX

problems. Some (but not all) problems can be observed; but causes have to be

deduced with diagnosis. Solutions are the treatments (redesign changes) to fix

the flaws. Further downstream evaluation is needed to confirm a “cure.”

Sometimes we say “the poor design of this dialogue box is a UX problem” but,

of course, that is a short-hand way of saying that the poor design can cause users

to experience problems. It is okay to have this kind of informal difference in

terminology, we do resort to it ourselves, as long as we all understand the real

meaning behind the words.

Table 16-2 lists the terminology we use and its analog in the medical domain.

573R IGOROUS EMP IR ICAL EVALUATION : ANALYS I S

16.4.11 UX Problem Data Management
As time goes by and you proceed further into the UX process lifecycle, the full

life story of each UX problem grows, entailing slow expansion of data in the UX

problem record. Each UX problem record will eventually contain information

about the problem: diagnosis by problem type and subtype, interaction design

flaws as problem causes, cost/importance data estimating severity, management

decisions to fix (or not) the problem, costs, implementation efforts, and

downstream effectiveness.

Most authors mention UX problems or problem reports but do not hint at the

fact that a complete problem record can be a large and complex information

object. Maintaining a complete record of this unit of UX data is surely one place

where some kind of tool support, such as a database management system, is

warranted. As an example of how your UX problem record structure and content

cangrow,hereare someof thekindsof information that caneventually beattached

to it. These are possibilities we have encountered; pick the ones that suit you:

Problem name

Problem description

Task context

Effects on users (symptoms)

Links to video clip(s)

Associated designer knowledge

Problem diagnosis (problem type and subtype and causes within the design)

Table 16-2

Analogous UX and
medical terminology

General
Concept

Medical Usability/User Experience

Problems Illness or physical problems
experienced by patient

UX problems experienced by user
(e.g., inability to complete task)

Symptoms Symptoms (e.g., difficulty in
walking, shortness of breath)

Symptoms (e.g., frustration, anger)

Diagnosis
(causes of
symptoms)

Identify the disease that cause
the symptoms (e.g., obesity)

Identify interaction design flaws
that cause the UX problems

Causes of
causes

Identify the cause(s) of the
disease (e.g., poor lifestyle
choices)

Determine causes of interaction
design flaws (e.g., poor UX process
choices)

Treatment Medicine, dietary counseling,
surgery to cure disease

Redesign fixes/changes to
interaction design

Cure
confirmation

Later observation and testing Later evaluation

574 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Links to constituent UX problem instances

Links for relationships to other UX problems (e.g., in groups to be fixed together)

Links to project context

Project name

Version/release number

Project personnel

Link to evaluation session

Evaluation session date, location, etc.

Session type (e.g., lab-based testing, UX inspection, remote evaluation)

Links to evaluators

Links to participants

Cost-importance attributes for this iteration (next section)

Candidate solutions

Estimated cost to fix

Importance to fix

Priority ratio

Priority ranking

Resolution

Treatment history

Solution used

Dates, personnel involved in redesign, implementation

Actual cost to fix

Results (e.g., based on retesting)

For more about representation schemes for UX problem data, see Lavery and

Cockton (1997).

16.4.12 Abridged Qualitative Data Analysis
As an abridged approach formative (qualitative) data analysis:

n Just take notes about UX problems in real time during the session.

n Immediately after session, make UX problem records from the notes.

As an alternative, if you have the necessary simple tools for creating UX

problem records:

n Create UX problem records as you encounter each UX problem during the session.

n Immediately after the session, expand and fill in missing information in the records.

n Analyze each problem, focusing on the real essence of the problem and noting

causes (design flaws) and possible solutions.

575R IGOROUS EMP IR ICAL EVALUATION : ANALYS I S

16.5 COST-IMPORTANCE ANALYSIS: PRIORITIZING
PROBLEMS TO FIX

It would be great to fix all UX problems known after each iteration of

evaluation. However, because we are taking an engineering approach,

we have to temper our enthusiasm for perfection with an eye toward

cost-effectiveness.

So, now that we are done, at least for the moment, with individual problem

analysis, we look at some aggregate problem analysis to assess priorities about

what problems to fix and in what order. We call this cost-importance analysis

because it is based on calculating trade-offs between the cost to fix a problem

and the importance of getting it fixed. Cost-importance analysis applies to any

UX problem list regardless of what evaluation method or data collection

technique was used.

Although these simple calculations can be done manually, this analysis lends

itself nicely to the use of spreadsheets. The basic form we will use is the cost-

importance table shown in Table 16-3.

16.5.1 Problem
Starting with the left-most column in Table 16-3, we enter a concise

description of the problem. Analysts needing to review further details

can consult the problem data record and even the associated video clip.

We will use some sample UX problems for the Ticket Kiosk System in a

running example to illustrate how we fill out the entries in the cost-

importance table.

In our first example problem the user had decided on an event to buy

tickets for and had established the parameters (date, venue, seats, price, etc.)

but did not realize that it was then necessary to click on the “Submit” button

to finish up the event-related choices and move to the screen for making

payment. So we enter a brief description of this problem in the first column

of Table 16-4.

Table 16-3

Basic form of the
cost-importance table

Problem Imp. Solution Cost Prio.
Ratio

Prio.
Rank

Cuml.
Cost

Resolution

576 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

16.5.2 Importance to Fix
The next column, labeled “Imp” in the table, is for an estimate of the importance

to fix the problem, independent of cost. While importance includes severity or

criticality of the problem, most commonly used by other authors, this parameter

can also include other considerations. The idea is to capture the effect of a

problem on user performance, user experience, and overall system integrity and

consistency. Importance can also include intangibles such as management and

marketing “feelings” andconsiderationof the cost ofnot fixing theproblem(e.g.,

in terms of lower user satisfaction), as well as “impact analysis” (next section).

Because an importance rating is just an estimate, we use a simple scale for

the values:

n Importance ¼ M: Must fix, regardless

n Importance ¼ 5: The most important problems to fix after the “Must fix” category

n If the interaction feature involved is mission critical

n If the UX problem has a major impact on task performance or user satisfaction (e.g.,

user cannot complete key task or can do so only with great difficulty)

n If the UX problem is expected to occur frequently or could cause costly errors

n Importance ¼ 3: Moderate impact problems

n If the user can complete the task, but with difficulty (e.g., it caused confusion and

required extra effort)

n If the problem was a source of moderate dissatisfaction

n Importance ¼ 1: Low impact problems

n If problem did not impact task performance or dissatisfaction much (e.g., mild user

confusion or irritation or a cosmetic problem), but is still worth listing

This fairly coarse gradation of values has proven to work for us; you can

customize it to suit your project needs. We also need some flexibility to assign

intermediate values, so we allow for importance rating adjustment factors, the

primary one of which is estimated frequency of occurrence. If this problem is

expected to occur very often, you might adjust your importance rating upward

by one value.

Table 16-4

Problem description entered
into cost-importance table

Problem Imp. Solution Cost Prio.
Ratio

Prio.
Rank

Cuml.
Cost

Resolution

User confused by the
button label “Submit”
toproceedtopayment
part of the purchasing
transaction

577R IGOROUS EMP IR ICAL EVALUATION : ANALYS I S

Conversely, if it is not expected to occur very often, you could downgrade your

rating by one or more values. As Karat, Campbell, and Fiegel (1992) relate

frequency of occurrence to problem severity classification, they ask: Over all the

affected user classes, how often will the user encounter this problem?

Applying this to our importance rating, we might start with a problem

preventing a task from being completed, to which we would initially assign

Importance¼ 5. But because we expect this UX problem to arise only rarely and

it does not affect critical tasks, wemight downgrade its importance to 4 or even 3.

However, a problemwithmoderately significant impact might start out rated as a

3 but, because it occurs frequently, we might upgrade it to a 4.

For example, consider the Ticket Kiosk System problem about users

being confused by the button label “Submit” to proceed to payment in the

ticket-purchasing transaction. We rate this fairly high in importance because

it is part of the basic workflow of ticket buying; users will perform this step

often, and most participants were puzzled or misled by this button label.

However, it was not shown to be a show-stopper, so we initially assign it an

importance of 3. But because it will be encountered by almost every user in

almost every transaction, we “promoted” it to a 4, as shown in Table 16-5.

Learnability can also be an importance adjustment factor. Some

problems havemost of their impact on the first encounter. After that, users learn

quickly to overcome (work around) the problem so it does not have much effect

in subsequent usage. That could call for an importance rating reduction.

16.5.3 Solutions
The next column in the cost-importance table is for one or more candidate

solutions to the problems. Solving a UX problem is redesign, a kind of design, so

you should use the same approach and resources as we did for the original

design, including consulting your contextual data. Other resources and

activities that might help include design principles and guidelines,

brainstorming, study of other similar designs, and solutions suggested by users

Table 16-5

Estimate of importance to
fix entered into cost-
importance table

Problem Imp. Solution Cost Prio.
Ratio

Prio.
Rank

Cuml.
Cost

Resolution

User confused by the
button label
“Submit” to conclude
ticket purchasing
transaction

4

578 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

and experts. It is almost never a good idea to think of more training or better

documentation as a UX problem solution.

Solutions for the photo album problem example
Let us look at some solutions for a problem in the example concerning the

photo album application introduced earlier in this chapter. Users experienced a

problem when trying to upload photos into an album. They did not understand

that they had to create an album first. This misunderstanding about the

workflow model built into the application now requires us to design an

alternative.

It appears that the original designer was thinking in terms of a planning

model by which the user anticipates the need for an album in advance of putting

pictures into it. But our users were apparently thinking of the task in linear time,

assuming (probably without thinking about it) that the application would either

provide an album when it was needed or let them create one. A usage-centered

design to match the user’s cognitive flow could start by offering an active

upload link.

If the user clicks on it when there is no open album, the interaction

could present an opportunity for just-in-time creation of the necessary

album as part of the task flow of uploading of a picture. This can be

accomplished by either asking if the user wants to open an existing album

or creating a new one.

Taking a different design direction, the interaction can allow users to upload

pictures onto a “work table” without the need for pictures to necessarily be in an

album. This design provides more interaction flexibility and potential for better

user experience. This design also allows users to place single photos in multiple

albums, something that users cannot do easily in their current work domain

(without making multiple copies of a photo).

Ticket Kiosk System example
Coming back to the confusing button label in the Ticket Kiosk System, one

obvious and inexpensive solution is to change the label wording to better

represent where the interaction will go if the user clicks on that button. Maybe

“Proceed to payment” would make more sense to most users.

We wrote a concise description of our proposed fix in the Solution

column in Table 16-6.

579R IGOROUS EMP IR ICAL EVALUATION : ANALYS I S

16.5.4 Cost to Fix
Making accurate estimates of the cost to fix a given UX problem takes practice; it

is an acquired engineering skill. But it is nothing new; it is part of our job tomake

cost estimates in all kinds of engineering and budget situations. Costs for our

analysis are stated in terms of resources (e.g., time, money) needed, which

almost always translates to person-hours required.

Because this is an inexact process, we usually round up fractional values just to

keep it simple. When you make your cost estimates, do not make the mistake of

including only the cost to implement the change; you must include the cost of

redesign, including design thinking and discussion and, sometimes, even some

experimentation. You might need help from your software developers to

estimate implementation costs.

Because it is very easy to change label wordings in our Ticket Kiosk System, we

have entered a value of just one person-hour into the Cost column in Table 16-7.

Cost values for problem groups
Table 16-8 shows an example of including a problem group in the cost-

importance table.

Note that the cost for the group is higher than that of either individual

problem but lower than their sum.

Table 16-7

Estimate of cost to fix
entered into cost-
importance table

Problem Imp. Solution Cost Prio.
Ratio

Prio.
Rank

Cuml.
Cost

Resolution

User confused by
the button label
“Submit” to
conclude ticket
purchasing
transaction

4 Change the
label
wording to
“Proceed to
Payment”

1

Table 16-6

Potential problem solution
entered into cost-
importance table

Problem Imp. Solution Cost Prio.
Ratio

Prio.
Rank

Cuml.
Cost

Resolution

User confused by
the button label
“Submit” to
conclude ticket
purchasing
transaction

4 Change the
label
wording to
“Proceed to
Payment”

580 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Calibration feedback from down the road: Comparing
actual with predicted costs
To learn more about making cost estimates and to calibrate your engineering

ability to estimate costs to fix problems, we recommend that you add a column

to your cost-importance table for actual cost. After you have done the redesign

and implementation for your solutions, you should record the actual cost of

each and compare with your predicted estimates. It can tell you how you are

doing and how you can improve your estimates.

16.5.5 Priority Ratio
The next column in the cost-importance table, the priority ratio, is a metric

we use to establish priorities for fixing problems. We want a metric that

will reward high importance but penalize high costs. A simple ratio of

importance to cost fits this bill. Intuitively, a high importance will boost up the

priority but a high cost will bring it down. Because the units of cost and

importance will usually yield a fractional value for the priority ratio, we scale it up

to the integer range by multiplying it by an arbitrary factor, say, 1000.

If the importance rating is “M” (for “must fix regardless”), the priority ratio is

also “M.” For all numerical values of importance, the priority ratio becomes:

Priority ratio ¼ ðimportance=costÞ�1000

Table 16-8

Cost entries for problem groups entered into cost-importance table

Problem
Group

Problem Imp. Solution Group Solution Single
Costs

Group
Cost

Transaction
flow for
purchasing
tickets

7. The user wanted to enter or
choose date and venue first
and then click “Purchase
Tickets,” but the interaction
design required them to click
on “Purchase Tickets” before
entering specific ticket
information.

3 Change to
allow actions
in either
order and
label it so

Establish a
comprehensive and more
flexible model of
transaction flow and
add labeling to explain it.

3 5

17. The “Purchase Tickets”
button took user to screen to
select tickets and commit to
them, but then users did not
realize they had to continue
on to the another screen to
pay for them.

Provide
better
labeling for
this flow

3

581R IGOROUS EMP IR ICAL EVALUATION : ANALYS I S

Example: Priority Ratios for Ticket Kiosk System Problems
For our first Ticket Kiosk System problem, the priority ratio is (4/1) � 1000 ¼
4000, which we have entered into the cost-importance table in Table 16-9.

In the next part of this example, shown in Table 16-10, we have added several

more Ticket Kiosk System UX problems to fill out the table a bit more

realistically.

Note that although fixing the lack of a search function (the sixth row in

Table 16-10) has a high importance, its high cost is keeping the priority ratio low.

This is one problem to consider for an Importance ¼M rating in the future. At

the other end of things, the last problem (about the Back button to theWelcome

screen) is only Importance ¼ 2, but the low cost boosts the priority ratio quite

high. Fixing this will not cost much and will get it out of the way.

16.5.6 Priority Rankings
So far, the whole cost-importance analysis process has involved only some

engineering estimates and some simple calculations, probably in a spreadsheet.

Now it gets even easier. You have only to sort the cost-importance table by

priority ratios to get the final priority rankings.

First, move all problems with a priority ratio value of “M” to the top of the

table. These are the problems you must fix, regardless of cost. Then sort the rest

of the table in descending order by priority ratio. This puts high importance, low

cost problems at the top of the priority list, as shown at A in the upper left-hand

quadrant of Figure 16-4. These are the problems to fix first, the fixes that will give

the biggest bang for the buck.

Being the realist (our nice word for cynic) that you are, you are quick to

point out that, in the real world, things do not line up with high importance

and low cost together in the same sentence. You pay for what you get. But, in fact,

we do find a lot of problems of this kind in early iterations.

Table 16-9

Priority ratio calculation
entered into cost-
importance table

Problem Imp. Solution Cost Prio.
Ratio

Prio.
Rank

Cuml.
Cost

Resolution

User confused by
the button label
“Submit” to
conclude ticket
purchasing
transaction

4 Change the
label
wording to
“Proceed to
Payment”

1 4000

582 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

A good example is a badly worded button label. It can completely confuse

users but usually costs almost nothing to fix. Sometimes low-importance, low-

cost problems float up near the top of the priority list. You will eventually want to

deal with these. Because they do not cost much, it is usually a good idea to just fix

them and get them out of the way.

Table 16-10

Priority ratios for more Ticket Kiosk System problems

Problem Imp. Solution Cost Prio.
Ratio

Prio.
Rank

Cuml.
Cost

Resolution

User confused by the button label
“Submit” to conclude ticket
purchasing transaction

4 Change the label wording
to “Proceed to Payment”

1 4000

Did not recognize the “counter”
as being for the number of
tickets. As a result, user failed to
even think about how many
tickets he needed.

M Move quantity
information and label it

2 M

Unsure of current date and what
date he was purchasing tickets for

5 Add current date field and
label all dates precisely

2 2500

Users were concerned about their
work being left for others to see

5 Add a timeout feature
that clears the screens

3 1667

User confused about “Theatre”
on the “Choose a domain”
screen. Thought it meant
choosing a physical theater (as a
venue) rather than the category
of theatre arts.

3 Improve the wording to
“Theatre Arts”

1 3000

Ability to find events hampered
by lack of a search capability

4 Design and implement a
search function

40 100

Did not recognize what
geographical area theater
information was being
displayed for

4 Redesign graphical
representation to show
search radius

12 333

Did not like having a “Back”
buttononsecondscreensincefirst
screen was only a “Welcome”

2 Remove it 1 2000

Transaction flow for purchasing
tickets (group problem; see
Table 16-8)

3 Establish a comprehensive
and more flexible model
of transaction flow and
add labeling to explain it

5 600

583R IGOROUS EMP IR ICAL EVALUATION : ANALYS I S

TheUXproblems that sort to the bottom of the

priority list are costly to fix with little gain in doing

so. You will probably not bother to fix these

problems, as shown at B in the lower right-hand

quadrant of Figure 16-4.

Quadrants A and B sort out nicely in the

priority rankings. Quadrants C and D, however,

may require more thought. Quadrant C

represents problems for which fixes are low in cost

and low in importance. You will usually just go

ahead and fix them to get them off your plate. The

most difficult choices appear in quadrant D

because, although they are of high importance to fix, they are also the most

expensive to fix.

No formula will help; you need good engineering judgment. Maybe it is time

to request more resources so these important problems can be fixed. That is

usually worth it in the long run.

The cost-importance table for the Ticket Kiosk System, sorted by priority

ratio, is shown in Table 16-11.

16.5.7 Cumulative Cost
The next step is simple. In the column labeled “Cuml. Cost” of the cost-

importance table sorted by priority ratio, for each problem enter an amount that

is the cost of fixing that problem plus the cost of fixing all the problems above it

in the table. See how we have done this for our example Ticket Kiosk System cost-

importance table in Table 16-11.

16.5.8 The Line of Affordability
Using your budget, your team leader or project manager should determine your

“resource limit,” in person-hours, that you can allocate to making design

changes for the current cycle of iteration. For example, suppose that for the

Ticket Kiosk System we have only a fairly small amount of time available in the

schedule, about 16 person hours.

Draw the “line of affordability,” a horizontal line in the cost-importance table

just above the line in the table where the cumulative cost value first exceeds your

resource limit. For the Ticket Kiosk System, the line of affordability appears just

above the row in Table 16-11 where the cumulative cost hits 27.

Figure 16-4

The relationship of
importance and cost in
prioritizing which problems
to fix first.

584 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Table 16-11

The Ticket Kiosk System cost-importance table, sorted by priority ratio, with cumulative cost values entered, and the
“line of affordability” showing the cutoff for this round of problem fixing

Problem Imp. Solution Cost Prio.
Ratio

Prio.
Rank

Cuml.
Cost

Resolution

Did not recognize the
“counter” as being for the
number of tickets. As a result,
user failed to even think about
how many tickets he needed.

M Move quantity information
and label it

2 M 1 2

User confused by the button
label “Submit” to conclude
ticket purchasing transaction

4 Change the label wording
to “Proceed to Payment”

1 4000 2 3

User confused about “Theatre”
on the “Choose a domain”
screen. Thought it meant
choosing a physical theater (as a
venue) rather than the category
of theatre arts.

3 Improve the wording to
“Theatre Arts”

1 3000 3 4

Unsure of current date and
what date he was purchasing
tickets for

5 Add current date field and
label all dates precisely

2 2500 4 6

Did not like having a “Back”
button on second screen since
first screen was only a
“Welcome”

2 Remove it 1 2000 5 7

Users were concerned about
their work being left for others
to see

5 Add a timeout feature that
clears the screens

3 1667 6 10

Transaction flow for purchasing
tickets (group problem; see
Table 16-8)

3 Establish a comprehensive
and more flexible model of
transaction flow and add
labeling to explain it.

5 600 7 15

Line of affordability (16 person-hours—2 work days)

Did not recognize what
geographical area theater
information was being
displayed for

4 Redesign graphical
representation to show
search radius

12 333 8 27

Ability to find events hampered
by lack of a search capability

4 Design and implement a
search function

40 100 9 67

585R IGOROUS EMP IR ICAL EVALUATION : ANALYS I S

Just for giggles, it might be fun to graph all your problems (no, not all your

problems; we mean all your cost-importance table entries) in a cost-importance

space like that of Figure 16-4. Sometimes this kind of graphical representation

can give insight into your process, especially if your problems tend to appear in

clusters. Your line of affordability will be a vertical line that cuts the cost axis at

the amount you can afford to spend on fixing all problems this iteration.

16.5.9 Drawing Conclusions: A Resolution
for Each Problem
It’s time for the payoff of your cost-importance analysis. It’s time for a

resolution—a decision—about how each problem will be addressed.

First, you have to deal with your “Must fix” problems, the show-stoppers. If you

have enough resources, that is if all the “Must fix” problems are above the line of

affordability, fix them all. If not, you already have a headache. Someone, such as

theprojectmanager, has to earnhis orher pay today bymaking adifficult decision.

The extreme cost of a “Must fix” problem couldmake it infeasible to fix in the

current version. Exceptions will surely result in cost overruns, but might have to

be dictated by corporate policy, management, marketing, etc. It is an important

time to be true to your principles and to everything you have done in the process

so far. Do not throw it away now because of some perceived limit on how much

you are willing to put into fixing problems that you have just spent good money

to find.

Sometimes you have resources to fix the “Must fix” problems, but no

resources left for dealing with the other problems. Fortunately, in our example

we have enough resources to fix a few more problems. Depending on their

relative proximity to the line of affordability, you have to decide among these

choices as a resolution for all the other problems:

n fix now

n fix, time permitting

n remand to “wait-and-see list”

n table until next version

n postpone indefinitely; probably never get to fix

In the final column of the cost-importance table, write in your resolution for

each problem, as we have done for the Ticket Kiosk System in Table 16-12.

Finally, look at your table; see what is left below the line of affordability. Is it

what you would expect? Can you live with not making fixes below that line?

Again, this is a crossroads moment. You will find that in reality that low-

586 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Table 16-12

Problem resolutions for Ticket Kiosk System

Problem Imp. Solutions Cost Prio.
Ratio

Prio. Rank Cuml.
Cost

Resolution

Did not recognize the
“counter” as being for
the number of tickets. As
a result, user failed to
even think about how
many tickets he needed.

M Move quantity
information and label
it

2 M 1 2 Fix in this
version

User confused by the
button label “Submit”
to conclude ticket
purchasing transaction

4 Change the label
wording to “Proceed
to Payment”

1 4000 2 3 Fix in this
version

User confused about
“Theatre” on the
“Choose a domain”
screen. Thought it
meant choosing a
physical theater (as a
venue) rather than the
category of theatre arts.

3 Improve the wording
to “Theatre Arts”

1 3000 3 4 Fix in this
version

Unsure of current date
and what date he was
purchasing tickets for

5 Add current date field
and label all dates
precisely

2 2500 4 6 Fix in this
version

Did not like having a
“Back” button on
second screen since first
screen was only a
“Welcome”

2 Remove it 1 2000 5 7 Fix in this
version

Users were concerned
about their work being
left for others to see

5 Add a timeout
feature that clears the
screens

3 1667 6 10 Fix in this
version

Transaction flow for
purchasing tickets
(group problem; see
Table 16-8)

3 Establish a
comprehensive and
more flexible model
of transaction flow
and add labeling to
explain it

5 600 7 15 Fix in this
version

Line of affordability (16 person-hours—2 work days)

Ability to find events
hampered by lack of a
search capability

4 Design and
implement a search
function

40 100 9 67 Wait until
next
version, or
after that

587R IGOROUS EMP IR ICAL EVALUATION : ANALYS I S

importance/high-cost problems are rarely addressed; there simply will not be

time or other resources. That is okay, as our engineering approach is aiming for

cost-effectiveness, not perfection. Youmight even have to face the fact that some

important problems cannot be fixed because they are simply too costly.

However, in the end, do not just let numbers dictate your actions; think about

it. Do not let a tight production schedule or budget force release of something

that could embarrass your organization. Quality is remembered long after

schedules are forgotten.

16.5.10 Special Cases

Tie-breakers
Sometimes you will get ties for priority rankings, entries for problems with equal

priority for fixing. If they do not occur near the line of affordability, it is not

necessary to do anything about them. In the rare case that they straddle the line

of affordability, you can break the tie by almost any practical means, for example,

your team members may have a personal preference.

In cases of more demanding target systems (e.g., an air traffic control system),

where the importance of avoiding problems, especially dangerous user errors,

is a bigger concern than cost, you might break priority ties by adjusting the

priorities via weighting importance higher than cost in the priority ratio

formula.

Cost-importance analysis involving multiple
problem solutions
Sometimes you can think of more than one solution for a problem. It is possible

that, after a bit more thought, one solution will emerge as best. If, however, after

careful consideration you still have multiple possibilities for a problem solution,

you can keep all solutions in the running and in the analysis until you see

something that helps you decide.

If all solutions have the same cost to fix, then you and your team will just have

to make an engineering decision. This might be the time to implement all of

them and retest, using local prototyping (Chapter 11) to evaluate alternative

design solutions for just this one feature.

Usually, though, solutions are distinguished by cost and/or effectiveness.

Maybe one is less expensive but some other one is more desirable or more

effective; in other words, you have a cost–benefit trade-off. You will need to

resolve such cost–benefit problems separately before entering the chosen

solution and its cost into the cost-importance table.

588 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Problem groups straddling the line of affordability
If you have a group of related problems right at the line of affordability, the

engineering answer is to do the best you can before you run out of resources.

Break the group back apart and do asmany pieces as possible. Give the rest of the

group a higher importance in the next iteration.

Priorities for emotional impact problems
Priorities for fixing emotional impact problems can be difficult to assess. They

are often very important because they can represent problems with product or

system image and reputation in themarket. They can also represent high costs to

fix because they often require a broader view of redesign, not just focusing on

one detail of the design as you might for a usability problem.

Also,emotional impactproblemsareoftennot just redesignproblemsbutmight

require more understanding of the users and work or play context, which means

going all the way back in the process to contextual inquiry and contextual analysis

and a new approach to the conceptual design. Because of business andmarketing

imperatives, youmayhave tomovesomeemotional impactproblems into the“Must

fix” category and do what is necessary to produce an awesome user experience.

16.5.11 Abridged Cost-Importance Analysis
As an abridged version of the cost-importance analysis process:

n Put the problem list in a spreadsheet or similar document.

n Project it onto a screen in a room with pertinent team members to decide priorities for

fixing the problems.

n Have a discussion about which problems to fix first based on a group feeling about the

relative importance and cost to fix each problem, without assigning numeric values.

n Do a kind of group-driven “bubble sort” of problems in which problems to fix first will

float toward the top of the list and problems you probably cannot fix, at least in this

iteration, will sink toward the bottom of the list.

n When you are satisfied with the relative ordering of problem priorities, start fixing

problems from the top of the list downward and stop when you run out of time ormoney.

16.6 FEEDBACK TO PROCESS

Now that you have been through an iteration of the UX process lifecycle, it is

time to reflect not just on the design itself, but also on how well your process

worked. If you have any suspicions after doing the testing that the quantitative

criteria were not quite right, you might ask if your UX targets worked well.

589R IGOROUS EMP IR ICAL EVALUATION : ANALYS I S

For example, if all target levels weremet or exceeded on the very first round of

evaluation, it will almost certainly be the case that your UX targets were too

lenient. Even in later iterations, if all UX targets are met but observations during

evaluation sessions indicate that participants were frustrated and performed

tasks poorly, your intuition will probably tell you that the design is nevertheless

not acceptable in terms of its quality of user experience. Then, obviously, the UX

team should revisit and adjust theUX targets or addmore considerations to your

criteria for evaluation success.

Next, ask yourself whether the benchmark tasks supported the evaluation

process in the most effective way. Should they have been simpler or more

complex, narrower or broader? Should any benchmark task description be

reworded for clarification or to give less information about how to do a task?

Finally, assess how well the overall process worked for the team. You will never

be in a better position to sit down, discuss it, and document possible

improvements for the next time.

16.7 LESSONS FROM THE FIELD

16.7.1 Onion-Layers Effect
There are many reasons to make more than one iteration of the design–

test–redesign part of the UX lifecycle. Themain reason, of course, is to continue

to uncover and fix UX problems until you meet your UX target values. Another

reason is to be sure that your “fixes” have not caused new problems. The fixes

are, after all, new and untested designs.

Also, in fixing a problem, you can uncover other UX problems lurking in the

dark and inky shadows of the first problem. One problem can be obscured by

another, preventing participants and evaluators from seeing the second problem,

until the top layer of the onion1 is peeled off by solving that “outer” problem.

16.7.2 UX Problem Data as Feedback to Process
Improvement
In our analysis we are also always on the lookout for causes of causes. It

sometimes pays off to look at your UX process to find causes of the design

flaws that cause UX problems, places in your process where, if you could have

done something differently, you might have avoided a particular kind of

design flaw. If you suffer from an overabundance of a particular kind of UX

problem and can determine how your process is letting them into the designs,

1Thanks to Wolmet Barendregt for the onion-layer analogy.

590 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

maybe you can head off that kind of problem in future designs by fixing that

part of the process.

For example, if you are finding a large number of UX problems involving

confusing button or icon labels ormenu choices, maybe you can address these in

advance by providing a place in your design process where you look extra

carefully at the precise use of words, semantics, and meanings of words. You

might even consider hiring a professional writer to join the UX team. We ran

into a case like this once.

For expediency, one project team had been letting their software

programmers write errormessages as they encountered the need for them in the

code. This situation was a legacy from the days when programmers routinely did

most of the user interface. As you can imagine, these errormessages were not the

most effective. We helped them incorporate a more structured approach to

error message composition, involving UX practitioners, without unduly

disrupting the rest of their process.

Similarly, large numbers of problems involving physical user actions are

indicators of design problems that could be addressed by hiring an expert in

ergonomics, human factors engineering, and physical device design. Finally,

large numbers of problems involving visual aspects of design, such as color,

shape, positioning, or gray shading, might indicate the need for hiring a graphic

designer or layout artist.

Exercise

See Exercise 16-1, UX Data

Analysis for Your System

591R IGOROUS EMP IR ICAL EVALUATION : ANALYS I S

Intentionally left as blank

CHAPTER

Evaluation Reporting 17
Objectives

After reading this chapter, you will:

1. Know how to report informal summative evaluation results

2. Be ready to report qualitative formative evaluation results, including the influence

of audience and goals on content, format and vocabulary, and tone

3. Understand influences on problem report effectiveness

17.1 INTRODUCTION

17.1.1 You Are Here
We begin each process chapter with a “you are here” picture of the chapter topic

in the context of the overall Wheel lifecycle template; see Figure 17-1. Having

gotten through UX evaluation preparation, data collection, and analysis, we

conclude the evaluation chapters with this one: reporting your formative UX

evaluation results. The reporting described in this chapter is largely aimed at

rigorous empirical methods, but much applies as well to rapid methods.

17.1.2 Importance of Quality Communication
and Reporting
Evaluation reports often occur as communication across discontinuities of time,

location, and people. Redesign activities are often separated fromUX evaluation

by delays in time that can cause information loss due to human memory

limitations. This is further aggravated if the people doing the redesign are not

the same ones who conducted the evaluation.

Finally, evaluation and redesign can occur at different physical locations,

rendering all information not well communicated to be unrecoverable.

UX evaluation reports with inadequate contextual information or incomplete

UX problem descriptions will be too vague for designers who were not present

for the UX testing.

To the project team, the report for an evaluation within an iteration is a

redesign proposal. Hornbæk and Fr�kjær (2005) show the need for usability

evaluation reports that summarize and convey usability information, not just lists

of problem descriptions by themselves.

All the effort and cost you invested thus far in UX evaluation can be wasted at

the last minute if you do not follow up now to:

n inform the team and project management about the UX problems in the current

design

n persuade them of the need to invest even more in fixing those problems.

17.1.3 Participant Anonymity
We remind you, before we get into the details, that regardless of the kind

of evaluation or reporting you are doing, you must preserve participant

anonymity. You should have promised this on your informed consent form,

and you have an ethical, and perhaps a legal, obligation to protect it

Figure 17-1

You are here; at reporting,
within the evaluation
activity in the context of the
overall Wheel lifecycle
template.

594 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

religiously thereafter. The necessity for preserving participant anonymity

extends especially to evaluation reporting.

There is simply no need for anyone in your reporting audience to know the

identity of any participant. This means not including any names in the report

and not showing faces in video clips. This latter requirement can be met with

some simple video blurring.

Participant anonymity does not mean that you, as the evaluator or facilitator,

do not know the names of participants. Somewhere along the line someone

must have recruited and signed up and possibly even paid the participants.

You should keep participant identification information in just one place—on a

sheet of paper or in a database mapping the names to identification codes.

Codes, never names, are used everywhere else in the evaluation process—on

data collection forms, during data analysis, and in all reports.

17.2 REPORTING INFORMAL SUMMATIVE RESULTS

Formative evaluation, by definition, has a qualitative formative component and

an optional informal summative component (Chapter 12). There are still no

standards for reporting informal summative results in connection with formative

evaluation (more about this in the next section).

Because product design is not research but engineering, we are not

concerned with getting at scientific “truth”; ours is a more practical and less

exact business. Our evaluation drives our engineering judgment, which is also

based on hunches and intuition that are, in turn, based on skill and experience.

As we said in Chapter 12, the audience for your informal summative

evaluation results should be strictly limited to your own project group. They are

to be used only as an engineering tool within the project.

17.2.1 What if You Are Required to Produce a Formative
Evaluation Report for Consumption Beyond the Team?
The meaning of “internal use” can vary some, but it usually means restricted to

the project group (e.g., designers, evaluators, implementers, project manager)

and definitely not for public dissemination. Formative evaluation reports

must remain within a group who all understand the limitations on how data can

be used. At times that could also include higher level managers and others in

the larger organization.

But sometimes you do not have a choice; you can be ordered to produce a

formative evaluation report for broader dissemination. Suppose the marketing

people want to make claims about levels of user experience reached via

595EVALUATION REPORTING

your engineering process. Our first line of advice is to follow our principle

and simply not let specific informal summative evaluation results out of

the project group. Once the results are out of your hands, you lose control

of what is done with them, and you could be made to share the blame for

their misuse.

Your next response should be to inform. Explain the limited nature of data

and the professional and ethical issues in misrepresenting the power to make

claims from data. If, at the end of the day, you still have to issue a formative

evaluation report, we recommend you bend over backward in labeling the

report with caveats and qualifications that make it clear to all readers that the

informal summative UX results are intended to be used only as a project

management tool and should not be used in public claims.

17.2.2 What if You Need a Report to Convince
the Team to Fix the Problems?
What good is doing the UX evaluation if no one is convinced the problems

you found are “real” and, as a result, the design does not get changed? It may

be part of the job of UX engineers to convince others in the project team

to take action about poor UX, as revealed by UX evaluation. This part of

the role is especially important in large organizations where people who

collect data are not necessarily the same people, or even people who have

a close working relationship with, those who make the decisions about

design changes.

It is not uncommon for project teams to request a UX testing report to see for

themselves what the UX situation is and how badly the recommended changes

are needed. This could just be part of the normal way your organization

works or, depending on the working relationship among project teammembers,

this situation could be indicative of a management or organizational problem

rather than a technical one.

The need for the rest of your team, including management, to be convinced

of the need to fix UX problems that you have identified in your UX engineering

process could be considered a kind of litmus test for a lack of teamwork and

trust within your organization. If everyone is working together as a team, no

one should have to convince the others of the value of their efforts on the

project; they all just do what the process calls for.

We do not live in a perfect world, however, and the people requesting

your UX report may have some power over you. For example, your manager

or the software engineers might stand between you and the changes to the

software. If they require a report that “proves” the need for design changes,

you must make it clear that what they are asking for is not your report but

596 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

a report of a summative study. Of course, they will have to pay for someone

to perform that study, which could go a long way in heading off such

requests the next time.

Sometimes the other project team members know how the UX people work

and trust them. For them, if the UX practitioner says a certain design change is

needed, they go with it, but still might want an explanation to help them

understand the need and help cement their buy in. In this case, it is not a

problem to share the report, as these are your team members.

17.3 REPORTING QUALITATIVE FORMATIVE RESULTS

All UX practitioners should be able to write clear and effective reports about

problems found but, in their “CUE-4” studies, Dumas, Molich, and Jeffries (2004)

found that many cannot. They observed a large variation in reporting over several

teams of usability specialists and that most reports were inadequate by their

standards. It is hoped that this chapter will help you communicate clearly and

effectively via the planning and construction of your UX evaluation reports.

If you use rapid evaluation methods for data collection, it is especially

important to communicate effectively about the analysis and results because this

kind of data can otherwise be dismissed easily “as unreliable or inadequate to

inform design decisions” (Nayak, Mrazek, & Smith, 1995). Even in lab-based

testing, though, the primary type of data from formative evaluation is qualitative,

and raw qualitative data must be skillfully distilled and interpreted to avoid the

impression of being “soft” and subjective.

17.3.1 Common Industry Format (CIF) for Reporting
Formal Summative UX Evaluation Results
In October 1997, the U.S. National Institute of Standards and Technology

(NIST) started an effort to “increase the visibility of software usability.” NIST

was to be a facilitator in bringing together software vendors and consumer

organizations, with the stated goal to develop and evaluate a common usability

reporting format for sharing usability data with consumer organizations.

The idea was to make software product usability visible to customers and

consumers through (theretofore nonexistent) standard, comparable, methods

of reporting measured usability through “the Common Industry Format (CIF)

for reporting usability results”.

The pressure to bring products to market rapidly had affected usability

adversely, as it still now does. The idea was to force software suppliers to face

the fact that their customers were concerned about usability and, if usability

could be made visible to consumers, it would become a competitive market

597EVALUATION REPORTING

factor with software that is measurably more usable winning out. In the face of

the many possible ways to report summative usability evaluation results, a

common reporting format would add consistency and comparability.

Oriented toward off-the-shelf software products and Websites, the CIF

provides a kind of “Consumer Reports” support for software buyers, affording

a way to compare usability of competitive software products (Quesenbery,

2005, p. 452).

It is clear from the goals that this standard pertained to formal summative

evaluation and not formative evaluation, although at the time it was still too early

for that limitation or even the distinction to be articulated.

The CIF standard calls out requirements for reports to include:

n A description of the product

n Goals of the testing

n A description of the number and types of participants

n Tasks used in evaluation

n The experimental design of the test (very important for formal summative studies

because of the need for eliminating any biases and to ensure the results do not suffer

from external, internal, and other validity concerns)

n Evaluation methods used

n Usability measures and data collection methods employed

n Numerical results, including graphical methods of presentation

The American National Standards Institute (ANSI) approved this

standard for summative reporting as ANSI-NCITS 354-2001 in December 2001

and it became an international standard, ISO/IEC 25062: Software

Engineering—Software Product Quality Requirements and Evaluation

(SQuaRE), in May 2005.

17.3.2 Common Industry Format (CIF) for Reporting
Qualitative Formative Results
Following this initial effort on a Common Industry Format for reporting

formal summative evaluation results, the group, under the direction of Mary

Theofanos, Whitney Quesenbery, and others, organized two workshops in

2005 (Theofanos et al., 2005), these aimed at a CIF for formative reports

(Quesenbery, 2005; Theofanos & Quesenbery, 2005).

In this work they recognized that because most evaluations conducted by

usability practitioners are formative, there was a need for an extension of the

original CIF project to identify best practices for reporting formative results.

598 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

They concluded that requirements for content, format, presentation style, and

level of detail depended heavily on the audience, the business context,

and the evaluation techniques used.

While their working definition of “formative testing” was based on having

representative users, here we use the slightly broader term “formative

evaluation” to include usability inspections and other methods for collecting

formative usability and user experience data, not necessarily requiring

representative users.

17.4 FORMATIVE REPORTING CONTENT

In this section we cover the different types of reporting content that could go

into a formative evaluation report. In later sections we discuss which of these

content types are suitable to different audiences.

17.4.1 Individual Problem Reporting Content
Many researchers and practitioners have suggested various content items that

might prove useful for problem diagnosis and redesign. The idea is to provide all

the essential facts a designer will need to understand and fix the problem.

Of course, at this point, the evaluators would have had to collect sufficient data

to be able to provide all this information. The basic information needed

includes:

n the problem description

n a best judgment of the causes of the problem in the design

n an estimate of its severity or impact

n suggested solutions

In the first of these items, be sure to describe each problem as a problem, not as

a solution. Because the problems were experienced by users doing tasks, describe

them in that context—users and tasks and the effects of the problems on users.

This means saying, for example, “users could not figure out what to do next

because theydid not notice the buttons” instead of “weneed flashing redbuttons.”

The second item, the engineering judgment of the causes of the problem

in the interaction design, is an essential part of the diagnosis of a UX problem

and perhaps the most important part of the report. Because the flaw in the

design is what needs to be fixed, you should connect it with the appropriate

599EVALUATION REPORTING

design guidelines and/or heuristic violations, as much as possible in terms of

interaction issues and human–computer interaction principles.

Next is an estimate of severity or importance in terms of the impact on users.

To be convincing, this must be well reasoned. Finally, to help designers act to fix

the problems, recommend one or more possible design solutions, along with

cost estimates and tradeoffs for each, especially if a solution has a downside.

To justify the fixes, make compelling arguments for improved design and

positive impact on users.

There aremany other kinds of information that can be useful in a UXproblem

report content, including an indication of how many times each UX problem was

encountered, by each user and by all users, to help convey its importance.

17.4.2 Include Video Clips Where Appropriate
Show video clips of users, made anonymous, encountering critical incidents if

you are giving an oral report or include links in a written report. Use the visual

power of video to share the highlights of your evaluation process, including

some examples of UX problem encounters.

17.4.3 Pay Special Attention to Reporting on Emotional
Impact Problems
Special discussion should be directed to reporting emotional impact problems,

as those problems can be the most important for product improvement and

marketing advantage, but these problems and their solutions can also be themost

elusive. Emotional impact problems should be flagged as a somewhat different

kind of problem with different kinds of recommendations for solutions.

Provide a holistic summary of the overall emotional impact on participants.

Report specific positive and negative highlights with examples from particular

episodes or incidents. If possible, try to inspire by comparing with products

and systems having high emotional impact ratings.

17.4.4 Including Cost-Importance Data
Usually, cost-importance analysis is considered part of the nitty-gritty

engineering details that would be beyond the interest or understanding of those

outside the UX team and its process. However, cost-importance analysis,

especially the prioritization process, can be of great interest to those who have to

fix the problems and those who have to pay for it.

Importance ratings and supporting rationale can be helpful in convincing

designers to fix at least the most urgent problems. The cost-importance table,

such as Table 16-12, plus any discussion supporting the choice of table entries

will tell the story.

600 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

17.5 FORMATIVE REPORTING AUDIENCE, NEEDS,
GOALS, AND CONTEXT OF USE

As Theofanos and Quesenbery (2005) say, choices about content, format,

vocabulary, and tone are all about the relationship between the author and the

audience. Nayak et al. (1995) discuss some of the difficulties of conveying

UX information, such as explaining observation-based data and understanding

the needs of the target audience. Because the needs, goals, and context of

use for a given evaluation report are dependent on the audience, this section

is organized on the various kinds of audiences.

The 2005 UPA Workshop Report on formative evaluation reporting

(Theofanos et al., 2005) stresses different reporting requirements for different

business contexts and audiences and different combinations thereof. Their view

of reporting goals includes the following:

n Documenting the process: The author is usually part of the team, and the goal is to

document team process and decision making. The scope of the “team” is left undefined

and could be just the evaluation team or the whole project team, or perhaps even the

development organization as a whole.

n Feeding the process: This is the primary context in our perspective, an integral part of

feedback for iterative redesign. The goal is to inform the team about evaluation

results, problems, and suggested solutions. In this report the author is considered to be

related to the team but not necessarily a member of the team. However, it would

seem that the personmost suited as the author would usually be a UX practitioner who is

part of the evaluator team and, if UX practitioners are considered part of the project

team, a member of that team, too.

n Informing and persuading: The audience depends on working relationships within the

organization. It could be the evaluator team informing and persuading the designers

and developers (i.e., software implementers) or it could be the whole project team

(or part thereof) informing and persuading management, marketing, and/or the

customer or client.

17.5.1 Introducing UX Engineering to Your Audience
Because your goal is to persuade your audience of the need to invest time and

cost into taking action to fix problems discovered, you must include your

audience in the process and reasoning that led from raw data to conclusions so

that your recommendations do not appear to be pulled out of the air. To include

them in your process, you must explain the process.

Therefore, sometimes the main purpose of an evaluation report is to

introduce the concepts of UX and UX engineering to an audience (your project

601EVALUATION REPORTING

team, management, marketing, etc.) not yet aware. This kind of audience

requires a different kind of report from all the others. It is more like an

evaluation report contained within a more general presentation. First you have

to establish your credentials and credibility and gain their engagement.

The goals for reporting to this kind of audience include (more or less in

this order):

n Engender awareness and appreciation

n Teach concepts

n Sell buy-in

n Present results

Start on the first goal by building rapport and empathy. You are all on the

same side. Help them feel “safe”; you would never try to sell them on something

that was not good for them and the organization. You want to get them to

appreciate the need for usability and a good user experience to appreciate the

value of these things to them and their organization. This is basically a

motivation for UX based on a business case (Chapter 24).

The next goal of your presentation is teaching. The idea is to explain

terminology and concepts. You want to educate them about what UX is and

how the UX engineering process works to improve UX. Explain that evaluation

is not everything in the process but is a key part. Help them understand

how to view evaluation results. It is not negative stuff, it is not criticism, and,

above all, it is not a personal thing. It is positive, good stuff, and is a team thing; it

is an opportunity and a means to improve.

The third goal is about persuasion and selling of the concept. You want to get

their buy-in to the idea of doing UX. You want them to want to include a UX

component in their overall development process (and budgets and schedules).

Finally, if you have done your job with the other goals, they should be

receptive—no, eager—to hear about the results of your latest evaluation and to

talk about how they can make the necessary design changes and iterate to

improve the current design.

17.5.2 Reporting to Inform Your Project Team
The primary audience for a report of UX problem details is your own project

team—the designers and implementers who will fix the problems. Unless your

project team is very small and everyone was present for evaluation data collection

and analysis, you will always need to share your evaluation results with your team.

However, you do not always have to do “formal” reporting. The key goal is

to convey results and product implications clearly and meaningfully to your

602 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

workmates, informing them about UX flaws in the design and/or informally

measured shortcomings in user performance with the purpose of understanding

what needs to be done to improve the design in the next iteration.

For the interaction designers and UX practitioners, UX problems can be

presented as they are related to specific parts of the interaction dialogues (e.g., a

particular dialogue box). For the software engineers, you might organize your

UX problems by software module, as that is the way they think.

Suppose you know the people on the team; you, the evaluator, know the

designers and/or developers. As a UX practitioner, youmay even be the designer

or you work very closely with the designer(s) and you also know the developers.

You decide and make the design changes and then persuade the developers to

implement them. In this case your report can be short and to the point, with

little need for embellishments or blandishments.

Sometimes, especially in large development organizations, the people who

write the evaluation reports are sending them to a development team they do

not know. They may not even have a chance to meet with the designers to

present the results personally or to explain points or answer questions. This case

is a bit more demanding of your reporting—needing a complete and standalone

document. It calls for a bit more politeness or formality, more completeness,

and definitely more selling of the changes and their implementation.

Dumas, Molich, and Jeffries (2004) point out the case of a UX consultant,

where there is often no opportunity to explain comments or negotiate

recommendations after the report is delivered.

Start with a “boilerplate” summary of the basics, including evaluation goals,

methods, and UX targets and benchmark tasks used. Screen shots and video

clips illustrating actual problem encounters are always good for selling your

points about problems.

Your audience will expect you to prioritize your redesign recommendations,

and cost-importance analysis (Chapter 16) is a good way to do this. Assuming

that your team has technical savvy, use tables to summarize your findings; do not

make them plow through a lot of text for the essence. If your development

schedule is short and things are already moving fast, keep the report and your

problem list short.

17.5.3 Reporting to Inform and/or Influence
Your Management
The team’s key goal for reporting to this audience is to influence and convince

them that this is part of the process and that the process is working. You want

them to understand that although you now have a version of a prototype or

product, we are not done yet and we all need to iterate.

603EVALUATION REPORTING

Reports to management have to be short and sweet. Be concise and get to the

point. Start with an executive summary. You usually should also very briefly

explain the process, the evaluation goals, the methods, and the UX targets and

benchmark tasks used. Because this can be counted as at least a partly “internal”

audience, you can share high-level aspects of informal quantitative testing

(e.g., user performance and satisfaction scores), but just trends observed, not

numbers and no “claims,” and remember not to call it a “study.”

Focus on UX problems that can be fixed within the number of people

hours allocated in the budget but paint a complete picture of your findings.

A cost-importance analysis that prioritizes UX problems based on a ratio of

estimated cost to perceived importance (Chapter 16) may be a key element

in demonstrating how you chose the problems to be fixed. This analysis can

also highlight other problems currently out of reach but that could be fixed with

more resources.

Define your priorities and relate them directly to business goals. This is easier

if you used UX targets driven by UX goals (Chapter 10), based on business and

product goals. You need an “explicit connection between the business or test

goals and the results” (Theofanos & Quesenbery, 2005; Theofanos et al., 2005).

Screen shots and video clips, made anonymous, illustrating actual problem

encounters might be useful in engaging them in the whole evaluation scene.

17.5.4 Reporting to Your Customer or Client
As with most audiences, it is best to not start by hitting them square on with what

is wrong with the system. This audience needs first to understand the whole

concept of engineering for UX and the methods you use and how they help

improve the product. They also have to be in favor of using this process before

you tell them the process has revealed that their baby is ugly, but can be fixed.

So, if they are unfamiliar with theUXprocess, a first goalmay be to educate them

about it so that they will understand the rest of what you have to report.

Another common goal is to impress them that you know what you are doing,

you are earning your keep, and that the project is going well.

If you want to include UX problems, go easy on the doses of bad news.

Clients and customers will not want to hear that there is a whole list of problems

with the design of their system. This undermines confidence and makes them

nervous. For clients, UX problems are best described with scenarios that show

stories of how design flaws affected users and how your UX engineering process

finds and fixes those problems. Here is where screen shots and very short before-

and-after video clips (made anonymous with proper video blurring or with

written permission of participants) can be effective.

604 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

17.5.5 Formative Evaluation Reporting Format
and Vocabulary
Consistency in reporting UX problems is important for all audiences.

Evaluation reports are, above all, a means of communication, and

understanding is hampered by wildly varying vocabulary, differences among

diagnoses and descriptions of the same kinds of problems, the language and

style of expression in UX problem descriptions, and level of description

contained (e.g., describing surface observables versus the use of abstraction

to get at the nature of the underlying problem). Standards for reporting

formative results, such as the CIF for formative results (discussed earlier in

this chapter), help control broad variation in content, structure, and quality

of UX problem reports.

To convey the essence of a problem and its potential solutions it can take

several sentences or even a paragraph or more. As a more readable alternative

to putting all that text in a table (e.g., a cost-importance table), you can

put identification numbers in the problem-and-solution columns and write out

the descriptive text in paragraph form. For example, you might put a “1” in the

problem column of your table and maybe “1a” and “1b” to represent two

possible solutions in that column. Then, in the accompanying text, you

might have:

Problem 1: Help system was difficult to use.

Solution 1a: Use hypertext for the help screens, including a table of contents for

general help.

Solution 1b: Use context-sensitive help. For example, when users are in the HotList

dialogue box and click on the Help button, they are taken to the HotList help screen

instead of the help table of contents or the general help screen.

Jargon
As UX practitioners we, like most others in technical disciplines, have our own

jargon—about UX. But, as UX practitioners, we must also know that our UX

problem reports are like “error messages” to designers and that guidelines for

error message design apply to our reports as well. And one of those guidelines

about messages is to avoid jargon.

So, while wemight not put jargon in our interaction designs, wemight well be

tempted to use our own technical language in our reports about UX. Yes,

our audience is supposed to include UX professionals as interaction designers

but you cannot be sure how much they share your specialized vocabulary.

Spell things out in plain natural language.

605EVALUATION REPORTING

Precision and specificity
You are communicating with others to accomplish an outcome that you have in

mind. To get the audience to share the vision of that outcome or to even

understand what outcome you want, you need to communicate effectively;

perhaps the first rule for effective communication is to be precise and specific. It

takes more effort to write effective reports.

Sloppy terminology, vague directions, and lazy hand-waving are likely to be

met with indifference, and the designers and other practitioners are less likely to

understand the problems and solutions we propose in the report. This kind of

effect of a problem report on our audience usually results in their being

unconvinced that there is a real problem.

So instead of saying a dialogue box message text is hard to understand and

recommending that someone write it more clearly, you should, in fact, make

your own best effort at rewording to clarify the text and say why your version is

better. The criterion for effectiveness is whether the designer who receives your

problem report will be able to make better design choices (Dumas, Molich, &

Jeffries, 2004).

17.5.6 Formative Reporting Tone
The British are too polite to be honest, but the Dutch are too honest to be polite.

–Candid Dutch saying

All your audiences deserve respect in evaluation reports. Start with customers

and clients, for example; most UX practitioners appreciate the need to temper

their reports with a modicum of restraint. But even your own team should be

addressed with courtesy.

Respect feelings: Bridle your acrimony
Do not attack; do not demean; do not insult. Your goal is to get designers to act

on the reports and fix the problems. Their anger and resentment, while possibly

offering a measure of joy to the occasional twisted evaluator, will not serve

your professional goals. A UX problem report is a dish best served cold.

As Dumas, Molich, and Jeffries put it: “express your annoyance tactfully.”

It is true that typos, spelling errors, or grammatical boo-boos are very avoidable.

They tend to agitate evaluators, but you must be professional and resist

impassioned attacks. Avoid comments that use the terms unconscionable,

unprofessional, incompetent, no excuse for this, this is nonsense, this is lazy, this

is sloppy, or these designers clearly do not care about our users.

606 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Some evaluators believe that being too polite might get in the way or be

perceived as a little condescending and that being blunt helps convey the

message; “someone obviously needs strong words to make them see how far

off base they are. Being ‘diplomatic’ and euphemistic about the problems

just leads to our reports being discounted and ignored.” But please understand

that a UX report is not a forum for practitioners with axes to grind. Many

designers say they are insulted by emotional rants and that “being blunt is not

helpful; it is simply rude” (Dumas, Molich, & Jeffries, 2004).

The bottom line is: be likeable. Likeability breeds persuasiveness (Wilson,

2007) and projects a collaborative atmosphere rather than an adversarial one.

Accentuate the positive and avoid blaming
Most practitioners do realize that they should start with good things to say about

the system being evaluated. However, even when encouraged to be positive,

some practitioners in studies (Dumas, Molich, & Jeffries, 2004) proved to be

reticent in this regard. This may be because their usual audience is the project

team, who just wants to know what the problems are so that they can start

fixing them. The evaluators may believe that the designers are strictly technical

people who would not involve their feelings in their work.

However, even if the report is mainly critical, it is best to start with something

positive. Include information about places where participants did not have

problems, where they were successful in task completion, and where users

expressed great satisfaction or joy of use. Videos clips of good things happening

can start things off with very positive feelings. The rest is, then: “We are on a roll:

How can we make it even better?”

Work hard to present reports about design flaws as opportunities for design

improvement, not as a criticism. A good way to do this is to remind them that

the goal of formative evaluation is to find problems so that you can fix them.

Therefore, a report containing information about problems found is an

indication of success in the process. Congratulations, team; your process

is working!

17.5.7 Formative Reporting over Time
Do not delay or postpone evaluation reporting. Get the report out as early as

possible. Once the job is done, people who need the results need them

immediately. News about problems received later than necessary may not be

well received and might have to be “tabled” until the next version. It is

especially important to keep your project team in the loop: give them a

preliminary report; do not make them wait for the final report a month later.

607EVALUATION REPORTING

Keep them updated continuously. The full written report should be sent

out within a few days or weeks, not months, and there should be no surprises

by this time.

The UPA Workshop Report (Theofanos et al., 2005) clearly established that

most UX professionals deliver more than one evaluation report over time.

Starting immediately after testing, reports lean toward raw, undigested data,

notes, and observations. Later reports tend to be more formal, with analysis

applied to smooth out raw data and findings. Later, archival reports may be a way

of saving all the original recordings, logs, and notes in case the evaluation

must be repeated in the future.

17.5.8 Problem Report Effectiveness: The Need to Convince
and Get Action with Formative Results
Wilson (2007) poses the question this way: “How do I get the product team

(or the “developers”) to listen to my recommendations about how to make the

product better?” If it involves software implementers or others whomay not have

been part of the evaluation effort or who care more about programming effort

than usability or user experience, your report may need to do some selling.

Without being manipulative, you can offer positive benefits to the project

team and management that will buy good will and, quid pro quo, get your UX

role taken seriously. Wilson (2007) tells about a usability team report that

included a section on “Good Things About Product X.” It was so well appreciated

by sales and marketing that they gave “bootleg” copies to their customers. In

turn, marketing gave the UX team new and extended access to customers.

Law (2006) conducted a study on the factors that influenced designers in

deciding which problems to fix. She defines downstream utility as “the

effectiveness with which the resolution to a UX problem is implemented,”

determined analytically in terms of the impact of fixing or not fixing the UX

problems. The developer effect is the “developers’ bias toward fixing UX

problem with particular characteristics.” To Law, the persuasive power of

usability test results to induce fixes and the effectiveness of the fixes depend on

factors such as:

n problem severity: more severe problems are more salient and carry more weight

with designers

n problem frequency: more frequently occurring problems are more likely to be

perceived as “real”

n perceived relevance of problems: designers disagreeing with usability practitioners on

the relevance (similar to “realness”) of problems did not fix problems that practitioners

recommended be fixed

608 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Elaborateness of usability problem descriptions and redesign proposals

turned out to not be a factor in influencing designers, suggesting diminishing

returns for increased verbosity in usability problem descriptions. Similarly (and

possibly counter intuitively), an estimated effort to fix a problem did not seem to

be an influence.

Hornbæk and Fr�kjær (2005) interviewed designers regarding the utility of

redesign proposals in evaluation reports. An essential conclusion was that

designers do not want to see just problem descriptions without redesign

proposals. Even if they did not take the direction recommended in a redesign

proposal, the proposal usually gave them new ideas about how to attack even

well-known problems.

Finally, beware of the passive-aggressive reception of your report. In our

consulting we have seen designers agree with evaluation reports mainly because

their managers had established evaluation and iteration as required parts of the

lifecycle process. They agree to make a few changes and to consider the rest. But

in these cases it was not a buy-in but a sop to make the UX people go away. No

convincing was possible and no door was left open to try.

In the final analysis and depending on the size and makeup of your team, the

need to convince designers to make the changes you recommend becomes

about cultivating trust. If UX practitioners deliver high-quality UX problem

reports, with supporting data, it builds trust with the designers. As the working

relationship develops and trust grows, there is less need for convincing.

Sometimes project groups work together for one project and then team up

with others for the next project, not working together long enough to develop a

real trusting relationship. The less rapport and empathy among team members,

the more need for high-quality evaluation reports presented in a consistent

format and, possibly, supported with data.

If the trust level is high within your audience, you can keep your evaluation

reports simple and focus on results and recommendations rather than

persuasion.

17.5.9 Reporting on Large Amounts of Qualitative Data
If you are reporting on a large amount of formative evaluation, about a large

number of UX problems, you need to be well organized. If you ramble and jump

around among different kinds of problems without an integrated perspective,

it will be like a hodgepodge to your audience and you will lose them, along

with their support for making changes based on your evaluation.

One possible approach is to use a highly abridged version of the affinity

diagram technique (Chapter 4). We showed how to use an affinity diagram to

organize work activity data, and you can use the same technique here to organize

609EVALUATION REPORTING

all your UX problem data for reporting. Post notes about each problem at the

detailed level and group them according to commonalities, for example, with

respect to task structure, organization of functionality, or other system structure.

17.5.10 Your Personal Presence in Formative Reporting
Do not just write up a report and send it out, hoping that will do the job.

If possible, you should be there to make a presentation when you deliver the

report. The difference your personal presence at the time of reporting canmake

in reaching your goals, especially in influencing and convincing, is inestimable.

Nothing beats face-to-face communication to set the desired tone and

expectations. There is no substitute for being there to answer questions and

head off costly misunderstandings. If the audience is distributed geographically,

this is a good time to use videoconferencing or at least a teleconference.

Affinity Diagram

An affinity diagram is a

hierarchical technique for

organizing and grouping

the issues and insights

across large quantities of

qualitative data and

showing it in a visual

display, usually posted on

one ormorewalls of a room.

Exercise

See Exercise 17-1, Formative

Evaluation Reporting for

Your System

610 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

CHAPTER

Wrapping up UX Evaluation 18
Objectives

After reading this chapter, you will:

1. Understand goal-directed UX evaluation

2. Know how to select suitable UX evaluation methods

3. Understand how to be practical in your approach to UX evaluation, knowing when to

be flexible about processes

18.1 GOAL-DIRECTED UX EVALUATION

The bottom line for developing the evaluation plan is to be flexible and do what

it takes to make it work. We have given you the basics; it is up to you to come up

with the variations. Adapt, evolve, transform, invent, and combine methods

(Dray & Siegel, 1999). For example, supplement your lab-based test with an

analytical method (e.g., your own UX inspection).

18.1.1 No Such Thing as the “Best UX Evaluation Method”
When you seek a UX evaluation method for your project, it usually is not about

which method is “better,” but which one helps you meet your goals in a

particular evaluation situation. No existing evaluation method can serve every

purpose and each has its own strengths and weaknesses. You need to know your

goals going in and tailor your evaluation methods to suit.

And goals can vary a lot. In the very early design stages you will likely have a

goal of getting the right design, looking at usefulness and a good match to

high-level workflow needs, which requires one kind of evaluation. When you get

to later stages of refining a design and mainly want feedback about how to

improve UX, you need an entirely different kind of evaluation approach.

So much has been written about which UX evaluation method is better, often

criticizing methods that do not meet various presumed standards. Too often

these debates continue in absolute terms, when the truth is: It depends! We

believe it is not about which method is “better,” but which one helps you meet

your goals in a particular evaluation situation.

In fact, each aspect of the overall evaluation process depends on your

evaluation goals, including design of evaluation sessions (e.g., focus,

procedures), types of data to be collected, techniques for data analysis,

approaches to reporting results, and (of course) cost. Tom Hewett was talking

about evaluation goals way back in the 1980s (Hewett, 1986).

18.2 CHOOSE YOUR UX EVALUATION METHODS

This is an overview of some UX evaluation methods and data collection

techniques and how to choose them. Other methods and techniques are

available, but most of them will be variations on the themes we present here.

Here we use the term “evaluation method” to refer to a choice of process and

the term “technique” as a skill-based activity, usually within a method. For

example, lab-based testing is an evaluation method, and critical incident

identification is a data collection technique that can be used to collect

qualitative data within the lab-based method. One of the earliest decisions you

have to make about your approach to UX evaluation in any given stage of any

given project is the basic choice of UX evaluation method.

18.2.1 Goals Tied to Resources
Sometimes you just cannot afford a fully rigorous UX evaluation method.

Sometimes paying less is necessary; it is a rapid or “discount” method or nothing.

Some criticism of discount methods is based on whether they are as effective as

more expensive methods, whether they find UX problems as well as other

methods such as lab-basedUX testing. Thismisses the point: you choose rapid or

“discount” evaluation methods because they are faster and less expensive! They

are not generally as effective as rigorous methods, but often they are good

enough within an engineering context.

Some criticism is even aimed at whether “discount” methods provide

statistically significant results. How can that be an issue when there is no

intention for that kind of result? A more appropriate target for critical review of

“discount” methods would be about how much you get for how much you pay.

Different methods meet different goals. If statistical significance is a goal, only

formal summative evaluation will do, and you have to pay for it.

612 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

18.2.2 UX Evaluation Methods and Techniques
by Stage of Progress
In Table 18-1 we show some simple stages of design representations such as

storyboards and prototypes and representative formative evaluation approaches

appropriate to those stages.

Design walkthroughs and other design reviews are rapid and flexible methods

that employ informal demonstrations of design concepts or early versions of

designs to obtain initial reactions beforemany design details exist. Usually at this

point in a project, you have only scenarios, storyboards, screen sketches, or, at

most, a low-fidelity (non-interactive) prototype.

So you have to do the “driving”; it is too early for anyone else in a user role to

engage in real interaction. Walkthroughs are an important way to get early

feedback from the rest of the design team, customers, and potential users. Even

early lab-based tests can include walkthroughs (Bias, 1991). Also, sometimes the

term is used to refer to amore comprehensive team evaluation,more like a team-

based UX inspection.

By the time you have constructed a low-fidelity prototype, a paper prototype,

for example, UX inspectionmethods and lightweight quasi-empirical testing are

appropriate. Inspection methods are, in practice, perhaps the most used and

most useful UX evaluation methods for this stage.

Sometimes evaluators overlook the value of critical review or UX inspection

by a UX expert. Unlike most participants in lab-based testing, an expert will be

broadly knowledgeable in the area of interaction design guidelines and will have

Table 18-1

Appropriateness of various
formative UX evaluation
approaches to each stage of
progress within the project

Stage of Design Representation Formative Evaluation Approach

Design scenarios (Chapter 6), storyboards
(Chapter 8), and detailed design (Chapter 9)

Design walkthroughs (Chapter 13)
Local evaluation (Chapter 13)

Low-fidelity prototypes (Chapter 11) UX inspection (Chapter 13)
Quasi-empirical UX testing (Chapter 13)
RITE (Chapter 13)High-fidelity prototypes (Chapter 11)

Rigorous (e.g., lab-based) UX testing
(Chapters 12 and 14 through 17)
RITE (Chapter 13)
Alpha, beta testing (Chapter 13)

Programmed prototype (Chapter 11) or
operational product

Post-deployment User surveys/questionnaires (Chapter 12)
Remote UX evaluation (Chapter 13)
Automatic evaluation (Chapter 13)

613WRAPP ING UP UX EVALUATION

extensive experience in evaluating a wide variety of interaction styles. The most

popular UX inspection method (Chapter 13) is the heuristic evaluation (HE)

method.

High-fidelity prototypes, including programmed prototypes and operational

products, are very complete design representations that merit complete or

rigorous evaluation, as by lab-based testing. The RITE method is a good

choice here, too, because it is an empirical method that uses participants but

is rapid. Alpha and beta testing with selected users and/or customers are

appropriate evaluation methods for pre-release versions of the near-final

product.

Finally, you can continue to evaluate a system or product even after

deployment in the field via remote surveys and/or questionnaires and remote

UX evaluation, a method that has the advantage of operating within the context

of real-world usage.

18.2.3 Synthesize Your Own Hybrid Method
As you gain experience, you will synthesize hybrid approaches as you

go, adapting, transforming, and combining methods to suit each unique

situation. For example, in a recent UX session we observed some phenomena

we thought might be indicative of a UX problem but which did not lead

to critical incidents occurring with users in the lab. So after the UX lab

session, we added our own analytic component to investigate these issues

further.

In this particular example, the system was strongly organized and presented

to the user by function. Users found it awkward to map the functions into task

sequences; they had to bounce all over the interface to access parts that were

closely related in task flow. It took some intense team analysis to get a handle on

this and to come up with some specialized local prototypes to test further just

this one issue and evaluate some alternative design solutions.

This is not the kind of UX problem that will just pop out of a critical

incident with a user in the lab as does, for example, a label wording

commented on by a user. Rather, it is a deeper UX problem that might have

caused users some discomfort, but they may have been unable to articulate the

cause. Sometimes a problem requires the attention of an expert evaluator or

interaction designer who can apply the necessary abstractions. If we had not

been willing to do some additional analysis, not part of the original plan, we

might have missed this important opportunity to improve the quality of user

experience in our design.

614 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

18.3 FOCUS ON THE ESSENTIALS

18.3.1 Evaluate Design Concepts before Details
When practitioners do UX testing, they often think first of low-level UX, the

usability about details of button placement and label wording, and most

lab-based usability evaluation ends up being aimed at this level. As we said in

earlier chapters, however, the fit of the design to support work practice is

fundamental. Find out how they do the work and design a system to support it.

What is the point of using low-level usability evaluation to hone the details of

what is basically a poor, or at least the wrong, design while blocking your ability

to see broader and more useful design ideas?

Our friend and colleague Whitney Quesenbery (2009) has said:

If there is a single looming problem in UX these days, it is that usability analysts

too often get caught up in enumerating detailed observations, and spend a good

deal less time than they should in thinking carefully about the underlying

patterns and causes of the problems. This turns UX into a sort of QA checklist,

rather than letting us usability analysts be the analysis partners we should be to the

designers. Some of this, of course, is a legacy of having UX evaluation done

too late, some is because there is often so much to do in fixing “obvious”

problems, but some is because we have not taken seriously our role in supplying

insights into human behavior.

In early stages when the concepts are young, formative evaluation should

focus on high-level concepts, such as support of the work with the right work

roles, workflows, the right general form of presenting the design to the user,

mission-critical design features (e.g., potential “hanging chads” in the design),

and safety-related features.

18.3.2 User Experience In Situ vs. User Reflections
The more directly the evaluation is related to actual usage, the more precise

its indicators of UX problems will be. It is difficult to beat empirical evaluation

with a “think-aloud technique” for accessing immediate and precise UX data

when evaluating the design of an artifact in the context of usage experience.

Indirect and subjective evaluation such as obtained by a post-performance

questionnaire can be less expensive and, if focused carefully on the important

issues, can be effective. Alpha and beta testing (Chapter 13) are even less direct

to the usage experience, severely limiting their effectiveness as formative

evaluation methods.

615WRAPP ING UP UX EVALUATION

At least when it comes to detailed formative evaluation, Carter (2007) nicely

reminds us to think in terms of “inquiry within experience,” evaluating the

design of an artifact in the context of usage experience. To Carter, a survey or

questionnaire is an abstraction that removes us from the user and the usage

events, sacrificing a close connection to user experience in real time while the

design is being used.

User surveys or questionnaires, even when administered immediately at the

end of a UX testing session, are retrospective. A questionnaire produces only

subjective data and, as Elgin (1995) states, “Subjective feedback is generally

harder to interpret than objective feedback in a known setting. . . .” More

importantly, survey or questionnaire data cannot be the immediate and precise

data about task performance that are essential for capturing the perishable

details necessary to formative UX evaluation.

For evaluating design details, it is about getting into the user’s head with

“thinking-aloud” techniques. But the further the time of UX data capture from

the time of occurrence, the more abstraction and need for retrospective recall,

thereby the more loss of details. We looked at techniques for capturing

indicators of UX problems and for capturing indicators of success with UX as

observed directly within the real-time occurrence of usage experience

(Chapter 12).

18.3.3 Evaluating Emotional Impact
and Phenomenological Aspects
Do not just focus on usability or usefulness in your evaluations. Remember that

one of your most important evaluation goals can be to give emotional impact

and phenomenological aspects attention, too. Specific evaluation methods

for emotional impact were detailed in Chapter 12.

18.4 PARTING THOUGHTS: BE FLEXIBLE AND AVOID
DOGMA DURING UX EVALUATION

18.4.1 Keep the Flexibility to Change Your Mind
Your organization is paying for evaluation, and it is your responsibility to get the

most out of it. The key is flexibility, especially the flexibility to abandon some

goals in favor of others in conflict situations. Your evaluation goals can be

predetermined, but you can also come up with new or different goals as a result

of what happens during evaluation.

616 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

As an illustration of staying flexible within goal-directed UX evaluation,

consider an evaluation session in which you are doing the typical kind of UX

evaluation and something goes wrong for the user. If you stop and ask the user

questions about what went wrong and why, you will lose out on gathering

quantitative performance data, one of your goals. However, because that data

now will not be very useful, and understanding UX problems and their causes is

your most important goal, you should stop and talk.

Inmost formative evaluation cases, when there is a conflict between capturing

quantitative (e.g., task timing) and qualitative data (e.g., usability problem

identification), qualitative data should take precedence. This is because when

user performance breaks down, performance data are no longer useful, but the

incident now becomes an opportunity to find the reason for the breakdown.

As part of your pre-evaluation preparation, you should prioritize your goals

to prepare for conflicting goal situations. As Carter (2007) says, you should

retain the freedom for interruption and intervention (even when the original

goal was to collect quantitative data).

18.4.2 Do Not Let UX Evaluation Dogma Supplant
Experience and Expertise
Give people a process they can follow and sometimes they hang on to it until it

becomes a religion. We encourage you, instead, to do your own critical

thinking. You still have to use your head and not just follow a “process.”

Be ready to adapt and change directions and techniques. Be ready to abandon

empirical testing for thoughtful expert analytic evaluation if the situation so

demands.

According to Greenberg and Buxton (2008), “evaluation can be ineffective

and even harmful if naively done ‘by rule’ rather than ‘by thought.’” Instead

of following a plan unquestioningly, you must make choices as you go that

will help you reach your most important goals. It is your job to think about and

judge what is happening and where things are going within the project.

Sauro (2004, p. 31) warns against “one-size-fits-all usability pronouncements”

mimed and unencumbered by the thought process.

The dogma of our usual doctrine of usability testing reveres objective

observation of users doing tasks. But sometimes we can evaluate a design

subjectively, applying our own personal knowledge and expertise as a UX

professional. As Greenberg and Buxton (2008, p. 114) put it, “Our factual

methods do not respect the subjective: they do not provide room for the

experience of the advocate, much less their arguments or reflections or

intuitions about a design.”

617WRAPP ING UP UX EVALUATION

Greenberg and Buxton quote a wonderful passage from the literature of

architecture about the “experienced designer-as-assessor.” The quote (from

Snodgrass and Coyne, 2006, p. 123) defends design evaluation by an architect

designer, illustrating the fact that just because the person is a designer does not

rule them out as an evaluator.

In fact, the designer has acquired a rich understanding of architectural

design principles, processes, and evaluation criteria. They make the case that

just because an evaluation is done subjectively by an expert, it does notmean that

the results will be wild and uncontrolled. The work of expert assessors is built on

a common foundation of knowledge, fundamentals, and conventions. The

striking similarity to our situation should not be surprising—it is all about

design.

18.5 CONNECTING BACK TO THE LIFECYCLE

Congratulations! You have just completed one complete iteration through the

Wheel interaction design and evaluation lifecycle template. This ends the

process part of the book. You have only to implement your chosen design

solutions and realize the benefits of improved usability and user experience,

connecting back to the UX lifecycle, cycling back through design and

prototyping and evaluation again.

When you connect each UX problem back to the lifecycle for fixing and

iteration, where do you connect? You have to use your engineering judgment

about what each problem needs in order to get fixed.

For most simple UX problems, much of the work for fixing the problems has

been done when you worked out design solutions for each of the observed

problems. However, a UX problem that seems to involve a lack of understanding

of work practice and/or requirements may need to connect back to contextual

inquiry and contextual analysis rather than just going back to design.

618 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

CHAPTER

UX Methods for Agile
Development 19
Objectives

After reading this chapter, you will:

1. Understand the basic characteristics of agile SE methods

2. Recognize the drawbacks of agile SE methods from the UX perspective

3. Know what is needed to integrate UX into an agile environment

4. Understand a synthesized approach to integrating UX into an agile environment

5. Appreciate the need for a dove-tailed staggering of process steps for UX to fit into

the overall development process

19.1 INTRODUCTION

Just as our use of the term UX is convenient shorthand for the entire broad

concept of designing for user experience, we use the term “SE” to refer to the

entire broad concept that embraces the terms software engineering, software,

software development, and the software engineering domain. This chapter is

about an important way those two domains can come together in an efficient

project development environment.

We believe that the rigorous UX process (Chapters 3 through 12 and 14

through 17) is the most effective path to ensuring a quality user experience with

systems with complex work domains and complex interaction. However, because

the fully rigorous UX process is also the most expensive and time-consuming, it

cannot always be applied. Nor is it always appropriate, for example, for systems

and products at the other end of the system complexity space in Figure 2-7.

Less-than-perfect development environments, short schedules, and limited

budgets demand effective ways to adapt UX process methods to the turmoil and

pressure of the real professional world. Anxious customers, especially for systems

with simple domains such as commercial products, may demand early

deliverables, including previews of prototypes about which they can give

Domain-Complex
Systems

Domain-complex systems

are systems with a high

degree of intricacy and

technical content in the

corresponding field of

work. Often, characterized

by convoluted and

elaborate mechanisms for

how parts of the system

work and communicate,

they usually have

complicated workflow

containing multiple

dependencies and

communication channels.

Examples include an air

traffic control system and a

system for analyzing seismic

data for oil exploration.

feedback. In such cases practitioners can use abridged versions of the fully

rigorous lifecycle process, skipping some process activities altogether and using

rapid techniques for others.

Alternatively, the software development side might require an agile

development environment. Agile SE approaches, now well known and popularly

used, are incremental, iterative, and test-driven means of delivering pieces of

useful working software to customers frequently, for example, every two weeks.

However, agile SE approaches do not account for UX. Because traditional UX

processes do not fit well within a project environment using agile SE methods,

the UX side must find ways to adjust their methods to fit SE constraints.

Therefore, the entire system development team needs an overall approach

that includes UX while retaining the basics of the SE approach. In this chapter

we present a variation of our UX process methods that will integrate well

with existing agile SE processes by accounting for the constraints imposed

by those agile SE processes.

We begin by describing the essence of the agile SE approach and then

identify what is needed on the UX side so that the two processes fit together.

Finally, we describe an approach that brings the UX lifecycle process and

agile SE together, retaining the essentials of each but requiring some

adjustments on both sides.

19.2 BASICS OF AGILE SE METHODS

Much of this section is based on Beck (2000), one of the most authoritative

sources of information on agile SE development methods as embodied in the

approach called eXtreme Programming (XP).1 We have taken words from Beck

and other authors and tried to blend them into a summary of the practice.

Accurate representations are credited to these authors while errors in

representation are our fault.

19.2.1 Characteristics of Agile SE Methods
Agile SE development methods begin coding very early. Agile SE has a

shorter, almost nonexistent, requirements engineering phase and far less

documentation than that of traditional software engineering. As typified in XP,

agile SE code implementation occurs in small increments and iterations.

Small releases are delivered to the customer after each short iteration, or

development cycle. In most cases, these small releases, although limited in

Agile

Agile development is a

rapid and lightweight

approach to software and

system development

characterized by ultra fine-

grained iteration. Coding

begins very early, producing

early and frequent small

releases representing small

but working functionality.

1There are other “brands” of approaches to agile SE methods beyond XP, including Scrum (Rising & Janoff,

2000), but for convenience we focus on XP.

620 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

functionality, are intended to be working versions of the whole system, which

run by themselves. Nonetheless, each release is supposed to deliver some useful

capability for the customer.

In simplest terms, agile SE development methods “describe the problem

simply in terms of small, distinct pieces, then implement these pieces in

successive iterations” (Constantine, 2002, p. 3). Each piece is tested until it works

and is then integrated into the rest. Next the whole is tested in what Constantine

calls “regression testing” until it all works. As a result, the next iteration

always starts with something that works.

To clarify the concept of agile softwaremethods, a groupmet at a workshop in

Snowbird, Utah in February 2001 and worked out an “agile manifesto” (Beck,

2000). From their stated principles behind this manifesto, goals for agile

software development emerged:

n Satisfy the customer by giving them early and continuous deliverables that produce

valuable and working software.

n Recognize that changing requirements are the norm in any software development

effort.

n Understand that time and budget constraints must be managed.

Practitioners of agile SE methods value (Beck, 2000):

n Individuals and interactions over processes and tools

n Working software over comprehensive documentation

n Customer collaboration over contract negotiation

n Responding to change over following a plan

The agile software development methods are further characterized by the

need for communication, especially continuous communication with the

customer. Informal communication is strongly preferred over formal. Close

communication is emphasized to the point that they have an onsite customer as

part of the team, giving feedback continuously.

Amain principle of agile SEmethods is to avoid Big DesignUpFront (BDUF).

This means the approach generally eschews upfront ethnographic and field

studies and extensive requirements engineering. The idea is to get code written

as soon as possible and resolve problems by reacting to customer feedback later.

And because change is happening everywhere, SE practitioners verify that they

are writing the code correctly by the practice of pair programming. Code is written

by two programmers working together and sharing one computer and one screen,

that is, always having a colleague watching over the programmer’s shoulder.

621UX METHODS FOR AGILE DEVELOPMENT

Of course, pair programming is not new with agile methods. Even outside

agile SE methods and before they existed, pair programming was a proven

technique with a solid track record (Constantine, 2002). Another way they verify

the code being written is via regular and continuous testing against an inventory

of test cases.

19.2.2 Lifecycle Aspects
If this process were to be represented by a lifecycle diagram, it would not be a

waterfall or even an iteration of stages, but a set of overlapping micro-

development activities. In the waterfall approach, developers finish entire

requirements analysis before starting design and the entire design before

starting implementation.

But in agile approaches developers do just enough—a micro-level of

each activity—to support one small feature request; see Figure 19-1, which

illustrates XP as an example agile method. In the middle of these extremes

are approaches where these activities are performed in larger scope units.

In these middle-of-the-road approaches, lifecycle activities are applied at the

level of overall system components or subsystems. In contrast, in agile methods it

is applied at the level of features in those

components.

For example, building an e-commerce

Website in the waterfall approach would

require listing all requirements that

must be supported in the Website before

starting a top-down design. In an agile

approach, the same Website would be

built as a series of smaller features, such

as a shopping cart or check out module.

19.2.3 Planning in Agile SE Methods
In our discussion of how an agile SE method works, we are roughly following XP

as a guide. As shown in Figure 19-2, each iteration consists of two parts: planning

and a sprint to implement and test the code for one release.

Customer stories
The planning part of each iteration in Figure 19-2

yields a set of customer-written stories, prioritized

by cost to implement. A customer story, a key

concept in the process, has a role a bit like that of a

Figure 19-1

Comparison of scope of
development activities
across methodologies, taken
with permission from Beck
(1999, Figure 1).

Figure 19-2

Abstraction of an agile SE
release iteration.

622 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

use case, a scenario, or a

requirement. A customer

story, written on a story

(index) card, is a

description of a customer-

requested feature. It is a

narrative about how the

system is supposed to solve

a problem, representing a

chunk of functionality that

is coherent in some way to

the customer.

Story-based planning
Expanding the “planning” box of Figure 19-2, we get the details of how customer

stories are used in planning, as shown in Figure 19-3.

As shown in Figure 19-3, developers start the planning process by sitting down

with onsite customer representatives. They ask customer representatives to think

about themost useful chunks of functionality that can add business or enterprise

value. The customer writes stories about the need for these pieces of

functionality. This is the primary way that the developers understand users and

their needs, indirectly through the customer representatives.

Developers assess the stories and estimate the effort required to implement

(program) a solution for each, writing the estimate on the story card. Typically,

in XP, each story gets a 1-, 2-, or 3-week estimate in “ideal development time.”

The customer sorts and prioritizes the story cards by choosing a small set

for which the cost estimates are within a predetermined budget and which

represent features they want to include in a “release.” Prioritization might

result in lists of stories or requirements labeled as “do first,” “desired—do,

if time,” and “deferred—consider next time.” Developers break down the

stories into development tasks, each written on a task (for the developers

to do) card.

The output of the planning box, which goes to the upcoming implementation

sprint, is a set of customer-written stories, prioritized by cost to implement.

Controlling scope
Customer stories are the local currency in what Beck (2000, p. 54) calls the

“planning game” through which the customer and the developers negotiate the

scope of each release. At the beginning there is a time and effort “budget” of the

Figure 19-3

Customer stories as the
basis of planning.

623UX METHODS FOR AGILE DEVELOPMENT

person-hours or level of effort available for implementing all the stories,

usually per release.

As the customer prioritizes story cards, the total of the work estimates is kept

and, when it reaches the budget limit, the developers’ “dance card” is full. Later,

if the customer wants to “cut in” with another story, they have to decide which

existing customer story with an equal or greater value must be removed to make

room for the new one. So no one, not even the boss, can just add more features.

This approach gives the customer control of which stories will be

implemented but affords developers a tool to battle scope or feature creep.

Developer estimates of effort could be way off, probably in most cases

underestimating the effort necessary, but at least it lets them draw a line.

With experience, developers get pretty good at this estimation given a particular

technology platform and application domain.

19.2.4 Sprints in Agile SE Methods
Expanding the “sprint” box of Figure 19-2, as shown in Figure 19-4, each agile SE

sprint consists of activities that are described in the following sections.

Acceptance test creation
The customer writes the functional acceptance tests. There is no process for this,

so it can be kind of fuzzy, but it does put the customer in control of acceptance of

the eventual code. With experience, customers get good at this.

Unit code test creation
The team divides the work by assigning customer stories to code for that sprint.

A programmer picks a customer story card and finds a programming partner.

Before any coding, the pair together writes unit tests that can verify that

functionality is present in the code that is yet to be written as an implementation.

Figure 19-4

An agile SE sprint.

624 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Implementation coding
The programming pairs work together to write the code for modules that

support the functionality of the customer story. As they work, the partners do

on-the-fly design (the agile SE literature says almost nothing about design).

The programmers do not worry about the higher level architecture; the

system architecture supposedly evolves with each new slice of functionality

that is added to the overall system. The programming pair integrates this

code into the latest version.

Code testing
Next, the programming pair runs the unit code tests designed for the modules

just implemented. In addition, they run all code tests again on all modules

coded so far until all tests are passed. By testing the new functionality with not

only tests written for this functionality, but with all tests written for previous

pieces of functionality, SE developers make sure that the realization of this

functionality in code is correct and that it does not break any of the previously

implemented modules. This allows developers to make code modifications

based on changing requirements, while ensuring that all parts of the code

continue to function properly.

Acceptance testing and deployment
Developers submit this potentially shippable product functionality to the

customer for acceptance review. Upon acceptance, the team deploys this small

iterative “release” to the customer.

19.3 DRAWBACKS OF AGILE SE METHODS
FROM THE UX PERSPECTIVE

From the SE perspective, much about agile SE methods is, of course, positive.

These methods make SE practitioners feel productive and in control because

they, and not some overarching design, drive the process. These methods are

less expensive, faster, and lighter weight, with early deliverables. The pair-

programming aspect also seems to produce high-reliability code with fewer bugs.

Nonetheless, agile SE methods are programming methods, developed by

programmers for programmers, and they pose some drawbacks from the UX

perspective.

Agile SE methods, being driven predominantly by coders, are optimized

for code, judged by quality of code, and have a strong bias toward code

625UX METHODS FOR AGILE DEVELOPMENT

concerns. There is no definition or consideration of usability or user

experience (Constantine, 2002). Users, user activities, and the user interface

are not part of the mix; the user interface becomes whatever the code hackers

produce by chance and then must be “fixed” based on customer feedback.

In addition, there is no upfront analysis to glean general concepts of the

system and associated work practice. The one customer representative on the

team is not required even to be a real user and cannot represent all viewpoints,

needs and requirements, usage issues, or usage context. There may be no

real user data at all upfront, and coding will end up being “based only

on assumptions about user needs” (Memmel, Gundelsweiler, & Reiterer,

2007, p. 169). There is no identification of user tasks and no process for

identifying tasks.

Beyer, Holtzblatt, and Baker (2004) echo this criticism of using a customer

representative as the only application domain expert. As they point out, under

their “Axiom 2: Make the user the expert,” many customer representatives are

not also users and, therefore, cannot necessarily speak for the work practice of

others. Instead, they recommend devoting an iteration of contextual analysis

with real users to requirements definition. They say they have done quick

contextual design with five to eight users through early design solutions in one

to two weeks.

Beyond these specific drawbacks, the agile SE method has no room for

ideation in design. And it can be difficult to scale up the process to work on very

large systems. The number of customer stories becomes large without bounds.

Similarly, it is difficult to scale up to larger development groups; the time

and effort to communicate closely with everyone eventually become prohibitive

and close coordination is lost.

19.4 WHAT IS NEEDED ON THE UX SIDE

In some ways, the UX process lifecycle is a good candidate to fit with agile

software methods because it is already iterative. But there is a big difference.

The traditional UX lifecycle is built on having a complete understanding

of users and their needs long before a single line of software code is ever

written. In this section we discuss the considerations necessary to adjust

UX methods to adapt to agile SE approaches (Memmel, Gundelsweiler, &

Reiterer, 2007).

To work in the UX domain, an agile method must retain some early analysis

activities devoted to understanding user work activities and work context and

626 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

gleaning general concepts of the system. At the same time, to be compatible with

the agile SE side of development, UX methods must:

n be lightweight

n emphasize team collaboration and require co-location

n include effective customer and user representatives

n adjust UX design and evaluation to be compatible with SE sprint-based

incremental releases by switching focus from top-down holistic design to bottom-up

features design

n include ways to control scope

Thoughts on Integrating UX into Agile Projects

Dr. Deborah J. Mayhew, Consultant, Deborah J. Mayhew & Associates1

CEO, The Online User eXperience Institute2

I have been working in software development since 1975 and have watched a number of formal, commercial

software engineering methodologies (including one of the first in the industry) emerge, evolve, and be abandoned

for the next new idea. The latest one is agile, which has been around for almost 10 years now. When it first emerged

I had been working in the UX field for about 20 years. I had written my book The Usability Engineering Lifecycle (1999b,

Morgan Kaufmann Publishers), which describes a top-down, iterative approach to software user interface design set

in the context of the prevalent development methodologies at that time: object-oriented software engineering and

iterative development. The Usability Engineering Lifecycle (UEL) fit in quite nicely with those software engineering

methodologies.

Then the agile methodology began to get popular. Initially, I learned about this new development methodology

by working with a client who was building project management software tools to support agile project managers.

I was trying to help this client design a usable interface to their software tools, and they were developing their tools

using the agile methodology, so I had to try to adapt my approach to usability engineering into that methodology.

I struggled with this because it seemed to me that there was an inherent conflict: the agile methodology focuses on very

small modules of functionality and code at a time, doing requirements analysis, design and development start to finish on

each one, often with different development teams assigned to different modules being developed on overlapping timelines.

In contrast, the successful design of a user interface requires a top-down approach because all the functionality

must be presented through a consistent overall architecture. A piecemeal approach to interface design, in which

many different developers design separate modules of code, had always been a big stumbling block to good user

1http://drdeb.vineyard.net
2http://www.ouxinstitute.com

627UX METHODS FOR AGILE DEVELOPMENT

interface design in the past, and it seemed that the agile methodology would perpetuate that problem even while

solving others.

So, I was skeptical that good usability engineering practices could be applied successfully in an agile development

environment.

I have only recently had another opportunity to work with a development team following some version of the agile

methodology and have evolved with them what I think is a successful approach to overcoming the potential conflicts

between agile and the UEL approach to designing for an optimal user experience.

My client had already adapted the agile methodology in a way consistent with Nielsen’s findings about best

practices for integrating usability engineering into agile development projects (Jakob Nielsen’s Alertbox, November 4,

2009, http://www.useit.com/alertbox/agile-user-experience.html). In Nielsen’s words, the key things are to

Separate design and development, and have the user interface team progress one step ahead of the

implementation team . . .

and to

Maintain a coherent vision of the user interface architecture. Create the initial vision during a ‘sprint zero’

period—before any implementation has started—and maintain it through annual (or semi-annual) design

vision sprints . . .

I believe that these approaches are necessary but not sufficient. They do not solve the problem of separate agile

teams creating different modules of code, with no one overseeing the user interface across the whole system. Each

team can do visioning up front, and design before development in a “sprint zero” phase, but that does not ensure

consistency in the user interface across code modules developed by different teams.

My client had embarked on a very large, multiyear project. They were breaking down what in the end would be one very

large functionally rich system into small chunks of functionality and assigning these chunks to different agile teams, each

with their own assigned user interface designers. These teams were working mostly independently on overlapping project

schedules. They had an approach similar to Nielsen’s ideas of a planning phase at the beginning of each project for high-

level design, and a “sprint zero” in which detailed user interface design could start and stay a step ahead of coding. There

was, however, only haphazard communication and coordination across teams regarding user interface design.

To be a little more concrete, an analogous project to the one I actually worked on would be the development of a

system to support the customer support representatives of a credit card company. The functional chunks cast as

separate projects in this analogy would be individual user tasks, such as processing requests for monthly payments,

balance transfers from other credit cards, adding new credit cards to an account holder’s account, closing out an

account, contesting a fraudulent charge, and the like. A single customer service representative might be handling all

these types of tasks, but different agile teams were designing and developing them.

When I got involved with my client’s overall effort, separate projects were at many different stages in their agile

processes, some still in the early planning and designing stages, others well along in their sprint process. My role was

to provide feedback on design ideas generated by the project interaction designers on the projects, some of which

were in early planning, some in sprint zero, and some halfway or more through their sprints.

I started performing heuristic evaluations for individual agile teams, one at a time. As I proceeded from project to

project, I naturally started seeing two things: inconsistencies in interface design across projects and less than optimal

designs within projects. In response to these observations, I started doing two things.

First, with each heuristic evaluation, I documented some sample redesign ideas in wireframe form to better

communicate the issues I was identifying. As I went from one project to the next, I consistently applied the same

redesign approaches when I encountered analogous design situations. So, for example, the first time I discovered a

need for a widget to expand and contract details, I would document a particular design for that purpose. Then when

I encountered the same need on another project, I would be sure to recommend the exact same design to address

that need.

Second, I started capturing in list form those design situations that were coming up repetitively across pages and

projects (the need to expand and contract information details would be an example of something in that list). This list

became the foundation of what would eventually become a set of user interface design standards for the whole

system. Those standards might not exactly reflect my design suggestions, but at least everything that a standard could

be designed for would be identified and documented in one place.

Sometimes I would design for a situation when I first encountered it, apply it in later situations, and then even later

come across the same situation on a new page or project in which my design solution just did not work well. In those

cases, I would revisit the consistent design I had generated to date, redesign it, and then reapply the new standard to

all analogous situations encountered across all projects I had evaluated to date, as well as going forward.

In this way, a common set of standards was continuously developed and evolved as each new agile project

launched and proceeded. Rework was required when the need for a different standard was discovered on new but

analogous functionality, but at least there was a single mind (mine) overseeing all the related agile projects so that

opportunities for consistency were discovered and ultimately attended to. This just does not happen when different

designers are responsible for different modules of functionality and no one is keeping track of the big picture.

I think proceeding in this way to design the overall user interface of a system that is divided up into many

agile projects is analogous to designing the system architecture in this methodology. Modules of code designed

and developed by separate and relatively independent teams have a similar risk of ending up being a mish

mash of inefficient and hard to maintain code. Someone needs to oversee the evolution of the final system

architecture, and rework may be required to go back and recode modules that did not adhere to the final system

architecture model when they were developed initially. If we are willing to do the rework, this is a reasonable

way to address both system architecture and user interface architecture in a methodology that certainly has

other benefits but carries the risk of resulting in systems with no underlying models that support both technical

and human needs.

19.4.1 The UX Component Must Be Lightweight
According to Memmel, Gundelsweiler, and Reiterer (2007), many of the

rigorous UX processes out there, such as Mayhew (1999b), Rogers, Sharp,

and Preece (2011), and the full Wheel process described in this book, are

considered as heavyweight processes, too cumbersome for the unstoppable

trend of shorter time-to-market and shorter development lifecycles. As a result,

developers are turning to lighter-weight development processes.

However, the term “lightweight process” can be thought of as a euphemism

for “cutting corners.” As Constantine (2001) puts it, “shortcutting a proven

process means omitting or short-changing some productive activities, and the

piper will be paid, if not now, then later.”

Sometimes, however, we have no choice. The project parameters demand fast

turnaround and the rigorous process simply will not do. Therefore, we seek

something in the middle ground, a lighter-weight process that, although

compromising quality somewhat, can still meet schedule demands and allow us

to deliver a system or product with value for the customer.

Traveling light means communicating rather than documenting. In general,

heavyweight SE processes require detailed, up-to-date-documentation and

models, whereas lightweight SE processes rely on index cards and hand-drawn

abstract models. The artifacts maintained should be few, simple, and valuable

(Beck, 2000, p. 42).

19.4.2 The UX Component Requires Collaboration
and Co-Location with the SE Team
Traditional UX practice often implied handing off a refined interaction design

as a formal hi-fi prototype or a complete wireframe deck. We did our contextual

inquiry and analysis independently of their requirements gathering. Now this

“fire-walling” of the UX and SE teams will not work. We must work together with

the same customer representatives and users.

Our deliverables will now be less formal and somewhat incomplete because

the details will be handled on a social channel, meaning we will communicate

directly, person to person. Each team, UX and SE, must have access and visibility

into the other team’s progress, challenges, and bottlenecks so that they can plan

to maintain synchronization.

To achieve this intimate communication, the entire project team has to be

co-located. You all have to work in the same room, a working arena plus

walls for whiteboards, posters, and diagrams. Everyone has to be continuously

present as part of the team—readily available and knowledgeable.

630 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

You cannot rely on just email or a call on the phone. When you need to

talk with someone else on the team, that person must be sitting with you as

you work. This imperative for co-location in the agile approach can be a show-

stopper. If, for any reason, your organization cannot afford to keep the entire

project team in one location, it will preclude the agile approach.

19.4.3 Effective Customer and User Representatives
Are Essential
An important SE requirement is continuous access to one or more co-located

customer representatives, but on the UX side we will also need access to real

users. Many “methods” call for including customers and users. So when you

say that you need a customer representative in your project, others in your

organization and in the customer organization may not understand how

seriously this role is taken in agile methods and how integral it is to project

success. Unless you have articulated criteria for the customer representative role,

you are likely to get someone who happens to be available regardless of their real

connection to the system.

Your customer and user representatives must truly represent the organization

paying for development and must care about the project as a real stakeholder in

the outcome. These representatives must have a good knowledge of all work

roles, corresponding user classes, workflows, and the work domain. And perhaps

the most important requirement is that these representatives must have the

authority to make decisions about project scope and enough knowledge about

what the organization really needs.

19.4.4 A Paradigm Shift: Depth-First, Vertical Slicing
Almost everything in both the process and the deliverables depends on

whether the project approach is breadth first or depth first. Acceptance of

the outcome will depend on how well the customer understands these choices

and agrees to the approach you choose; it is up to you to set expectations

accordingly.

The traditional UX process is breadth first, looking at the whole system

broadly from the beginning—methodically and systematically building

horizontal slices and integrating and growing them vertically. The resulting

product is an integrated system design built top-down or inside-out in

“horizontal” layers. This approach involves building a whole elephant

from the inside out, laying down a skeleton, adding inner organs,

fleshing it out with muscles to hold it all together, and wrapping it up

with a skin.

631UX METHODS FOR AGILE DEVELOPMENT

However, as we said before, this approach works against early deliverables

to the customer. There is often nothing to show customers early on. There just

is not anything that even looks like an elephant until halfway or even later

through the project.

In traditional development methods, associated deliverables will begin with

documentation of development work products and descriptions of design-

informing models, such as personas, user classes, or task descriptions.

Development does not get to design-representing deliverables such as screen

sketches, storyboards, and low-fidelity prototypes until later in the process.

So the customer has to be patient, but “patient” does not describe most

customers we have met so far. Nor can you blame them; they do not want to be

paying the bills for a long time without seeing any results.

Alternatively, and in almost complete contrast, agile methods are depth

first, taking a narrow product scope but starting with more depth, building

vertical slices and integrating and growing them horizontally. This is the

approach you need when you have limited resources and have short-term

demand for design-related deliverables, such as a prototype. The narrow

product scope means addressing only a few selected features supporting

related user work activities and system functions, but developing them in

some depth.

This is like building an elephant by gluing together deep, but narrow, vertical

slices. It might be for only a slim section of the backbone, maybe a part of a

kidney or a slice of the liver, and a little bit of skin. But you are not going to see

anything of the face, the feet, or the tail, for example. In other words, the

customer might see some screen sketches and a low-fidelity prototype a lot

earlier but they will be limited to a narrow set of features. This agile approach has

a benefit in today’s development market in that you can get at least something as

a running deliverable much faster.

As more and more vertical slices become available, you put them together to

construct the whole system. If slices here and there do not quite line up in this

integration step, you must adjust them to fit. As you add each new slice, adjust

the new slice and/or the rest of the elephant, as needed.

19.4.5 Controlling Scope Is a Necessity
Earlier in this chapter, we explained that agile SE customer stories are the basis

for planning, through which the customer and the developers negotiate the

scope of each release. At the beginning there is a time and effort “budget” of

only so many person-hours or only a certain level of effort available for

implementing all the stories.

632 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Exactly the same approach to controlling scope works when UX and SE are

integrated, still using the cost to implement the software as the criterion for

setting scope boundaries. However, UX plays an involved role in negotiating

with customers based on early conceptual design and user experience needs.

More about this soon.

19.5 PROBLEMS TO ANTICIPATE

In a special-interest-group workshop at CHI 2009 (Miller & Sy, 2009), a group

of UX practitioners met to share their experiences in trying to incorporate a

user-centered design approach into the agile SE process. Among the difficulties

experienced by these practitioners in their own environments were:

n sprints too short; not enough time for customer contact, design, and evaluation

n inadequate opportunities for user feedback and the user feedback they did get

was ignored

n customer representative weak, not committed, and lack of co-location

n no shared vision of broader conceptual design because focus is on details in a

bottom-up approach

n there is a risk of piecemeal results

Regarding the last bullet, building a system a little piece at a time is not

without risks. Nielsen (2008) claims that agile methods can end up being a

terrible way to do usability engineering. His reasons centered mostly on the fact

that taking one piece at a time tended to destroy the whole picture of user

experience. If requirements come in piecemeal, it is harder to see the big picture

or the conceptual design. He claims that a piecemeal process hinders

consistency and is a barrier to an integrated design, leading to a fragmented user

experience.

Beyer, Holtzblatt, and Baker (2004) also believe that it is difficult to design

small chunks of the interaction design without first knowing the basic interaction

design architecture—how the system is structured to support user tasks and how

the system functions are organized. In contextual design, interaction architecture

is established with storyboards and what they call the “user environment design,”

which they say is just what you need for effective user stories.

In the end, it is up to skilled and experiencedUXpractitioners to keep the big

picture inmind and do as much as possible along the way tomaintain coherence

in the overall design.

633UX METHODS FOR AGILE DEVELOPMENT

19.6 A SYNTHESIZED APPROACH TO INTEGRATING UX

Because traditional agile SE methods do not consider the user interface,

usability, and user experience, there is a need to incorporate some of the user-

centered design techniques of UX into the overall system development process.

Most of the related literature is about either adjusting “discount” UX or

user-centered design methods to somehow keep pace with existing agile SE

methods or trying to do just selected parts of user-centered design processes in

the presence of an essentially inflexible agile SE method.

While it is possible that XP, for example, and some abbreviated user-centered

design techniques can coexist and work together, in these add-on approaches

the two parts are not really combined (McInerney &Maurer, 2005; Patton, 2002,

2008). This creates a coping scenario for the UX side, as UX practitioners

attempt to live with the constraints while trying to ply their own processes within

an overall development environment driven solely by the agile SE method.

The traditional user-centered design process, even rapid or abridged versions,

and the agile SE process are a fundamental mismatch and will always have

difficulty fitting together within a project. This means that we need to synthesize

an approach to allow the UX process in an integrated agile environment without

compromising on essential UX needs, the topic of this section.

Here we especially acknowledge the influence of Constantine and Lockwood

(2003), Beyer, Holtzblatt, and Baker (2004), Meads (2010), and Lynn Miller

(2010). What we have synthesized here is also built on our experience with

traditional UX methods and our broad experience in industry consulting and

practice that required quicker and less costly design methods and where

customers often demanded early deliverables.

19.6.1 Integrating UX into Planning
Figure 19-5 shows a scheme for integrating the UX role into the planning box

of Figure 19-2.

Add some small upfront analysis (SUFA)
If we simply try to include the UX role as an add-on to the agile SE process,

the entire operation would still proceed without benefit of any upfront

analysis or contact with multiple people in the customer organization and

with multiple users in all the key work roles. As a result, there would be no

initial knowledge of requirements, users, work practice, tasks, or other

634 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

design-informing models. This would be crippling for any kind of UX

lifecycle process.

Any serious proposal for integrating UX into planning must include an

initial abbreviated form of contextual inquiry and contextual analysis,

something that we call “Small UpFront Analysis” (SUFA), in the left-most box of

Figure 19-5. The UX role works with the customer to perform some limited

contextual inquiry and analysis (Chapters 3 and 4).

In addition, the UX person also assists the customer in other responsibilities,

such as writing and prioritizing stories. These stories are now called users stories

rather than customer stories because their substance came from users in the

upfront analysis.

Although this begins to change the basic agile pattern, it gives the UX team

more traction in bringing UX into the overall process. Interest in enhancing this

kind of additional upfront analysis is gaining ground. There is some initial

agreement (Beyer, Holtzblatt, & Baker, 2004; Constantine & Lockwood, 1999)

on the necessity for talking withmultiple customer representatives and real users

to help understand the overall system and design needs.

Some (Constantine & Lockwood, 1999; Memmel, Gundelsweiler, & Reiterer,

2007) add that a measure of user and/or task modeling would be a very

useful supplement in that same spirit. There is obviously a resulting loss of agility

but, without these additions, the whole approach might not work for UX.

Beyer and Holtzblatt’s “original” approach to upfront analysis and design is

called contextual design (Beyer & Holtzblatt, 1998) and has a head start toward

agile methods because it is already customer centered. They took another

step toward agility with the follow-up book (Holtzblatt, Wendell, & Wood, 2005)

Figure 19-5

Integrating the UX role into
planning.

635UX METHODS FOR AGILE DEVELOPMENT

and developed that into a true agile method in Beyer, Holtzblatt, and Baker

(2004). Much of this section is based on their explication of the agile version of

rapid contextual design in this latter reference.

Goals of the SUFA include:

n understand the users’ work and its context

n identify key work roles, work activities, and user tasks

n model workflow and activities in the existing enterprise and system

n forge an initial high-level conceptual design

n identify selected user stories that reflect user needs in the context of their work

practice

Because of the “S” in SUFA, the contextual inquiry and analysis involved must

be very limited, but even the most abbreviated contextual studies can yield a

great deal of understanding about the work roles and the flow model as well as

some initial task modeling. By adding this SUFA we can build a good overview of

the system as a framework for talking about the little pieces we will be developing

in the agile method.

A broad understanding of scope and purpose of the project (second box from

the left in Figure 19-5) will allow us to plan the design and implementation of

a series of sprints around the tasks and functionality associated with different

work roles. This SUFA has to be focused carefully so that it can occur in a

very short cycle—maybe even in one week!

Even though theUX person is trained to do a SUFA and could do it alone, the

customer should help with SUFA, as shown at the lower left in Figure 19-5, to be

in a better position to later write user stories (next section).

User interviews and observation. Your customer will help you identify users to

interview. Create a flow model on the fly and in collaboration with the customer

representative. Identify all key work roles in this diagram. Annotate it with all

important tasks and activities that can be deduced from the user stories.

Agile contextual inquiry can be as brief or as lengthy as desired or afforded. We

suggest interviewing and observing the work practice of at least one or two people

in each key work role. There is no recording and no transcript of interviews.

The UX practitioners write notes by hand directly on index cards—a Constantine

hallmark. Use small size, 300 � 500, index cards to discourage verbosity in the notes.

Aim toward effective user stories.We are looking for user stories to drive our small

pieces of interaction design and prototyping. But what kind of user stories do we

seek? Stories about work activities, roles, and tasks can still be a good way for

designers to start. However, as Meads (2010) says, users are not interested in

636 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

tasks per se, but are more interested in features. Following his advice, we focus on

features, which are used to carry out related user work activities and tasks within a

work context.

UX role helps customer write user stories
In the third box from the left in Figure 19-5, the UX person helps the customer

write user stories. Because both roles participated in the SUFA, user story writing

will be easier, faster, and more representative of real user needs. The UX

role influences the customer toward creating stories based on workflows

observed in the agile contextual inquiry part of SUFA.

UX role helps customer prioritize user stories
By helping the customer representative prioritize the user stories, theUXperson

can keep an eye on the overarching vision of user experience and a cohesive

conceptual design, thereby steering the result toward an effective set of stories

for an iteration.

19.6.2 Integrating UX into Sprints
In Figure 19-6 we show UX counterpart activities occurring during an agile SE

sprint (Figure 19-4).

While the SE people are doing a sprint, the UX person and customer perform

their own version of a sprint, which is shown in Figure 19-6. They begin by

picking a story and, with the conceptual design in mind, start ideation and

sketching of an interaction design to support the functionality of the user story.

The design is cast in a narrow vertical prototype for just this feature for

evaluation. Often time permits only a low-fidelity (e.g., paper) prototype. If

there is time the design partners make a set of wireframes to describe the

Figure 19-6

UX counterpart of an agile
SE sprint.

637UX METHODS FOR AGILE DEVELOPMENT

interaction design. This feature prototype is integrated into their growing

overall user interface prototype.

If there is time, the UX design partners do some user experience evaluation

on this one part of the design and iterate the design accordingly. If there is even

more time (unlikely in an agile environment), in the spirit of agile SE methods,

the UX design partners can run this collection of all evaluations again on the

whole integrated prototype to ensure that the addition of this design feature did

not break the usability of any previous features.

UX practitioners submit this user interface prototype to the customer for

acceptance review. Finally, the team “deploys” this small iterative interaction

design “release” by sending it on to agile SE developers for coding as part of their

next sprint.

19.6.3 Synchronizing the Two Agile Workflows
We have described agile SE planning and agile SE sprints, plus UX integration

into planning and UX integration into sprints earlier in this chapter. But we

have not yet talked about how the UX and SE teams work together and

synchronize the workflow in their respective parts of the agile process.

Dove-tailed work activities
Miller (2010) proposed a “staggered” approach to parallel track agile

development that featured a “criss-cross” interplay between UX activities and SE

activities across multiple cycles of agile development. As Patton (2008) put in his

blog, the overall approach is characterized as “work ahead, follow behind.”

As Patton says, UX people on agile teams “become masters of development

time travel, nimbly moving back and forth through past, present, and future

development work.”

Based roughly on Miller’s idea, we show a scheme in Figure 19-7 for how UX

people and SE people can synchronize their work via a dovetail alternation of

activities across progressive iterations.

In the original agile SE approach, SE people started first with sprint 1, taking a

set of stories and building a release. That worked when the only thing that was

happening was implementation. Now that we are bringing in UX design and

evaluation into the mix, we need a few changes.

First, the UX people need some lead time in their sprint 0, in Figure 19-7, to

get the interaction designs ready for the SE people in their sprint 1. During

this ramping-up sprint 0, SE people can focus on building the software

infrastructure and services required to support the whole system, what Miller

calls building the “high-development, low-UI features.” When the UX people

are done with designs for release 1, they hand them off to SE people for

638 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

implementation in sprint 1, which includes implementation of both functional

stories and interaction design components for that cycle.

Previously, the team had something to release right after sprint 1, but now it

takes two sprint cycles, sprint 0 and sprint 1, to get the first release out. This is just

a start-up artifact and is not a problem for subsequent releases.

Not all UX design challenges are equal; sometimes there is not enough time

to address UX design adequately in a given sprint. Then that design will have to

evolve over the design and evaluation activities of more than one sprint.

Also, sometimes in interaction design, we want to try out two variations because

we are not sure, so that will have to take place over multiple sprints.

Because of the staggering or dovetailing of activities, people on each part of

the team are typically working on multiple things at a time. For example, right

after handing off the designs for release 1 to the SE people, the UX people start

on designs for release 2 and continue doing this until the end of sprint 1 (while

the SE people are coding release 1). In any given sprint, say, sprint n, the UX

people are performing inquiry and planning for sprint n þ 2, while doing

interaction design (and prototyping) for sprint n þ 1, and evaluation of the

interaction design for sprint n � 1.

Figure 19-7

Alternating UX and SE
workflow in an agile
process.

639UX METHODS FOR AGILE DEVELOPMENT

Following the “lifecycle” of a single release, release n, we see that in sprint

n � 1, the UX role designs for release n, to be implemented by the SE

people in sprint n. UX evaluates release n in sprint nþ 1. SE fixes it in sprint nþ
2 and re-releases it at the end of that sprint.

Prototyping and UX evaluation
At the end of each sprint, UX people must be able to deliver their UX design to

SE people for implementation in the next sprint. This means they must embody

their design solution within some kind of prototype, usually a narrow vertical

prototype encompassing multiple related user stories for just the feature

(user story) they are considering. There will be time only for a low-fidelity

prototype; these days wireframes are the de facto standard for prototypes in this

kind of development environment.

Perhaps an evenmore agile form of low-fidelity prototype is a design scenario,

maybe in the form of storyboards, which can be used as an early and simple

vehicle to draw out feedback from the customer and users. Kane (2003, pp. 2,

Figure 1) shows how a scenario can be seen as amini-prototype, both narrow and

shallow, at the intersection between a vertical and a horizontal prototype.

A scenario can distill “the system to the minimal essential elements needed

for useful feedback” (Nielsen, 1994 Nielsen, 1994a).

The traditional UX process, of course, calls for extensive UX evaluation

of theprototype.However, therewill almostneverbe timetoevaluate theprototype

in this same sprint, but youwill be able toevaluate thisUXdesign in thenext sprint.

Prototype integration
UX is all about holistic designs, and you cannot ensure that your emerging

design is on track to provide such a holistic user experience unless you have a

representation of the overall design and not just little pieces. Therefore, after

each new feature is manifest as a prototype (e.g., wireframe), it is integrated

into the growing overall user interface prototype, covering all the user stories so

far and the broader UX vision. The small feature prototype drives coding but the

integrated prototype helps everyone with a coherent view of the overall

emerging interaction design.

The value of early delivery
As Memmel, Gundelsweiler, and Reiterer (2007) say, you have the potential

to deliver design visions to customers before you even have completed

requirements analysis. In contrast, with the traditional rigorous UX process, this

is an amazingly early deliverable and amazingly early involvement of the

customer.

640 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Feedback for the first feature can go far beyond just that one feature and

its usage. This is the first opportunity for the team to get any real feedback.

A lot of additional things will come out of that, not specific to that feature.

For example, you will get feedback on how the process is working. You will get

feedback on the overall style of your design. You will hear other questions

and issues that customers are thinking about that you would not have access to

until much later in the fully rigorous process. Your customers may even

reprioritize the story cards based on this interaction. This early feedback fits well

with the agile principle of abundant communication.

Exactly what is “delivery” in an agile environment?
A stated goal of agile SE methods is to release a product every few weeks. Why

would anyone want to do that? Why would customers and users put up with it?

Well, if you are talking only about functional software and not the user interface,

customers will love it. They get to see very earlymanifestations of a working system,

however severely the functionality may be limited. Also, agile SE developers can

actually release their small iterations of functional code even to end users, as

changes in the internal code are not visible to customers or users.

However, multiple releases of the user interface, each with a changing design,

are not a good thing for users, who cannot be expected to track the continuous

changes. They invest in learning a user interface; so a constant flow of even

small changes, even if they are improvements, will not be acceptable.

This is always a risk with an agile approach, so it is up to the UX person to

mitigate these transitions by making each release an addition to the capabilities

but not completely new. Users should be able to do more, but not necessarily

change how they do things that are already delivered.

Continuous delivery
Delivery to customers and users is continuous but in pieces. At the end of any

given sprint, call it sprint n, the customer sees a UX prototype of the upcoming

release and in the next sprint, sprint n þ 1, they see the full functional

implementation of that prototype. In sprint n þ 2, they see UX evaluation

findings for that same prototype and, in sprint nþ 3, they see the final redesign.

Each of these points in time is an opportunity for the customer to give feedback

on the interaction design.

Planning across iterations
Figure 19-7 shows planning in a single box at the bottom, extending across all

the sprint cycles. That is to convey the idea that planning does not occur in

discrete little boxes over time at just the right spot in the flow. Planning is more

641UX METHODS FOR AGILE DEVELOPMENT

of an “umbrella” activity, distributed over time and is cumulative in that the

process builds up a “knowledge base” founded on agile contextual inquiry with

users. The planning process does not start over for the planning of each cycle.

Instead the same knowledge base is consulted, updated, and massaged,

working with the original SUFA results and anything added to supplement those

results. Because an overview and conceptual design are evolving in the process,

this kind of UX planning brings some top-down benefits to an otherwise

exclusively bottom-up process.

Communication during synchronization
This kind of interwoven development process brings with it the risk of

falling apart if anything goes wrong. This intensifies the need for constant

communication so that everyone remains aware of what everyone else is doing,

what progress is being made by others, and what problems are being

encountered.

Agile processes can be more fragile than their heavyweight counterparts.

Because each part depends on the others in a tightly orchestrated overall

activity, if something goes wrong in one place, there is no time to react to

surprises and the whole thing can collapse like a house of cards.

Including emotional impact
How can you take emotional impact into account within an agile approach? It is

more difficult to think about emotional impact within an agile approach

because you do not have good ways to connect to the overall user experience

for the system. You will have limited time to create a conceptual design that

fosters a strong positive emotional response. You will have to manage and do as

much as you can by including emotional impact as part of the small upfront

analysis, in design ideation, and in evaluation.

Style guides
Maintaining a style guide throughout the UX part of an agile development

process is perhaps even more important than it is in the fully rigorous process

(Constantine & Lockwood, 2003). An agile style guide with the minimal design

templates, motifs for visual elements, and design “patterns” (e.g., a standard

design for a dialogue box) supports reuse, saves the time of reinventing

common design elements, and helps ensure design consistency of look and feel

across features. Your style guide can also document “best practices” as you gain

experience in this agile approach.

642 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

CHAPTER

Affordances Demystified 20
Objectives

After reading this chapter, you will:

1. Have acquired a clear understanding of the concept of affordances

2. Know and understand differences among the types of affordances in UX design

3. Know how to apply the different types of affordances together in UX design

4. Be able to identify false affordances and know how to avoid them in UX design

5. Recognize user-created affordances and their implications to design

To begin with, we gratefully acknowledge the kind permission of Taylor &

Francis, Ltd. to use a paper published in Behaviour & Information Technology

(Hartson, 2003) as the primary source of material for this chapter. This chapter

is a prerequisite for the next two chapters, on the User Action Framework and

design guidelines, but we hope that you find it an interesting topic on its own.

20.1 WHAT ARE AFFORDANCES?

Although a crucially important and powerful concept, the notion of “affordance,”

as pointed out by Norman (1999), has suffered misunderstanding and misuse

(or perhaps uninformed use) by researchers and practitioners alike and in our

literature. In this section we define the general concept of affordances as used in

human–computer interaction (HCI) design and give more specific definitions

for each of four kinds of affordance.

20.1.1 The Concept of Affordance
The relevant part of what the dictionary says about “to afford” is that it means to

offer, yield, provide, give, or furnish. For example, a study window in a house may

afford a fine view of the outdoors; the window helps one see that nice view. InHCI

design, where we focus on helping the user, an affordance is something that helps

a user do something. In interaction design, affordances are characteristics of user

interface objects and interaction design features that help users perform tasks.

20.1.2 Definitions of the Different Kinds of Affordance
In an effort to clarify the concept of affordance and how it is used in

interaction design, we have defined (Hartson, 2003) four types of affordances,

each of which plays a different role in supporting users during interaction,

each reflecting user processes and the kinds of actions users make in task

performance. Those kinds of affordances are as follows:

n Cognitive affordances help users with their cognitive actions: thinking, deciding,

learning, remembering, and knowing about things.

n Physical affordances help users with their physical actions: clicking, touching,

pointing, gesturing, and moving things.

n Sensory affordances help users with their sensory actions: seeing, hearing, and

feeling (and tasting and smelling) things.

n Functional affordances help users do real work (and play) and get things done,

to use the system to do work.

In analysis and design, each type of affordance must be identified for what it

is and considered on its own terms. Each type of affordance uses different

mechanisms, corresponds to different kinds of user actions, and has different

requirements for design and different implications in evaluation and problem

diagnosis.

As an example to get you started, consider a button available for clicking

somewhere on a user interface. Sensory affordance helps you sense (in this case,

see) it. Sensory affordance can be supported in design by, for example, the color

or location of the button. Cognitive affordance helps you understand the button

by comprehending what the button is used for, via the meaning of its label.

Physical affordance helps you click on this button, so its design support could

include the size of the button or its distance from other buttons.

20.2 A LITTLE BACKGROUND

Who “invented” the concept of affordances? Of course we all know it was Donald

Norman. Well, not quite. While Norman did introduce the concept to HCI, the

concept itself goes back at least as far as James J. Gibson (1977, 1979), and

probably further.

Gibson is a perceptual psychologist who took an “ecological” approach to

perception, meaning he studied the relationship between a living being and its

environment, in particular what the environment offers or affords the animal.

644 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Gibson’s affordances are the properties and objects of the environment as

reckoned relative to the animal, and “the ‘values’ and ‘meanings’ of things in the

environment [that] can be directly perceived” (Gibson, 1977) by the animal. In

this book, human users of computer systems are the animals (are not they,

though?).

Norman (1999) begins his interactions article by referring to Gibson’s

definitions of “afford” and “affordance,” as well as to discussions he and Gibson

have had about these concepts. Paraphrasing Gibson (1979, p. 127) within an

HCI design context, affordance (as an attribute of an interaction design feature)

is what that feature offers the user, what it provides or furnishes.

Here Gibson is talking about physical properties. Gibson gives an example of

how a horizontal, flat, and rigid surface affords support for an animal for

standing or walking. In his ecological view, affordance is reckoned with respect

to the animal/user, which is part of the affordance relationship.

Thus, as Norman (1999) points out, Gibson sees an affordance as a physical

relationship between an actor (e.g., user) and physical artifacts in the world

reflecting possible actions on those artifacts. Such an affordance does not have

to be visible, known, or even desirable.

Since Norman brought the term affordance into common usage in the HCI

domain with his book The Design of Everyday Things (Norman, 1990), the term has

appeared many times in the literature. However, terminology surrounding the

concept of affordance in the literature has been used with more enthusiasm

than knowledge, and we are left with some confusion.

Beyond Gibson and Norman, Gaver (1991) and McGrenere and Ho (2000)

have influenced our thinking about affordances. Gaver (1991) sees affordances

in design as a way of focusing on strengths and weaknesses of technologies with

respect to the possibilities they offer to people who use them.

He extends the concepts by showing how complex actions can be described in

terms of groups of affordances, sequential in time and/or nested in space,

showing how affordances can be revealed over time, with successive user actions,

for example, in the multiple actions of a hierarchical drop-down menu. Gaver

(1991) defined his own terms somewhat differently from those of Norman or

Gibson. That McGrenere and Ho (2000) also needed to calibrate their

terminology against Gaver’s further demonstrates the difficulty of discussing

these concepts without access to a richer, more consistent vocabulary.

In most of the related literature, design of cognitive affordances (whatever

they are called in a given paper) is acknowledged to be about design for the

cognitive part of usability, ease of use in the form of learnability for new and

intermittent users (who need the most help in knowing how to do something).

645AFFORDANCES DEMYST IF IED

All authors who write about affordances give their own definitions of the

concept, but there is scant mention of physical affordance design.

Sensory affordance is neglected even more in the literature. Most other authors

include sensory affordance only implicitly and/or lumped in with cognitive

affordance rather than featuring it as a separate explicit concept. Thus, when

these authors talk about perceiving affordances, including Gaver’s (1991) and

McGrenere and Ho’s (2000) phrase “perceptibility of an affordance,” they are

referring (in our terms) to a combination of sensing (e.g., seeing) and

understanding physical affordances through sensory affordances and cognitive

affordances.

Gaver refers to this same mix of affordances when he says “People perceive

the environment directly in terms of its potential for action.” As we explain in the

next section, our use of the term “sense” has a markedly narrower orientation

toward discerning via sensory inputs such as seeing and hearing.

20.3 FOUR KINDS OF AFFORDANCES IN UX DESIGN

20.3.1 Cognitive Affordance
Cognitive affordance is a design feature that helps, aids, supports, facilitates, or

enables thinking, learning, understanding, and knowing about something.

Cognitive affordances play starring roles in interaction design, especially for less

experienced users who need help with understanding and learning.

Because of this role, cognitive affordances are among the most significant

usage-centered design features in present-day interactive systems, screen based

or otherwise. They are the key to answering Norman’s question (1999, p. 39) on

behalf of the user: “How do you know what to do?”

As a simple example, the symbol of an icon that clearly conveys its meaning

could be a cognitive affordance enabling users to understand the icon in terms

of the functionality behind it and the consequences of clicking on it. Another

cognitive affordance might be in the form of a clear and concise button label.

Cognitive affordance is usually associated with the semantics or meaning of

user interface artifacts. In this regard, cognitive affordance is used as feed

forward. It is help with a priori knowledge, that is, knowledge about the

associated functionality before selecting an object such as a button, icon, or

menu choice. In short, a button label helps you in knowing about what

functionality will be invoked if you click on that button.

Communication of meaning via cognitive affordance often depends on shared

conventions.The symbols themselvesmayhaveno inherentmeaning, but a shared

convention about the meaning allows the symbol to convey that meaning.

646 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Another use of cognitive affordance is in feedback—helping a user know what

happened after a button click, for example, and execution of the corresponding

system functionality. Feedback helps users in knowing whether the course of

interaction has been successful so far.

20.3.2 Physical Affordance
Physical affordance is a design feature that helps, aids, supports, facilitates, or

enables doing something physically. Adequate size and easy-to-access location

could be physical affordance features of an interface button design enabling

users to click easily on the button.

Because physical affordance has to do with physical objects, we treat active

interface objects on the screen, for example, as real physical objects, as they can

be on the receiving end of real physical actions (such as clicking or dragging) by

users. Physical affordance is associated with the “operability” characteristics of

such user interface artifacts. As many in the literature have pointed out, it is clear

that a button on a screen cannot really be pressed, which is why we try to use the

terminology “clicking on buttons.”

Physical affordances play a starring role in interaction design for experienced

or power users who have less need for elaborate cognitive affordances but whose

task performance depends largely on the speed of physical actions. Design issues

for physical affordances are about physical characteristics of a device or interface

that afford physical manipulation. Such design issues include Fitts’ law (Fitts,

1954; MacKenzie, 1992), physical disabilities and limitations, and physical

characteristics of interaction devices and interaction techniques.

20.3.3 Sensory Affordance
Sensory affordance is a design feature that helps, aids, supports, facilitates, or

enables user in sensing (e.g., seeing, hearing, feeling) something. Sensory

affordance is associated with the “sense-ability” characteristics of user interface

artifacts, especially when it is used to help the user sense (e.g., see) cognitive

affordances and physical affordances. Design issues for sensory affordances

include noticeability, discernability, legibility (in the case of text), and audibility

(in the case of sound) of features or devices associated with visual, auditory,

haptic/tactile, or other sensations.

While cognitive affordance and physical affordance are stars of interaction

design, sensory affordance plays a critical supporting role. As an example,

the legibility of button label text is supported by an adequate size font and

appropriate color contrast between text and background. In short, sensory

affordance can be thought of as an attribute that affords cognitive affordance

647AFFORDANCES DEMYST IF IED

and physical affordance; users must be able to sense cognitive affordances and

physical affordances in order for them to aid the user’s cognitive and physical

actions.

Why do we call it “sensory affordance” and not “perceptual affordance?”

In the general context of psychology, the concepts of sensing and perception

are intertwined. To avoid this association, we use the term “sensing” instead of

“perception” because it excludes the component of cognition usually

associated with perception (Hochberg, 1964). This allows us to separate the

concepts of sensory and cognitive affordance into mostly non-overlapping

meanings.

While overlapping and borderline cases are interesting to psychologists, HCI

designers need to separate the concepts because design issues for user sensory

actions are almost entirely orthogonal to design issues for cognitive actions.

As an illustration, consider text legibility, which at a low level is about identifying

shapes in displayed text as letters in the alphabet, but not about the meanings of

these letters as grouped into words and sentences.

But text legibility can be an area where user perception, sensing, and

cognition overlap. To make out text that is just barely or almost barely

discernable, users can augment or mediate sensing with cognition, using

inference and the context of words in a message to identify parts of the text that

cannot be recognized by pure sensing alone. Context can make some candidate

letters more likely than others. Users can recognize words in their own language

more easily than words in another language or as groups of nonsense letter

combinations.

In HCI, however, we seek to avoid marginal design and ensure that designs

work for wide-ranging user characteristics. Therefore, we require effective

design solutions for both kinds (sensory and cognitive) of affordances, each

considered separately, in terms of its own characteristics. Simply put, a label in a

user interface that cannot be fully discerned by the relevant user population,

without reliance on cognitive augmentation, is a failed HCI design.

Thus, we wish to define sensing at a level of abstraction that eliminates these

cases of borderline user performance so that HCI designers can achieve

legibility, for example, beyond question for the target user community. In other

words, we desire an understanding of affordance that will guide the HCI

designer to attack a text legibility problem by adjusting the font size, for

example, not by adjusting the wording to make it easier to deduce text displayed

in a tiny font.

In our broadest view, a user’s sensory experience can include gestalt,

even aesthetic, aspects of object appearance and perceptual organization

648 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

(Arnheim, 1954; Koffka, 1935), such as figure–ground relationships, and might

sometimes include some judgment and lexical and syntactic interpretation

in the broadest spatial or auditory sense (e.g., what is this thing I am seeing?),

but does not get into semantic interpretation (e.g., what does it mean?).

In the context of signal processing and communications theory, this kind of

sensing would be about whether messages are received correctly, but not about

whether they are understood.

20.3.4 Functional Affordance
Functional affordances connect physical user actions to invoke system, or back

end, functionality. Functional affordances link usability or UX to usefulness and

add purpose for physical affordance. They are about higher level user

enablement in the work domain and add meaning and goal orientation to

design discussions.

We bring Gibson’s ecological view into contextualized HCI design by

including a purpose in the definition of each physical affordance, namely

associated functional affordance. Putting the user and purpose of the

affordance into the picture harmonizes nicely with our interaction- and

user-oriented view in which an affordance helps or aids the user in doing something.

Yes, a user can click on an empty or inactive part of the screen, but that kind of

clicking is without reference to a purpose and without the requirement or

expectation that any useful reaction by the system will come of it. In the context

of HCI design, a user clicks to accomplish a goal, to achieve a purpose (e.g.,

clicking on a user interface object, or artifact, to select it for manipulation or

clicking on a button labeled “Sort” to invoke a sorting operation).

McGrenere and Ho (2000) also refer to the concept of application

usefulness, something they call “affordances in software,” which are at the

root of supporting a connection between the dual concepts of usability and

usefulness (Landauer, 1995). In an external view it is easy to see a system

function as an affordance because it helps the user do something in the

work domain.

This again demonstrates the need for a richer vocabulary, and conceptual

framework, to take the discussion of affordances beyond user interfaces to

the larger context of overall system design.We use the term functional affordance to

denote this kind of higher level user enablement in the work domain.

20.3.5 Summary of Affordance Types
Table 20-1 contains a summary of these affordance types and their roles in

interaction design.

649AFFORDANCES DEMYST IF IED

20.4 AFFORDANCES IN INTERACTION DESIGN

20.4.1 Communication and Cultural Conventions
An important function of cognitive affordance is communication, agreement

about meaning via words or symbols. Communication is exactly what makes

precise wording effective as a cognitive affordance: something to help the

user in knowing, for example, what to click on. We see symbols, constraints,

and shared conventions as essential underlying mechanisms that make

cognitive affordances work, as Norman (1999) says, as “powerful tools for the

designer.”

In the tradition of The Design of Everyday Things (Norman, 1990), we illustrate

with a simple and ubiquitous non-computer device, a device for opening

doors. The hardware store carries both round doorknobs and lever-type door

handles. The visual design of both kinds conveys a cognitive affordance,

helping users think or know about usage through the implied message

their appearance gives to users: “This is what you use to open the door.”

The doorknob and lever handle each suggests, in its own way, the grasping and

rotating required for operation.

But that message is understood only because of shared cultural conventions.

There is nothing intrinsic in the appearance of a doorknob that necessarily

conveys this information. On another planet, it could seem mysterious and

Table 20-1

Summary of affordance
types

Affordance Type Description Example

Cognitive
affordance

Design feature that helps
users in knowing
something

A button label that helps users know
what will happen if they click on it

Physical
affordance

Design feature that helps
users in doing a physical
action in the interface

A button that is large enough so that
users can click on it accurately

Sensory
affordance

Design feature that helps
users sense something
(especially cognitive
affordances and physical
affordances)

A label font size large enough to be
discerned

Functional
affordance

Design feature that helps
users accomplish work (i.e.,
usefulness of a system
function)

The internal system ability to sort a
series of numbers (invoked by users
clicking on the Sort button)

650 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

confusing, but for us a doorknob is an excellent cognitive affordance

because almost all users do share the same easily recognized cultural

convention.

This “on another planet” idea led to an interesting exercise in a class of

graduate students on how cultural conventions influence our perception of

affordances. We handed out identical empty Coke bottles to several groups and

asked them to look at the bottles, to hold and handle them, and to think about

what kinds of uses the inherent affordances evoke. We wanted them to get down

to Gibson’s ecological level.

Students responded with the usual answers about affordances evinced by

sight and touch. Visually, a Coke bottle has obvious affordances as a vessel to

hold water, it can hold flowers, or it can serve as a rough volume measuring

device. The heft and sturdiness sensed when held in one’s hand indicate

affordances to serve as a paperweight, a plumb bob on a string, or even an oddly

shaped rolling pin.

Then we asked them if they had seen the movie called The Gods Must Be Crazy.

Although this cool movie was apparently before the time of most of them, some

eyebrows were raised in an “ah ha” moment. In this movie, an empty coke bottle

falls out of the sky from a passing airplane and is found by a family of Bushmen in

the deep Kalahari. The Kalahari Bushmen, who have never seen a bottle before,

can rely on only its inherent characteristics as clues to physical affordances

leading to possible uses. The perceived affordances were not influenced by

cultural conventions or practice.

The Bushmen used it for a variety of tasks—to transport water, to pound

soft roots and other vegetation, as an entertainment device when they

figured out how to use it as a whistle, and eventually as a weapon to attack

one another.

That these affordances became so apparent to the Bushmen, but might not

be obvious to most people from an industrialized part of the world, indicates the

impact of social experience and cultural conventions to influence, and even

prejudice, one’s perception of an object’s affordances.

20.4.2 Cognitive Affordance as “Information in the World”
Norman characterizes a view of cognitive affordance that we share (Norman,

1999, p. 39): “When you first see something you have never seen before, how do

you know what to do? The answer, I decided, was that the required information

was in the world: the appearance of the device could provide the critical

clues required for its proper operation.” This view of cognitive affordance as

information in the world to aid understanding is fundamental and resonates

651AFFORDANCES DEMYST IF IED

with the ecological view of Gibson. The attribute that communicates the use

of an object is an integral part of the object. This definitely works for, say, a label

on a user interface button.

20.4.3 Affordance Roles—An Alliance in Design
In most interaction designs, the four types of affordance work together,

connected in the design context of a user’s work environment. To accomplish

work goals, the user must sense, understand, and use affordances within an

interaction design.

Each kind of affordance plays a different role in the design of different

attributes of the same artifact, including design of appearance, content, and

manipulation characteristics to match users’ needs, respectively, in the sensory,

cognitive, and physical actions they make as they progress through the cycle

of actions during task performance.

As Gaver (1991, p. 81) says, thinking of affordances in terms of design roles

“allows us to consider affordances as properties that can be designed and

analysed in their own terms.” Additionally, even though the four affordance

roles must be considered together in an integrated view of artifact design, these

words from Gaver speak to the need to distinguish individually identifiable

affordance roles.

Coming back to the example about devices for opening doors, the simplest is

a round doorknob. Its brass color might be a factor in noticing or finding it

as you approach the door. The familiar location and shape of a doorknob

convey cognitive affordance via the implied message that it is what you use to

open the door. A doorknob also affords physical grasping and rotating for door

operation. Some designs, such as a lever, are considered to give better physical

affordance than that of a round knob because the lever is easier to use with

slippery hands or by an elbow when the hands are full. The push bar on double

doors is another example of a physical affordance helpful to door users with

full hands.

Sometimes the physical affordance to help a user open a door is provided by

the door itself; people can open some swinging doors by just pushing on the

door. In such cases, designers often help users by installing, for example, a

brass plate to show that one should push and where to push. Even though this

plate might help avoid handprints on the door, it is a cognitive affordance and

not a real physical affordance because it adds nothing to the door itself to

help the user in the physical part of the pushing action. Sometimes the word

“push” is engraved in the plate to augment the clarity of meaning as a cognitive

affordance.

652 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Similarly, sometimes the user of a swinging door must open it by pulling. The

door itself does not usually offer sufficient physical affordance for the pulling

action so a pull handle is added. A pull handle offers both cognitive and physical

affordance, providing a physical means for pulling as well as a visual indication

that pulling is required.

As an example of how the concepts might guide HCI designers, suppose the

need arises in an interaction design for a button to give the user access to a

certain application feature or functionality. The designer would do well to

begin by asking if the intended functionality, the functional affordance, is

appropriate and useful to the user. Further interaction design questions are

moot until this is resolved positively.

The designer is then guided to support cognitive affordance in the button

design, to advertise the purpose of the button by ensuring, for example, that its

meaning (in terms of a task-oriented view of its underlying functionality) is

clearly, unambiguously, and completely expressed in the label wording, to

help the user know when it is appropriate to click on the button while

performing a task. Then, the designer is asked to consider sensory affordance

in support of cognitive affordance in the button design, requiring an

appropriate label font size and color contrast, for example, to help the user

discern the label text to read it.

The designer is next led to consider how physical affordance is to be

supported in the button design. For example, the designer should ensure

that the button is large enough to click on it easily to accomplish a step in

a task. Designers should try to locate the button near other artifacts used in

the same and related tasks to minimize mouse movement between task

actions. But also designers should locate each button far enough away from

other, non-related, user interface objects to avoid clicking on them

erroneously.

Finally, the designer is guided to consider sensory affordance in support of

physical affordance in the button design by ensuring that the user notices the

button so that it can be clicked. For example, the button must be a color, size,

and shape that make it noticeable and must be located in the screen layout so

that it is near enough to the user’s focus of attention. If the artifact is a feedback

message, it also requires attention to sensory affordance (e.g., to notice the

feedback), cognitive affordance (e.g., to understand what the message says

about a system outcome), and physical affordance (e.g., to click on a button to

dismiss the message box).

In sum, the concept of affordance does not offer a complete prescriptive

approach to interaction design but does suggest the value of considering all four

653AFFORDANCES DEMYST IF IED

affordance roles together in the design of an interaction artifact by asking

(not necessarily always in this order):

n Is the functionality to which this interaction or artifact gives access useful in achieving

user goals through task performance (functional affordance, or purpose of physical

affordance)?

n Does the design include clear, understandable cues about how to use the artifact

(cognitive affordance) or about system outcomes if the artifact is a feedback message?

n Can users easily sense visual (or other) cues about artifact operation (sensory affordance

in support of cognitive affordance)?

n Is the artifact easy to manipulate by all users in the target user classes (physical

affordance)?

n Can users easily sense the artifact for manipulation (sensory affordance in support of

physical affordance)?

Considering one affordance role but ignoring another is likely to result in a

flawed design. For example, if the wording for a feedback message is carefully

crafted to be clear, complete, and helpful (good cognitive affordance), but users

do not notice the message because it is displayed out of the users’ focus of

attention (poor sensory affordance) or users cannot read it because the font is

too small, the net design is ineffective. A powerful drag-and-drop mechanism

may offer good physical and functional affordance for opening files, but lack of a

sufficient cognitive affordance to show how it works could mean that most users

will not use it.

Another example of a way that cognitive affordance and physical affordance

work together in interaction design can also be seen in the context of

designing constraints for error avoidance. “Graying out” menu items or button

labels to show that inappropriate choices are unavailable at a given point within

a task is a simple, but effective, error avoidance design technique.

This kind of cognitive affordance presents a logical constraint to the user,

showing visually that this choice can be eliminated from possibilities being

considered at this point. In that sense, the grayed-out label is a cognitive

affordance on its own, quite different from the cognitive affordance offered by

the label when it is not grayed out.

If cognitive and physical affordances are connected in the design, a

grayed-out button or menu choice also indicates a physical constraint in

that the physical and functional affordance usually offered by the menu

item or button to access corresponding functionality is disabled so that a

persistent user who clicks on the grayed-out choice anyway cannot cause harm.

654 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Because these two aspects of graying-out work together so well, many people

think of them as a single concept, but the connection of these dual aspects

is important.

20.5 FALSE COGNITIVE AFFORDANCES MISINFORM
AND MISLEAD

Because of the power of cognitive affordances to influence users, misuse of

cognitive affordances in design can be a force against usability and user

experience. When cognitive affordances do not telegraph physical affordances,

it is not helpful.

Worse yet, when cognitive affordances falsely telegraph physical affordances,

it is worse than not helping; it leads users directly to errors. Gibson calls this

“misinformation in affordances”; for example, as conveyed by a glass door that

appears to be an opening but does not afford passage. Draper and Barton (1993)

call these “affordance bugs.”

Sometimes a door has both a push plate and a pull handle as cognitive

affordances in its design. The user sees this combination of cognitive

affordances as an indication that either pushing or pulling can operate this as a

swinging door. When the door is installed or constrained so that it can swing in

only one direction, however, the push plate and pull handle introduce

conflicting information or misinformation in the cognitive affordances that

interfere with the design as a connection to physical affordances.

We know of a door with a push plate and a pull handle that was installed or

latched so that it could only be pushed. A “push” sign hadbeen added, perhaps to

counter the false cognitive affordance of the pull handle. The label, however, was

not always enough to overcome the power of

the pull handle as a cognitive affordance; we

observed some people still grab the handle

and attempt to pull the door open.

Figure 20-1 contains a photograph of a

door sign in a local store that is confusing

because of the conflicts among its cognitive

affordances.

This sign is on the inside of the door. The

explanation from a clerk in the store was that

it really means to enter only from the outside

and not to go through the door from the

inside. One can only nod and sigh. They

Figure 20-1

A door with a confusing
sign containing conflicting
cognitive affordances.

655AFFORDANCES DEMYST IF IED

were probably reusing an available design object, the “Do Not Enter” sign,

instead of tailoring a sign more specific to the usage situation. The resulting

mashup was nonsense.

Another example of a false cognitive affordance showed up in a letter

received recently from an insurance company. There was a form at the

bottom to fill out and return, with this line appearing just above the form, as seen

in Figure 20-2.

Because that dashed line looked so much like the

usual “Cut on this line to detach” cognitive

affordance, one might easily detach the form before realizing that the customer

information above would be lost. A better designmight simply omit this warning

because, without it, the typical user would not even think of ripping the paper.

Examples of false cognitive affordances in user interfaces abound. A common

example is seen in Web page links that look like buttons, but do not behave

like buttons. The gray background of the links in the top menu bar of a digital

library Website,

Figure 20-3, makes them

seem like buttons. A user

might click on the

background, assuming it is part of a button, and not get any result. Because the

“button” is actually just a hyperlink, it requires clicking exactly on the text.

Below-the-fold issues on Web pages can be compounded by having a

horizontal line on a page that happens to fall at the bottom of a screen. Users see

the line, a false affordance, and assume falsely that it is the bottom of the page

and so do not scroll, missing possibly vital information below.

Sometimes a false cognitive affordance arises from deliberate abuse of a

shared convention to deceive the user. Some designers of pop-up

advertisements “booby trap” the “X” box in the upper right-hand corner of the

pop-up window, making it a link to launch one or more new pop-ups when users

click on the “X”, trapping users into seeing more pop-up ads when

their intention clearly was to close the window.

As another example, consider a radio with the slider switch,

sketched in Figure 20-4a, for selecting between stereo andmonaural

FM reception. The names for the switch positions (Stereo, Mono)

are a good match to the user’s model, but the arrows showing which

way to slide the switch are unnecessary and introduce confusion

when combined with the labels.

The design has mixed cognitive affordances: the names of the

modes at the top and bottom of the switch are such a strong

cognitive affordance for the user that they conflict with the arrows.

Figure 20-2

False cognitive affordances
in a form letter that looks
like an affordance to cut.

Figure 20-3

False cognitive affordances
in a menu bar with links
that look like buttons.

Figure 20-4

Radio switch with mixed
affordances.

656 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

The arrows in Figure 20-4a call for

moving the switch up to get monaural

reception and down to get stereo. At first

glance, however, it looks as though the

up position is for stereo (toward the

“stereo” label) and down is for monaural,

but the arrows make the meaning exactly

the opposite. The names alone, as shown

in Figure 20-4b, are the more normal and

natural way to label the switch.

As another example, Figure 20-5 is a

photo of part of the front of an old

microwave. The dial marks between the

settings for “Defrost” and “Cook” seem to indicate a range of possible settings

but, in fact, it is a binary choice: either “Defrost” or “Cook” but nothing in

between. The designer could not resist the temptation to fill in the space between

these choices with misleading “design details” that are false affordances.

As a further example, in Figure 20-6, we see a sign that has made the rounds

on the Internet, mainly because it is so funny. It is an example of a cognitive

affordance that is misleading.

20.6 USER-CREATED AFFORDANCES AS A WAKE-UP
CALL TO DESIGNERS

If a device in the everyday world does not suit the user,

we will frequently see the user modify the apparatus, briefly and unknowingly

switching to the role of designer. We have all seen

the little cognitive orphysical affordances added to

devices by users—Post-it™ notes added to a

computer monitor or keyboard or a better grip

taped to the handle of something. These trails of

user-created artifacts blazed in the wake of

spontaneous formative evaluation in the process of

day-to-day usage are like wake-up messages, telling

designers what the users think they missed in the

design.

A most common example of trails (literally) of

user-made artifacts is seen in the paths worn by

people as they walk. Sidewalk designers usually like

to make the sidewalk patterns regular, symmetric,

Figure 20-5

Useless dial marks between
power settings on a
microwave.

Figure 20-6

Misdirection in a cognitive
affordance.

657AFFORDANCES DEMYST IF IED

and rectilinear. However, the most efficient paths for people getting from one

place to the other are often less tidy but more direct. Wear patterns in the grass

show where people need or want to walk and, thus, where the sidewalks should

have been located. The rare and creative sidewalk designer will wait until seeing

the worn paths, employing the user-made artifacts as clues to drive the design.

Sometimes the affordances are already there but they are not effective. As Gaver

says, when affordances suggest actions different from the way something is

designed, errors are commonand signs arenecessary. The signs are artifacts, added

because the designs themselves did not carry sufficient cognitive affordance.

We have all seen the cobbled design modifications to everyday things,

such as an explanation written on, an important feature highlighted with a circle

or a bright color, a feature (e.g., instructions) moved to a location where it

is more likely to be seen. Users add words or pictures to mechanisms to explain

how to operate them, enhancing cognitive affordance.

Neither do physical affordances escape these design lessons from users. You

see added padding to prevent bruised knuckles. A farmer has a larger handle

welded onto a tractor implement, enhancing physical affordance of the factory-

made handle and its inadequate leverage. User-created artifacts also extend

to sensory affordances.

For example, a homeowner replaces the street number sign onher house with a

larger one, making it easier to see. Such user-made artifacts are a variation on the

“user-derived interfaces” theme of Good et al. (1984), through which designers,

after observing users perform tasks in their own way, modified interaction designs

so that the design would have worked for those users.

Example:

In Figure 20-7, a photo of a glass door in a convenience store, we show an

example of a user-added cognitive affordance. The glass and stainless steel

Figure 20-7

Glass door with a user-
added cognitive affordance
(arrow) indicating proper
operation.

658 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

design is elegant: the perfectly symmetric layout and virtually

unnoticeable hinges contribute to the uncluttered aesthetic

appearance, but these same attributes work against cognitive

affordance for its operation.

The storeowner noticed many people unsure about which side

of the stainless steel bar to push or pull to open the door, often

trying the wrong side first. To help his customers with what should

have been an easy task in the first place, he glued a bright yellow

cardboard arrow to the glass, pointing out the correct place to

operate the door.

Example:

The icons shown in Figure 20-8 are for lightness and darkness

settings on a home office copier/printer, icons with ambiguous

meanings. The icon for lighter copies showed more white but

the white can be interpreted as part of the copy and it seems more

dense than the icon for darker copies so the user had to add his

own label, as you can see in the figure.

These trails of often inelegant but usually effective artifacts added by

frustrated users leave a record of affordance improvements that designers

should consider for all their users. Perhaps if designers of the everyday things

that Norman (1990) discusses had included usability testing in the field, they

would have found these problems before the products went to market.

In the software world, most applications have only very limited capabilities for

users to set their preferences. Would not it be much nicer for software users if

they could modify interaction designs as easily as applying a little duct tape, a

Post-it, or extra paint here and there?

In Figure 20-9 we show how a car owner created an artifact to replace an

inadequate physical affordance—a built-in drink holder that was too small and

too flimsy for today’s super-sized drinks.

During one trip, the user improvised with a

shoe, resulting in this interesting example of

a user-installed artifact.

As an example, consider a desktop printer

used occasionally to print a letter on a single

sheet of letterhead stationery. Inserting the

stationery on top of the existing plain paper

supply in the printer does this rather easily.

The only problem is that it is not easy to

determine the correct orientation of the

sheet to be inserted because:

Figure 20-8

A user-created cognitive
affordance explaining
copier darkness settings.

Figure 20-9

A user-made automobile
cup-holder artifact, used
with permission from
Roundel magazine, BMW
Car Club of America, Inc.
(Howarth, 2002).

659AFFORDANCES DEMYST IF IED

n there is no clear mental model of how the sheet travels

through in the interior mechanism of the printer

n printers can vary in this configuration

n the design of the printer itself gives no cognitive

affordance for loading a single sheet of letterhead

Thus, the user attached his own white adhesive

label, shown in Figure 20-10, that says “Stationery:

upside down, face up,” adding yet another user-

created artifact attesting to inadequate design. As

Norman (1990, p. 9) says, “When simple things need pictures, labels, or

instructions, the design has failed.”

As you know, the world is full of examples of user-created cognitive

affordances, attesting to the need for better design for everyone. As another

example here, in Figure 20-11 we show a road sign at a country road corner in

Maine.

We were looking for the campground and the sign confirmed that we were

close, but we were not sure which way to turn to get there. Then we saw the arrow

that someone else had added on the post to the left of the sign, which helped us

complete our task. It was also an indication that we were not the first to

encounter this UX problem.

20.7 EMOTIONAL AFFORDANCES

Because of the importance of emotional impact as part of the user experience,

we see the possibility of a new type of affordance—an emotional affordance. We

suggest the value of considering emotional affordances in interaction design,

Figure 20-10

A user-created cognitive
affordance to help users
know how to insert blank
letterhead stationery.

Figure 20-11

A user-created cognitive
affordance added to a
roadside sign; see arrow on
post to left of the sign.

660 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

affordances that help lead users to a positive emotional response. This means

features or design elements that make an emotional connection with the user.

These will include design features that connect to our subconscious and

intuitive appreciation of fun, aesthetics, and challenges to growth.

This new kind of affordance plays well into the original Gibson ecological

view of affordances that are about the relationship between a living being

and its environment. This is just what we are talking about with respect to

emotional impact, especially phenomenological aspects. Gibson’s affordances

are about values and meanings that can be perceived directly in the

environment.

Apple products are bristling with emotional affordances, and it is an

operational concept in the automobile design world. The mobile world is trying

to leverage emotional affordances to attract customers. Let us work together to

make this a new kind of affordance in full standing with the others.

Emotional Impact

Emotional impact is the

affective component of user

experience that influences

user feelings. Emotional

impact includes such effects

as pleasure, fun, joy of use,

aesthetics, desirability,

pleasure, novelty,

originality, sensations,

coolness, engagement,

novelty, and appeal and can

involve deeper emotional

factors such as self-

expression, self-identity, a

feeling of contribution to

the world, and pride of

ownership.

661AFFORDANCES DEMYST IF IED

Intentionally left as blank

CHAPTER

The Interaction Cycle and
the User Action Framework 21
Objectives

After reading this chapter, you will:

1. Understand Norman’s stages-of-action model of interaction

2. Understand the gulf of execution and the gulf of evaluation and their importance in

interaction design

3. Understand the basic concepts of the Interaction Cycle and the User Action

Framework (UAF)

4. Know the stages of user actions within the Interaction Cycle

5. Appreciate the role of affordances within the UAF

6. Appreciate the practical value of the UAF

21.1 INTRODUCTION

21.1.1 Interaction Cycle and User Action Framework (UAF)
The Interaction Cycle is our adaptation of Norman’s “stages-of-action” model

(Norman, 1986) that characterizes sequences of user actions typically occurring

in interaction between a human user and almost any kind of machine. The

User Action Framework (Andre et al., 2001) is a structured knowledge base

containing information about UX design, concepts, and issues.

Within each part of the UAF, the knowledge base is organized by immediate

user intentions involving sensory, cognitive, or physical actions. Below that

level the organization follows principles and guidelines and becomes more

detailed and more particularized to specific design situations as one goes

deeper into the structure.

To clarify the distinction, the Interaction Cycle is a representation of user

interaction sequences and the User Action Framework is a knowledge base of

interaction design concepts, the top level of which is organized as the stages of

the Interaction Cycle.

21.1.2 Need for a Theory-Based Conceptual Framework
As Gray and Salzman (1998, p. 241) have noted, “To the naı̈ve observer it might

seem obvious that the field of HCI would have a set of common categories

with which to discuss one of its most basic concepts: Usability. We do not. Instead

we have a hodgepodge collection of do-it-yourself categories and various

collections of rules-of-thumb.”

As Gray and Salzman (1998) continue, “Developing a common categorization

scheme, preferably one grounded in theory, would allow us to compare types of

usability problems across different types of software and interfaces.” We believe

that the Interaction Cycle and User Action Framework help meet this need.

They are an attempt to provide UX practitioners with a way to frame design

issues and UX problem data within the structure of how designs support user

actions and intentions.

As Lohse et al. (1994) state, “Classification lies at the heart of every scientific

field. Classifications structure domains of systematic inquiry and provide

concepts for developing theories to identify anomalies and to predict future

research needs.” The UAF is such a classification structure for UX design

concepts, issues, and principles, designed to:

n Give structure to the large number of interaction design principles, issues, and

concepts

n Offer a more standardized vocabulary for UX practitioners in discussing interaction

design situations and UX problems

n Provide the basis formore thorough and accurate UXproblem analysis and diagnosis

n Foster precision and completeness of UX problem reports based on essential

distinguishing characteristics

Although we include a few examples of design and UX problem issues to

illustrate aspects and categories of the UAF in this chapter, the bulk of such

examples appear with the design guidelines (Chapter 22), organized on the

UAF structure.

21.2 THE INTERACTION CYCLE

21.2.1 Norman’s Stages-of-Action Model of Interaction
Norman’s stages-of-actionmodel, illustratedinFigure21-1, showsageneric viewofa

typical sequence of user actions as a user interacts with almost any kind ofmachine.

The stages of action naturally divide into threemajor kinds of user activity. On

the execution (Figure 21-1, left) side, the user typically begins at the top of the

664 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

figure by establishing a goal,

decomposing goals into tasks

and intentions, and mapping

intentions to action sequence

specifications. The user

manipulates system controls

by executing the physical

actions (Figure 21-1, bottom

left), which cause internal

system state changes

(outcomes) in the world

(the system) at the bottom

of the figure.

On the evaluation

(Figure 21-1, right) side, users

perceive, interpret, and

evaluate the outcomes with respect to goals and intentions through perceiving

the system state by sensing feedback from the system (state changes in “the

world” or the system). Interaction success is evaluated by comparing outcomes

with the original goals. The interaction is successful if the actions in the cycle so

far have brought the user closer to the goals.

Norman’s model, along with the structure of the analytic evaluation method

called the cognitive walkthrough (Lewis et al., 1990), had an essential influence

on our Interaction Cycle. Both ask questions about whether the user can

determine what to do with the system to achieve a goal in the work domain,

how to do it in terms of user actions, how easily the user can perform the

required physical actions, and (to a lesser extent in the cognitive walkthrough

method) how well the user can tell whether the actions were successful in

moving toward task completion.

21.2.2 Gulfs between User and System
Originally conceived by Hutchins, Hollan, and Norman (1986), the gulfs of

execution and evaluation were described further by Norman (1986). The two

gulfs represent places where interaction can be most difficult for users and

where designers need to pay special attention to designing to help users. In the

gulf of execution, users need help in knowing what actions to make on what

objects. In the gulf of evaluation, users need help in knowing whether their

actions had the expected outcomes.

Figure 21-1

Norman’s (1990) stages-of-
action model, adapted with
permission.

665THE INTERACT ION CYCLE AND THE USER ACT ION FRAMEWORK

The gulf of execution
The gulf of execution, on the left-hand side of the stages-of-action model in

Figure 21-1, is a kind of language gap—from user to system. The user thinks of

goals in the language of the work domain. In order to act upon the system to

pursue these goals, their intentions in the work domain language must be

translated into the language of physical actions and the physical system.

As a simple example, consider a user composing a letter with a word

processor. The letter is a work domain element, and the word processor is part of

the system. The work domain goal of “creating a permanent record of the letter”

translates to the system domain intention of “saving the file,” which translates to

the action sequence of “clicking on the Save icon.” A mapping or translation

between the two domains is needed to bridge the gulf.

Let us revisit the example of a thermostat on a furnace from Chapter 8.

Suppose that a user is feeling chilly while sitting at home. The user formulates a

simple goal, expressed in the language of the work domain (in this case the daily

living domain), “to feel warmer.” To meet this goal, something must happen in

the physical system domain. The ignition function and air blower, for example, of

the furnacemust be activated. To achieve this outcome in the physical domain, the

user must translate the work domain goal into an action sequence in the physical

(system) domain, namely to set the thermostat to the desired temperature.

The gulf of execution lies between the user knowing the effect that is desired and what

to do to the system to make it happen. In this example, there is a cognitive

disconnect for the user in that the physical variables to be controlled

(burning fuel and blowing air) are not the ones the user cares about (being

warm). The gulf of execution can be bridged from either direction—from the

user and/or from the system. Bridging from the user’s side means teaching

the user about what has to happen in the system to achieve goals in the work

domain. Bridging from the system’s side means building in help to support

the user by hiding the need for translation, keeping the problem couched in

work domain language. The thermostat does a little of each—its operation

depends on a shared knowledge of how thermostats work but it also shows a

way to set the temperature visually.

To avoid having to train all users, the interaction designer can take

responsibility to bridge the gulf of execution from the system’s side by an

effective conceptual design to help the user form a correct mental model.

Failure of the interaction design to bridge the gulf of execution will be

evidenced in observations of hesitation or task blockage before a user action

because the user does not know what action to take or cannot predict the

consequences of taking an action.

666 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

In the thermostat example the gap is not very large, but this next example is a

definitive illustration of the language differences between the work domain and

the physical system. This example is about a toaster that we observed at a hotel

brunch buffet. Users put bread on the input side of a conveyor belt going into

the toaster system. Inside were overhead heating coils and the bread came out

the other end as toast.

The machine had a single control, a knob labeled Speed with additional

labels for Faster (clockwise rotation of the knob) and Slower (counterclockwise

rotation). A slower moving belt makes darker toast because the bread is under

the heating coils longer; faster movement means lighter toast. Even though

this concept is simple, there was a distinct language gulf and it led to a bit of

confusion and discussion on the part of users we observed. The concept of speed

somehow just did not match their mental model of toast making. We even

heard one person ask “Why dowehave a knob to control toaster speed?Whywould

anyone want to wait to make toast slowly when they could get it faster?” The knob

had been labeled with the language of the system’s physical control domain.

Indeed, the knob did make the belt move faster or slower. But the user

does not really care about the physics of the system domain; the user is living in

the work domain of making toast. In that domain, the system control terms

translate to “lighter” and “darker.” These terms would have made a much more

effective design for knob labels by helping bridge the gulf of execution from

the system toward the user.

The gulf of evaluation
The gulf of evaluation, on the right side of the stages-of-action model in

Figure 21-1, is the same kind of language gap, only in the other direction. The

ability of users to assess outcomes of their actions depends on how well the

interaction design supports their comprehension of the system state through

their understanding of system feedback.

System state is a function of internal system variables, and it is the job of the

interaction designer who creates the display of system feedback to bridge the

gulf by translating a description of system state into the language of the user’s

work domain so that outcomes can be compared with the goals and intentions to

assess the success of the interaction.

Failure of the interaction design to bridge the gulf of evaluation will be

evidenced in observations of hesitation or task blockage after a user action

because the user does not understand feedback and does not fully know what

happened as a result of the action.

667THE INTERACT ION CYCLE AND THE USER ACT ION FRAMEWORK

21.2.3 From Norman’s Model to Our Interaction Cycle
We adapted and extended Norman’s theory of action model of Figure 21-1 into

what we call the Interaction Cycle, which is also a model of user actions that occur in

typical sequences of interaction between a human user and a machine.

Partitioning the model
Because the early part of Norman’s execution side was about planning of goals

and intentions, we call it the planning part of the cycle. Planning includes

formulating goal and task hierarchies, as well as decomposition and

identification of specific intentions.

Planning is followed by formulation of the specific actions (on the system) to

carry out each intention, a cognitive action we call translation. Because of the

special importance to the interaction designer of describing action and the

special importance to the user of knowing these actions, we made translation a

separate part of the Interaction Cycle.

Norman’s “execution of the action sequence” component maps directly into

what we call the physical actions part of the Interaction Cycle. Because Norman’s

evaluation side is where users assess the outcome of each physical action

based on system feedback, we call it the assessment part.

Adding outcomes and system response
Finally, we added the concepts of outcomes and a system response, resulting in

the mapping to the Interaction Cycle as shown in Figure 21-2. Outcomes is

represented as a “floating” sector between physical actions and assessment in

the Interaction Cycle because the Interaction Cycle is about user interaction

and what happens in outcomes is entirely internal to the system and not

part of what the user sees or does. The system response, which includes all

system feedback and which occurs at the beginning of and as an input to the

assessment part, tells users about the outcomes.

The resulting Interaction Cycle
We abstracted Norman’s stages into the basic kinds of user activities within our

Interaction Cycle, as shown in Figure 21-2.

The importance of translation to the Interaction Cycle and its significance

in design for a high-quality user experience is, in fact, so great that we made

the relative sizes of the “wedges” of the Interaction Cycle parts represent the

weight of this importance visually.

668 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Example: Creating a Business Report as a Task within
the Interaction Cycle
Let us say that the task of creating a quarterly report to management

on the financial status of a company breaks down into these basic steps:

n Calculate monthly profits for last quarter

n Write summary, including graphs, to show company performance

n Create table of contents

n Print the report

In this kind of task decomposition it is common that some steps are more

or less granular than others, meaning that some steps will decompose into

more sub-steps and more details than others. As an example, Step 1 might

decompose into these sub-steps:

n Open spreadsheet program

n Call accounting department and ask for numbers for each month

Figure 21-2

Transition from Norman’s
model to our Interaction
Cycle.

669THE INTERACT ION CYCLE AND THE USER ACT ION FRAMEWORK

n Create column headers in spreadsheet for expenses and revenues in each product

category

n Compute profits

The first step here, to open a spreadsheet program, might correspond to

a simple pass through the Interaction Cycle. The second step is a non-system

task that interrupts the workflow temporarily. The third and fourth steps could

take several passes through the Interaction Cycle.

Let us look at the “Print report” task step within the Interaction Cycle. The

first intention for this task is the “getting started intention”; the user intends to

invoke the print function, taking the task from the work domain into the

computer domain. In this particular case, the user does not do further planning

at this point, expecting the feedback from acting on this intention to lead to the

next natural intention.

To translate this first intention into an action specification in the language of

the actions and objects within the computer interface, the user draws on

experiential knowledge and/or the cognitive affordances (Chapter 20)

provided by display of the Print choice in the File menu to create the action

specification to select “Print. . .”. A more experienced user might translate the

intention subconsciously or automatically to the short-cut actions of typing

“Ctrl-P” or clicking on the Print icon.

The user then carries out this action specification by doing the corresponding

physical action, the actual clicking on the Print menu choice. The system accepts

the menu choice, changes state internally (the outcomes of the action), and

displays the Print dialogue box as feedback. The user sees the feedback and uses

it for assessment of the outcome so far. Because the dialogue box makes sense to

the user at this point in the interaction, the outcome is considered to be

favorable, that is, leading to accomplishment of the user’s intention and

indicating successful planning and action so far.

21.2.4 Cooperative User-System Task Performance
within the Interaction Cycle

Primary tasks
Primary tasks are tasks that have direct work-related goals. The task in the

previous example of creating a business report is a primary task. Primary

tasks can be user initiated or initiated by the environment, the system, or other

users. Primary tasks usually represent simple, linear paths through the

Interaction Cycle.

670 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

User-initiated tasks. The usual linear path of user-system turn taking going

counterclockwise around the Interaction Cycle represents a user-initiated task

because it starts with user planning and translation.

Tasks initiated by environment, system, or other users. When a user task is initiated

by events that occur outside that user’s Interaction Cycle, the user actions

become reactive. The user’s cycle of interaction begins at the outcomes part,

followed by the user sensing the subsequent system response in a feedback

output display and thereafter reacting to it.

Path variations in the Interaction Cycle
For all but the simplest tasks, interaction can take alternative, possibly

nonlinear, paths. Although user-initiated tasks usually begin with some kind

of planning, Norman (1986) emphasizes that interaction does not necessarily

follow a simple cycle of actions. Some activities will appear out of order or

be omitted or repeated. In addition, the user’s interaction process can

flow around the Interaction Cycle at almost any level of task/action

granularity.

Multiuser tasks.When the Interaction Cycles of two or more users interleave in

a cooperative work environment, one user will enter inputs through physical

actions (Figure 21-3) and another user will assess (sense, interpret, and evaluate)

Figure 21-3

Multiuser interaction,
system events, and
asynchronous external
events within multiple
Interaction Cycles.

671THE INTERACT ION CYCLE AND THE USER ACT ION FRAMEWORK

the system response, as viewed in a shared workspace, revealing system

outcomes due to the first user’s actions. For the user who initiated the exchange,

the cycle begins with planning, but for the other users, interaction begins by

sensing the system response and goes through assessment of what happened

before it becomes that second user’s turn for planning for the next round of

interaction.

Secondary tasks, intention shifts, and stacking
Secondary tasks and intention shifts. Kaur, Maiden, and Sutcliffe (1999), who based

an inspection method primarily for virtual environment applications on

Norman’s stages of action, recognized the need to interrupt primary work-

oriented tasks with secondary tasks to accommodate intention shifts,

exploration, information seeking, and error handling. Kaur, Maiden, and

Sutcliffe (1999) created different and separate kinds of Interaction Cycles for

these cases, but from our perspective, these cases are just variations in flow

through the same Interaction Cycle.

Secondary tasks are “overhead” tasks in that the goals are less directly related

to the work domain and usually oriented more toward dealing with the

computer as an artifact, such as error recovery or learning about the interface.

Secondary tasks often stem from changes of plans or intention shifts that arise

during task performance; something happens that reminds the user of other

things that need to be done or that arise out of the need for error recovery.

For example, the need to explore can arise in response to a specific

information need, when users cannot translate an intention to an action

specification because they cannot see an object that is appropriate for such an

action. Then they have to search for such an object or cognitive affordance, such

as a label on a button or a menu choice that matches the desired action

(Chapter 20).

Stacking and restoring task context. Stacking and restoring of work context

during the execution of a program is an established software concept. Humans

must do the same during the execution of their tasks due to spontaneous

intention shifts. Interaction Cycles required to support primary and secondary

tasks are just variations of the basic Interaction Cycle. However, the storing

and restoring of task contexts in the transition between such tasks impose a

human memory load on the user, which could require explicit support in the

interaction design. Secondary tasks also often require considerable judgment

on the part of the user when it comes to assessment. For example, an exploration

task might be considered “successful” when users are satisfied that they have

had enough or get tired and give it up.

672 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Example of stacking due to intention shift. To use the previous example of

creating a business report to illustrate stacking due to a spontaneous intention

shift, suppose the user has finished the task step “Print the report” and is

ready to move on. However, upon looking at the printed report, the user

does not like the way it turned out and decides to reformat the report.

The user has to take some time to go learn more about how to format it

better. The printing task is stacked temporarily while the user takes up the

information-seeking task.

Such a change of plan causes an interruption in the task flow and normal task

planning, requiring the user mentally to “stack” the current goal, task, and/or

intention while tending to the interrupting task, as shown in Figure 21-4. As the

primary task is suspended in mid-cycle, the user starts a new Interaction Cycle at

planning for the secondary task. Eventually the user can unstack each goal and task

successively and return to the main task.

Figure 21-4

Stacking and returning to
Interaction Cycle task
context instances.

673THE INTERACT ION CYCLE AND THE USER ACT ION FRAMEWORK

21.3 THE USER ACTION FRAMEWORK—ADDING
A STRUCTURED KNOWLEDGE BASE TO THE
INTERACTION CYCLE

21.3.1 From the Interaction Cycle to the User Action
Framework
As shown in Figure 21-5, we use stages of the Interaction Cycle as the high-level

organizing scheme of theUAF. TheUAF is a hierarchically structured, interaction

style-independent and platform-independent, knowledge base of UX principles,

issues, and concepts. The UAF is focused on interaction designs and how they

support and affect the user during interaction for task performance as the user

makes cognitive, physical, or sensory actions in each part of the Interaction Cycle.

21.3.2 Interaction Style and Device Independent
The Interaction Cycle was an ideal starting point for the UAF because it is a

model of sequences of sensory, cognitive, and physical actions users make when

interacting with any kind of machine, and it is general enough to include

potentially all interaction styles, platforms, and devices. As a result, the UAF is

applicable or extensible to virtually any interaction style, such as GUIs, the Web,

virtual environments, 3D interaction, collaborative applications, PDA and

cellphone applications, refrigerators, ATMs, cars, elevators, embedded computing,

situated interaction, and interaction styles on platforms not yet invented.

21.3.3 Common Design Concepts Are Distributed
The stage of action in the Interaction Cycle is at the top level of the User Action

Framework. Consider the translation stage, for example. At the next level, design

issues under translation will appear under various attributes such as sensory

affordances and cognitive affordances. Under sensory actions, you will see

various issues about presentation of cognitive affordances for translation, such

Figure 21-5

Basic kinds of user actions
in the Interaction Cycle as
the top-level UAF structure.

674 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

as visibility, noticeability, and legibility. Under cognitive actions you will

see issues about cognitive affordances, such as clarity of meaning and precise

wording.

Eventually, at lower levels, you will see that common UX design issues such as

consistency, simplicity, the user’s language, and concise and clear use of

language are distributed with lots of overlap and sharing throughout the

structure where they are applied to each of the various kinds of interaction

situations. For example, an issue such as clarity of expression (precise use of

language) can show up in its own way in planning, translation, and assessment.

This allows the designer, or evaluator, to focus on how the concepts apply

specifically in helping the user at each stage of the Interaction Cycle, for

example, how precise use of wording applies to either the label of a button used

to exit a dialogue box or the wording of an error message.

21.3.4 Completeness
We have tried to make the UAF as complete as possible. As more and more real-

world UX data were fitted into the UAF, the structure grew with new categories

and subcategories, representing an increasingly broader scope of UX and

interaction design concepts. The UAF converged and stabilized over its

several years of development so that, as we continue to analyze newUXproblems

and their causes, additions of new concepts to the UAF are becoming more

and more rare.

However, absolute completeness is neither feasible nor necessary. We expect

there will always be occasional additions, and the UAF is designed explicitly for

long-term extensibility and maintainability. In fact, the UAF structure is “self

extensible” in the sense that, if a new category is necessary, a search of the UAF

structure for that category will identify where it should be located.

21.4 INTERACTION CYCLE AND USER ACTION
FRAMEWORK CONTENT CATEGORIES

Here we give just an overview of top-level UAF categories, the content for each is

stated abstractly in terms of UX design concepts and issues. In practice, these

concepts can be used in several ways, including as a learning tool (students learn

the concept), a design guideline (an imperative statement), in analytic

evaluation (as a question about whether a particular part of a design supports

the concept), and as a diagnostic tool (as a question about whether a UX

problem in question is a violation of a concept).

675THE INTERACT ION CYCLE AND THE USER ACT ION FRAMEWORK

Each concept at the top decomposes further into a hierarchy of successively

detailed descriptions of interaction design concepts and issues in the over

300 nodes of the full UAF. As an example of the hierarchical structure, consider

this breakdown of some translation topics:

Translation

Presentation of a cognitive affordance to support translation

Legibility, visibility, noticeability of the cognitive affordance

Fonts, color, layout

Font color, color contrast with background

21.4.1 Planning (Design Helping User Know What to Do)
Planning is the part of the Interaction Cycle containing all cognitive actions by

users to determine “what to do?” or “what can I do?” using the system to achieve

work domain goals. Although many variations occur, a typical sequence of

planning activities involves these steps, not always this clear cut, to establish a

hierarchy of plan entities:

n Identify work needs in the subject matter domain (e.g., communicate with someone in

writing)

n Establish goals in the work domain tomeet these work needs (e.g., produce a business

letter)

n Divide goals into tasks performed on the computer to achieve the goals (e.g., type

content, format the page)

n Spawn intentions to perform the steps of each task (e.g., set the left margin)

After each traversal of the Interaction Cycle, the user typically returns to

planning and establishes a new goal, intention, and/or task.

Planning concepts
Interaction design support for user planning is concerned with how well the

design helps users understand the overall computer application relative to the

perspective of work context, the work domain, and environmental requirements

and constraints in order to determine in general how to use the system to

solve problems and get work done. Planning support has to do with the system

model, conceptual design, and metaphors, the user’s awareness of system

features and capabilities (what the user can do with the system), and the user’s

knowledge of possible system modalities. Planning is about user strategies for

approaching the system to get work done.

676 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Planning content in the UAF
UAF content under planning is about how an interaction design helps users

plan goals and tasks and understand how to use the system. This part of the

UAF contains interaction design issues about supporting users in planning

the use of the system to accomplish work in the application domain. These

concepts are addressed in specific child nodes about the following topics:

User model and high-level understanding of system. Pertains to issues about

supporting user acquisition of a high-level understanding of the system

concept as manifest in the interaction design. Elucidates issues about how

well the interaction design matches users’ conception of system and user

beliefs and expectations, bringing different parts of the system together as a

cohesive whole.

Goal decomposition. Pertains to issues about supporting user decomposition of

tasks to accomplish higher-level work domain goals. This category includes

issues about accommodating human memory limitations in interaction designs

to help users deal with complex goals and tasks, avoid stacking and interruption,

and achieve task and subtask closure as soon as possible. This category also

includes issues about supporting user’s conception of task organization,

accounting for goal, task, and intention shifts, and providing user ability to

represent high-level goals effectively.

Task/step structuring and sequencing, workflow. Pertains to issues about

supporting user’s ability to structure tasks within planning by establishing

sequences of tasks and/or steps to accomplish goals, including getting started

on tasks. This category includes issues about appropriateness of task flow and

workflow in the design for the target work domain.

User work context, environment. Pertains to issues about supporting user’s

knowledge (for planning) of problem domain context, and constraints in work

environment, including environmental factors, such as noise, lighting,

interference, and distraction. This category addresses issues about how non-

system tasks such as interacting with other people or systems relate to planning

task performance in the design.

User knowledge of system state, modalities, and especially active modes. Pertains

to supporting user knowledge of system state, modalities, and active modes.

Supporting learning at the planning level through use and exploration. Pertains to

supporting user’s learning about system conceptual design through exploratory

and regular use. This category addresses issues about learnability of conceptual

design rationale through consistency and explanations in design, and about

what the system can help the user do in the work domain.

677THE INTERACT ION CYCLE AND THE USER ACT ION FRAMEWORK

21.4.2 Translation (Design Helping User Know
How to Do Something)
Translation concerns the lowest level of task preparation. Translation includes

anything that has to do with deciding how you can or should make an action on

an object, including the user thinking about which action to take or on what

object to take it, or what might be best action to take next within a task.

Translation is the part of the Interaction Cycle that contains all cognitive

actions by users to determine how to carry out the intentions that arise in

planning. Translation results in what Norman (1986) calls an “action

specification,” a description of a physical action on an interface object, such

as “click and drag the document file icon,” using the computer to carry out

an intention.

Translation concepts
Planning and translation can both seem like some kind of planning, as they both

occur before physical actions, but have a distinctive difference. Planning is

higher level goal formation, and translation is a lower level decision about which

action to make on which object.

Here is a simple example about driving a car. Planning for a trip in the car

involves thinking about traveling to get somewhere, involving questions such

as “where are you going,” “by what route,” and do we need to stop and get gas

and/or groceries first?” So planning is in the work domain, which is travel, not

operating the car.

In contrast, translation takes the user into the system, machine, or physical

world domain and is about formulating actions to operate the gas pedal, brake,

and steering wheel to accomplish the tasks that will help you reach your

planning, or travel, goals. Because steps such as “turn on headlight switch,”

“push horn button,” and “push brake pedal” are actions on objects, they are

the stuff of translation.

Over the bulk of interaction that occurs in the real world, translation is

arguably the single-most important step because it is about how you do things.

Translation is perhaps the most challenging part of the cycle for both users and

designers. From our own experience over the years, we guess that the largest

bulk of UX problems observed in UX testing, 75% or more, falls into this

category.

This experience is also reflected by that of Cuomo and Bowen (1992),

who also classified UX problems per Norman’s theory of action and found

the majority of problems in the action specification stage (translation).

Clearly, translation deserves special attention in a UX and interaction

design context.

678 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Translation content in the UAF
UAF content under translation is about how an interaction design helps users

know what actions to take to carry out a given intention. This part of the UAF

contains interaction design issues about the effectiveness of sensory and

cognitive affordances, such as labels, used to support user needs to determine

(know) how to do a task step in terms of what actions to make on which UI

objects and how. These concepts are addressed in specific child nodes about the

following topics:

Existence of a cognitive affordance to show how to do something. Pertains to issues

about ensuring existence of needed cognitive affordances in support of user

cognitive actions to determine how to do something (e.g., task step) in terms of

what action to make on what UI object and how. This category includes cases of

necessary but missing cognitive affordances, but also cases of unnecessary or

undesirable but existing cognitive affordances.

Presentation (of a cognitive affordance). Pertains to issues about effective

presentation or appearance in support of user sensing of cognitive affordances.

This category includes issues involving legibility, noticeability, timing of

presentation, layout and spatial grouping, complexity, and consistency of

presentation, as well as presentation medium (e.g., audio, when needed) and

graphical aspects of presentation. Anexample issuemight be about presenting the

textof a button label in the correct font size andcolor so that it canbe read/sensed.

Content, meaning (of a cognitive affordance). Pertains to issues about user

understanding and comprehension of cognitive affordance content and

meaning in support of user ability to determine what action(s) to make and on

what object(s) for a task step. This category includes issues involving clarity,

precision, predictability of the effects of a user action, error avoidance, and

effectiveness of content expression. As an example, precise wording in labels

helps user predict consequences of selection. Clarity of meaning helps users

avoid errors.

Task structure, interaction control, preferences and efficiency. Pertains to issues

about logical structure and flow of task and task steps in support of user needs

within task performance. This category includes issues about alternative ways to

do tasks, shortcuts, direct interaction, and task thread continuity (supporting

the most likely next step). This category also includes issues involving task

structure simplicity, efficiency, locus of user control, human memory

limitations, and accommodating different user classes.

Support of user learning about what actions to make on which UI objects and how

through regular and exploratory use. Pertains to issues about supporting user

learning at the action-object level through consistency and explanations in

the design.

679THE INTERACT ION CYCLE AND THE USER ACT ION FRAMEWORK

21.4.3 Physical Actions (Design Helping User
Do the Actions)
After users decide which actions to take, the physical actions part of the

Interaction Cycle is where users do the actions. This part includes all user inputs

acting on devices and user interface objects to manipulate the system, including

typing, clicking, dragging, touching, gestures, and navigational actions, such as

walking in virtual environments. The physical actions part of the Interaction

Cycle includes no cognitive actions; thus, this part is not about thinking about the

actions or determining which actions to do.

Physical actions—concepts
This part of the Interaction Cycle has two components: (2) sensing the objects in

order to manipulate them and (2) manipulation. In order to manipulate an

object in the user interface, the user must be able to sense, for example, see,

hear, or feel, the object, which can depend on the usual sensory affordance

issues as object size, color, contrast, location, and timing of its display.

Physical actions are especially important for analysis of performance by

expert users who have, to some extent, “automated” planning and translation

associated with a task and for whom physical actions have become the limiting

factor in task performance.

Physical affordance design factors include design of input/output devices

(e.g., touchscreen design or keyboard layout), haptic devices, interaction

styles and techniques, direct manipulation issues, gestural body movements,

physical fatigue, and such physical human factors issues as manual dexterity,

hand–eye coordination, layout, interaction using two hands and feet, and

physical disabilities.

Fitts’ law. The practical implications of Fitts’ law (Fitts, 1954; Fitts & Peterson,

1964) are important in the physical actions part of the Interaction Cycle.

Users vary considerably in their natural manual dexterity, but all users are

governed by Fitts’ law with respect to certain kinds of physical movement during

interaction, especially cursor movement for object selection and dragging

and dropping objects.

Fitts’ law is an empirically based mathematical formula governing movement

from an initial position to a target at a terminal position. The time to make

the movement is proportional to the log2 of the distance and inversely

proportional to log2 of the width or cross-section of the target normal to the

direction of the motion.

680 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

First applied in HCI, to the new concept of a mouse cursor control device

by Card, English, and Burr (1978), it has since been the topic of many HCI

studies and publications. Among themost well known of these developments are

those of McKenzie (1992).

Fitts’ law has been modified and adapted to many other interaction

situations, including among many, two-dimensional tasks (MacKenzie &

Buxton, 1992), pointing and dragging (Gillan et al., 1990) trajectory-based tasks

(Accot & Zhai, 1997), and moving interaction from visual to auditory and tactile

designs (Friedlander, Schlueter, & Mantei, 1998).

When Fitts’ law is applied in a bounded work area, such as a computer screen,

boundary conditions impose exceptions. If the edge of the screen is the “target,”

for example, movement can be extremely fast because it is constrained to stop

when you get to the edge without any overshoot.

Other software modifications of cursor and object behavior to exceed the

user performance predicted by this law include cursor movement accelerators

and the “snap to default” cursor feature. Such features put the cursor where

the user is most likely to need it, for example, the default button within a

dialogue box. Another attempt to beat Fitts’ law predictions is based on selection

using area cursors (Kabbash & Buxton, 1995), a technique in which the active

pointing part of the cursor is two dimensional, making selection more like

hitting with a “fly swatter” than with a precise pointer.

One interesting software innovation for outdoing Fitts’ limitations is called

“snap-dragging” (Bier, 1990; Bier & Stone, 1986), which, in addition to many

other enhanced graphics-drawing capabilities, imbues potential target objects

with a kind of magnetic power to draw in an approaching cursor, “snapping” the

cursor home into the target.

Another attempt to beat Fitts’ law is to ease the object selection task with user

interface objects that expand in size as the cursor comes into proximity

(McGuffin & Balakrishnan, 2005). This approach allows conservation of screen

space with small initial object sizes, but increased user performance with larger

object sizes for selection.

Another “invention” that addresses the Fitts’ law trade-off of speed versus

accuracy of cursor movement for menu selection is the pie menu (Callahan

et al., 1988). Menu choices are represented by slices or wedges in a pie

configuration. The cursor movement from one selection to another can be

tailored continuously by users tomatch their own sense of their personal manual

dexterity. Near the outer portions of the pie, at large radii, movement to the next

choice is slower but more accurate because the area of each choice is larger.

681THE INTERACT ION CYCLE AND THE USER ACT ION FRAMEWORK

Movement near the center of the pie is much faster between choices but,

because they are much closer together, selection errors are more likely.

Several design guidelines relate Fitts’ law to manual dexterity in interaction

design in Chapter 22.

Haptics and physicality. Haptics is about the sense of touch and the physical

contact between user and machine through interaction devices. In addition to

the usual mouse as cursor control, there are many other devices, each with

its own haptic issues about how best to support natural interaction, including

joysticks, touchscreens, touchpads, eye tracking, voice, trackballs, data gloves,

body suits, head-mounted displays, and gestural interaction.

Physicality is about real physical interaction with real devices such as physical

knobs and levers. It is about issues such as using real physical tuning and volume

control knobs on a radio as opposed to electronic push buttons for the same

control functions.

Norman (2007b) called that feeling of grabbing and turning a real knob

“physicality.” He claims, and we agree, that with real physical knobs, you get

more of a feeling of direct control of physical outcomes.

Several design guidelines in Chapter 22 relate haptics to physicality in

interaction design.

Physical actions content in the UAF
UAF content under physical actions is about how an interaction design helps

users actually make actions on objects (e.g., typing, clicking, and dragging in a

GUI, scrolling on aWeb page, speaking with a voice interface, walking in a virtual

environment, hand movements in gestural interaction, gazing with eyes). This

part of the UAF contains design issues pertaining to the support of users in

doing physical actions. These concepts are addressed in specific child nodes

about the following topics:

Existence of necessary physical affordances in user interface. Pertains to issues about

providing physical affordances (e.g., UI objects to act upon) in support of users

doing physical actions to access all features and functionality provided by the

system.

Sensing UI objects for and during manipulation. This category includes the

support of user sensory (visual, auditory, tactile, etc.) needs in regard to sensing

UI objects for and during manipulation (e.g., user ability to notice and locate

physical affordance UI objects to manipulate).

Manipulating UI objects, making physical actions. A primary concern in this UAF

category is the support of user physical needs at the time of actually making

physical actions, especially making physical actions efficient for expert users.

682 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

This category includes how each UI object is manipulated and howmanipulable

UI objects operate.

Making UI object manipulation physically easy involves controls, UI object

layout, interaction complexity, input/output devices, interaction styles and

techniques. Finally, this is the category in which you consider Fitts’ law issues

having to do with the proximity of objects involved in task sequence actions.

21.4.4 Outcomes (Internal, Invisible Effect/Result
within System)
Physical user actions are seen by the system as inputs and usually trigger a

system function that can lead to system state changes that we call outcomes of

the interaction. The outcomes part of the Interaction Cycle represents the

system’s turn to do something that usually involves computation by the non-

user-interface software or, as it is sometimes called, core functionality. One

possible outcome is a failure to achieve an expected or desired state change, as

in the case of a user error.

Outcomes—concepts
A user action is not always required to produce a system response. The system

can also autonomously produce an outcome, possibly in response to an internal

event such as a disk getting full; an event in the environment sensed by the

system such as a process control alarm; or the physical actions of other users in a

shared work environment.

The system functions that produce outcomes are purely internal to the system

and do not involve the user. Consequently, outcomes are technically not part of

the user’s Interaction Cycle, and the only UX issues associated with outcomes

might be about usefulness or functional affordance of the non-user-interface

system functionality.

Because internal system state changes are not directly visible to the

user, outcomes must be revealed to the user via system feedback or a display

of results, to be evaluated by the user in the assessment part of the Interaction

Cycle.

Outcomes content in the UAF
UAF content under outcomes is about the effectiveness of the internal (non-

user-interface) system functionality behind the user interface. None of the

issues in this UAF category are directly related to the interaction design. However,

the lack of necessary functionality can have a negative affect on the user

experience because of insufficient usefulness. This part of theUAF contains issues

683THE INTERACT ION CYCLE AND THE USER ACT ION FRAMEWORK

about existence, completeness, correctness, suitability of needed backend

functional affordances. These concepts are addressed in specific child nodes

about the following topics:

Existence of needed functionality or feature (functional affordance). Pertains to issues

about supporting users through existence of needed non-user-interface

functionality. This category includes cases of missing, but needed, features and

usefulness of the system to users.

Existence of needed or unwanted automation. Pertains to supporting user needs by

providing needed automation, but not including unwanted automation that can

cause loss of user control.

Computational error. This is about software bugs within non-user-interface

functionality of the application system.

Results unexpected. This category is about avoiding surprises to users, for

example through unexpected automation or other results that fail to match user

expectations.

Quality of functionality.Though a necessary function or featuremay exist, there

may still be issues about how well it works to satisfy user needs.

21.4.5 Assessment (Design Helping User Know
if Interaction Was Successful)
The assessment part of the Interaction Cycle corresponds to Norman’s (1986)

evaluation side of interaction. A user in assessment performs sensory and

cognitive actions needed to sense and understand system feedback and displays

of results as ameans to comprehend internal system changes or outcomes due to

a previous physical action.

The user’s objective in assessment is to determine whether the outcomes

of all that previous planning, translation, and physical actions were favorable,

meaning desirable or effective to the user. In particular, an outcome is favorable

if it helps the user approach or achieve the current intention, task, and/or goal;

that is, if the plan and action “worked.”

Assessment concepts
The assessment part parallels much of the translation part, only focusing

on system feedback. Assessment has to do with the existence of feedback,

presentation of feedback, and content or meaning of feedback. Assessment is

about whether users can know when an error occurred, and whether a user

can sense a feedback message and understand its content.

684 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Assessment content in the UAF
This part of theUAF contains issues about how well feedback in system responses

and displays of results within an interaction design help users know if the

interaction is working so far. Being successful in the previous planning,

translation, and physical actions means that the course of interaction has moved

the user toward the interaction goals. These concepts are addressed in specific

child nodes about the following topics:

Existence of feedback or indication of state or mode. Pertains to issues about

supporting user ability to assess action outcomes by ensuring existence

of feedback (or mode or state indicator) when it is necessary or desired and

nonexistence of feedback when it is unwanted.

Presentation (of feedback). Pertains to issues about effective presentation or

appearance, including sensory issues and timing of presentation, in support of

user sensing of feedback.

Content, meaning (of feedback). Pertains to issues about understanding and

comprehension of feedback (e.g., error message) content and meaning in

support of user ability to assess action outcomes. This category of the UAF

includes issues about clarity, precision, and predictability. The effectiveness

of feedback content expression is affected by precise use of language, word

choice, clarity due to layout and spatial grouping, user centeredness, and

consistency.

21.5 ROLE OF AFFORDANCES WITHIN THE UAF

Each kind of affordance has a close relationship to parts of the Interaction Cycle.

During interaction, users perform sensory, cognitive, and physical actions and

require affordances to help with each kind of action, as shown abstractly in

Figure 21-6. For example, in planning, if the user is looking at buttons and

menus while trying to determine what can be done with the system, then

the sensory and cognitive affordances of those user interface objects are used in

support of planning.

Figure 21-6

Affordances connect users
with design.

685THE INTERACT ION CYCLE AND THE USER ACT ION FRAMEWORK

Similarly, in translation, if a user needs

to understand the purpose of a user

interface object and the consequences of

user actions on the object, then the

sensory and cognitive affordances of that

object support that translation. Perhaps

the most obvious is the support physical

affordances give to physical actions but,

of course, sensory affordances also help;

you cannot click on a button if you cannot

see it.

Finally, the sensory and cognitive

affordances of feedback objects (e.g., a

feedback message) support users in

assessment of system outcomes occurring

in response to previous physical actions

as inputs.

In Figure 21-7, we have added

indications of the relevant affordances

to each part of the Interaction Cycle.

21.6 PRACTICAL VALUE OF UAF

21.6.1 Advantage of Vocabulary to Think About
and Communicate Design Issues
One of the most important advantages to labeling and structuring interaction

design issues within the UAF is that it codifies a vocabulary for consistency across

UX problem descriptions. Over the years this structured vocabulary has helped

us and our students in being precise about how we talk about UX problems,

especially in including descriptions of specific causes of the problems in those

discussions.

As an analogy, the field ofmechanical engineering has been around formuch

longer than our discipline. Mechanical engineers have a rich and precise

working vocabulary that fosters mutual understanding of issues, for example,

crankshaft rotation. In contrast, because of the variations and ambiguities in

UX terminology, UX practitioners often end up talking about two different

things or even talking at cross purposes. A structured and “standardized”

vocabulary, such as can be found within the UAF, can help reduce confusion

and promote agreement in discussions of the issues.

Figure 21-7

Interaction cycle of the UAF
indicating affordance-
related user actions.

686 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

21.6.2 Advantage of Organized and Structured
Usability Data
As early as 1994, a workshop at the annual CHI conference addressed the topic

of what to do after usability data are collected (Nayak, Mrazek, & Smith, 1995).

Researchers and practitioners took up questions about how usability data should

be gathered, analyzed, and reported. Qualitative usability data are observational,

requiring interpretation. Without practical tools to structure the problems,

issues, and concepts, however, researchers and practitioners were concerned

about the reliability and adequacy of this analysis and interpretation. They

wanted effective ways to get from raw observational data to accurate and

meaningful conclusions about specific flaws in interaction design features. The

workshop participants were also seeking ways to organize and structure usability

data in ways to visualize patterns and relationships.

We believe that the UAF is one effective approach to getting from raw

observational data to accurate and meaningful conclusions about specific flaws

in interaction design features. The UAF offers ways to organize and structure

usability data in ways to visualize patterns and relationships.

21.6.3 Advantage of Richness in Usability Problem
Analysis Schemes
Gray and Salzman (1998) cited the need for a theory-based usability

problem categorization scheme for comparison of usability evaluation

method performance, but they also warn of classification systems that

have too few categories. As an example, the Nielsen and Molich (1990)

heuristics were derived by projecting a larger set of usability guidelines down

to a small set.

Although Nielsen developed heuristics to guide usability inspection, not

classification, inspectors finding problems corresponding to a given heuristic

find it convenient to classify them by that heuristic. However, as John and

Mashyna (1997) point out in a discussion of usability tokens and types (usability

problem instances and usability problem types), doing so is tantamount to

projecting a large number of usability problem categories down to a small

number of equivalence classes.

The result is that information distinguishing the cases is lost andmeasures for

usability evaluation method classification agreement are inflated artificially

because problems that would have been in different categories are now in the

same super-category. The UAF overcomes this drawback by breaking down

classifications into a very large number of detailed categories, not lumping

together usability problems that have only passing similarities.

687THE INTERACT ION CYCLE AND THE USER ACT ION FRAMEWORK

21.6.4 Advantage of Usability Data Reuse
Koenemann-Belliveau et al. (1994) made a case for leveraging usability

evaluation effort beyond fixing individual problems in one user interface to

building a knowledge base about usability problems, their causes, and their

solutions. They state: “We should also investigate the potential for more

efficiently leveraging the work we do in empirical formative evaluation—ways to

‘save’ something from our efforts for application in subsequent evaluation work”

(Koenemann-Belliveau et al., 1994, p. 250).

Further, they make a case for getting more from the rich results of formative

evaluation, both to improve the UX lifecycle process and to extend the science

of HCI. Such a database of knowledge base of reusable usability problems data

requires a storage and retrieval structure that will allow association of usability

problem situations that are the “same” in some essential underlying way. The

UAF, through the basic structure of the Interaction Cycle, provides just this kind

of organization.

We will make use of the UAF structure to organize interaction design

guidelines in Chapter 22.

688 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

CHAPTER

UX Design Guidelines 22
To err is human; forgive by design.

– Anonymous

Objectives

After reading this chapter, you will:

1. Appreciate the difficulties in using and interpreting UX design guidelines

2. Understand the role of human memory limitations in guidelines

3. Understand and apply some of the basic UX design guidelines with respect to user

actions for each stage of the Interaction Cycle

22.1 INTRODUCTION

22.1.1 Scope and Universality
There are, of course, many books and articles on design guidelines for graphical

user interfaces (GUIs) and other user interfaces and their widgets—how to

create and employ windows, buttons, pull-down menus, pop-up menus,

cascading menus, icons, dialogue boxes, check boxes, radio buttons, options

menus, forms, and so on. But we want you to think about interaction design and

design guidelines much more broadly than that, even well beyond Web pages

and mobile devices.

You will find that this chapter takes a broader approach, transcending design

just for computer interfaces and particular platforms, media, or devices. There is

a world of designs out there and, as Don Norman (1990) says, seeing the

guidelines applied to the design of everyday things helps us understand the

application of guidelines to interaction by humans with almost anything kind

of device or system.

Design (UX)
Guidelines

A UX, or interaction,

design guideline is a

statement suggesting

recommendations and

considerations to inform

the design of a specific

aspect or component of

interaction in a certain

context. Some

design guidelines come

from study data, but most

come from principles,

maxims, and experience.

User Interfaces for Handheld Devices

Brad A. Myers

Carnegie Mellon University

The term “handheld devices” includes mobile phones (in particular, “smartphones,” which have more elaborate

functions and user interfaces), as well as personal digital assistants, pagers, calculators, and specialized devices such

as handheld scanners and data entry devices. Portable devices that are larger than the size of a hand, such as tablets

such as the Apple iPad, are generally not considered to be handheld devices.

How do interfaces designed for handheld devices differ from conventional user interfaces? The first point to

emphasize is that all of the processes and techniques described in this book, from contextual inquiries through

iterative prototyping through user testing, all apply to handheld user interfaces, just as for any other user interface, so

the process and techniques are not different. The key difference with handheld devices is the context of use. By

definition, handheld devices are used while being held in one hand, which means that generally at most one other

hand is available to perform input. Furthermore, handheld devices are mostly used on the go, which means that the

user is busy doing other tasks (such as walking, talking on the phone, or taking an inventory at a store) at the same

time as using the handheld. Another key difference is that handhelds have much smaller screens than conventional

computers or tablets. Thus, information designs and even interaction techniques designed for conventional computers

may not work on handhelds. For example, multicolumn Web pages are very difficult to read on handhelds, and a pop-

up menu with more than 10 items cannot be used easily. Finally, because handheld devices are often controlled with a

finger, as there typically is not a mouse pointer, target areas must be sufficiently large so that users can select what

they want accurately. Some handhelds require the use of a stylus (a pen-like tool for pointing to or writing on the

screen) instead of (or in addition to) a finger, which means that smaller items can be selected. However, stylus-based

interfaces for handhelds are becoming less common.

The implications of these differences on the design of handheld user interfaces include the following.1:

n Optimize interactions for immediate use. User interfaces on handheld devices must make the most common actions available

immediately. Users expect to be able to pull the device out of their pocket and perform a task quickly with minimal interactions and

minimal waiting. For example, because the most common task for a calendar while on the go is to look up the next appointment, the

user interface should default to showing what is on the calendar for the current time. The user interface must allow the user to exit

immediately as well, as users can be interrupted at any time, for example, by the phone ringing. Designers of the original Palm handheld

made the important observation that the most important tasks should be performed with one click, even at the cost of consistency, so on

the Palm, creating a new event at a particular time just requires tapping on the calendar screen, compared to deleting an event (which is

relatively rare), requires multiple taps and dialog boxes.2

1These recommendations are adapted from the following books, which are excellent guides for handheld designers: Weiss, S. (2002).

Handheld Usability. West Sussex, England: John Wiley & Sons, Ltd.; and Bergman, E. (Ed.)(2000). Information Appliances and Beyond. San

Francisco: Morgan Kaufmann Publishers.
2Bergman, E., & Haitani, R. (2000). Designing the Palmpilot: A conversationwith RobHaitani. In E. Bergman (Ed.), Information Appliances and

Beyond. San Francisco: Morgan Kaufmann, pp. 82–102.

n Minimize textual input. Even more than minimizing input in general, text entry continues to be difficult with small devices, so

requiring more than a word or two to be typed is problematic, and applications should be resilient to typing errors.

n Concise output. The information to be displayed must be optimized for the small displays of these devices. Designs for desktops will

typically need to be redesigned to make more efficient use of the screen space. For example, avoid blank lines.

n Conform to platform conventions. Because interfaces must look like other applications on that particular handheld, iPhone user

interfaces must look like other iPhone applications. If a user interface must run on different handhelds, it will probably need to be

redesigned substantially. For example, the Android user interface conventions are quite different from the iPhone’s. Even within a

platform there might be variations. For example, an Android phone can have a variety of physical buttons and form factors, which a user

interface must use correctly.

n Allow disconnected and poorly connected use. Although networks continue to improve, an application should not assume it will

always be well connected. Devices can go out of range, even in the middle of a transaction, and the user interface must respond

appropriately. It is never acceptable for the handheld to refuse to respond to the user even if the network disappears. Users expect

to be able to perform tasks even when the network is turned off, such as on an airplane.

Because handheld devices will be the dominant way that most people in the world access computation, designing

effective user interfaces for these devices will likely be a significant part of a designer’s activities.

The principles and guidelines in this chapter are universal; you will see in

this chapter that the same issues apply to ATMs, elevator controls, and even

highway signage. We, too, have a strong flavor of The Design of Everyday Things

(Norman, 1990) in our guidelines and examples. We agree with Jokela (2004)

that usability and a quality user experience are also essential in everyday

consumer products.

We hope youwill forgive us for excluding guidelines about internationalization

or accessibility (as we advised in the Preface section, What We Do Not Cover). The

book, and especially this chapter, is already large and we cannot cover everything.

Usability Principles for New Frontiers in the Virtual
Environment User Experience

Theresa (Teri) A. O’Connell

President, Humans & Computers, Inc.

As the Starship Enterprise pushed ever deeper into space, Star Trek’s Captain Picard encountered the challenge of

making new laws for new cultures in new environments. Usability and human factors engineers face the same

challenge today in defining usability principles for virtual environments (VEs). We can learn a lot from Captain Picard’s

experience. Like him, we adapt the traditional to the new, sometimes even deriving novel, untried usability principles

from the old.

Some VEs, for example, training environments and advanced visual analytic tools, have a single purpose.

Game worlds can have serious or entertainment purposes. Other VEs are multifunctional. Second Life can be a

home-away-from home, classroom-away-from-campus, office-beyond-the-workplace, or exotic-vacation-sans-travel-

time. Whatever their purpose, all VEs have one thing in common. The user experience when playing, working,

learning, relaxing, or collaborating in a VE differs from that of traditional computing. So, designing a VE for a good

user experience requires new ways of thinking about usability principles.

It turns out that many usability principles that apply when you are playing the role of a healer, hobnobbing with

virtual buddies, or slaying monsters are the same as those that apply when you are surfing the Internet or writing a

paper. We just have to apply them a bit differently in VEs. The resulting principles for design and testing are not mutually

exclusive—they interact to create a successful and satisfying user experience. We can see how this works by taking a

quick look at some usability principles from the perspective of the VE user experience for gamers and visual analysts.

Give users a sense of control over their experiences is a great grandparent of all usability principles. This

prerequisite for user satisfaction is traditionally applied by providing obvious, consistently located, and easy-to-use

controls. It applies directly to VE design in strategies, such as right clicking for immediate access to avatar controls, for

example, teleportation in case of griefer attacks.

But, sometimes, collaboration requires ceding control, at least temporarily. This happens to players of massive

multiplayer online role-playing games (MMORPG) and analysts manipulating huge complex visual analytic data sets

when their success depends on collaboration. Adapting the user control usability principle, we give users control over

their own interactions, but cede control to serve VE goals, in this case, to allow collaboration. For example, online

game dashboard adaptability gives gamers autonomy over what is theirs. But an inability to steal the microphone

while another player talks prevents interruptions, serving the goal of courteous collaboration. During testing, we

measure collaboration success by comparing game scores of teams that must take turns sending voice communications

to collaborate and teams that do not.

Engage the user is the e-commerce mantra. Its sticky goal is to keep shoppers onsite and buying. In games, the

usability principle is engagement trumps everything else. Engagement is a primary purpose of VE design for many

reasons. Engagement increases enjoyment and enhances learning. It draws gamers into gameplay, e.g., for example,

by providing an enjoyable simple quest for novices and then progressing them to higher challenge levels.

Engagement enriches the user experience. But engagement intersects with another classic usability principle,

prevent visual overload, for example, by streamlining backgrounds or minimizing animations. VEs can be visually

dense. We engage gamers and inform analysts with lots of interesting things to look at, but we risk distraction and

visual overload.

In first-person shooter games such as Left 4 Dead, the element of surprise is integral to engagement. In adventure

games, while distracting, a dense, engaging background harbors surprise. In such a case, distraction is okay. The new

principle becomes control visual overload, making sure that visually rich displays engage the user but do not impede

VE goals.

Instead of minimizing animation, we turn animation into a tool to attract attention and engage, for example, with

surprise attacks by nonplaying characters. In visual analytic tools, we sometimes interrupt workflow with an

eye-catching animation when important new information becomes available. During testing, we measure impact on

satisfaction by comparing survey responses from players or analysts who experience interruption and those who do

not. We survey players and analysts to learn how engaging they consider different aspects of the user experience, for

example, building game scores or answering a question in an analytical VE.

Visual density also leads to a usability principle that requires the VE to assist analysis by helping analysts identify

important data quickly, for example, suspicious entities. To test, we measure success by logging and counting

interactions with this data, for example, the number of times analysts manipulate isolated data points into clusters or

social networks to investigate entity connections. Testing against ground truth, we count the number of known

connections analysts identified. We use eye tracking to create heat maps showing analysts’ gaze paths and fixations.

If their eyes continuously scan the environment, but never rest on salient new data, we know it is likely that the

background is too dense and impedes analysis.

When we design and test the VE for a high-quality user experience, just like Captain Picard, we are going to

encounter unimagined challenges. One of our strategies will be to update traditional usability principles. This means

that every design or testing team facing the challenges of producing a VE that leads to a high-quality user

experience needs a person who has a strong background in fields such as the human factors behind usability

principles.

22.1.2 Background
We cannot talk about interaction design guidelines without giving a profound

acknowledgement to what is perhaps the mother (and father) of all guidelines

publications, the book of 944 design guidelines for text-based user interfaces of

bygone days that Smith and Mosier of Mitre Corporation developed for the U.S.

Air Force (Mosier & Smith, 1986; Smith & Mosier, 1986).

We were already working in human–computer interaction (HCI) and

read it with great interest when it came out. Almost a decade later, an

electronic version became available (Iannella, 1995). Other early guidelines

collections include Engel and Granda (1975), Brown (1988), and Boff

and Lincoln (1988).

Interaction design guidelines appropriate to the technology of the day

appeared throughout the history of HCI, including “the design of idiot-proof

interactive programs” (Wasserman, 1973); ground rules for a “well-behaved”

system (Kennedy, 1974); design guidelines for interactive systems (Pew &

Rollins, 1975); usability maxims (Lund, 1997b); and eight golden rules of

interface design (Shneiderman, 1998). Every practitioner has a favorite set of

design guidelines or maxims.

Eventually, of course, the attention of design guidelines followed the

transition to graphical user interfaces (Nielsen, 1990; Nielsen et al., 1992).

As GUIs evolved, many of the guidelines became platform specific, such as

style guides for Microsoft Windows and Apple. Each has its own set of

detailed requirements for compliance with the respective product lines.

As an example from the 1990s, an interactive product from Apple called

Making it Macintosh (Alben, Faris, & Saddler, 1994; Apple Computer Inc, 1993)

used computer animations to highlight the Macintosh user interface design

principles, primarily to preserve the Macintosh look and feel. Many of the early

style guides, such as OSF Motif (Open Software Foundation, 1990) and IBM’s

CommonUser Access (Berry, 1988), came built into software tools for enforcing

that particular style.

The principles behind the guidelines came mainly from human psychology.

Our friend Tom Hewitt (1999) was probably the most steadfast HCI voice for

understanding psychology as a foundation for UX design principles and

guidelines. These principles first evolved into design guidelines in human

factors engineering.

SomeUX design guidelines, especially those coming from human factors, are

supported with empirical data. Most guidelines, however, have earned their

authority from a strong grounding in the practice and shared experience of the

UX community—experience in design and evaluation, experience in analyzing

and solving UX problems.

Based on the National Cancer Institute’s Research-Based Web Design and

Usability Guidelines project begun in March 2000, the U.S. Department of

Health and Human Services has published a book containing an extensive set of

interaction design guidelines and associated reference material (U.S.

Department of Health and Human Services, 2006). Each guideline has

undergone extensive internal and external review with respect to tracking down

its sources, estimating its relative importance in application, and determining

the “strength of evidence,” for example, strong research support vs. weak

research support, supporting the guideline.

As is the case in most domains, design guidelines finally opened the way for

standards (Abernethy, 1993; Billingsley, 1993; L. Brown, 1993; Quesenbery,

2005; Strijland, 1993).

22.1.3 Some of Our Examples Are Intentionally Old
We have been collecting examples of good and bad interaction and other kinds

of design for decades. This means that some of these examples are old. Some of

these systems no longer exist. Certainly some of the problems have been fixed

over time, but they are still good examples and their age shows how as a

694 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

community we have advanced and improved our designs. Many new users may

think the interfaces to modern commercial software applications have always

been as they are. Read on.

22.2 USING AND INTERPRETING DESIGN GUIDELINES

Aremost design guidelines not obvious?When we teach these design guidelines,

we usually get nods of agreement upon our statement of each guideline. There is

very little controversy about the interaction design guidelines stated absolutely,

out of context. Each general guideline is obvious; it just makes sense. How else

would you do it?

However, when it comes to applying those same guidelines in specific

usability design and evaluation situations, there is bewilderment. People are

often unsure about which guidelines apply or how to apply, tailor, or interpret

them in a specific design situation (Potosnak, 1988). We do not even agree on

the meaning of some guidelines. As Lynn Truss (2003) says in the context of

English grammar, that even considering people who are rabidly in favor of using

the rules of grammar, it is impossible to get them all to agree on the rules and

their interpretation and to pull in the same direction.

Bastien and Scapin (1995, p. 106) quote a study by de Souza and Bevan

(1990): de Souza and Bevan “found that designers made errors, that they had

difficulties with 91% of the guidelines, and that integrating detailed design

guidelines with their existing experience was difficult for them.”

There is something about UX design guidelines in almost every HCI book,

often specific to user interface widgets and devices. You will not see guidelines

here of the type: “Menus should not containmore thanX items.” That is because

such guidelines are meaningless without interpretation within a design and

usage context. In the presence of sweeping statements about what is right or

wrong in UX design, we can only think of our long-time friend Jim Foley who

said “The only correct answer to any UX design question is: It depends.”

We believe much of the difficulty stems from the broad generality, vagueness,

and even contradiction within most sets of design guidelines. One of the

guidelines near the top of almost any list is “be consistent,” an all-time favorite

UX platitude. But what does it mean? Consistency at what level; what kind of

consistency? Consistency of layout or semantic descriptors such as labels or

system support for workflow?

There are many different kinds of consistency with many different meanings

inmany different contexts. Although we use the same words in discussions about

695UX DES IGN GUIDEL INES

applying the consistency guideline, we are often arguing about different things.

That guideline is just too broad and requires too much interpretation for the

average practitioner to fit it easily to a particular instance.

Another such overly general maxim is “keep it simple,” certainly a shoo-in to

the UX design guidelines hall of fame. But, again, what is simplicity? Minimize

the things users can do? It depends on the kind of users, the complexity of their

work domain, their skills and expertise.

To address this vagueness and difficulty in interpretation at high levels, we

have organized the guidelines in a particular way. Rather than organize the

guidelines by the obvious keywords such as consistency, simplicity, and the

language of the user, we have tried to associate each guideline with a specific

interaction design situation by using the structure of the InteractionCycle and the

User Action Framework (UAF) to organize the guidelines. This allows specific

guidelines to be linked to user actions for planning, making physical actions, or

assessing feedback and user actions for sensing objects and other interaction

artifacts, understanding cognitive content, or physically manipulating those

objects.

Finally, we warn you, as we have done often, to use your head and not follow

guidelines blindly. While design guidelines and custom style guides are useful in

supporting UX design, remember that there is no substitute for a competent

and experienced practitioner. Beware of the headless chicken guy

unencumbered by the thought process: “Do not worry, I have the style guide.”

Then you should worry, especially if the guide turns out to be a programming

guide for user interface widgets.

22.3 HUMAN MEMORY LIMITATIONS

Because some of the guidelines and much of practical user performance

depend on the concepts of human working memory, we interject a short

discussion of the same here, before we get into the guidelines themselves.

We treat human memory here because:

n it applies to most of the Interaction Cycle parts, and

n it is one of the few areas of psychology that has solid empirical data supporting

knowledge that is directly usable in UX design.

Our discussion of human memory here is by no means complete or

authoritative. Seek a good psychology book for that. We present a potpourri of

696 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

concepts that should help your understanding in applying the design guidelines

related to human memory limitations.

22.3.1 Sensory Memory
Sensory memory is of very brief duration. For example, the duration of visual

memory ranges from a small fraction of a second to maybe 2 seconds and is

strictly about the visual pattern observed, not anything about identifying what

was seen or what it means. It is raw sensory data that allow direct comparisons

with temporally nearby stimuli, such asmight occur in detecting voice inflection.

Sensory persistence is the phenomenon of storage of the stimulus in the sensory

organ, not the brain.

For example, visual persistence allows us to integrate the fast-moving

sequences of individual image frames in movies or television, making them

appear as a smooth integratedmotion picture. There are probably not many UX

design issues involving sensory memory.

22.3.2 Short-Term or Working Memory
Short-term memory, which we usually call working memory, is the type we are

primarily concerned with in HCI and has a duration of about 30 seconds, a

duration that can be extended by repetition or rehearsal. Other intervening

activities, sometimes called “proactive interference,” will cause the contents of

working memory to fade even faster.

Working memory is a buffer storage that carries information of immediate

use in performing tasks. Most of this information is called “throw-away data”

because its usefulness is short term and it is undesirable to keep it longer. In his

famous paper, George Miller (1956) showed experimentally that under certain

conditions, the typical capacity of human short-termmemory is about seven plus

or minus two items; often it is less.

22.3.3 Chunking
The items in short-term memory are often encodings that Simon (1974)

has labeled “chunks.” A chunk is a basic human memory unit containing

one piece of data that is recognizable as a single gestalt. That means for

spoken expressions, for example, a chunk is a word, not a phoneme,

and in written expressions a chunk is a word or even a single sentence, not

a letter.

Random strings of letters can be divided into groups, which are

remembered more easily. If the group is pronounceable, it is even easier to

697UX DES IGN GUIDEL INES

remember, even if it has no meaning. Duration trades off with capacity; all else

being equal, the more chunks involved, the less time they can be retained in

short-term memory.

Example: Phone numbers designed to be remembered

Not counting the area code, a phone number has seven digits, not a

coincidence that this exactly meets the Miller estimate of working memory

capacity. If you look up a number in the phone book, you are loading your

working memory with seven chunks. You should be able to retain the number

if you use it within the next 30 seconds or so.

With a little rehearsal and without any intervening interruption of your

attention, you can stretch this duration out to 2 minutes or longer. A telephone

number is a classic example of working memory usage in daily life. If you

get distracted between memory loading and usage, you may have to look

the number up again, a scenario we all have experienced. If the prefix

(the first three digits) is familiar, it is treated as a single chunk, making the

task easier.

Sometimes items can be grouped or recoded into patterns that reduce the

number of chunks. When grouping and recoding is involved, storage can trade

off with processing, just as it does in computers. For example, think about

keeping this pattern in your working memory:

001010110111000

On the surface, this is a string of 15 digits, beyond the working memory

capacity of most people. But a clever user might notice that this is a binary

number and the digits can be grouped into threes:

001 010 110 111 000

and converted easily to octal digits: 12670. With a modicum of

processing we have grouped and recoded the original 15 chunks into a

more manageable 5.

The following is a trick case, but it is illustrative of the principle in an extreme

setting. Ostensibly this sequence of letters contains 18 items:

NTH EDO GSA WTH ECA TRU

Because there is no obvious way to group or encode them into chunks, the 18

items, as shown, represent 18 chunks. If each three-letter group spelled a word,

there would be 6 chunks. If you know the trick to this example and imagine the

initial “N” being moved to the right-hand end, you get not only six words, but a

sentence, which amounts to one large chunk:

THE DOG SAW THE CAT RUN

698 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

22.3.4 Stacking
One of the ways user working memory limitations are affected by task

performance is when task context stacking is required. This occurs when

another situation arises in the middle of task performance. Before the user can

continue with the original task, its context (a memory of where the user was in

the task) must be put on a “stack” in the user’s memory.

This same thing happens to the context of execution of a software program

when an interrupt must be processed before proceeding: the program

execution context is stacked in a last-in-first-out (LIFO) data structure. Later,

when the system returns to the original program, its context is “popped” from

the stack and execution continues. It is pretty much the same for a human user

whose primary task is interrupted. Only the stack is implemented in human

working memory.

This means that user memory stacks are small in capacity and short in

duration. People have leaky stacks; after enough time and interruptions,

they forget what they were doing. When people get to “pop” a task context

from their stacks, they get “closure,” a feeling of cognitive relief due to the

lifting of the cognitive load of having to retain information in their working

memories. One way to help users in this regard is to design large, complex

tasks as a series of smaller operations rather than one large hierarchically

structured task involving significant stacking. This lets them come up for air

periodically.

22.3.5 Cognitive Load
Cognitive load is the load on working memory at a specific point in time

(G. Cooper, 1998; Sweller, 1988, 1994). Cognitive load theory (Sweller, 1988,

1994) has been aimed primarily at improvement in teaching and learning

through attention to the role and limitations of working memory but, of course,

also applies directly to human–computer interaction. While working with the

computer, users are often in danger of having their working memory

overloaded. Users can get lost easily in cascading menus with lots of choices at

each level or tasks that lead through large numbers of Web pages.

If you could chart the load on working memory as a function of time through

the performance of a task, you would be looking at variations in the cognitive

load across the task steps. Whenever memory load reaches zero, you have “task

closure.” By organizing tasks into smaller operations instead of one large

hierarchical structure you will reduce the average user cognitive load over time

and achieve task closure more often.

699UX DES IGN GUIDEL INES

22.3.6 Long-Term Memory
Information stored in short-term memory can be transferred to long-term

memory by “learning,” which may involve the hard work of rehearsal and

repetition. Transfer to long-term memory relies heavily on organization and

structure of information already in the brain. Items transfer more easily if

associations exist with items already in long-term memory.

The capacity of long-term memory is almost unlimited—a lifetime of

experiences. The duration of long-term memory is also almost unlimited but

retrieval is not always guaranteed. Learning, forgetting, and remembering are all

associated with long-term memory. Sometimes items can be classified in more

than one way. Maybe one item of a certain type goes in one place and another

item of the same type goes elsewhere. As new items and new types of items come

in, you revise the classification system to accommodate. Retrieval depends on

being able to reconstruct structural encoding.

When we forget, items become inaccessible, but probably not lost.

Sometimes forgotten or repressed information can be recalled. Electric brain

stimulation can trigger reconstructions of visual and auditory memories of

past events. Hypnosis can help recall vivid experiences of years ago. Some

evidence indicates that hypnosis increases willingness to recall rather than

ability to recall.

22.3.7 Memory Considerations and Shortcuts in Command
versus GUI Selection Interaction Styles

Recognition vs. recall
Because we know that computers are better at memory and humans are

better at pattern recognition, we design interaction to play to each other’s

strengths. One way to relieve human memory requirements in interaction

design is by leveraging the human ability for recognition.

You hear people say, in many contexts, “I cannot remember exactly, but I

will recognize it when I see it.” That is the basis for the guideline to use

recognition over recall. In essence, it means letting the user choose from a list of

possibilities rather than having to come up with the choice entirely from

memory.

Recognition over recall does work better for initial or intermittent use where

learning and remembering are the operational factors, but what happens to

people who do learn? They migrate from novice to experienced userhood. In

UAF terms, they begin to remember how to make translations of frequent

intentions into actions. They focus less on cognitive actions to know what to do

700 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

and more on the physical actions of doing it. The cognitive affordances to help

new users make these translations can now begin to become barriers to

performance of the physical actions.

Moving the cursor and clicking to select items from lists of possibilities

become more effortful than just typing short memorized commands. When

more experienced users do recall the commands they need by virtue of their

frequent usage, they find command typing a (legal) performance enhancer over

the less efficient and, eventually, more boring and irritating physical actions

required by those once-helpful GUI affordances.

Even command users get some memory help through command completion

mechanisms, the “hum a few bars of it” approach. The user has to remember

only the first few characters and the system provides possibilities for the whole

command.

Shortcuts
When expert users get stuck with a GUI designed for translation affordances, it is

time for shortcuts to come to the rescue. In GUIs, these shortcuts are physical

affordances, mainly “hot key” equivalents of menu, icon, and button command

choices, such as Ctrl-S for the Save command.

The addition of an indication of the shortcut version to the pull-down menu

choice, for example, CtrlþS added to the Save choice in the File menu, is a

simple and subtle but remarkably effective design feature to remind all users of

the menu about the corresponding shortcuts. All users can migrate seamlessly

between using the shortcuts on the menus to learn and remember the

commands and bypassing the menus to use the shortcuts directly. This is true

“as-needed” support of memory limitations in design.

22.3.8 Muscle Memory
Muscle memory is a little bit like sensory memory in that it is mostly stored

locally, in the muscles in this case, and not the brain. Muscle memory is

important for repetitive physical actions; it is about getting in a “rhythm.” Thus,

muscle memory is an essential aspect of learned skills of athletes. In HCI, it is

important in physical actions such as typing.

Example: Muscling light switches

In this country at least, we use an arbitrary convention that moving an

electrical switch up means “on” and down means “off.” Over a lifetime of usage,

701UX DES IGN GUIDEL INES

we develop muscle memory because of this convention and hit the switch in an

upward direction as we enter the room without pausing.

However, if you have lights on a three-way switch, “on” and “off” cannot be

assigned consistently to any given direction of the switch. It depends on the state

of the whole set of switches. So, often you might find yourself hitting a light

switch in an upward direction without thinking as you sweep past. If it is a three-

way switch, sometimes the light fails to turn on because the switch was already up

with the lights off. No amount of practice or trying to remember can overcome

this conflict between muscle memory and this device.

22.4 SELECTED UX DESIGN GUIDELINES
AND EXAMPLES

The selected UX design guidelines in this section are generally organized by the

UAF structure. We illustrate many of the guidelines and principles with

examples that we have gathered over the years, including many design examples

from everyday things, such as hair dryers, automobiles, road signage, public

doorways, and so on, which demonstrate the universality of the principles and

concepts. Those examples that are directly about computer interaction are

mostly platform independent except, of course, screen shots that are specific to

a particular system.

To review the structure of the Interaction Cycle from the previous chapter, we

show the simplest view of this cycle in Figure 22-1.

In sum, parts of the Interaction Cycle are:

n planning: how the interaction design supports users in

determining what to do

n translation: how the interaction design supports users in

determining how to do actions on objects

n physical actions: how the interaction design supports users in

doing those actions

n outcomes: how the non-interaction functionality of the

system helps users achieve their work goals

n assessment of outcomes: how the interaction design supports

users in determining whether the interaction is turning out

right

We will have sample UX design guidelines for each of

these plus an overall category.

Figure 22-1

Simplest view of the
Interaction Cycle.

702 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

22.5 PLANNING

In Figure 22-2 we highlight the planning part of the

Interaction Cycle. Support for user planning is often the

missing color in the user interface rainbow.

Planning guidelines are to support users as they plan how

they will use the system to accomplish work in the

application domain, including cognitive user actions to

determine what tasks or steps to do. It is also about helping

users understand what tasks they can do with the system and

how well it supports learning about the system for planning.

If users cannot determine how to organize several related

tasks in the work domain because the system does not help

them understand exactly how it can help do these kinds of

tasks, the design needs improvement in planning support.

22.5.1 Clear System Task Model for User
Support the user’s ability to acquire an overall understanding of the system at a

high level, including the systemmodel, design concept, andmetaphors.(NB: the

special green font used in the next line denotes such a guideline.)

Help users plan goals, tasks by providing a clear model of how users should view system in

terms of tasks

Support users’ high-level understanding of the whole system with a clear

conceptual design, not just how to use one feature.

Help users with system model, metaphors, work context

Support users’ overall understanding of the system, design concept, and any

metaphors used with a clear conceptual design. Metaphors, such as the analogy

of using a typewriter in a word processor design, are ways that existing user

knowledge of previous designs and phenomena can be leveraged to ease

learning and using of new designs.

Design to match user’s conception of high-level task organization

Support user task decomposition by matching the design to users’ concept of

task decomposition and organization.

Figure 22-2

The planning part of the
Interaction Cycle.

703UX DES IGN GUIDEL INES

Example: Get organized

Tabs at the top of every page of a particular digital library Website are not well

organized by task. They are ordered so that information-seeking tasks are

mixed with other kinds of tasks, as shown in the top of Figure 22-3. Part of the

new tab bar in our suggested new design is shown in the bottom of Figure 22-3.

Help users understand what system features exist and how they can be used in their work context

Support user awareness of specific system features capabilities and

understanding of how they can use those features to solve work domain

problems in different work situations. Support user ability to attain awareness of

specific system feature or capability.

Example: Mastering the Master Document feature

Consider the case of the Master Document feature in Microsoft Word™. For

convenience and to keep file sizes manageable, users of Microsoft Word™ can

maintain each part of a document in a separate file. At the end of the day they

can combine those individual files to achieve the effect of a single document for

global editing and printing.

However, this ability to treat several chapters in different files as a single

document is almost impossible to figure out. The system does not help the user

determine what can be done with it or how it might help with this task.

Help users decompose tasks logically

Support user task decomposition, logically breaking long, complex tasks into

smaller, simpler pieces.

Figure 22-3

Tab reorganization to
match task structure.

704 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Make clear all possibilities for what users can do at every point

Help users understand how to get started and what to do next.

Keep users aware of system state for planning next task

Maintain and clearly display system state indicators when next actions are

state dependent.

Keep the task context visible to minimize memory load

To help users compare outcomes with goals, maintain and clearly display user

request along with results.

Example: Library search by author

In the search mode within a library information system, users can find

themselves deep down many levels and screens into the task where card catalog

information is being displayed. By the time they dig into the information

structure that deeply, there is a chance users may have forgotten their exact

original search intentions. Somewhere on the screen, it would be helpful to

have a reminder of the task context, such as “You are searching by author for:

Stephen King.”

22.5.2 Planning for Efficient Task Paths
Help users plan the most efficient ways to complete their tasks

Example: The helpful printing command

This is an example of good design, rather than a design problem, and it is

from Borland’s 3-D Home Architect™. Using this house-design program, when

a user tries to print a large house plan, it results in an informative message in a

dialogue box that says: Current printer settings require 9 pages at this scale.

Switching to Landscape mode allows the plan to be drawn with 6 pages. Click on

Cancel if you wish to abort printing. This tip can bemost helpful, saving the time

and paper involved in printing it wrong the first time, making the change, and

printing again.

705UX DES IGN GUIDEL INES

Strictly as an aside here, this message still falls short of the mark. First, the

term “abort” has unnecessary violent overtones. Plus, the design could provide a

button to change to landscape mode directly, without forcing the user to find

out how to make that switch.

22.5.3 Progress Indicators
Keep users aware of task progress, what has been done and what is left to do

Support user planning with task progress indicators to help users manage task

sequencing and keep track of what parts of the task are done and what parts are

left to do. During long tasks with multiple and possibly repetitive steps, users can

lose track of where they are in the task. For these situations, task progress

indicators or progress maps can be used to help users with planning based on

knowing where they are in the task.

Example: Turbo-Tax keeps you on track

Filling out income tax forms is a good example of a lengthymultiple-step task.

The designers of Turbo-Tax™ by Intuit, with a “wizard-like” step-at-a-time

prompter, went to great lengths to help users understand where they are in the

overall task, showing the user’s progress through the steps while summarizing

the net effect of the user’s work at each point.

22.5.4 Avoiding Transaction Completion Slips
A transaction completion slip is a kind of error in which the user omits or forgets

a final action, often a crucial action for consummating the task. Here we provide

an associated guideline and some examples.

Provide cognitive affordances at the end of critical tasks to remind users to complete the

transaction

Example: Hey, do not forget your tickets

A transaction completion slip can occur in the Ticket Kiosk System when the

user gets a feeling of closure at the end of the interaction for the transaction and

fails to take the tickets just purchased. In this case, special attention is needed to

provide a good cognitive affordance in the interaction design to remind the user

of the final step in the task plan and help prevent this kind of slip: “Please take

your tickets” (or your bank card or your receipt).

706 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Example: Another forgotten email attachment

As another example, we cannot count the

number of times we have sent or received

email for which an attachment was intended

but forgotten. Recent versions of Google’s

Gmail have a simple solution. If any variation

of the word “attach” appears in an email but

it is sent without an attachment, the system asks if the sender intended to attach

something, as you can see in Figure 22-4. Similarly, if the email author says

something such as “I am copying . . .”, and there is no address in the Copy field,

the system could ask about that, too.

An example of the same thing, this time using a plugin3 for the Mac Mail

program, is shown in Figure 22-5.

Example: Oops, you did not finish your transaction

On one banking site, when users transfer money from their savings accounts

to their checking accounts, they often think the transaction is complete when it

is actually not. This is because, at the bottom right-hand corner of the last page in

this transaction workflow, just below the “fold” on the screen, there is a small

button labeled Confirm that is often completely missed.

Users close the window and go about their business of paying bills, unaware

that they are possibly heading toward an overdraft. At least they should have

gotten a pop-up message reminding them to click the Confirm button before

letting them logout of the Website.

Later, when one of the users called the bank to complain, they politely

declined his suggestion that they should pay the overdraft fee because

of their liability due to poor usability. We suspect they must have gotten

other such complaints, however, because the flaw was fixed in the next version.

Example: Microwave is anxious to help

As a final example of avoiding transaction

completion slips, we cite a microwave oven.

Because it takes time to defrost or cook the

food, users often start it and do something

Figure 22-5

Mac reminder to attach a
file.

Figure 22-4

Gmail reminder to attach a
file.

3http://eaganj.free.fr/code/mail-plugin/

707UX DES IGN GUIDEL INES

else while waiting. Then, depending on the level of hunger, it is possible to

forget to take out the food when it is done.

So microwave designers usually include a reminder. At completion, the

microwave usually beeps to signal the end of its part of the task. However, a user

who has left the room or is otherwise occupied when it beeps may still not be

mindful of the food waiting in the microwave. As a result, some oven designs

have an additional aspect to the feature for avoiding this classic slip. The beep

repeats periodically until the door is opened to retrieve the food.

The design for one particular microwave, however, took this too far. It did not

wait long enough for the follow-up beep. Sometimes a user would be on the way

to remove the food and it would beep. Some users found this so irritating that

they would hurry to rescue the food before that “reminder” beep. To them, this

machine seemed to be “impatient” and “bossy” to the point that it had been

controlling the users by making them hurry.

22.6 TRANSLATION

Translation guidelines are to support users in sensory and cognitive actions

needed to determine how to do a task step in terms of what actions to make on

which objects and how. Translation, along with assessment, is one of the places

in the Interaction Cycle where cognitive affordances play the major role.

Many of the principles and guidelines apply to more than one part of the

Interaction Cycle and, therefore, to more than one section of this chapter. For

example, “Use consistent wording” is a guideline that applies to several the parts

of the Interaction Cycle—planning, translation, and assessment. Rather than

repeat, we will put them in the most pertinent location and hope that our

readers recognize the broader applicability.

Translation issues include:

n existence (of cognitive affordance)

n presentation (of cognitive affordance)

n content and meaning (of cognitive affordance)

n task structure

22.6.1 Existence of Cognitive Affordance
Figure 22-6 highlights the “existence of cognitive affordance” part within the

breakdown of the translation part of the Interaction Cycle.

If interaction designers do not provide needed cognitive affordances, such as

labels and other cues, users will lack the support they need for learning and

708 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

knowing what actions to make on what

objects in order to carry out their task

intentions. The existence of cognitive

affordances is necessary to:

n show which user interface object to

manipulate

n show how to manipulate an object

n help users get started in a task

n guide data entry in formatted fields

n indicate active defaults to suggest

choices and values

n indicate system states, modes, and

parameters

n remind about steps the user might

forget

n avoid inappropriate choices

n support error recovery

n help answer questions from the system

n deal with idioms that require rote learning

Provide effective cognitive affordances that help users get access to system functionality

Support users’ cognitive needs to determine how to do something by

ensuring the existence of an appropriate cognitive affordance. Not giving feed-

forward cognitive affordances, cues such as labels, data field formats, and icons,

is what Cooper (2004, p. 140) calls “uninformed consent”; the user must

proceed without understanding the consequences.

Help users know/learn what actions are needed to carry out intentions

It is possible to build in effective cognitive affordances that help novice users

and do not get in the way of experienced users.

Help users know how to do something at action/object level

Users get their operational knowledge from experience, training, and

cognitive affordances in the design. It is our job to provide this latter source of user

knowledge.

Figure 22-6

Existence of a cognitive
affordance within
translation.

709UX DES IGN GUIDEL INES

Help users predict outcome of actions

Users need feed-forward in cognitive affordances that explains the

consequences of physical actions, such as clicking on a button.

Help users determine what to do to get started

Users need support in understanding what actions to take for the first step of

a particular task, the “getting started” step, often the most difficult part of a task.

Example: Helpful PowerPoint

In Figure 22-7 there is a start-up screen of an early version of Microsoft

PowerPoint. In applications where there is a wide variety of things a user can do,

it is difficult to know what to do to get started when faced with a blank screen.

The addition of one simple cognitive and physical affordance combination,

Click to add first slide, provides an easy way for an uncertain user to get started in

creating a presentation.

Similarly, in Figure 22-8 we show other such helpful cues to continue, once a

new slide is begun.

Figure 22-7

Help in getting started in
PowerPoint (screen image
courtesy of Tobias Frans-
Jan Theebe).

710 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Provide a cognitive affordance for a step the user might forget

Support user needs with cognitive

affordances as prompts, reminders,

cues, or warnings for a particular

needed action that might get forgotten.

22.6.2 Presentation of
Cognitive Affordance
In Figure 22-9, we highlight the

“presentation of cognitive affordance”

portion of the translation part of the

Interaction Cycle.

Presentation of cognitive

affordances is about how cognitive

affordances appear to users, not how

they convey meaning. Users must be

able to sense, for example, see or hear, a

cognitive affordance before it can be

useful to them.

Figure 22-8

More help in getting
started (screen image
courtesy of Tobias Frans-
Jan Theebe).

Figure 22-9

Presentation of cognitive
affordances within
translation.

711UX DES IGN GUIDEL INES

Support user with effective sensory affordances in presentation of cognitive affordances

Support user sensory needs in seeing and hearing cognitive affordances by

effective presentation or appearance. This category is about issues such as

legibility, noticeability, timing of presentation, layout, spatial grouping,

complexity, consistency, and presentation medium, for example, audio, when

needed. Sensory affordance issues also include text legibility and content

contained in the appearance of a graphical feature, such as an icon, but only

about whether the icon can be seen or discerned easily. For an audiomedium, the

volume and sound quality are presentation characteristics.

Cognitive affordance visibility
Obviously a cognitive affordance cannot be an effective cue if it cannot be seen

or heard when it is needed. Our first guideline in this category is conveyed by the

sign in Figure 22-10, if only we could be sure what it means.

Make cognitive affordances visible

If a cognitive affordance is invisible, it could be because it is not (yet)

displayed or because it is occluded by another object. A user aware of the

existence of the cognitive affordance can often take some actions to summon an

invisible cognitive affordance into view. It is the designer’s job to be sure each

cognitive affordance is visible, or easily made visible, when it is needed in the

interaction.

Example: Store user cannot find the deodorant

This example is about a user (shopper) whom

we think would rate himself at least a little above

the novice level in shopping at his local grocery

store. But recently, on a trip to get some

deodorant, hewas forced to reconsiderhis rating

when his quick-in-and-quick-out plan was totally

foiled. First, the store had been completely

remodeled sohe couldnot rely onhismemory of

past organization. However, because he was

looking for only one item, he was optimistic.

He made a fast pass down the center aisle,

looking at the overhead signs in each side aisle

Figure 22-10

Good advice anytime.

712 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

for anything related to deodorant, but

nothing matched his search goal. There

were also some sub-aisles in a different

configuration along the front of the store.

He scanned those aisles unsuccessfully.

Although the rubber on his shopping cart

tires was burning, he felt his fast-shopping

plan slipping away so he did what no guy

wants to do, he asked for directions.

The clerk said, “Oh, it is right over there,”

pointing to one of the upfront aisles that he

had just scanned. “But I do not see any sign

for deodorant,” he whined, silently blaming

himself, the user, for the inability to see a sign that must have been somewhere

right there in front on him. “Oh, yeah, there is a sign,” she replied

(condescendingly, he thought), “you just have to get up real close and look right

behind that panel on the top of the end shelf.” Figure 22-11 shows what that

panel looked like to someone scanning these upfront aisles.

In Figure 22-12 you can see the “deodorant” sign revealed if you “just get up

real close and look right behind that panel on the top of the end shelf.”

The nice aesthetic end panels added much to the beauty of the shopping

experience, but were put in a location that exactly blocked the “deodorant” sign

and others, rendering that important cognitive affordance invisible from most

perspectives in the store.

When our now-humbled shopper reminded the store clerk that this

design violated the guideline for visibility for presentation of cognitive

affordances, he was encouraged that he had reached her interaction design

sensibilities when he overheard her hushed retort, “Whatever!”. He left

thinking, “that went well.”

Cognitive affordance noticeability
Make cognitive affordances noticeable

When a needed cognitive affordance exists and

is visible, the next consideration is its

noticeability or likelihood of being noticed or

sensed. Just putting a cognitive affordance on

the screen is not enough, especially if the user

does not necessarily know it exists or is not

necessarily looking for it. These design issues

Figure 22-11

Aesthetic panel blocks
visibility of sign as
cognitive affordance.

Figure 22-12

The sign is visible if you
look carefully.

713UX DES IGN GUIDEL INES

are largely about supporting awareness. Relevant cognitive affordances should

come to users’ attention without users seeking it. The primary design factor in

this regard is location, putting the cognitive affordance within the users’ focus

of attention. It is also about contrast, size, and layout complexity and their

effect on separation of the cognitive affordance from the background and from

the clutter of other user interface objects.

Example: Status lines often do not work

Message lines, status lines, and title lines at the top or bottom of the screen are

notoriously unnoticeable. Each user typically has a narrow focus of attention,

usually near where the cursor is located. A pop-upmessage next to the cursor will

be far more noticeable than a message in a line at the bottom of the screen.

Example: Where the heck is the log-in?

For some reason, many Websites have very small and inconspicuous log-in

boxes, often mixed in with many objects most users do not even notice in the far

top border of the page. Users have to waste time in searching visually over the

whole page to find the way to log in.

Cognitive affordance legibility
Make text legible, readable

Text legibility is about being discernable, not about the words being

understandable. Text presentation issues include the way the text of a

button label is presented so it can be read or sensed, including such

appearance or sensory characteristics as font type, font size, font and

background color, bolding, or italics of the text, but it is not about the

content or meaning of the words in the text. The meaning is the same

regardless of the font or color.

Cognitive affordance presentation complexity
Control cognitive affordance presentation complexity with effective layout, organization,

and grouping

Support user needs to locate and be aware of cognitive affordances by controlling

layout complexity of user interface objects. Screen clutter can obscure needed

714 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

cognitive affordances such as icons, prompt messages, state indicators, dialogue

box components, or menus and make it difficult for users to find them.

Cognitive affordance presentation timing
Support user needs to notice cognitive affordance with appropriate timing of

appearance or display of cognitive affordances. Do not present a cognitive

affordance too early or too late or with inadequate persistence; that is, avoid

“flashing.”

Present cognitive affordance in time for it to help the user before the associated action

Sometimes getting cognitive affordance presentation timing right means

presenting at exactly the point in a task and under exactly the conditions when

the cognitive affordance is needed.

Example: Just-in-time towel dispenser message

Figures 22-13 and 22-14 are photographs of a paper towel dispenser in a

public bathroom. They illustrate an example of a good design that involves just-

in-time visibility of presentation of a cognitive affordance.

In Figure 22-13, the next available towel is visible and the cognitive affordance

in the sketch on the cover of the dispenser clearly says “Pull the towel down with

both hands.”

In Figure 22-14 you can see how designers covered the case where the next

towel failed to drop down so users cannot grab it. Now a different user action is

needed to get a towel, so a different cognitive

affordance is required.

Designers provided this new cognitive

affordance, telling the user to Push the lever to get

the next towel started down into position. When a

towel was already in place, this second cognitive

affordance was not needed and was not visible,

being obscured by the towel, but it does become

visible just when it is needed.

Example: Special pasting

When a user wishes to paste something from

one Word document to another, there can be a

Figure 22-13

The primary cognitive
affordance for taking a
paper towel.

715UX DES IGN GUIDEL INES

question about formatting. Will the item retain

its formatting, such as text or paragraph style,

from the original document or will it adopt the

formatting from the place of insertion in the

new document? And how can the choice be

controlled by the user? When you want more

control of a paste operation, you might choose

Paste Special . . . from the Edit menu.

But the choices in the Paste Special dialogue

box say nothing about controlling formatting.

Rather, the choices can seem too technical or

system centered, for example, Microsoft Office

Word Document Object or Unformatted

Unicode Text, without an explanation of the resulting effect in the document.

While these choices might be precise about the action and its results to some

users, they are cryptic even to most regular users.

In recent versions of Word, a small cognitive affordance, a tiny clipboard icon

with a pop-up label Paste Options appears, but it appears after the paste

operation. Many users do not notice this little object, mainly because by the time

it appeared, they have experienced closure on the paste operation and have

already moved on mentally to the next task. If they do not like the resulting

formatting, then changing it manually becomes their next task.

Even if users do notice the little object, it is possible they might confuse it with

something to do with undoing the action or something similar because Word

uses that same object for in-context undo. However, if a user does notice this

icon and does take the time to click on it, that user will be rewarded with a pull-

down menu of useful options, such as Keep Source Formatting, Match

Destination Formatting, Keep Text Only, plus a choice to see a full selection of

other formatting styles.

Just what users need! But it is made available too late; the chance to see this

menu comes after the user action to which it applied. If choices on this after-the-

fact menu were available on the Paste Special menu, it would be perfect for users.

Cognitive affordance presentation consistency
When a cognitive affordance is located within a user interface object that is also

manipulated by physical actions, such as a label within a button, maintaining a

consistent location of that object on the screen helps users find it quickly and

helps them use muscle memory for fast clicking. Hansen (1971) used the term

“display inertia” in reference to one of his top-level principles, optimize

Figure 22-14

The backup cognitive
affordance to help start a
new paper towel.

716 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

operations, to describe this business of minimizing display changes in response

to user inputs, including displaying a given user interface object in the same

place each time it is shown.

Give similar cognitive affordances consistent appearance in presentation

Example: Archive button jumps around

When users of an older version of Gmail were viewing the list of messages in

the Inbox, the Archive button was at the far left at the top of the message pane,

set off by the blue border, as shown in Figure 22-15.

But on the screen for reading a message, Gmail had the Archive button as the

second object from the left at the top. In the place where the Archive button was

earlier, there was now a Back to Inbox link, as seen in Figure 22-16. Using a link

instead of a button in this position is a slight inconsistency, probably without

much effect on users. But users feel a larger effect from the inconsistent

placement of the Archive button.

Selectedmessages can be archived from either view of the email by clicking on

the Archive button. Further, when archiving messages from the Inbox list view,

the user sometimes goes to the message-reading view to be sure. So a user doing

Figure 22-15

The Archive button in the
Inbox view of an older
version of Gmail.

Figure 22-16

The Archive button in a
different place in the
message reading view.

717UX DES IGN GUIDEL INES

an archiving task could be going back and forth between the Inbox listing of

Figure 22-15 and message viewing of Figure 22-16.

For this activity, the location of the Archive button is never certain. The user

loses momentum and performance speed by having to look for the Archive

button each time before clicking on it. Even though it moves only a short

distance between the two views, it is enough to slow down users significantly

because they cannot run the cursor up to the same spot every time to domultiple

archive actions quickly. The lack of display inertia works against an efficient

sensory action of finding the button and it works against muscle memory in

making the physical action of moving the cursor up to click.

It seems that Google people have fixed this problem in subsequent versions,

as attested to by the same kinds of screens in Figures 22-17 and 22-18.

22.6.3 Content and Meaning of Cognitive Affordance
Just what part of quantum theory do you not understand?

– Anonymous

Figure 22-19 highlights the “content and meaning of cognitive affordance”

portion of the translation part of the Interaction Cycle.

The content and meaning of a cognitive affordance are the knowledge that

must be conveyed to users to be effective in helping them as affordances to

think, learn, and know what they need to make correct actions. The cognitive

affordance design concepts that support understanding of content and

meaning include clarity,

distinguishability from other

cognitive affordances, consistency,

layout and grouping to control

complexity, usage centeredness,

and techniques for avoiding

errors.

Figure 22-17

The Archive button in the
Inbox view of a later
version of Gmail.

Figure 22-18

The Archive button in the
same place in the new
message reading view.

718 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Help user determine actions with effective

content/meaning in cognitive affordances

Support user ability to determine what

action(s) to make and on what object(s)

for a task step through understanding

and comprehension of cognitive

affordance content and meaning: what it

says, verbally or graphically.

Clarity of cognitive affordances
Design cognitive affordances for clarity

Use precise wording, carefully chosen

vocabulary, or meaningful graphics to

create correct, complete, and sufficient

expressions of content and meaning of

cognitive affordances.

Precise wording
Support user understanding of cognitive affordance content by precise

expression of meaning through precise word choices. Clarity is especially

important for short, command-like text, such as is found in button labels, menu

choices, and verbal prompts. For example, the button label to dismiss a dialogue

box could say Return to . . . , where appropriate, instead of just OK.

Use precise wording in labels, menu titles, menu choices, icons, data fields

The imperative for clear and precise wording of button labels, menu choices,

messages, and other text may seem obvious, at least in the abstract. However,

experienced practitioners know that designers often do not take the time to

choose their words carefully.

In our own evaluation experience, this guideline is among the most violated

in real-world practice. Others have shared this experience, including Johnson

(2000). Because of the overwhelming importance of precise wording in

interaction designs and the apparent unmindful approach to wording by many

designers in practice, we consider this to be one of the most important

guidelines in the whole book.

Figure 22-19

Content/meaning within
translation.

719UX DES IGN GUIDEL INES

Part of the problem in the field is that wording is often considered a relatively

unimportant part of interaction design and is assigned to developers and

software people not trained to construct precise wording and not even trained to

think much about it.

Example: Wet paint!

This is one of our favorite examples of precise wording, probably overdone:

“Wet Paint. This is a warning, not an instruction.”

This guideline represents a part of interaction design where a great

improvement can be accrued for only a small investment of extra time and

effort. Even a few minutes devoted to getting just the right wording for a button

label used frequently has an enormous potential payoff. Here are some related

and helpful sub-guidelines:

Use a verb and noun and even an adjective in labels where appropriate

Avoid vague, ambiguous terms

Be as specific to the interaction situation as possible; avoid one-size-fits-all messages

Clearly represent work domain concepts

Example: Then, how can we use the door?

As an example of matching the message to the reality of the work domain,

signs such as “Keep this door closed at all times” probably should read

something more like “Close this door immediately after use.”

Use dynamically changing labels when toggling

When using the same control object, such as a Play/Pause button on an mp3

music player, to control the toggling of a system state, change the object label to

show that it is consistently a control to get to the next state. Otherwise the current

system state can be unclear and there can be confusion over whether the label

represents anaction theuser canmakeor feedbackabout thecurrent systemstate.

Example: Reusing a button label

In Figure 22-20 we show an early prototype of a personal document retrieval

system.Theunderlyingmodel fordeletingadocument involves two steps:marking

the document for deletion and later deleting allmarked documents permanently.

The small check box at the lower right is labeled: Marked for Deletion.

720 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

The designer’s idea was that

users would check that box to

signify the intention to delete the

record. Thereafter, until a

permanent purge of marked

records, seeing a check in this box

signifies that this record is, indeed,

marked for deletion. The problem

comes before the user checks

the box.

The user wants to delete the

record (or at least mark it for

deletion), but this label seems to

be a statement of system state

rather than a cognitive affordance

for an action, implying that it is

already marked for deletion. However, because the check box is not

checked, it is not entirely clear. Our suggestion was to re-label the box in

the unchecked state to read: Check to mark for deletion, making it a true

cognitive affordance for action in this state. After checking, Marked for

Deletion works fine.

Data value formats. Support user needs to know how to enter data, such as in

a form field, with a cognitive affordance or cue to help with format and kinds of

values that are acceptable.

Provide cognitive affordances to indicate formatting within data fields

Data entry is a user work activity where the formatting of data values is an

issue. Entry in the “wrong” format, meaning a format the user thinks is right but

the system designers did not anticipate, can lead to errors that the user must

spend time to resolve or, worse yet, have undetected data errors. It is relatively

easy for designers to indicate expected data formats, with cognitive affordances

associated with the field labels, with sample data values, or both.

Example: How should I enter the date?

In Figure 22-21 we show a dialogue box that appears in an application that is,

despite the cryptic title Task Series, for scheduling events. In the Duration

Figure 22-20

The Marked for Deletion
check box in a document
retrieval screen (screen
image courtesy of Raphael
Summers.

721UX DES IGN GUIDEL INES

section, the Effective Date field does not

indicate the expected format for data values.

Although many systems are capable of

accepting date values in almost any format,

new or intermittent users may not know if

this application is that smart. It would have

been easy for the designer to save users from

hesitation and uncertainty by suggesting a

format here.

Constrain the formats of data values to avoid data

entry errors

Sometimes rather than just show the

format, it is more effective to constrain

values so that they are acceptable as inputs.

An easy way to constrain the formatting of

a date value, for example, is to use drop-

down lists, specialized to hold values

appropriate for the month, day, and year parts of the date field. Another

approach that many users like is a “date picker,” a calendar that pops up when

the user clicks on the date field. A date can be entered into the field only by way

of selection from this calendar.

A calendar with onemonth of dates at a time is perhaps themost practical. Side

arrows allow the user to navigate to earlier or later months or years. Clicking on

a date within themonth on the calendar causes that date to be picked for the value

to be used. By using a date-picker, you are constraining both the data entry

method and the format the usermust employ, effectively eliminating errors due to

either allowing inappropriate values or formatting ambiguity.

Provide clearly marked exits

Support user ability to exit dialogue sequences confidently by using clearly

labeled exits. Include destination information to help user predict where the

action will go upon leaving the current dialogue sequence. For example, in a

dialogue box youmight use Return to XYZ after saving instead of OK and Return

to XYZ without saving instead of Cancel.

To qualify this example, we have to say that the terms OK and Cancel are so

well accepted and so thoroughly part of our current shared conventions that,

Figure 22-21

Missing cognitive
affordance about Effective
Date data field
format (screen image
courtesy of Tobias Frans-
Jan Theebe).

722 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

even though the example shows potentially better wordings, the conventions

now carry the same meaning at least to experienced users.

Provide clear “do it” mechanism

Some kinds of choice-making objects, such as drop-down or pop-up menus,

commit to the choice as soon as the user indicates the choice; others require a

separate “commit to this choice” action. This inconsistency can be unsettling for

some users who are unsure about whether their choices have “taken.” Becker

(2004) argues for a consistent use of a “Go” action, such as a click, to commit to

choices, for example, choices made in a dialogue box or drop-down menu. And

we caution to make its usage clear to avoid task completion slips where users

think they have completed making the menu choice, for example, and move on

without committing to it with the Go button.

Be predictable; help users predict outcome of actions with feed-forward information in cognitive

affordances. Predictability helps both learning and error avoidance

Distinguishability of choices in cognitive affordances
Make choices distinguishable

Support user ability to differentiate two or more possible choices or actions by

distinguishable expressions of meaning in their cognitive affordances. If two

similar cognitive affordances lead to different outcomes, careful design is

needed so users can avoid errors by distinguishing the cases.

Often distinguishability is the key to correct user choices by the process of

elimination; if you provide enough information to rule out the cases not wanted,

users will be able to make the correct choice. Focus on differences of meaning

in the wording of names and labels. Make larger differences graphically in

similar icons.

Example: Tragic airplane crash

This is an unfortunate, but true, story that evinces the reality that human lives

can be lost due to simple confusion over labeling of controls. This is a very

serious usability case involving the dramatic and tragic October 31, 1999

EgyptAir Flight 990 airliner crash (Acohido, 1999) possibly as a result of poor

usability in design. According to the news account, the pilot may have been

confused by two sets of switches that were similar in appearance, labeled very

723UX DES IGN GUIDEL INES

similarly, as Cut out and Cut off, and located relatively close to each other in the

Boeing 767 cockpit design.

Exacerbating the situation, both switches are used infrequently, only

under unusual flight conditions. This latter point is important because it

means that the pilots would not have been experienced in using either one.

Knowing pilots receive extensive training, designers assumed their users are

experts. But because these particular controls are rarely used, most pilots are

novices in their use, implying the need for more effective cognitive affordances

than usual.

One conjecture is that one of the flight crew attempted to pull the plane out

of an unexpected dive by setting the Cut out switches connected to the stabilizer

trim but instead accidentally set the Cut off switches, shutting off fuel to both

engines. The black box flight recorder did confirm that the plane did go into a

sudden dive and that a pilot did flip the fuel system cutoff switches soon

thereafter.

There seem to be two critical design issues, the first of which is the

distinguishability of the labeling, especially under conditions of stress and

infrequent use. To us, not knowledgeable in piloting large planes, the two labels

seem so similar as to be virtually synonymous.

Making the labels more complete would have made their much more

distinguishable. In particular, adding a noun to the verb of the labels would have

made a huge difference: Cut out trim versus Cut off fuel. Putting the all-

important noun first might be an even better distinguisher: Fuel off and Trim

out. Just this simple UX improvement might have averted the disaster.

The second design issue is the apparent physical proximity of the two

controls, inviting the physical slip of grabbing the wrong one, despite knowing

the difference. Surely stabilizer trim and fuel functions are completely

unrelated. Regrouping by related functions—locating the Fuel off switch with

other fuel-related functions and the Trim out switch with other stabilizer-related

controls—might have helped the pilots distinguish them, preventing the

catastrophic error.

Finally, we have to assume that safety, absolute error avoidance in this

situation, would have to be a top priority UX goal for this design. To meet this

goal, the Fuel off switch could have been further protected from accidental

operation by adding a mechanical feature that requires an additional conscious

action by the pilot to operate this seldom-used but dangerous control. One

possibility is a physical cover over the switch that has to be lifted before the switch

can be flipped, a safety feature used in the design of missile launch switches, for

example.

724 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Consistency of cognitive affordances
Consistency is one of those concepts that everyone thinks they understand but

almost no one can define.

Be consistent with cognitive affordances

Use consistent wording in labels for menus, buttons, icons, fields

Being consistent in wording has two sides: using the same terms for the same

things and using different terms for different things. The next three guidelines

and examples are about using the same terms for the same things.

Use similar names for similar kinds of things

Do not use multiple synonyms for the same thing

Example: Continue or retry?

This example comes from the very old days of floppy disks, but could apply to

external hard disks of today as well. It is a great example of using two different

words for the same thing in the short space of the one little message dialogue

box in Figure 22-22.

If, upon learning that the current disk is full, the user inserts a new disk and

intends to continue copying files, for example, what should she click, Retry or

Cancel? Hopefully she can find the right choice by the process of elimination, as

Cancel will almost certainly terminate the operation. But Retry carries the

connotation of starting over. Why not match the goal of continuing with a

button labeled Continue?

Use the same term in a reference to an object as the name or label of the object

If a cognitive affordance suggests an action on a specific object, such as “Click

on Add Record,” the name or label on that object must be the same, in this case

also Add Record.

Example: Press what?

From more modern days and a Website for Virginia Tech

employees, Figure 22-23 is another clear example of how

easy it is for this kind of design flaw to slip by designers, a

type of flaw that is usually found by expert UX inspection.

Figure 22-22

Inconsistent wording:
Continue or Retry? (screen
image courtesy of Tobias
Frans-Jan Theebe).

725UX DES IGN GUIDEL INES

This is another example of inconsistency of wording. The cognitive

affordance in the line above the Pay Stub Year selectionmenu says press View Pay

Stub Summary, but the label on the button to be pressed says Display. Maybe this

big a difference in what is supposed to be the same is due to having different

people working on different parts of the design. In any case we noticed that in a

subsequent version, someone had found and fixed the problem, as seen in

Figure 22-24.

In passing, we note an additional UX problem with each of these screens,

the cognitive affordance Select Pay Stub year in the top half of the frame is

redundant with Select a year for which you wish to view your pay stubs in

the bottom section. We would recommend keeping the second one, as

it is more informative and is grouped with the pull-down menu for year

selection.

Figure 22-24

Problem fixed with new
button label.

Figure 22-23

Cannot click on “View Pay
Stub Summary."

726 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

The first Select Pay Stub year looks like some kind of title but is really kind of

an orphan. The distance between this cognitive affordance and the user

interface object to which it applies, plus the solid line, makes for a strong

separation between two design elements that should be closely associated.

Because it is unnecessary and separate from the year menu, it could be

confusing. For all the years we were available as an HCI and UX resource, we

were never asked to help with the design or evaluation of any software by the

university. That is undoubtedly typical.

Use different terms for different things, especially when the difference is subtle

This is the flip side of the guideline that says to use the same terms for the

same things. As we will see in the following example, terms such as Add canmean

several different but closely related things. If you, the interaction designer, do

not distinguish the differences with appropriately precise terminology, it can

lead to confusion for the user.

Example: The user thought files were already “Added”

When using Nero Express to burn CDs and DVDs for data transfer and

backup, users put in a blank disc and choose the Create a Data Disc option and

see the window shown in Figure 22-25.

In the middle of this window is

an empty space that looks like a

file directory. Most users will

figure out that this is for the list of

the files and folders they want to

put on the disc. At the top, where

it will be seen only if the user

looks around, it gives the cue:

“Add data to your disc.” In the

normal task path, there is really

only one action that makes sense,

which is clicking on the Add

button at the top on the right-

hand side.

This is taken by the user to be

the way you add files and folders

to this list. When users click on

Figure 22-25

First Nero Add button.

727UX DES IGN GUIDEL INES

Add, they get the next window, shown in Figure 22-26, overlapping the initial

window.

This window also shows a directory space in the middle for browsing the files

and folders and selecting those to be added to the list for the disc. The way that

one commits the selected files to go on the list for the disc is to click on the Add

button in this window. Here the term Add really means to add the selected files

to the disc list. In the first window, however, the term Add really meant proceed

to file selection for the disc list, which is related but slightly different. Yes, the

difference is subtle but it is our job to be precise in wording.

Be consistent in the way that similar choices or parameter settings are made

If a certain set of related parameters are all selected or set with one method,

such as check boxes or radio buttons, then all parameters related to that set

should be selected or set the same way.

Figure 22-26

Another window and another Add button.

728 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Example: The Find dialogue box in Microsoft Word

Setting and clearing search parameters for the Find function are done with

check boxes on the lower left-hand side (Figure 22-27) and with pull-down

menus at the bottom of the dialogue box for font, paragraph, and other format

attributes and special characteristics. We have observed many users having

trouble turning off the format attributes, which is because the “command” for

that is different than all the others.

It is accomplished by clicking on the No Formatting button on the right-hand

side at the bottom; see Figure 22-27. Many users simply do not see that because

nothing else uses a button to set or reset a parameter so they are not looking for a

button.

The following example is an instance of the same kind of inconsistency, not

using the same kind of selection method for related parameters, only this

example is from the world of food ordering.

Example: Circle your selections

In Figure 22-28 you see an order slip for a sandwich at Au Bon Pain. Under

Create Your Own Sandwich it says Please circle all selections but the very next

choice is between two check boxes for selecting the sandwich size. It is a minor

thing that probably does not impact user performance but, to a UX stickler, it

stands out as an inconsistency in the design.

Figure 22-27

Format with a menu but No
Formatting with a button.

729UX DES IGN GUIDEL INES

We wrap up this section on

consistency of cognitive

affordances with the following

example about how many

problems with consistency in

terminology we found in an

evaluation of one Web-based

application.

Example: Consistency problems

In this example we consider only

problems relating to wording

consistency from a lab-based UX

evaluation of an academic Web

application for classroom support.

We suspect this pervasiveness of inconsistency was due to having different

people doing the design in different places and not having a project-wide

custom style guide or not using one to document working terminology choices.

In any case, when the design contains different terms for the same thing, it

can confuse the user, especially the new user who is trying to conquer the system

vocabulary. Here are some examples of our UX problem descriptions,

“sanitized” to protect the guilty.

n The terms “revise” and “edit” were used interchangeably to denote an action to modify

an information object within the application. For example, Revise is used as an action

option for a selected object in theWorksite Setup page of MyWorkspace, whereas Edit is

used inside the Site Info page of a given worksite.

n The terms “worksite” and “site” are used interchangeably for the same meaning. For

example, many of the options in themenu bar of MyWorkspace use the term “worksite,”

whereas the Membership page uses “site,” as in My Current Sites.

n The terms “add” and “new” are used interchangeably, referring to the same concept.

Under the Manage Groups option, there is a link for adding a group, called New. Most

everywhere else, such as for adding an event to a schedule, the link for creating a new

information object is labeled Add.

n The way that lists are used to present information is inconsistent:

n In some lists, such as the list on theWorksite Setup page, check boxes are on the left-

hand side, but for most other lists, such as the list on the Group List page, check

boxes are on the right.

Figure 22-28

“Circle all selections,” but
size choice is by check boxes.

730 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

n To edit some lists, the user must select a list item check box and then choose

the Revise option in a menu bar (of links) at the top of the page and separated

from the list. In other lists, each item has its own Revise link. For yet other lists

there is a collection of links, one for each of the multiple ways the user can edit

an item.

Controlling complexity of cognitive affordance
content and meaning

Decompose complex instructions into simpler parts

Cognitive affordances do not afford anything if they are too complex to

understand or follow. Try decomposing long and complicated instructions into

smaller, more meaningful, and more easily digested parts.

Example: Say what?

The cognitive affordance of Figure 22-29 contains instructions that can

bewilder even the most attentive user, especially someone in a wheelchair who

needs to get out of there fast.

Use layout and grouping of cognitive affordances to control content and meaning

complexity

Use appropriate layout and grouping by function of cognitive affordances to control content

and meaning complexity

Support user cognitive affordance content understanding

through layout and spatial grouping to show relationships of

task and function.

Group together objects and design elements associated with related tasks

and functions

Functions, user interface objects, and controls related to

a given task or function should be grouped together

spatially. The indication of relationship is strengthened by a

graphical demarcation, such as a box around the group.

Figure 22-29

Good luck in evacuating
quickly.

731UX DES IGN GUIDEL INES

Label the group with words that reflect the common functionality of the

relationship. Grouping and labeling related data fields are especially important

for data entry.

Do not group together objects and design elements that are not associated with related tasks

and functions

This guideline, the converse of the previous one, seems to be observed more

often in the breach in real-world designs.

Example: Here are your options

TheOptions dialogue box in Figure 22-30, from an older version of Microsoft

Word, illustrates a case where some controls are grouped incorrectly with some

parameter settings.

Themetaphor in this design is that of a deckof tabbed index cards. Theuserhas

clicked on the General tab, which took the user to this General “card” where the

user made a change in the options listed. While in the business of setting options,

the user then wishes to go to another tab for more settings. The user hesitates,

concerned that moving to another tab without “saving” the settings in the current

tab might cause them to be lost.

So this user clicks on the OK to get

closure for this tabbed card before

moving on. To his surprise, the entire

dialogue box disappears and he must

start over by selecting Options from

the Tools menu at the top of the

screen.

The surprise and extra work to

recover were the price of the use of

layout and grouping as an incorrect

indication of the scope or range

covered by the OK and Cancel

buttons. Designers have made the

buttons actually apply to the entire

Options dialogue box, but they put

the buttons on the currently open

tabbed card, making them appear

Figure 22-30

OK and Cancel controls on
individual tab
“card” (screen image
courtesy of Tobias Frans-
Jan Theebe).

732 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

to apply just to the card or, in this

case, just to the General category of

options.

The Options dialogue box from a

different version of Microsoft

PowerPoint in Figure 22-31 is a better

design that places all the tabbed cards

on a larger background and the OK

and Cancel controls are on this

background, showing clearly that the

controls are grouped with the whole

dialogue box and not with individual

tabbed cards.

Example: Where to put the Search button?

Some parameters associated with a

search function in a digital library are

shown in Figure 22-32. In the original

design, shown at the top of Figure 22-32,

the Search button is located right next to

the OR radio-button choice at the

bottom. Perhaps it is associated with the Combine fields with feature? No, it

actually was intended to be associated with the entire search box, as shown in the

“Suggested redesign” at the bottom of Figure 22-32.

Example: Are we going to Eindhoven or Catalania?

Here is a non-computer (sort of) example from the airlines. While waiting in

Milan one day to board a flight to Eindhoven, passengers saw the display shown

in Figure 22-33. As the display suggests, the Eindhoven flight followed a flight to

Catalania (in Spain) from the same gate.

As the flight to Catalania began boarding, confusion started brewing in the

boarding area. Many people were unsure about which flight was boarding,

as both flights were displayed on the board. The main source of trouble

was due to the way parts of the text were grouped in the flight announcements

on the overhead board. The state information Embarco (meaning departing)

was closer to the Eindhoven listing than to that of Catalania, as shown in

Figure 22-31

OK and Cancel controls on
background underneath all
the tab “cards” (screen
image courtesy of Tobias
Frans-Jan Theebe).

733UX DES IGN GUIDEL INES

Figure 22-33. So Embarco seemed

to be grouped with and applied to

the Eindhoven flight.

Confusion was compounded by

the fact that it was 9:30 AM; the

Catalania flight was boarding late

enough so that boarding could

have been mistaken for the one to

Eindhoven. Further conspiring

against the waiting passengers was

the fact that there were no oral

announcements of the boardings,

although there was a public

address system. Many Eindhoven

passengers were getting into the

Catalania boarding line. You could

see them turning Eindhoven

passengers away but still there was

no announcement to clear up the

problem.

Sometime later, the flight state information Embarco changed to Chiuso

(meaning closed), as seen in Figure 22-34.

Many of the remaining Eindhoven passengers immediately became agitated,

seeing the Chiuso and thinking that the Eindhoven flight was closed before they

had a chance to board. In the end, everything was fine but the poor layout of the

display on the flight announcement board caused stress among passengers and

extra work for the airline gate attendants. Given that this situation can occur

many times a day, involvingmany people every day, the cost of this poor UXmust

have been very high, even though the airline workers seemed to be oblivious as

they contemplated their cappuccino breaks.

Example: Hot wash, anyone?

In another simple example, in Figure 22-35 we depict a

row of push-button controls once seen on a clothes washing

machine.

The choices of Hot wash/cold rinse, Warm wash/cold

rinse, and Cold wash/cold rinse all represent similar

semantics (wash and rinse temperatures settings) and,

therefore, should be grouped together. They are also

Figure 22-32

(Top) Uncertain
association with Search;
(bottom) problem fixed with
better layout and grouping.

Figure 22-33

A sketch of the airline
departure board in Milan.

734 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

expressed in similar syntax and words so it is consistent

labeling. However, because all three choices include a cold

rinse, why not just say that with a separate label and not

include it in all the choices?

The real problem, though, is that the fourth button,

labeled Start represents completely different functionality

and should not be grouped with the other push buttons.

Why do you think the designers made such an obvious

mistake in grouping by related functionality? We think it is

because one single switch assembly is less expensive to buy

and install than two separate assemblies. Here, cost won over

usability.

Example: There goes the flight attendant, again

Onanairplane flightonce,wenoticedadesign flaw in the layoutof theoverhead

controls for a pair of passengers in a two-seat configuration, a flaw that created

problems for flight attendants andpassengers. This control panel hadpush-button

switches at the left and right for turning the left and right reading lights on andoff.

The problem is that the flight attendant call switch was located just

between the two light controls. It looked nice and symmetric, but its close

proximity to the light controls made it a frequent target of unintended

operation. On this flight we saw flight attendants moving through the cabin

frequently, resetting call buttons for numerous passengers.

In this design, switches for two related functions were separated by anunrelated

one; thegroupingofcontrolswithin the layoutwasnotby function.Another reason

calling for even further physical separation of the two kinds of switches is that light

switches are used frequently while the call switch is not.

Likely user choices and useful defaults
Sometimes it is possible to anticipate menu and button

choices, choices of data values, and choices of task paths that

users willmost likely want or need to take. By providing direct

access to those choices and, in some cases making them the

defaults, we can help make the task more efficient for users.

Support user choices with likely and useful defaults

Many user tasks require data entry into data fields in

dialogue box and screens. Data entry is often a tedious and

Figure 22-34

Oh, no, Chiuso.

Figure 22-35

Clothes washing machine
controls with one little
inconsistency.

735UX DES IGN GUIDEL INES

repetitive chore, andwe shoulddoeverythingwecan toalleviate someof thedreary

labor of this task by providing themost likely ormost useful data values as defaults.

Example: What is the date?

Many forms call for the current date in one of the fields. Using today’s date as

the default value for that field should be a no-brainer.

Example: Tragic choice of defaults

Here is a serious example of a case where the choice of default values

resulted in dire consequences. This story was relayed by a participant in one of

our UX short courses at amilitary installation. We cannot vouch for its verity but,

even if it is apocryphal, it makes the point well.

A front-line spotter for missile strikes has a GPS on which he can calculate

the exact location of an enemy facility on amap overlay. The GPS unit also serves

as a radio through which he can send the enemy location back to the missile

firing emplacement, which will send a missile strike with deadly accuracy.

He entered the coordinates of the enemy just before sending the message,

but unfortunately the GPS battery died before he could send the message.

Because time was of the essence, he replaced the battery quickly and hit Send.

The missile was fired and it hit and killed the spotter instead of the enemy.

When the old battery was removed, the system did not retain the enemy

coordinates and, when the new battery was installed, the system entered its own

current GPS location as default values for the coordinates. It was easy to pick off

the local GPS coordinates of where the spotter was standing.

In isolation of other important considerations, it was a bit like putting in

today’s date as the default for a date; it is conveniently available. But in this case,

the result of that convenience was death by friendly fire. With a moment’s

thought, no one could imagine making the spotter’s coordinates the default for

aiming a missile. The problem was fixed immediately!

Provide the most likely or most useful default selections

Among the most common violations of this guideline is the failure to select

an item for a user when there is only one item from which to select, as

illustrated in the next example.

Example: Only one item to select from

736 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Here is a special case of applying this guideline where there is only one item

from which to select. In this case it was one item in a dialogue box list. When

this user opened a directory in this dialogue box showing only one item, the

Select button was grayed out because the user is required to select something

from the list before the Select button becomes active. However, because there

was only one item, the user assumed that the item would be selected by default.

When he clicked the grayed-out Select button, however, nothing happened.

The user did not realize that even though there is only one item in the list,

the design requires selecting it before proceeding to click on the Select button.

If no item is chosen, then the Select button does not give an error message nor

does it prompt the user; it just sits there waiting for the user to do the “right

thing.” The difficulty could have been avoided by displaying the list of one item

with that item already selected and highlighted, thus providing a useful

default selection and allowing the Select button to be active from the start.

Offer most useful default cursor position

It is a small thing in a design, but it can be so nice to have the cursor just

where you need it when you arrive at a dialogue box or window in which you

have to work. As a designer, you can save

users the work and irritation of extra physical

actions, such as an extra mouse click before

typing, by providing appropriate default

cursor location, for example, in a data field

or text box, or within the user interface

object where the user is most likely to

work next.

Example: Please set the cursor for me

Figure 22-36 contains a dialogue box for

planning events in a calendar system.

Designers chose to highlight the frequency

of occurrences of the event in terms of the

number of weeks, in the Weekly section.

This might be a little helpful to users who

will type a value into the “increment box”

of this data field, but users are just as likely

to use the up and down arrows of the

Figure 22-36

Placement of default
working location could be
better (screen image
courtesy of Tobias Frans-
Jan Theebe).

737UX DES IGN GUIDEL INES

increment box to set Values, in which case the default highlighting does not

help. Further evaluation will be necessary to confirm this, but it is possible that

putting the default cursor in the Effective Date field at the bottom might be

more useful.

Supporting human memory limitations
in cognitive affordances
Earlier we elaborated on the concept of human memory limitations

in human–computer interaction. This section is the first of several in

which we get to put this knowledge to work in specific interaction design

situations.

Relieve human short-term memory loads by maintaining task context visibly or audibly

for the user

Provide reminders to users of what they are doing and where they are within

the task flow. Post important parts of the task context, parameters the user must

keep track of within the task, so that the user does not have to commit them to

memory.

Support human memory limits with recognition over recall

For cases where choices, alternatives, or possible data entry values are known,

designing to use recognition over recall means allowing the user to select an

item from among choices rather than having to specify the choice strictly from

memory. Selection among presented choices also makes for more precise

communication about choices and data values, helping avoid errors from

wording variations and typos.

One of the most important applications of this guideline is in the naming of

files for an operation such as opening a file. This guideline says that we should

allow users to select the desired file name from a directory listing rather than

requiring the user to remember and type in the file name.

Example: What do you want, the part number?

To begin with, the cognitive affordance shown in Figure 22-37 describing the

desired user action is too vague and open-ended to get any kind of specific input

from a user. What if the user does not know the exact model number and what

kind of description is needed? This illustrates a case where it would be better to

738 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

use a set of hierarchical menus to

narrow down the category of the

product in mind and then offer a

list in a pull-downmenu to identify

the exact item.

Example: Help with Save As

In Figure 22-38 we show a very early Save As dialogue box in aMicrosoft Office

application. At the top is the name of the current folder and the user can

navigate to any other folder in the usual way. But it does not show the names of

files in the current folder.

This design precedes modern versions that show a list of existing files in this

current folder, as shown in Figure 22-39.

This list supports memory by showing the names of other, possibly similar,

files in the folder. If the user is employing any kind of implicit file-naming

convention, it will be evident, by example, in this list.

For example, if this folder is for letters to the IRS and files are named by date,

such as “letter to IRS, 3-30-2010,” the list serves as an effective reminder of this

naming convention. Further, if the user is saving another letter to the IRS here,

dated 4-2-2010, that can be done by clicking on the 3-30-2010 letter and getting

that name in the File name: text box and, with a few keystrokes, editing it to be

the new name.

Avoid requirement to retype or copy from one place to another

In some applications, moving from one subtask to another requires users to

remember key data or other related information and bring it to the second

subtask themselves. For example, suppose a user selects an item of some kind

during a task and then wishes to go to a different part of the application and

apply another function to which that item is an input. We have experienced

applications that required us to remember the item ourselves and re-enter it as

we arrived at the new functionality.

Be suspicious of usage situations

that require users to write

something down in order to use it

somewhere else in the application;

this is a sign of an opportunity to

support human memory better in

Figure 22-37

What do you want, the part
number?

Figure 22-38

Early Save As dialogue box
with no listing of files in
current folder (screen
image courtesy of Tobias
Frans-Jan Theebe).

739UX DES IGN GUIDEL INES

thedesign.Asanexample, consider auserof aCalendarManagementSystemwho

needs to rescheduleanappointment. If thedesign forces theuser todelete theold

one and add the new one, the user has to remember details and re-enter them.

Such a design does not follow this guideline.

Support special human memory needs in audio interaction design

Voice menus, such as telephone menus, are more difficult to remember

because there is no visual reminder of the choices as there is in a screen display.

Therefore, we have to organize and state menu choices in a way to reduce

human memory load.

For example, we can give the most likely or most frequently used choices first

because the deeper the user goes into the list, the more previous choices there

are to remember. As each new choice is articulated, the user must compare it

with each of the previous choices to determine the most appropriate one. If the

desired item comes early, the user gets cognitive closure and does not need to

remember the rest of the items.

Cognitive directness in cognitive affordances
Cognitive directness is about avoiding mental transformations for the user. It

is about what Norman (1990, p. 23) calls “natural mapping.” A good example

from the world of physical actions is a lever that goes up and down on a

Figure 22-39

Problem solved with listing
of files in current folder.

740 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

console but is used to steer something to the left or the right. Each time it is used,

the user must rethink the connection, “Let us see; lever up means steer to

the left.”

A classic example of cognitive directness, or the lack thereof, in product

design is in the arrangement of knobs that control the burners of a cook top. If

the spatial layout of the knobs is a spatial map to the burner configuration, it is

easy to see which knob controls which burner. Seems easy, butmany designs over

the years have violated this simple idea and users have frequently had to

reconstruct their own cognitive mapping.

Avoid cognitive indirectness

Support user cognitive affordance content understanding by presenting

choices and information in cognitively direct expressions rather than in some

kind of encoding that requires the user to make a mental translation. The

objective of this guideline is to help the user avoid an extra step of translation,

resulting in less cognitive effort and fewer errors.

Example: Rotating a graphical object

For a user to rotate a two-dimensional graphical object, there are two

directions: clockwise and counterclockwise. While “Rotate Left” and “Rotate

Right” are not technically correct, they might be better understood by many

than “Rotate CW” and “Rotate CCW.” A better solution might be to show small

graphical icons, circles with an arc arrow over the top pointing in clockwise and

counterclockwise directions.

Example: Up and down in Dreamweaver

Macromedia Dreamweaver™ is an application used to set up simple Web

pages. It is easy to use in many ways, but the version we discuss here contains an

interesting and definitive example of cognitive indirectness in its design. In the

right-hand side pane of the site files window in Figure 22-40 are local files as they

reside on the user’s PC.

The left-hand side pane of Figure 22-40 shows a list of essentially

the same files as they reside on the remote machine, the Website server. As

users interact with Dreamweaver to edit and test Web pages locally on their

PCs, they upload them periodically to the server to make them part of the

operational Website. Dreamweaver has a convenient built-in “ftp” function to

741UX DES IGN GUIDEL INES

implement this file transfer. Uploading is accomplished by clicking on the

up-arrow icon just above the Local site label and downloading uses the

down arrow.

The problem comes in when users, weary from editing Web pages, click on

the wrong arrow. The download arrow can bring the remote copy of the just-

edited file into the PC. Because the ftp function replaces files with the same

name as new ones arriving without asking for confirmation, this feature is

dangerous and can be costly. Click on the wrong icon and you can lose a lot

of work.

“Uploading” and “downloading” are system-centered, not usage-centered,

terms and have arbitrary meaning about the direction of data flow, at least to

the average non-systems person. The up- and down-arrow icons do nothing

to mitigate this poor mapping of meaning. Because the sets of files are on

the left-hand side and right-hand side, not up and down, often users must

stop and think about whether they want to transfer data left or right on the

screen and then translate it into “up” or “down.” The icons for transfer of

data should reflect this directly; a left arrow and a right arrow would do

Figure 22-40

Dreamweaver up and
down arrows for up- and
downloading.

742 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

nicely. Furthermore, given that the “upload” action is

the more frequent operation, making the

corresponding arrow (left in this example) larger

provides a better cognitive (and physical affordance in

terms of click target size) affordance.

Example: The surprise action of a car heater control

In Figure 22-41 you can see a photo of the heater

control in a car. It looks extremely simple; just turn the

knob.

However, to a new user the interaction here could

be surprising. The control looks as though you grab the knob and the whole

thing turns, including the numbers on its face. However, in actuality, only the

outside rim turns, moving the indicator across the numbers, as seen in the

sequence of Figure 22-42.

Figure 22-41

How does this car heater
fan control work?

Figure 22-42

Now you can see that the
outer rim is what
turns (photos courtesy of
Mara Guimarães Da
Silva).

743UX DES IGN GUIDEL INES

So, if the user’s mental model of the device is that rotating the knob clockwise

slows down the heater fan, he or she is in for a surprise. The clockwise rotation

moves the indicator to higher numbers, thus speeding up the heater fan. It can

take users a long time to get used to having to make that kind of a cognitive

transformation.

Complete information in cognitive affordances
Support the user’s understanding of cognitive affordances by providing

complete and sufficient expression of meaning, to disambiguate, make more

precise, and clarify. For each label, menu choice, and so on the designer should

ask “Is there enough information and are there enough words used to

distinguish cases?”

Be complete in your design of cognitive affordances; include enough information for users

to determine correct action

The expression of a cognitive affordance should be complete enough

to allow users to predict the consequences of actions on the corresponding

object.

Prevent loss of productivity due to hesitation, pondering

Completeness helps the user distinguish alternatives without having to

stop and contemplate the differences. Complete expressions of cognitive

affordance meaning help avoid errors and lost productivity due to error

recovery.

Use enough words for unambiguous labels

Some people think button labels, menu choices, and verbal prompts should

be terse; no one wants to read a paragraph on a button label. However,

reasonably long labels are not necessarily bad and adding words can add

precision. Often a verb plus a noun are needed to tell the whole story.

For example, for the label on a button controlling a step in a task to add a record

in an application, consider using Add Record instead of just Add.

As another example of completeness in labeling, for the label on a knob

controlling the speed of a machine, rather than Adjust or Speed, consider using

Adjust Speed or maybe even Clockwise to increase speed, which includes

information about how to make the adjustment.

744 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Add supplementary information, if necessary

If you cannot reasonably get all the necessary information

in the label of a button or tab or link, for example, consider

using a fly-over pop up to supplement the label with more

information.

Give enough information for users to make confident decisions

Example: What do you mean “revert?”

In Figure 22-43 is a message from Microsoft Word that has given us pause

more than once. We think we know what button we should click but we are

not entirely confident and it seems as though it could have a significant effect on

our file.

Example: Quick, what do you want to do?

Figure 22-44 contains a message dialogue box from Microsoft Outlook that

can strike fear into the heart of a user. It just does not give enough information

about the consequences of either choice presented. If the user exits anyway,

does it still send the outstanding messages or do they get lost? To make matters

worse, there is undue pressure that the system will take control and exit if the

user cannot decide in the next 8 seconds.

Give enough alternatives for user needs

Few things are as frustrating to users as a dialogue box or other user

interface object presenting choices that do not include the one alternative

the users really needs. No matter what the user does next, it will not turn

out well.

Usage centeredness in cognitive affordances
Employ usage-centered wording, the language of the user and the work context,

in cognitive affordances

We find that many of our students do not understand what it means

to be user centered or usage centered in interaction design. Mainly

Figure 22-43

What are the consequences
of “reverting?”

Figure 22-44

Urgent but unclear
question.

745UX DES IGN GUIDEL INES

it means to use the vocabulary and concepts of the user’s work context rather

than the vocabulary and context of the system. This difference between the

language of the user’s work domain and the language of the system is the

essence of “translation” in the translation part of the Interaction Cycle.

As designers, we have to help users make that translation so they do not have

to encode or convert their work domain vocabulary into the corresponding

concepts in the system domain. The story of the toaster in Chapter 21 is a good

example of a design that fails to help the user with this translation from task or

work domain language to system control language. The conveyor belt speed

control is labeled with system language, “Faster” and “Slower” instead of being

labeled in terms of the work domain of toast making, “Lighter” and “Darker.”

Avoiding errors with cognitive affordances
The Japanese have a term, “poka-yoke,” that means error proofing. It refers to a

manufacturing technique to prevent parts of products from being made,

assembled, or used incorrectly. Most physical safety interlocks are examples. For

instance, interlocks inmost automatic transmissions enforce a bit of safety by not

allowing the driver to remove the key until the transmission is in park and not

allowing shifting out of park unless the brake is depressed.

Find ways to anticipate and avoid user errors in your design

Anticipating user errors in the workflow, of course, stems back to contextual

inquiry and contextual analysis, and concern for avoiding errors continues

throughout requirements, design, and UX evaluation.

Example: Here is soap in your eyes

Consider the context of a shower in which

there are two bottles, one for shampoo and

one for conditioner, examples of which you

can see in Figure 22-45. But the problem is

that one cannot see them well enough to

know which is which. The important

distinguishing labels, for shampoo and for

conditioner, are “hidden” within a lot of

other text and are in such a small font as to

be illegible without focused attention,

especially with soap in the eyes.

Figure 22-45

It is hard to tell which is the
shampoo.

746 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

So users sometimes add their own

(user-created) affordances by, in this case,

adding labels on the tops of the bottles to

tell them apart in the shower, as shown in

Figure 22-46.

You can see, in Figure 22-47, an example of a

kind of shampoo bottle design that would have

avoided the problem in the first place.

In this clever design, the shampoo, the first

one you need, is right-side up and the labeling

on the conditioner bottle, the next one you

need, is printed so that you stand the bottle

“upside down.”

Help users avoid inappropriate and erroneous choices

This guideline has three parts: one to disable the choices, the second to show

the user that they are disabled, and the third to explain why they are disabled.

Disable buttons, menu choices to make inappropriate choices unavailable

Help users avoid errors within the task flow by disabling choices in buttons,

menus, and icons that are inappropriate at a given point in the interaction.

Gray out to make inappropriate choices appear

unavailable

As a corollary to the previous

guideline, support user awareness of

unavailable choices by making cognitive

affordances for those choices appear

unavailable, in addition to being

unavailable. This is done by making some

adjustment to the presentation of the

corresponding cognitive affordance.

One way is to remove the presentation

of that cognitive affordance, but this

leads to an inconsistent overall display

and leaves the user wondering where that

Figure 22-46

Good: some user-created
cognitive affordances
added.

Figure 22-47

Better: a design to
distinguish the bottles.

747UX DES IGN GUIDEL INES

cognitive affordance went. The conventional approach is to “gray out” the

cognitive affordance in question, which is universally taken tomean the function

denoted by the cognitive affordance still exists as part of the system but is

currently unavailable or inappropriate.

But help users understand why a choice is unavailable

If a system operation or function is not available or not appropriate, it is

usually because the conditions for its use are not met. One of the most

frustrating things for users, however, is to have a button or menu choice grayed

out but no indication aboutwhy the corresponding function is unavailable. What

can you do to get this button un-grayed? How can you determine the

requirements for making the function available?

We suggest an approach that would be a break with traditional GUI object

behavior but that could help avoid that source of user frustration. Clicking on a

grayed-out object could yield a pop up with this crucial explanation of why it is

grayed out and what youmust do to create the conditions to activate the function

of that user interface object.

Example: When am I supposed to click the button?

In a document retrieval system, one of the user tasks is adding new keywords

to existing documents, documents already entered into the system. Associated

with this task is a text box for typing in a new keyword and a button labeled Add

Keyword. The user was not sure whether to click on the Add Keyword button first

to initiate that task or to type the new keyword and then click on Add Keyword to

“put it away.”

A user tried the former and nothing happened, no observable action and no

feedback, so the user deduced that the proper sequence was to first type the

keyword and then click the button. No harm done except a little confusion and

lost time. However, the same glitch is likely to happen again with other users and

with this user at a later time.

The solution is to gray out the Add Keyword button to show when it does not

apply, making it obvious that it is not active until a keyword is entered. Per our

suggestion earlier, we could add an informative pop-up message that appears

when someone clicks on the grayed-out button to the effect that the user must

first type something into the new keyword text box before this button becomes

active and allows the user to commit to adding that keyword.

748 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Cognitive affordances for error recovery
Provide a clear way to undo and reverse actions

As much as possible, provide ways for users to back out of error situations by

“undo” actions. Although they are more difficult to implement, multiple levels

of undo and selective undo among steps are more powerful for the user.

Offer constructive help for error recovery

Users learn about errors through error messages as feedback, which is

considered in the assessment part of the Interaction Cycle. Feedback occurs as

part of the system response (Chapter 21). A system response designed to support

error recovery will usually supplement the feedback with feed-forward, a

cognitive affordance here in the translation part of the Interaction Cycle to help

users know what actions or task steps to take for error recovery.

Cognitive affordances for modes
Modes are states where actions have different meanings than the same

actions in different states. The simplest example is a hypothetical email system.

When in the mode of managing email files and directories, the command

Ctrl-S means Save. However, when you are in the mode of composing an

email message, Ctrl-S means Send. This design, which we have seen in the

“old days,” is an invitation to errors. Many a message has been sent prematurely

out of the habit of doing a Ctrl-S periodically out of habit to be sure everything

is saved.

The problem with most modes in interaction design is the abrupt change of

the meanings of user actions. It is often difficult for users to shift focus between

modes and, when they forget to shift as they cross modal boundaries, the

outcomes can be confusing and even damaging. It is a kind of bait and switch;

you just get your users comfortable in doing something one way and then

change the meaning of the actions they are using.

Modes within interaction designs can also work strongly against experienced

users, who move fast and habitually without thinking much about their actions.

In a kind of “UX karate,” they get leaning one way in one mode and then their

own usage momentum gets used against them in the other mode.

Avoid confusing modalities

749UX DES IGN GUIDEL INES

If it is possible to avoid modes altogether, the best advice is to do so.

Example: Do not be in a bad mode

Think about digital watches. Enough said.

Distinguish modes clearly

If modes become necessary in your interaction design, the next-best advice is

to be sure that users are aware of each mode and avoid confusion across modes.

Use “good modes” where they help natural interaction without confusion

Not all modes are bad. The use of modes in design can represent a case for

interpreting design guidelines, not just applying them blindly. The guideline to

avoid modes is often good advice because modes tend to create confusion. But

modes can also be used in designs in ways that are helpful and not at all

confusing.

Example: Are you in a good mode?

An example of a good mode needed in a design comes from audio equalizer

controls on the stereo in a particular car. As withmost radio equalizers, there are

choices of fixed equalizer settings, often called “presets,” including audio styles

such as voice, jazz, rock, classical, new age, and so on.

However, because there is no indication in the radio display of the current

equalizer setting, you have to guess or have faith. If you push the Equalizer

button to check the current setting, it actually changes the setting and then you

have to toggle back through all the values to recover the original setting. This is a

non-modal design because the Equalizer button means the same thing every

time you push it. It is consistent; every button push yields the same result:

toggling the setting.

It would be better to have a slightly moded design so that it starts in a “display

mode,” which means an initial button push causes it to display the current

setting without changing the setting so that you can check the equalizer setting

without disturbing the setting itself. If you do wish to change the setting, you

push the same Equalizer button again within a certain short time period to

change it to the “setting mode” in which button pushes will toggle the setting.

Most such buttons behave in this good moded way, except in this particular car.

750 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

22.6.4 Task Structure
In Figure 22-48 we highlight the “task

structure” portion of the translation

part of the Interaction Cycle.

Support of task structure in this part

of the Interaction Cycle means

supporting user needs with the logical

flow of tasks and task steps, including

human memory support in the task

structure; task design simplicity,

flexibility, and efficiency; maintain the

locus of control with the user within a

task; and offer natural direct

manipulation interaction.

Human working memory
loads in task structure
Support human memory limitations in the design of task structure

The most important way to support human memory limitations within the

design of task structure is to provide task closure as soon and as often as possible;

avoid interruption and stacking of subtasks. This means “chunking” tasks into

small sequences with closure after each part.

While it may seem tidy from the computer science point of view to use a

“preorder” traversal of the hierarchical task structure, it can overload the user’s

working memory, requiring stacking of context each time the user goes to a

deeper level and “popping” the stack, or remembering the stacked context, each

time the user emerges up a level in the structure.

Interruption and stacking occur when the user must consider other tasks

before completing the current one. Having to juggle several “balls” in the air,

several tasks in a partial state of completion, adds an often unnecessary load to

human memory.

Design task structure for flexibility and efficiency
Support user with effective task structure and interaction control

Support user needs for flexibility within the logical task flow by providing

alternative ways to do tasks. Meet user needs for efficiency with shortcuts for

Figure 22-48

The task structure part of
translation.

751UX DES IGN GUIDEL INES

frequently performed tasks and provide support for task thread continuity,

supporting the most likely next step.

Provide alternative ways to perform tasks

One of the most striking observations during task-based UX evaluation is the

amazing variety of ways users approach task structure. Users take paths never

imagined by the designers.

There are two ways designers can become attuned to this diversity of task

paths. One is through careful attention to multiple ways of doing things in

contextual inquiry and contextual analysis and the other is to leverage

observations of such user behavior in UX evaluation. Do not just discount

observations of users gone “astray” as “incorrect” task performance; try to learn

about valuable alternative paths.

Provide shortcuts

No one wants to have to make too many mouse clicks or other user actions to

complete a task, especially in complex task sequences (Wright, Lickorish, &

Milroy, 1994). For efficiency within frequently performed tasks, experienced

users especially need shortcuts, such as “hot key” (or “accelerator key”)

alternatives for other more complicated action combinations, such as selecting

choices from pull-down menus.

Keyboard alternatives are particularly useful in tasks that otherwise require

keyboard actions such as form filling or word processing; staying within the

keyboard for these “commands” avoids having the physical “switching” actions

required for moving between the keyboard and mouse, for example, two

physically different devices.

Grouping for task efficiency
Provide logical grouping in layout of objects

Group together objects and functions related by task or user work activity

Under the topic of layout and grouping to control content and meaning

complexity, we grouped related things to make their meanings clear. Here we

advocate grouping objects and other things related to the same task or user work

activity as a means of conveniently having the needed components for a task at

hand. This kind of grouping can be accomplished spatially with screen or other

752 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

device layout or it can be manifest sequentially, as in a sequence of menu

choices.

As Norman (2006) illustrates, in a taxonomic “hardware store” organization,

hammers of all different kinds are all hanging together and all different kinds of

nails are organized in bins somewhere else. But a carpenter organizes his or her

tools so that the hammer and nails are in proximity because the two are used

together in work activities.

But avoid grouping of objects and functions if they need to be dealt with separately

Grouping user interface objects such as buttons, menus, value settings, and so

on creates the impression that the group comprises a single focus for user action.

If more is needed for that task goal, each requiring separate actions, do not

group the objects tightly together but make clear the separate objectives and the

requirement for separate actions.

Example: Oops, I forgot to do the rest of it

A dialogue box from a paper prototype of a Ticket Kiosk System is shown

in Figure 22-49.

It contains two objectives and two corresponding objects for value settings

by the user—proximity of the starting time of a movie and the distance of

the movie theater from the kiosk. Most of the participants who used this

dialogue box as part of a ticket-buying task made

the first setting and clicked on Continue, not

noticing the second component. The solution

that worked was to separate the two value-setting

operations into two dialogue boxes,

forcing a separation of the focus and linearizing

the two actions.

Task thread continuity: Anticipating the
most likely next step or task path
Support task thread continuity by anticipating the most likely

next task, step, or action

Task thread continuity is a design goal relating to

task flow in which the user can pursue a task thread

Figure 22-49

An overloaded dialogue
box in a paper prototype.

753UX DES IGN GUIDEL INES

of possibly many steps without an interruption or “discontinuity.” It is

accomplished in design by anticipating most likely and other possible next steps

at any point in the task flow and providing, at hand, the necessary cognitive,

physical, and functional affordances to continue the thread.

The likely next steps to support can include tasks or steps the user may wish to

take but which are not necessarily part of what designers envisioned as the

“main” task thread. Therefore, these various task directions might not be

identified by pure task analysis, but are steps that a practitioner or designer

might see in contextual inquiry while watching users perform the tasks in a real

work activity context. Effective observation in UX evaluation also can reveal

diversions, branching, and alternative task paths that users associate with the

main thread.

Attention to task thread continuity is especially important when designing the

contents of context menus, right-click menus associated with objects or steps in

tasks. It is also important when designing message dialogue boxes that offer

branching in the task path, which is when users need at hand other possibilities

associated with the current task.

Example: If you tell them what they should do, help them get there

Probably the most defining example of task thread continuity is seen in a

message dialogue box that describes a problematic system state and suggests one

or more possible courses of action as a remedy. But then the user is frustrated by

a lack of any help in getting to these suggested new task paths.

Task thread continuity is easily supported by adding buttons that offer a

direct way to follow each of the suggested actions. Suppose a dialogue box

message tells a user that the page margins are too wide to fit on a printed page

and suggests resetting page margins so that the document can be printed.

It is enormously helpful if this guideline is followed by including a button

that will take the user directly to the page setup screen.

Example: Seeing the query with the results

Designers of information retrieval systems sometimes see the task sequence

of formulating a query, submitting it, and getting the results as closure on the

task structure, and it often is. So, in some designs, the query screen is replaced

with the results screen. However, for many users, this is not the end of the

task thread.

754 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Once the results are displayed, the next step is to assess the success of the

retrieval. If the query is complex or much has happened since the query was

submitted, the user will need to review the original query to determine whether

the results were what was expected. The next step may be to modify the query

and try again. So this often simple linear task can have a thread with larger scope.

The design should support these likely alternative task paths.

Example: May we help you spend more money?

Designers of successful online shopping sites such as Amazon.comhave figured

out how to make it convenient for shoppers by providing for likely next steps

(seeing and then buying) in their shopping tasks. They support convenience in

ordering with the ubiquitous Buy it now or Add to cart buttons. They also support

product research. If a potential customer shows interest in a product, the site

quickly displays other products and accessories that gowith it or alternative similar

products that other customers have bought.

Example: What if I want to save it in a new folder?

In early Microsoft Office applications the Save As dialogue box did not contain

the icon for creating a new folder (the next to the right-hand icon at the top of the

dialogue box in Figure 22-50). Eventually, designers realized that as part of

the “Save As” task, users had to think about where to put the file and, as part of that

planning for organizing their file structures, they often needed to create new

folders to modify or expand the current file structure.

Early users had to back out of the “Save As” task and go to Windows Explorer,

navigate to the proper context, create the folder, and then return to the

Office application and do the “Save As” all over again. By including the ability to

create a new folder within the Save As dialogue box, this likely next step was

accommodated directly.

In some cases, themost likely next step is so likely that task thread continuity is

supported by adding a slight amount of automation and doing the step for the

user. The following example is one such case.

Example: Resetting over and over

For frequent users of Word, the Outline view helps organize material within a

document. You can use the Outline view to move quickly from where you are

755UX DES IGN GUIDEL INES

in the document to another specific location. In the Outline view, you get a

choice of the number of levels of outline to be shown. It is common for users to

want to keep this Outline view level setting at a high level, affording a view of the

whole outline. So, for many users, the most likely-used setting would be that

high setting. Many users rarely even choose anything else.

Regardless of any user’s level preferences, if a user goes to the Outline view

it is because he or she wants to see and use the outline. But the default level

setting inWord’s Outline view is the only setting that really is not an outline. The

default Word Outline view, Show all levels, is a useless mash-up of outline parts

and non-outline text. As a default this setting is the least useful for anyone.

Every time users launch a Word document, they face that annoying Outline

view setting. Even once you have shown your preference by setting the level,

the system inevitably strays away from that setting during editing, forcing you

to reset it frequently. Frequent users of Word will have made this setting

thousands of times over the years. Why cannot Word help users by saving the

settings they use so consistently and have set so often?

Designers might argue that they cannot assume they know what level a user

needs so they follow the guideline to “give the user control.” But why design a

Figure 22-50

Addition of an icon to
create a new file in the Save
As dialogue box.

756 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

default that guarantees the user will have to change it instead of something that

might be useful to at least some users some of the time? Why not detect the

highest level present in the document and use that as a default? After all, the user

did request to see the outline.

Example: Why make me choose from just one thing?

Earlier we described an example in which the user had to select an item from

a dialogue box list of choices, even though there was only one item in the list.

Our point there was that preselecting the item for the user made for a useful

default.

The same idea applies here: When there is only one choice, the designer

can support user efficiency through task thread continuity by assuming the

most likely next action to be selecting that only choice and making the

selection in advance for the user. An example of this comes from Microsoft

Outlook.

When an Outlook user selects Rules and Alerts from the Tools menu and

clicks on the Run Rules Now button, the Run Rules Now dialogue box appears.

In cases where there is only one rule, it is highlighted in the display, making it

look selected. However, be careful, that rule is not selected; the highlighting is a

false affordance.

Look closely and you see that the checkbox to its left is unchecked and that is

the indication of what is selected. The result is the RunNow button is grayed out,

causing some users to pause in confusion about why the rule cannot now be run.

Most such users figure it out eventually, but lose time and patience in the

confusion. This UX glitch can be avoided by preselecting this only choice as the

default.

Not undoing user work
Make the most of user’s work

Do not make the user redo any work.

Do not require users to reenter data

Do you not hate it when you fill out part of a form and go away to get more

information or to attend temporarily to something else and, when you come

back, you return to an empty form? This usually comes from lazy programming

because it takes some buffering to retain your partial information. Do not do this

disservice to your users.

757UX DES IGN GUIDEL INES

Retain user state information

It helps users keep track of state information, such as user preferences, that

they set in the course of usage. It is exasperating to have to reset preferences and

other state settings that do not persist across different work sessions.

Example: Hey, remember what I was doing?

It would help users a lot if Windows could be a little bit more helpful in

keeping track of the focus of their work, especially keeping track of where they

have been working within the directory structure. Too often, you have to

reestablish your work context by searching through the whole file directory in a

dialogue box to, say, open a file.

Then, later, if you wish to do a Save As with the file, you may have to

search that whole file directory again from the top to place the new file near

the original one.We are not asking for built-in artificial intelligence, but it would

seem that if you are working on a file in a certain part of the directory structure

and want to do a Save As, it is very likely that the file is related to the original and,

therefore, needs to be saved close to it in the file structure.

Keeping users in control
Avoid the feeling of loss of control

Sometimes, although users are still actually in control, interaction dialogue can

make users feel as though the computer is taking control. Although designers

may not give a second thought to language such as “You need to answer your

email,” these words can project a bossy attitude to users. Something such as “You

have new email” or “New email is ready for reading” conveys the same meaning

but does so in a way that helps users feel that they are not being commanded to

do something; they can respond whenever they find it convenient.

Avoid real loss of control

More bothersome to users and more detrimental to productivity is a real

loss of user control. You, the designer, may think you know what is best for the

user, but you will do best to avoid the temptation of being high handed in

matters of control within interaction. Few kinds of user experience give rise to

anger in users than a loss of control. It does not make them behave the way you

758 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

think they should; it only forces them to take extra effort to work around

your design.

One of the most maddening examples of loss of user control we have

experienced comes from EndNote™, an otherwise powerful and effective

bibliographic support application for word processing. When EndNote is used

as a plug-in to Microsoft Word, it can be scanning your document invisibly for

actions to take with regard to your bibliographic citations.

If an action is deemed necessary, for example, to format an in-line citation,

EndNote often arbitrarily takes control away from a user doing editing and

moves the cursor to the location where the action is needed, often many

pages away from the focus of attention of the user and usually without any

indication of what happened. At that point, users are probably not interested in

thinking about bibliographic citations but are more concerned with their

task at hand, such as editing. All of a sudden control is jerked away and the

working context disappears. It takes extra cognitive energy and extra physical

actions to get back to where the user was working. The worst part is that it can

happen repeatedly, each time with an increasingly negative emotional user

reaction.

Direct manipulation and natural interaction control
From the earliest computer usage, users have given “commands” to computers

to get them to perform functions. Invoking a computer function “by command”

is an indirect way to get something done by asking the computer to do it for you.

In many kinds of applications there is a more direct way—essentially to do it

yourself through direct manipulation (Shneiderman, 1983; Hutchins, Hollan, &

Norman, 1986).

The introduction of direct manipulation, the essence of GUIs, as an

interaction technique (Shneiderman, 1983) has been one of themost important

in terms of designing interaction to be natural for human users. Instead of

syntactic commands, operations are invoked by user actions manipulating user

interface objects.

For example, instead of typing “del my_file.doc,” one might delete the file by

clicking on and dragging the file icon to the “trashcan” object. Unlike the case in

command-driven interaction, direct manipulation features continuous

representation, usually visual, of interaction objects. As Shneiderman, who gets

credit for identifying and characterizing direct manipulation as an interaction

style, puts it, a key characteristic is “rapid incremental reversible operations

whose impact on the object of interest is immediately visible” (Shneiderman,

1982, p. 251; 1983).

759UX DES IGN GUIDEL INES

Users can perform tasks easily by pointing to visual representations of familiar

objects. They can see results immediately and visually, for example, a file going

into a folder. The direct manipulation interaction style is easy to learn and

encourages exploration. Direct manipulation goes hand in hand with

metaphors, like a stack of cards for addresses. Users apply direct manipulation

actions to the objects of the metaphor, for example, moving cards within a stack.

And, of course, the visual thinking and actions of direct manipulation apply

beyondmetaphors to manipulating objects in three dimensions as in virtual and

augmented reality applications.

One way that the notion of direct manipulation enters into the design

of physical products such as radios and television sets is by way of the

concept of physicality. If controls for these physical devices, such as volume

and tuning controls, are implemented with real knobs, users can operate them

by physically grasping and turning them. This is literally a kind of direct

manipulation.

Give direct manipulation support

Example: Please add an appointment for me

Take adding an appointment to a computer-based calendar as an example.

We illustrate the command-driven approach with the following task sequence.

The user navigates to the desired day within the calendar and clicks on the time

slot to select it. Then clicking the Add appointment button brings up a dialogue

box in which the user types the text in one or more fields describing the

appointment.

Then clicking on OK or Save appointment dismisses the dialogue box,

essentially asking the computer to store the appointment. In the direct

manipulation paradigm, the calendar looks and feels much like a paper

calendar. The user types the appointment information directly into the

time slot on the calendar, just as one might write on a paper calendar with

a pencil. There is no need to ask for the appointment to be saved;

anything you “write” in the calendar stays there, just as it does on a paper

calendar.

Always provide a way for the user to “bail out” of an ongoing operation

Do not trap a user in an interaction. Always allow a way for users to escape

if they decide not to proceed after getting part way into a task sequence.

Physicality

Physicality is about real

physical interaction with

real devices like physical

knobs and levers.

760 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

The usual way to design for this guideline is to include a Cancel, usually as a

dialogue box button.

22.7 PHYSICAL ACTIONS

Physical actions guidelines support users in doing physical actions, including

typing, clicking, dragging in a GUI, scrolling on a Web page, speaking with a

voice interface, walking in a virtual environment, moving one’s hands in gestural

interaction, and gazing with eyes. This is the one part of the user’s Interaction

Cycle where there is essentially no cognitive component; the user already knows

what to do and how to do it.

Issues here are limited to how well the design supports the physical actions of

doing it, acting upon user interface objects to access all features and

functionality within the system. The two primary areas of design considerations

are how well the design supports users in sensing the object(s) to be

manipulated and how well the design supports users in doing the physical

manipulation. As a simple example, it is about seeing a button and clicking

on it.

Physical actions are the one place in the

Interaction Cycle where physical affordances are

relevant, where you will find issues about Fitts’ law,

manual dexterity, physical disabilities, awkwardness,

and physical fatigue.

22.7.1 Sensing Objects of Physical
Actions
In Figure 22-51 we highlight the “sensing user

interface object” part within the breakdown of the

physical actions part of the Interaction Cycle.

Sensing objects to manipulate
The “sensing user interface object” portion of the

physical actions part is about designing to support

user sensory, for example, visual, auditory, or tactile,

needs in locating the appropriate physical

affordance quickly in order to manipulate it.

Sensing for physical actions is about presentation of

physical affordances, and the associated design

Figure 22-51

Sensing the user interface
(UI) object, within physical
actions.

761UX DES IGN GUIDEL INES

issues are similar to those of the presentation of cognitive affordances in other

parts of the Interaction Cycle, including visibility, noticeability, findability,

distinguishability, discernability, sensory disabilities, and presentation medium.

Support users making physical actions with effective sensory affordances for sensing physical

affordances

Make objects to be manipulated visible, discernable, legible, noticeable, and

distinguishable. When possible, locate the focus of attention, the cursor, for

example, near the objects to be manipulated.

Example: Black on black

One of us has a stereo with a CD player with controls, such as for play and stop,

that are black buttons embossed with black icons. This black-on-black motif is

cool looking but has a negative impact on usability. You can see the raised

embossing of the icons in good light, but sometimes you like to hear your music

in a low-light ambiance, a condition that makes it very difficult to see the icons.

Most people know that you should push the play buttonwhen youwant to play a

CD, but in low light it is difficult to tell where that button is on the plain black front

of the CD player. This is definitely a case of the sensory design not supporting the

ability to locate the object of an intended physical action.

Sensing objects during manipulation
Not only is it important to be able to sense objects statically to initiate

physical actions but users need to be able to sense the cursor and the physical

affordance object dynamically to keep track of them during manipulation. As

an example, in dragging a graphical object, the user’s dynamic sensory needs

are supported by showing an outline of the graphical object, aiding its

placement in a drawing application.

As another very simple example, if the cursor is the same color as the

background, the cursor can disappear into the background while moving it,

making it difficult to judge how far tomove themouse back to get it visible again.

22.7.2 Help User in Doing Physical Actions
In Figure 22-52 we highlight the “manipulating user interface object” part within

the breakdown of the physical actions part of the Interaction Cycle.

762 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

This part of the Interaction Cycle is about

supporting user physical needs at the time of

making physical actions; it is about making user

interface object manipulation physically easy. It is

especially about designing to make physical actions

efficient for expert users.

Support user with effective physical affordances for

manipulating objects, help in doing actions

Issues relevant to supporting physical actions

include awkwardness and physical disabilities,

manual dexterity and Fitts’ law, plus haptics and

physicality.

Awkwardness and physical disabilities
One of the easiest aspects of designing for physical

actions is avoiding awkwardness. It is also one of the

easiest areas in which to find existing problems in

UX evaluation.

Avoid physical awkwardness

Issues of physical awkwardness are often about time and energy expended in

physical motions. The classic example of this issue is a user having to alternate

constantly among multiple input devices such as between a keyboard and a

mouse or between either device and a touchscreen.

This device switching involves constant “homing” actions that require time-

consuming and effortful distraction of cognitive focus and visual attention.

Keyboard combinations requiring multiple fingers on multiple keys can also be

awkward user actions that hinder smooth and fast interaction.

Accommodate physical disabilities

Not all human users have the same physical abilities—range of motion, fine

motor control, vision, or hearing. Some users are innately limited; some have

disabilities due to accidents. Although in-depth coverage of accessibility issues is

beyond our scope, accommodation of user disabilities is an extremely important

Haptics

Haptics is about the sense of

touch and the physical

contact between user and

machine through

interaction devices.

Figure 22-52

Manipulating the user
interface (UI) object within
physical actions.

763UX DES IGN GUIDEL INES

part of designing for the physical actions part of the Interaction Cycle and must

at least be mentioned here.

Manual dexterity and Fitts’ law
Design issues related to Fitts’ law are about movement distances, mutual object

proximities, and target object size. Performance is reckoned in terms of both

time and errors. In a strict interpretation, an error would be clicking anywhere

except on the correct object. A more practical interpretation would limit errors

to clicking on incorrect objects that are nearby the correct object; this is the kind

of error that can have a more negative effect on the interaction. This discussion

leads to the following guidelines.

Design layout to support manual dexterity and Fitts’ law

Support targeted cursor movement by making selectable objects large enough

The bottom line about sizes cursor movement targets is simple: small objects

are harder to click on than large ones. Give your interaction objects enough size,

both in cross section for accuracy in the cursor movement direction and in the

depth to support accurate termination of movement within the target object.

Group clickable objects related by task flow close together

Avoid fatigue, and slow movement times. Large movement distances require

more time and can lead to more targeting errors. Short distances between

related objects will result in shorter movement times and fewer errors.

But not too close, and do not include unrelated objects in the grouping

Avoid erroneous selection that can be caused by close proximity of target

objects to non-target objects.

Example: Oops, I missed the icon

A software drawing application has a very large number of functions, most of

which are accessible via small icons in a very crowded tool bar. Each function can

also be invoked by another way (e.g., a menu choice), and our observations tell

us that users mainly use the tool bar icons for familiar and frequently used

functions.

Fitts’ Law

Fitts’ Law is an empirically-

based mathematical

formula governing straight

linear movement from an

initial position to a target at

a terminal location. The

time tomake themovement

is proportional to the log2

of the distance and inversely

proportional to log2 of the

width of the target in the

direction of the motion.

764 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

As a result, they do not usually have trouble figuring out which icon to click

on. If it is not a familiar function, they do not use the icons. The problem is about

what happens when they do use the tool icons because there are so many icons,

they are small, and they are crowded together. This, combined with the fast

actions of experienced users, leads to clicking on the wrong icon more often

than users would like.

Constraining physical actions to avoid physical
overshoot errors
Design physical movement to avoid physical overshoot

Just as in the case of cursor movement, other kinds of physical actions can be at

risk for overshoot, extending the movement beyond what was intended. This

concept is best illustrated by the hair dryer switch example that follows.

Example: Blow dry, anyone?

Suppose you are using the hair dryer, let us say, on the low setting. To

move the hair dryer switch takes a certain threshold pressure to overcome initial

resistance. Once in motion, however, unless the user is adept at reducing

this pressure instantly, the switch can move beyond the intended setting.

A strong detent at each switch position can help prevent the movement from

going too far, but it is still easy to push the switch too far, as the photo of a hair

dryer switch in Figure 22-53 illustrates. Starting in the Low position and pushing

the switch toward Off, the switch configuration makes it easy to move

accidentally beyond Off over to the High setting.

This is physical overshoot and is easy to prevent

with a switch design that goes directly fromHigh

to Low and then to Off in a logical progression.

Having the Off position at one end of the

physical movement is a kind of physical

constraint or boundary condition that allows

you to push the switch to Off firmly and quickly

without demanding a careful touch or causing

worry of overshooting.

The rocker switch design in Figure 22-54 is a

bit better with respect to physical overshoot

because it is easier to control the position of a

rocker switch as it is being moved. Still, a design

Figure 22-53

A hair dryer control switch
inviting physical overshoot.

765UX DES IGN GUIDEL INES

with Off at one end of the

movement would be a more

certain design for preventing

physical overshoot. It is probably

easier to manufacture a switch

with the neutral Off position in

the middle.

Example: Downshifting on the fly

The automatic transmission shifter of a pickup truck shown in the lower

part of Figure 22-55 is an example of a design where physical overshoot

is common. You can see the shift control configuration of the truck with

the common linear progression of gears from low to high. Most of the

time this is adequate design, but when you are coming down a long hill,

you might want to downshift to maintain the speed limit without wearing out

the brakes.

However, because the shifting movement is linear, when you pull that lever

down from D, it is too easy to overshoot third gear and end up in second.

The result of this error becomes immediately obvious from the screaming of the

engine at high RPM.

This downshifting overshoot is remedied by the gear shifting pattern of a

Toyota Sienna van, shown in Figure 22-56. The gear labeled 4-D is fourth, or

high, gear that includes an automatic overdrive for highway travel.

When you shift down to third gear, the movement is constrained physically

by a “template” overlaying the shifting lever and overshoot is prevented. It is

very unlikely that a user will accidentally shift into second gear because that

requires a conscious extra action of moving the

lever to the right and then further down.

Finally, Figure 22-57 shows the gear-shifting

pattern for a Winnebago View, which is a very

small RV built on a Mercedes-Benz Sprinter

chassis and drive train. It has a “tilt shift,” which

means that when the transmission is in drive,

you can access lower gears successively by tilting

the shift lever to the left and you can shift back

up to higher gears by shifting the lever to the

right. This is probably the easiest to use and

safest of all options in terms of the risk of

downshifting overshoot.

Figure 22-54

A little better design.

Figure 22-55

Typical automatic
transmission shifting
pattern.

766 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Haptics and physicality
Haptics is about the sense of touch and physical grasping, and

physicality is about real physical interaction using real physical

devices, such as real knobs and levels, instead of “virtual” interaction

via “soft” devices.

Include physicality in your design when the alternatives are not as satisfying

to the user

Example: Beamer without knobs

The BMW iDrive idea seemed so good on paper. It was simplicity

in itself. No panels cluttered with knobs and buttons. How cool and

forward looking. Designers realized that drivers could do anything

via a set of menus. But drivers soon realized that the controls for

everything were buried in a maze of hierarchical menus. No longer

could you reach out and tweak the heater fan speed without looking.

Fortunately, knobs are now coming back in BMWs.

Example: Roger’s new microwave

Here is an email from our friend, Roger Ehrich, from back in 2002, only

slightly edited:

Hey Rex, since ourmicrowave was about 25 years old, we worried

about radiation leakage, so we reluctantly got a new one. The old

one had a knob that you twisted to set the time, and a START

button that, unlike in Windows, actually started the thing.

The new one had a digital interface andMarion and I spent over

10 minutes trying to get it to even turn on, but we got nothing

but an error message. I feel you should never get an error

message from an appliance! Eventually we got it to turn on. The

sequence was not complicated, but it will not tolerate any

variation in user behavior. The problem is that the design is

modal, some buttons being multi-functional and sequential.

A casual user likeme will forget and get it wrong again. Better for

me to take my popcorn over to a neighbor who remembers what

to do. Anyway, here’s to the good old days and the timer knob.

–Regards, Roger

Figure 22-56

Shifting pattern in Toyota
Sienna van, helping
prevent physical overshoot.

Figure 22-57

Shifting pattern in
Mercedes-Benz Sprinter,
even better at helping
prevent physical overshoot.

767UX DES IGN GUIDEL INES

Example: Car radio needs knobs

Figure 22-58 shows a photo of radio

controls in a car.

There is no knob for tuning; tuning is

done by pushing the up and down arrows

on the left-hand side. At least there is a

real volume control knob but it is small

with almost no depth, making it a poor

physical affordance for grasping, even

with slender fingertips.

As you try to get a better grip, it is easy to push it inwardly unintentionally,

causing the knob and what it controls to becomemodal, going away from being

volume control and becoming a knob to control equalizer settings. To get back

to the knob being a volume control, you have to wait until the equalizer mode

times out or you must toggle through all the equalizer settings back out to the

volume control mode—all, of course, without taking your eyes off the road.

In contrast, Figure 22-59 is a photo of the radio and heater controls of a

pickup truck.

Still no tuning knob; too bad. But the large and easily grasped outside ring of

the volume control knob is a joy to use and it is not doubled up with any other

mode. Also note the heater control knobs below the radio. Again, the physicality

of grabbingandadjusting theseknobs gives great

pleasure on a cold winter morning.

22.8 OUTCOMES

In Figure 22-60 we highlight the outcomes part

of the Interaction Cycle.

The outcomes part of the Interaction Cycle is

about supporting users through complete and

correct “backend” functionality. There are no

issues about interaction design in outcomes.

The relation to UX is through usefulness and

functional affordances. Beyond this connection

to UX, outcomes are computations and state

changes that are internal to the system, invisible

to users,

Figure 22-58

Car radio with digital up
and down buttons instead
of a tuning knob.

Figure 22-59

Great physicality in the
radio volume control and
heater control knobs.

768 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Because the outcomes part is technically not part of the

user’s interaction, it is represented in Figure 22-59 as an

isolated segment of the Interaction Cycle. Once the results

of computation or the outcomes of a user request are

displayed to the user, the issues all shift to the assessment

part of the Interaction Cycle. Interaction designers must

make the effect of outcomes visible via system feedback.

So, while issues about whether the results are appropriate or

correct do relate to the internal functionality and, therefore,

do come under outcomes, any issues about what users see or

think about the outcomes after the system computation

come under the assessment part of the Interaction Cycle.

22.8.1 System Functionality
The outcomes part of the Interaction Cycle is mainly about non-user-interface

system functionality, which includes all issues about software bugs on the

software engineering side and issues about completeness and correctness of the

backend functional software.

Check your functionality for missing features

Do not let your functionality grow into a Jack-of-all-trades, but master of none

If you try to do too many things in the functionality of your system, you may

end up not doing anything well. Norman has warned us

against general-purpose machines intended to do many

different functions. He suggests, rather, “information

appliances” (Norman, 1998), each intended for more

specialized functions.

As an extreme, perhaps even ludicrous, but real-world

example, consider the Wenger Giant Swiss Army Knife,4

shown in Figure 22-61.

If you find yourself in need of a chuckle, see the

Amazon reviews of this knife5 (where it sells for a mere

$900).

Check your functionality for non-user-interface software bugs

Figure 22-60

The outcomes part of the
Interaction Cycle.

4http://www.wengerna.com/giant-knife-16999
5http://www.amazon.com/Wenger-16999-Giant-Swiss-Knife/dp/B001DZTJRQ

Figure 22-61

The Wenger Giant Swiss
Army Knife, the most multi-
bladed knife on the planet,
and for an MSRP of only
$1400.

769UX DES IGN GUIDEL INES

22.8.2 System Response Time
If the system response time is slow and users have to cool their heels for several

billion nanoseconds, it can impact their perceived usage experience. Computer

hardware performance, networking, and communications are usually to blame,

leaving nothing you can do in the interaction design to help.

In discussion with networking and communications people, you might find a

way to break up transactions in a different way to distribute the computational

load over time a little. If the problem is intolerable for your users, the entire

systems architecture team will have to talk about it.

22.8.3 Automation Issues
Automation, in the sense we are using the term here, means moving

functions and control from the user to the internal system functionality.

This can result in not letting users do something the designers think they

should not do or something that the designers did not think about at all. In

many such cases, however, users will encounter exceptions where they really

need to do it.

As an analogy, think of a word processor that will not let you save a document

if it has anythingmarked as a spelling or grammatical error. The rationale is easy:

“The user will not want to save a document that contains errors. They will want to

get it right before they save it away.” You know the story, and cases almost always

arise in which such a rationale proves to be wrong. Because automation and user

control can be tricky, we phrase the next guideline about this kind of

automation guardedly.

Avoid loss of user control from too much automation

The following examples show very small-scale cases of automation, taking

control from the user. Small though they may be, they can still be frustrating to

users who encounter them.

Example: Does the IRS know about this?

The problem in this example no longer exists in Windows Explorer, but an

early version of Windows Explorer would not let you name a new folder with all

uppercase letters. In particular, suppose you needed a folder for tax documents

and tried to name it “IRS.” With that version of Windows, after you pressed

Enter, the name would be changed to “Irs.”

770 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

So, in slight confusion, you try again but no deal. This had to be a deliberate

“feature,” probably made by a software person to protect users from what

appeared to be a typographic error, but that ended up being a high-handed

grasping of user control.

Example: The John Hancock problem

Figure 22-62 shows part of a letter being composed in an early version of

Microsoft Word and exhibiting another example of automation that takes away

user control.

Let us just say that a user named H. John Hancock was observed typing a

business letter, intending to sign it at the end as:

H. John Hancock

Sr. Vice President

Instead he got:

H. John Hancock

I.

Mr. Hancock was confused about the “I” so he backed up and typed the

name again but, when he pressed Enter again, he got the same result. At first he

did not know what was happening, why the “I” appeared, or how to finish the

letter without getting the “I” there. At least for a few moments, the task was

blocked and Mr. Hancock

was frustrated.

Being a somewhat

experienced user of Word,

his composition of text

going back to some famous

early American documents,

he eventually determined

that the cause of the

problem was that the

Automatic Numbered List

option was turned on as a

kind of mode. At least for

this occasion and this user,

Figure 22-62

The H. John Hancock
problem.

771UX DES IGN GUIDEL INES

the Automatic numbered list option imposed too much automation and not

enough user control.

That the user had difficulty understanding what was happening is due to the

fact that, for this user, there was no indication of the Automatic numbered list

mode. In fact, however, the system did provide quite a helpful feedback

message in response to the automated action it had taken, via the “status”

message of Figure 22-63, displayed at the top of the window.

However, Mr. Hancock did not notice this feedback message because it

violated the assessment guideline to “Locate feedback within the user’s focus of

attention, perhaps in a pop-up dialogue box but not in amessage or status line at

the top or bottom of the screen.”

Help the user by automating where there is an obvious need

This section is about automation issues, but not all about avoiding

automation. In some cases, automation can be helpful. The following example is

about one such case.

Example: Sorry, off route; you lose!

Nomatter how good your GPS system is, as a human driver you can still make

mistakes and drive off course, deviating from the route planned by the system.

The Garmin GPS units are very good at helping the driver recover and get back

on route. It recalculates the route from the current position immediately and

automatically, without missing a beat. Recovery is so smooth and easy that it

hardly seems like an error.

Before this kind of GPS, in the early days of GPS map systems for travel

navigation, there was another system developed by Microsoft, called Streets and

Trips. It used a GPS receiver antenna plugged into a USB port in a laptop. The

unit had one extremely bad trait. When the driver got off track, the screen

displayed the error message, Off Route! in a large bright red font.

Somehow you just had to know that you had to press one of the F, or function,

keys to request recalculation of the route in order to recover. When you are busy

Figure 22-63

If only Mr. Hancock had
seen this (screen image
courtesy of Tobias Frans-
Jan Theebe).

772 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

contending with traffic and road signs, that is the time you would gladly have the

system take control and share more of the responsibility, but you did not get that

help. To be fair, this option probably was available in one of the preference

settings or other menu choices, but the default behavior was not very usable and

this option was not discovered very easily.

Designers of the Microsoft system may have decided to follow the design

guideline to “keep the locus of control with the user.” While user control is often

the best thing, there are times when it is critical for the system to take charge and

do what is needed. The work context of this UX problem includes:

n The user is busy with other tasks that cannot be automated.

n It is dangerous to distract the user/driver with additional workload.

n Getting off track can be stressful, detracting further from the focus.

n Having to intervene and tell the system to recalculate the route interferes with the

user’s most important task, that of driving.

Another way to interpret these twin guidelines about automation is to keep

the user in control at higher task levels, where the user has done the initial

planning and is driving to get somewhere. But take control from the user when

the need is obvious and the user is busy.

This interpretation of the two guidelines means that, on one hand, the system

does not insist on staying on this route regardless of driver actions, but quietly

allows the driver to make impromptu detours. This interpretation also means

that, on the other hand, the system should be expected to continue to

recalculate the route to help the driver eventually reach his or her destination.

22.9 ASSESSMENT

Assessment guidelines are to support users in understanding information

displays of results of outcomes and other feedback about outcomes such

as error indications. Assessment, along with translation, is one of the

places in the Interaction Cycle where cognitive affordances play a primary role.

22.9.1 System Response
A system response can contain:

n feedback, information about course of interaction so far

n information display, results of outcome computation

n feed-forward, information about what to do next.

773UX DES IGN GUIDEL INES

As an example, consider this message: “The value you

entered for your name was not accepted by the system.

Please try again using only alphabetic characters.”

n The first sentence, “The value you entered for your name was

not accepted by the system,” is feedback about a slight problem

in the course of interaction and is an input to the assessment

part of the Interaction Cycle.

n The second sentence, “Please try again using only alphabetic

characters,” is feed-forward, a cognitive affordance as input to

the translation part of the next iteration within the Interaction

Cycle.

22.9.2 Assessment of System Feedback
Figure 22-64 highlights the assessment part of the Interaction Cycle.

Feedback about errors and interaction problems is essential in supporting

users in understanding the course of their interactions. Feedback is the only way

userswill know if anerrorhasoccurredandwhy.There is a strongparallel between

assessment issues about cognitive affordances as feedback and translation issues

about cognitive affordances as feed-forward, including existence of feedback

when it is needed, sensing feedback through effective presentation, and

understanding feedback through effective

representation of content and meaning.

22.9.3 Existence of Feedback
In Figure 22-65 we highlight the “existence of

feedback” portion of the assessment part of the

Interaction Cycle.

The “existence of feedback” portion of the

assessment part of the Interaction Cycle is about

providing necessary feedback to support users’

need toknowwhether thecourseof interaction is

proceeding towardmeeting theirplanninggoals.

Provide feedback for all user actions

For most systems and applications, the

existence of feedback is essential for users;

feedback keeps users on track. One notable

Figure 22-64

The assessment part of the
Interaction Cycle.

Figure 22-65

Existence of feedback,
within assessment.

774 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

exception is the Unix operating system, in which no news is always good news.

No feedback in Unix means no errors. For expert users, this tacit positive

feedback is efficient and keeps out of the way of high-powered interaction. For

most users of most other systems, however, no news is just no news.

Provide progress feedback on long operations

For a system operation requiring significant processing time, it is essential to

inform the user when the system is still computing. Keep users aware of function

or operation progress with some kind of feedback as a progress report, such as a

percent-done indicator.

Example: Database system not helpful about progress in Pack operation

Consider the case of a user of a dbase-family database application who had

been deleting lots of records in a large database. He knew that, in dbase

applications, “deleted” records are really only marked for deletion and can still

be undeleted until a Pack operation is performed, permanently removing all

records marked for deletion.

At some point, he did the Pack operation, but it did not seem to work. After

waiting what seemed like a long time (about 10 seconds), he pushed the Escape

key to get back control of the computer and things just got more confusing

about the state of the system.

It turns out that the Pack operation was working, but there was no indication

to the user of its progress. By pushing the Escape key while the system was still

performing the Pack function, the user may have left things in an indeterminate

state. If the system had let him know it was, in fact, still doing the requested Pack

operation, he would have waited for it to complete.

Request confirmation as a kind of intervening feedback

To prevent costly errors, it is wise to solicit user confirmation before

proceeding with potentially destructive actions.

But do not overuse and annoy

When the upcoming action is reversible or not potentially destructive, the

annoyance of having to deal with a confirmation may outweigh any possible

protection for the user.

775UX DES IGN GUIDEL INES

22.9.4 Presentation of
Feedback
Figure 22-66 highlights the

“presentation of feedback” portion

of the assessment part of the Interaction

Cycle.

This portion of the assessment part

of the Interaction Cycle is about

supporting user sensing, such as

seeing, hearing, or feeling, of feedback

with effective design of feedback

presentation and appearance.

Presentation of feedback is about how

feedback appears to users, not how it

conveys meaning. Users must be able to

sense (e.g., see or hear) feedback

before it can be useful to them

in usage.

Support user with effective sensory affordances in presentation of feedback

Feedback visibility
Obviously feedback cannot be effective if it cannot be seen or heard when it is

needed.

Make feedback visible

It is the designer’s job to be sure each instance of feedback is visible when it is

needed in the interaction.

Feedback noticeability
Make feedback noticeable

When needed feedback exists and is visible, the next consideration is its

noticeability or likelihood of being noticed or sensed. Just putting feedback on

the screen is not enough, especially if the user does not necessarily know it exists

or is not necessarily looking for it.

These design issues are largely about supporting awareness. Relevant

feedback should come to users’ attention without users seeking it. The primary

Figure 22-66

Presentation of feedback,
within assessment.

776 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

design factor in this regard is location, putting feedback within the users’ focus

of attention. It is also about contrast, size, and layout complexity and their effect

on separation of feedback from the background and from the clutter of other

user interface objects.

Locate feedback within the user’s focus of attention

A pop-up dialogue box that appears directly within the user’s focus of

attention in themiddle of the screen is muchmore noticeable than amessage or

status line at the top or bottom of the screen.

Make feedback large enough to notice

Feedback legibility
Make text legible, readable

Text legibility is about being discernable, not about its content being

understandable. Font size, font type, color, and contrast are the primary relevant

design factors.

Feedback presentation complexity
Control feedback presentation complexity with effective layout, organization, and grouping

Support user needs to locate and be aware of feedback by controlling layout

complexity of user interface objects. Screen clutter can obscure needed

feedback and make it difficult for users to find.

Feedback timing
Support user needs to notice feedback with appropriate timing of appearance or

display of feedback. Present feedback promptly and with adequate persistence,

that is, avoid “flashing.”

Help users detect error situations early

Example: Do not let them get into too much trouble

A local software company asked us to inspect one of their software tools. In

this tool, users are restricted to certain subsets of functionality based on

privileges, which in turn are based on various key work roles. A UX problem with

777UX DES IGN GUIDEL INES

a large impact on users arose when users were not aware of which parts of the

functionality they were allowed to use.

As the result of a designer assumption that each user would know their

privilege-based limitations, users were allowed to navigate deeply into the

structure of tasks that they were not supposed to be performing. They

could carry out all the steps of the corresponding transactions but when they

tried to “commit” the transaction at the end, they were told they did not

have the privileges to do that task and were blocked and their time and

effort were wasted. It would have been easy in the design to help users realize

much earlier that they were on a path to an error, thereby saving user

productivity.

Feedback presentation consistency
Maintain a consistent appearance across similar kinds of feedback

Maintain a consistent location of feedback presentation on the screen to help users notice

it quickly

Feedback presentation medium
Consider appropriate alternatives for presenting feedback.

Use the most effective feedback presentation medium

Consider audio as alternative channel

Audio can be more effective than

visual media to get users’ attention in

cases of a heavy task load or heavy

sensory work load. Audio is also an

excellent alternative for vision-impaired

users.

22.9.5 Content and Meaning
of Feedback
In Figure 22-67 we highlight the

“content and meaning of feedback”

portion of the assessment part of the

Interaction Cycle.

The content and meaning of

feedback represent the knowledge that

must be conveyed to users to be effective

in helping them understand action

outcomes and interaction progress.

Figure 22-67

Content/meaning of
feedback, within
assessment.

778 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

This understanding is conveyed through effective content and meaning in

feedback, which is dependent on clarity, completeness, proper tone, usage

centeredness, and consistency of feedback content.

Help users understand outcomes with effective content/meaning in feedback

Support user ability to determine the outcomes of their actions through

understanding and comprehension of feedback content and meaning.

Clarity of feedback
Design feedback for clarity

Use precise wording and carefully chosen vocabulary to compose correct,

complete, and sufficient expressions of content and meaning of feedback.

Support clear understanding of outcome (system state change) so users can assess effect

of actions

Give clear indication of error conditions

Example: Unavailable?

Figure 22-68 contains an error message that occurred during a Save As file

operation in an early version of Microsoft Word. This is a classic example

that has generated considerable discussion among our students. The UX

problems and design issues extend well beyond just the content of the error

message.

In this Save As operation the user was attempting to save a file of unformatted

data, calling it “data w/o format” for short. The resulting error message is

confusing because it is about a folder not being accessible because of things

like unavailable volumes or password

protection. This seems about as unclear

and unrelated to the task as it could be.

In fact, the only way to understand this

message is to understand something

more fundamental about the Save As

dialogue box. The design of the File

Name: text field is overloaded. The usual

input entered here is a file name, which is

by default associated with the folder

name in the Save in: field at the top.

Figure 22-68

A confusing and seemingly
irrelevant error message.

779UX DES IGN GUIDEL INES

But some designer must have said “That is fine for all the GUI wusses, but what

about our legions of former DOS users, our heroic power users who want to enter

the full command-style directory path name for the file?” So the design was

overloaded to accept full path names of files as well, but no clue was added to the

labeling to reveal this option. Because path names contain the slash (/) as a

dedicated delimiter, a slash within a file name cannot be parsed unambiguously so

it is not allowed.

In our class discussions of this example, it usually takes students a long time to

realize that the design solution is to unload the overloading by the simple

addition of a third text field at the bottom for Full file directory path name:.

Slashes in file names still cannot be allowed because any file name can also

appear in a path name, but at least now, when a slash does appear in a file name

in the File Name: field, a simplemessage, “Slash is not allowed in file names,” can

be used to give a clear indication of the real error.

Themost recent version ofWord, as of this writing, half-way solves the problem

by adding to the original error message: “or the file name contains a \ or /”.

Precise wording
Support user understanding of feedback content by precise expression of

meaning through precise word choices. Do not allow wording of feedback to be

treated as an unimportant part of interaction design.

Completeness of feedback
Support user understanding of feedback by providing complete information

through sufficient expression of meaning, to disambiguate, make more

precise, and clarify. For each feedback message, the designer should ask

“Is there enough information?” “Are there enough words used to

distinguish cases?”

Be complete in your design of feedback; include enough information for users to fully

understand outcomes and be either confident that their command worked or certain about

why it did not

The expression of a cognitive affordance should be complete enough to allow

users to fully understand the outcomes of their actions and the status of their

course of interaction.

Prevent loss of productivity due to hesitation, pondering

780 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Having to ponder over the meaning of feedback can lead to lost productivity.

Help your users move on to the next step quickly, even if it is error recovery.

Add supplementary information, if necessary

Short feedback is not necessarily the most effective. If necessary, add

additional information tomake sure that your feedback information is complete

and sufficient.

Give enough information for users to make confident decisions about the status of their course of

interaction

Help users understand what the real error is

Give enough information about the possibilities or alternatives so users can make an informed

response to a confirmation request

Example: Quick, what to do?

In Figure 22-69 is an exit message from the Microsoft Outlook email system

that we used previously (Figure 22-44) as an example about completeness of

cognitive affordances and giving enough information for users to

make confident decisions. This message is displayed when a user

tries to exit the Outlook email system before all queued messages

are sent. We also use it as an example here in the assessment section,

even though technically the part of the system response that is at

issue here is the lack of a cognitive affordance as feed-forward.

When users first encountered this message, they were often

unsure about how to respond because it did not inform them of

the consequences of either choice. What are the consequences of

“exiting anyway?” One would hope that the system could go ahead and

send the messages, regardless, but why then did it give this message?

So maybe the user will lose those messages. What made it worse was the

fact that control would be snatched away in 8 seconds, and

counting. How imperious!

Most users we tested with took the right one, it seems, by making

what they thought to be the conservative choice, not exiting yet.

Figure 22-70 is an updated version of this same message, only this

time it gives a bit more information about the repercussions of

exiting prematurely, but it still does not say if exiting will cause

messages to be lost or just queued for later.

Figure 22-69

Not enough information in
this feedback, or feed-
forward, message.

Figure 22-70

This is better, but still could
be more helpful.

781UX DES IGN GUIDEL INES

Tone of feedback expression
When writing the content of a feedback message, it

can be tempting to castigate the user for making a

“stupid” mistake. As a professional interaction

designer you must separate yourself from those

feelings and put yourselves in the shoes of the user. You cannot know the

conditions under which your error messages are received, but the occurrence

of errors could well mean that the user is already in a stressful situation so

do not be guilty of adding to the user’s distress with a caustic, sarcastic,

or scornful tone.

Design feedback wording, especially error messages, for positive psychological impact

Make the system take blame for errors

Be positive, to encourage

Provide helpful, informative error messages, not “cute” unhelpful messages

Example: Say what?

The almost certainly apocryphal message in Figure 22-71 is an extreme

example of an unhelpful message.

Usage centeredness of feedback
Employ usage-centered wording, the language of the user and the work context, in displays,

messages, and other feedback

We mentioned that user centeredness is a design concept that often seems

unclear to students and some practitioners. Because it is mainly about using

the vocabulary and concepts of the user’s work context rather than the

technical vocabulary and context of the system, we should probably call

it “work-context-centered” design. This section is about how usage

centeredness applies to feedback in

the assessment part of the Interaction

Cycle.

In Figure 22-72 we see a real email

system feedback message received by one

of us many years ago, clearly system

centered, if anything, and not user or

work context centered. Systems people

Figure 22-71

Useless message shows poor
designer attitude.

Figure 22-72

Gobbledygook email
message.

782 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

will argue correctly that the technical information in this message is valuable to

them in tracing the source of the problem.

That is not the issue here; rather it is a question of themessage audience. This

message is sent to users, not the systems people, and it is clearly an unacceptable

message to users. Designers must seek ways to get the right message to the right

audience. One solution is to give a non-technical explanation here and add a

button that says “Click here for a technical description of the problem for your

systems representative.” Then put this jargon in the next message box.

This message in the next example is similar in some ways, but is more

interesting in other ways.

Example: Out of paper, again?

Asan in-class exercise,weused todisplay the computermessage inFigure 22-73

and ask the students to comment on it.

Some students, usually ones who were not engineering majors, would react

negatively from the start. After a lot of the usual comments pro and con, we

would ask the class whether they thought it was usage centered. This usually

caused some confusion and much disagreement. Then we ask a very specific

question: Do you think this message is really about an error? In truth, the correct

answer to this depends on your viewpoint, a reply we never got from a student.

The system-centered answer is yes; technically an “error condition” arose in the

operating system error-handling component when it got an interrupt from the

printer, flagging a situation in which there is a need for action to fix a problem.

The process used inside the operating system is carried out by what the software

systems people call an error-handling routine. This answer is correct but not

absolute.

From a user-, usage-, or work-context-centered view, it is definitely and 100%

not an error. If you use the printer enough, it will run out of paper and you will

have to replace the supply. So running out of paper is part of the normal

workflow, a natural occurrence that signals a point where the human has a

responsibility within the overall collaborative human-system task flow. From

this perspective, we told our students we

had to conclude that this was not an

acceptable message to send to a user; it

was not usage centered.

We decided that this exercise was a

definitive litmus test for determining

whether students could think user

Figure 22-73

Classic system-centered
“error” message.

783UX DES IGN GUIDEL INES

centrically. Some of our undergraduate CS students never got it. They

stubbornly stuck to their judgment that there was an error and that it was

perfectly appropriate to send this message to a user to get attention to attending

the error.

Each semester we told them that it was okay that they did not “get it”; that they

could still live productive lives, just not in any UX development role. Not

everyone is cut out to take on a UX role in a project.

Just to finish up the analysis of this message:

n Why is the message box titled Printers Folder? Does this refer to some system aspect that

should be opaque to the user?

n The printer is out of paper. Add paper. Is the need to add paper when the printer is out

of paper not obvious enough? If so, the Add paper imperative is redundant and even

condescending.

n To continue printing, click retry. Why “click retry” if the objective is to continue printing?

Why not Click continue printing and label the Retry button as Continue Printing?

n Windows will automatically retry after 5 seconds. First, it should be Windows will

periodically try to continue printing. Beyond that, this may seem to be a useless and

maybe intrusive “feature” but it could be helpful if the printer is remote—the user would

not have to go back and forth to click on the button here and to see if the printer is

printing. Beyond that, the 5 seconds does seem a bit arbitrary and probably too short a

time to get new paper loaded, but this is not harmful.

Consistency of feedback
Be consistent with feedback

In the context of feedback, the requirement for consistency is essentially the

same as it was for the expression of cognitive affordances: choose one term for

each concept and use it throughout the application.

Label outcome or destination screen or object consistently with starting point and action

This guideline is a special case of consistency that applies to a situation where

a button or menu selection leads the user to a new screen or dialogue box, a

common occurrence in interaction flow. This guideline requires that the name

of the destination given in the departure button label or menu choice be the

same as its name when you arrive at the new screen or dialogue box. The next

example is typical of a common violation of this guideline.

784 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Example: Am I in the right place?

In Figure 22-74 we see an overlay of two

partial windows within a personal

document system. In the bottom layer is a

menu listing some possible operations

within this document system. When you

click on Add New Entry, you go to the

window in the top layer, but the title of that

window is not Add New Entry, it is

Document Data Entry. To a user, this could

mean the same thing, but the words used at

thepointofdeparturewereAddNewEntry.

Finding different words, Document Data

Entry, at the destination can be confusing

and can raise doubts about the success of the user action. The explanation given us

by the designer was that the destination window in the top layer is a destination

shared by both the Add New Entry menu choice and the Modify/View Existing

Entries menu choice. Because state variables are passed in the transition, the

corresponding functionality is applied correctly, but the same window was used to

do the processing.

Therefore, the designer had picked a name that sort of represented both

menu choices. Our opinion was that the destination window name ended up

representing neither choice well and it takes only a little more effort to use two

separate windows.

Example: Title of destination does not match Simple Search Tab label

In this example, consider the Simple Search tab, displayed at the top of most

screens in this digital library application and shown in Figure 22-75.

That tab leads to a screen that is labeled Search all bibliographic fields, as

shown in Figure 22-76.

We had to conclude that the departure label on the Simple Search tab and the

destination label, Search all bibliographic fields, do not match well enough

because we observed users showing surprise upon arrival and not being sure

about whether they had arrived at the right place. We suggested a slight change

in the wording of the destination

label for the Simple Search function

to include the same name, Simple

Figure 22-74

Arrival label does not
match departure
label (screen image
courtesy of Raphael
Summers).

Figure 22-75

The Simple Search tab at
the top of a digital library
application screen.

785UX DES IGN GUIDEL INES

Search, used in the tab and not

sacrifice the additional

information in the destination

label, Search all bibliographic

fields, as shown in Figure 22-77.

User control over feedback
detail
Organize feedback for ease of

understanding

When a significant volume of feedback detail is available, it is best not to

overwhelm the user by giving all the information at once. Rather, give the

most important information, establishing the nature of the situation,

upfront and provide controls affording the user a way to ask for more details,

as needed.

Provide user control over amount and detail of feedback

Give only most important information at first; more on demand

22.9.6 Assessment of Information Displays

Information organization for presentation
Organize information displays for ease of understanding

There are entire books available on the topics of information visualization and

information display design, among which the work of Tufte (1983, 1990, 1997)

is perhaps the most well known. We do not attempt to duplicate that material

here, but rather reference the interested reader to pursue these topics in

detail from those sources. We can,

however, offer a few simple

guidelines to help with the routine

presentation of information in

your displays of results.

Eliminate unnecessary words

Group related information

Control density of displays; use white

space to set off

Figure 22-76

However, it leads to Search
all bibliographic fields, not
a match.

Figure 22-77

Problem fixed by adding
Simple Search: to the
destination label.

786 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Columns are easier to read than wide rows

This guideline is the reason that newspapers are printed in columns.

Use abstraction per Shneiderman’s “mantra”: Overview first; zoom and filter; details on demand

Ben Shneiderman has a “mantra” for controlling complexity in information

display design (Shneiderman & Plaisant, 2005, p. 583):

n overview first

n zoom and filter

n details on demand

Example: The great train mystery

Train passengers in Europe will notice entering passengers competing

for seats that face the direction of travel. At first, it might seem that this is

simply about what people were used to in cars and busses. But some people

we interviewed had stronger feelings about it, saying they really were

uncomfortable traveling backward and could not enjoy the scenery nearly

as much that way.

Believing people in both seats see the same things out the window, we

wondered if it really mattered, so we did a little psychological experiment and

compared our own user experiences from both sides. We began to think about

the view in the train window as an information display.

In terms of bandwidth, though, it did not seem to matter; the total amount of

viewable information was the same. All passengers see the same things and they

see each thing for the same amount of time. Then we recalled Ben

Shneiderman’s rules for controlling complexity in information display design

(see earlier discussion).

Applying this guideline to the view from a train window, we realized that a

passenger traveling forward is moving toward what is in the view. This traveler

sees the overview in the distance first, selects aspects of interest, and, as the trains

goes by, zooms in on those aspects for details.

In contrast, a passenger traveling backward sees the close-up details first, which

thenzoomoutandfadeintoanoverview inthedistance.But thisclose-upview isnot

very useful because it arrives too soon without a point of focus. By the time the

passenger identifies somethingof interest, thechance tozoominonithaspassed; it

is already getting further away. The result can be an unsatisfying user experience.

787UX DES IGN GUIDEL INES

Visual bandwidth for information display
One of the factors that limit the ability of users to perceive and process displayed

information is visual bandwidth of the display medium. If we are talking about

the usual computer display, wemust use a displaymonitor with a very small space

for all our information presentation. This is tiny in comparison to, say, a

newspaper.

When folded open, a newspaper has many times the area, andmany times the

capacity to display information, of the average computer screen. And a reader/

user can scan or browse a newspaper much more rapidly. Reading devices such

as Amazon’s Kindle™ and Apple’s iPad™ are pretty good for reading and

thumbing through whole book pages, but lack the visual bandwidth afforded for

“fanning” through pages for perusal or scanning provided by a real paper book.

Designs that speed up scrolling and paging dohelp but it

is difficult to beat the browsing bandwidth of paper. A

reader can put a finger in one page of a newspaper, scan the

major stories on another page, and flash back effortlessly to

the “book-marked” page for detailed reading.

Example: Visual bandwidth

In our UX classes we used to have an in-class

demonstration to illustrate this concept. We started with

sheets of paper covered with printed text. Then we gave

students a set of cardboard pieces the same size as the

paper but each with a smaller cutout through which they

must read the text.

One had a narrow vertical cutout that the reader must

scan, or scroll, horizontally across the page. Another had a

low horizontal cutout that the reader must scan vertically

up and down the page. A third one had a small square in

the middle that limited visual bandwidth in both vertical

and horizontal directions and required the user to scroll in

both directions.

You can achieve the same effect on a computer screen

by resizing the window and adjusting the width and height

accordingly. For example, in Figure 22-78, you can see

limited horizontal visual bandwidth, requiring excessive

horizontal scrolling to read. In Figure 22-79, you can see

limited vertical visual bandwidth, requiring excessive

Figure 22-78

Limited horizontal visual
bandwidth.

788 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

vertical scrolling to read. And in Figure 22-80, you can see limited horizontal and

vertical visual bandwidth, requiring excessive scrolling in both directions. It was

easy for students to conclude that any visual bandwidth limitation, plus the

necessary scrolling, was a palpable barrier to the task of reading information

displays.

22.10 OVERALL

This section concludes the litany of guidelines with a set of guidelines that apply

globally and generally to an overall interaction design rather than being

associated with a specific part of the Interaction Cycle.

22.10.1 Overall Simplicity
As Norman (2007a) points out, most people think of simplicity in terms of a

product that has all the features but operates with a single button. His point is

that people genuinely want features and only

say they want simplicity. At least for

consumer appliances, it is all about

marketing and marketing people know that

features sell. And more features imply more

controls.

Norman (2007a) says that even if a

product design automates some features

well enough so that fewer controls are

necessary, people are willing to pay more

for machines with more controls. Users do

not want to give up control. Also, more

controls give the appearance of more power,

more functionality, and more features.

Figure 22-79

Limited vertical visual
bandwidth.

Figure 22-80

Limited horizontal and
vertical visual bandwidth.

789UX DES IGN GUIDEL INES

But in the computer you use to get things done at work, complexity can

be a barrier to productivity. The desire is for full functionality without

sacrificing UX.

Do not try to achieve the appearance of simplicity by just reducing usefulness

A well-known Web-search service provider seeking improved ease of use

“simplified” their search page. Unfortunately, they did it without a real

understanding of what simplicity means. They just reduced their functionality but

did nothing to improve the usability of the remaining functionality. The result was

a less useful search function and the user is still left to figure out how to use it.

Organize complex systems to make the most frequent operations simple

Some systems cannot be entirely simple, but you can still design to keep some

of the most frequently used operations or tasks as simple as possible.

Example: Oh, no, they changed the phone system!

Years ago our university began using a special digital phone system. It had,

and still has, an enormous amount of functionality. Everyone in the university

was asked to attend a one-day workshop on how to use the new phone system.

Most employees rebelled and refused to attend a workshop to learn how to use a

telephone—something they had been using all their lives.

They were issued a 50-page user’s guide entitled “Excerpts from the

PhoneMail System User Guide.” Fifty pages and still an excerpt; who is going to

read that? The answer is that almost everyone had to read at least parts of it

because the designer’s approach was tomake all functions equally difficult to do.

The 10% of the functionality that people had to use every day was just as

mysterious as the other 90% that most people would never need. Decades later,

people still do not like that phone system, but they were captive users.

22.10.2 Overall Consistency
Historically, “be consistent” is one of the earliest interaction design guidelines

ever and probably the most often quoted. Things that work the same way in one

place as they do in another just make logical sense.

But when HCI researchers have looked closely at the concept of consistency

in interaction design over the years, many have concluded that it is often difficult

to pin it down in specific designs. Grudin (1989) shows that the concept is

790 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

difficult to define (p. 1164) and hard to identify in a design, concluding that it is

an issue without much real substance. The transfer effects that support ease of

learning can conflict with ease of use (p. 1166). And blind adherence without

interpretation within usage context to the rule can lead to foolish or undesirable

consistency, as shown in the next example.

Be consistent by doing similar things in similar ways

Example: And what country shall we send it to?

Suppose that the menu choices in all pull-down menus in an application are

ordered alphabetically for fast searching. But one pull-downmenu is in a form in

which the user enters a mailing address. One of the fields in the form is for

“country” and the pull-down list contains dozens of entries. Because themajority

of customers for thisWebsite are expected to live in theUnited States, ease of use

will be better in a design with “United States” at the top of the pull-down list

instead of near the bottom of an alphabetical list, even though that is

inconsistent with all the other pull-down menus in the application.

Use consistent layout/location for objects across screens

Maintain custom style guides to support consistency

Structural consistency
We think Reisner (1977) helped clarify the concept of consistency, in the

context of database query languages, when she coined the term “structural

consistency.” In referring to the use of query languages, structural consistency

simply required similar syntax (wording or user actions) to denote similar or

related semantics. So, in our context, the expression of cognitive affordances for

two similar functions should also be similar.

However, in some situations, consistency can work against distinguishability.

For example, if a design contains two different kinds of delete functions, one of

which is used routinely to delete objects within an application, but the other is

dangerous because it applies to files and folders at a higher level, the need to

distinguish these delete functions for safety may override this guideline for

making them similar.

Use structurally similar names and labels for objects and functions that are structurally similar

Example: Next and previous

791UX DES IGN GUIDEL INES

A simple example is seen in the common Next and Previous buttons that

might appear, for example, for navigation among pictures in an online photo

gallery. Although these two buttons are opposite in meaning, they both are a

similar kind of thing; they are symmetric and structurally similar navigation

controls. Therefore, they should be labeled in a similar way. For example, Go

forward and Previous picture are not as symmetric and not as similar from a

linguistic perspective.

Consistency is not absolute
Many design situations have more than one consistency issue and sometimes

they trade-off against each other. We have a good example to illustrate.

Example: May I mix you a screwdriver?

Consider the case of multi-blade screwdrivers that are handy for dealing with

different sizes and types of screws. In particular, they each have both flat-blade

and Phillips-blade driver bits and each of these types comes in both small and

large sizes.

Figure 22-81 illustrates two of these so-called “4-in-1” screwdrivers. As part of a

discussion of consistency, we bring screwdrivers like these to class for an in-class

exercise with students. We begin by showing the class the screwdrivers

and explain how the bits are interchangeable to get the needed combination of

blade type and size.

Next we pick a volunteer to hold and study one of these tools and then speak

to the class about consistency issues in its design. They pull it apart, as shown in

Figure 22-82.

The conclusion always is that it is a consistent

design. We have another volunteer study the

other screwdriver, always reaching the same

conclusion. Then we show the class that there

are differences between the two designs, which

become apparent when you compare the bits at

the ends of each tool, as shown in Figure 22-83.

One tool is consistent by blade type, having

both flat blades, large and small, on one

insertable piece and both Phillips blades on the

other piece. The other tool is consistent by size,

having both large blades on one insertable piece

and both small blades on the other piece.

Figure 22-81

Multipurpose screwdrivers.

792 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

We now ask them if they still think each

design is consistent and they do. They are each

consistent; they each have intra-product

consistency. Neither is more consistent than the

other, but each is consistent in a different way

and are not consistent with each other.

Consistency in design is supposed to aid

predictability but, because there is more than

one way to be consistent in this example, you

still lack inter-product consistency and you do

not necessarily get predictability. Such is one

difficulty of interpreting and applying this

seemingly simple design guideline.

Consistency can work against innovation
Final caveat: While a style guide works in favor of consistency and reuse,

remember that is also can be a barrier to inventiveness and innovation

(Kantrovich, 2004). Being the same all the time is not necessarily cool! When the

need arises to break with consistency for the sake of innovation, throw off the

constraints and barriers and dive through the wormhole to the creative side.

22.10.3 Humor
Avoid poor attempts at humor

Poor attempts at humor usually do not work. It is easy to do humor badly and it

can easily be misinterpreted by users. You may be sitting in your office feeling

good and want to write a cute error message, but

users receiving itmay be tired and stressed and the

last thing they need is the irritation of a bad joke.

22.10.4 Anthropomorphism
Simply put, anthropomorphism is the attribution

of human characteristics to non-human objects.

We do it every day; it is a form of humor. You say

“my car is sick today” or “my computer does not

like me” and everyone understands what you

mean. In interaction design, however, the context

is usually about getting work done and

Figure 22-83

The two sets of
screwdriver bits.

Figure 22-82

Revealing the inner parts of
the two screwdrivers.

793UX DES IGN GUIDEL INES

anthropomorphism can be less appreciated, especially if the user is already

having difficulties.

Avoiding anthropomorphism
Avoid the use of anthropomorphism in interaction designs

Shneiderman and Plaisant (2005, pp. 80, 484) say that amodel of computers that

leads one to believe they can think, know, or understand in ways that humans do

is erroneous and dishonest. When the deception is revealed, it undermines trust.

Avoid using first-person speech in system dialogue

“Sorry, but I cannot find the file you need” is less honest and no more

informative than something such as “File not found” or “File does not exist.”

If attribution must be given to what it is that cannot find your file, you can

reduce anthropomorphism by using the third person, referring to the software,

as in “Windows is unable to find the application that created this file.” This

guideline urges us to especially eschew chatty and over-friendly use of first-

person cuteness, as we see in the next example.

Example: Who is there?

Figure 22-84 contains a message from a database system after a search request

had been submitted. Ignoring other obvious UX problems with this dialogue

box and message, most users find this kind of use of first person as dishonest,

demeaning, and unnecessary.

Avoid condescending offers to help

Just when you think all hope is lost, then along comes Clippy or Bob, your

personal office assistant or helpful agent. How intrusive and ingratiating! Most

users dislike this kind of pandering and insinuating into your affairs, offering

blandishments of hope when real help is preferred.

People expect other humans to be able to solve

problems better than a machine. If your interaction

dialogue portrays the machine as a human, users will

expect more. When you cannot deliver, however, it is

overpromising. The example that follows is ridiculous

and cute but it also makes our point.

Figure 22-84

Message tries to make
computer seem like a
person.

794 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Example: Come on, Clippy, you can do better

Clearly the pop-up “help” in

Figure 22-85 is not a real example, but

this kind of pop-up in general can be

intrusive. In real usage situations,

most users expect better.

The case in favor of
anthropomorphism
On the affirmative side, Murano

(2006) shows that, in some contexts,

anthropomorphic feedback can be

more effective than the equivalent

non-anthropomorphic feedback. He

also makes the case for why users

sometimes prefer anthropomorphic

feedback, based on subconscious social behavior of humans toward computers.

In his first study, Murano (2006) explored user reactions to language-

learning software with speech input and output using speech recognition. Users

were given anthropomorphic feedback in the form of dynamically loaded and

software-activated video clips of a real language tutor giving feedback.

In this kind of software usage situation, where the objectives and interaction

are very similar to what would be expected from a human language tutor,

“the statistical results suggested the anthropomorphic feedback to be more

effective. Users were able to self-correct their pronunciation errors more

effectively with the anthropomorphic feedback. Furthermore it was clear that

users preferred the anthropomorphic feedback.” The positive results are not

surprising because this kind of application naturally uses human–computer

interaction that is very close to natural human-to-human interaction.

In a second study, Murano (2006) looked at Unix for a rank beginner, again

employing speech input and output with speech recognition and again

employing anthropomorphic video clips of real humans as feedback. He found

anthropomorphic feedback to be more effective andmore desired by users than

other feedback.

However, we cannot see natural language interaction with Unix as a viable

long-term alternative. Unix is complex and difficult to learn, not intended for

beginners. Anyone intending to use Unix for more than just an experiment

will perforce not remain a beginner for long. Any expert Unix user we have

Figure 22-85

Only too glad to help.

795UX DES IGN GUIDEL INES

ever seen would surely find speech interaction less convenient and less

precise than the lightning-fast typed commands usually associated with UNIX

usage. If the interaction in this study was not anthropomorphic per se,

speech input and output can convey the feeling of being the “equivalent”

of anthropomorphic.

In his third study, Murano (2006) determined that, for direction-finding

tasks, a map plus some guiding text was more effective than anthropomorphic

feedback using video clips of a human giving directions verbally, with user

preferences about evenly divided. The bottom line for Murano is that some

application domains are more suited for anthropomorphic interaction

than others.

Well-known studies by Reeves and Nass (1996) attempted to answer the

question why anthropomorphic interaction might be better for some users in

some kinds of applications. They concluded that people naturally tend to

interact with a computer the same social way we interact with people, especially

in cases where feedback is given as natural language speech (Nass, Steuer, &

Tauber, 1994). People treat computers in a social manner if the output of

computers treats them in a social manner.

While a social manner of interaction did seem to be effective and desired by

users of tasks that have a human-to-human counterpart, including tasks such as

natural language learning and tutoring in a teacher–student kind of interaction,

it is unlikely that a mutually social style and anthropomorphic interaction would

have a place in the thousands of other kinds of tasks thatmake up a large portion

of real computer usage—installing driver software, creating a text document,

updating a data spreadsheet,

The bottom line for us is that users may think they would prefer

anthropomorphic user-computer dialogue because it is somehow friendlier or

maybe they would prefer to interact with another human rather than having to

interact with a computer. But the fact remains: a computer is not human. So

eventually expectations will not be met. Especially for the use of computers to

get things done in business and work environments, we expect users to tire

quickly of anthropomorphic feedback, particularly if it soon becomes boring by

a lack of variety over time.

22.10.5 Tone and Psychological Impact
Use a tone in dialogue that support a positive psychological impact

Avoid violent, negative, demeaning terms

Avoid use of psychologically threatening terms, such as “illegal,” “invalid,” and “abort”

Avoid use of the term “hit”; instead use “press” or “click”

796 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

22.10.6 Use of Sound and Color
The use of color in displays is a topic that fills volumes of publications for

research and practice. Read more about it in some of these references (Nowell,

Schulman, & Hix, 2002; Rice, 1991a, 1991b). The use of color in interaction

design, or any kind of design, is a complex topic, well beyond the scope of

this book.

Avoid irritation with annoying sound and color in displays

Bright colors, blinking graphics, and harsh audio not only are annoying but

can have a negative effect on user productivity and the user experience over the

long-term.

Use color conservatively

Do not count on color to convey much information in your designs. It is good

advice to render your design in black and white first so that you know it works

without reliance on color. That will rule out usability problems some users may

have with color perception due to different forms of color blindness, for

example.

At the end of the day, color decisions are often out of the hands of interaction

designers, anyway, being constrained by corporate or organizational standards

and branding concerns.

Use pastels, not bright colors

Bright colors seem attractive at first, but soon lead to distraction, visual

fatigue, and distaste.

Be aware of color conventions (e.g., avoid red, except for urgency)

Again, color conventions are beyond our scope. They are complicated and

differ with international cultural conventions. One clear-cut convention in our

Western culture is about the use of red. Beyond very limited use for emergency

or urgent situations, red, especially blinking red, is alarming as well as irritating

and distracting.

We heard a story at the Social Security Administration that they had an early

design in which any required field in a formwould blink in red if the user tried to

save the form or go to the next form before filling in these fields. Later someone

797UX DES IGN GUIDEL INES

on the team read that blinking red can

bring out latent epilepsy in some people

and it got changed.

Example: Help, am I at sea?

Figure 22-86 is a map of the Outer

Banks in North Carolina. We have never

been able to use this map easily because it

violates deeply established color

conventions used in maps. Blue is almost

always used to denote water inmaps, while

gray, brown, green, or something similar is

used for land. In this map, however, blue,

even a deep blue, is used to represent land

and because there is about as much land

as sea in this map, users experience a

cognitive disconnect that confuses and

makes it difficult to get oriented.

Watch out for focusing problem with red and blue

Chromostereopsis is the phenomenon

humans face when viewing an image

containing significant amounts of pure

red and pure blue. Because red and

blue are at opposite ends of the visual light

spectrum and occur at different

frequencies, they focus at slightly different

depths within the eye and can appear to

be at different distances from the eye.

Adjacent red and blue in an image can

cause the muscles used to focus the eye to oscillate, moving back and forth

between the two colors, eventually leading to blurriness and fatigue.

Example: Roses are red; violets are blue

In Figure 22-87 we placed adjacent patches of blue and red. If the color

reproduction in the book is good, some readers may experience

chromostereopsis while viewing this figure.

Figure 22-86

Map of Outer Banks, but
which is water and which is
land?

798 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

22.10.7 Gratuitous Graphics
Jon Meads, our friend who runs Usability Architects,

Inc., wants us to understand the difference between

graphic design and usability (Meads, 1999):

As usability consultants, we’re often asked by

potential clients to bring in a portfolio of “screens”

that we’ve designed. But we don’t have any, because

we don’t design “screens”; we design interaction, the

intended behavior by which people will use a

product or a Website.

He points out that graphic design is good for attracting attention, getting a

user to stop at your Website, but it takes good UX to get them to stay at your

Website. He says that Web pages that dazzle can also distract and turn off users

who just want to get something done. It is a question of balance of look and feel,

and behavior.

Avoid fancy or cute design without a real purpose

To impress, all you need is a trebuchet and a piano.

– Chris Stevens, Northern Exposure

A fancy appearance to a software application or Website can be an asset, but

while bling-bling makes for nice jewelry, the “flash and trash” approach to

interaction design can detract from usability. As Jon Meads puts it, “Usability is

not graphic design.”

AaronMarcus (2002) agrees, warning us that in the rush to provide aesthetics,

fun, and pleasure in the UX, we may overdo it and move toward a

commercialization of UX that will, in fact, dehumanize the user experience.

22.10.8 Text Legibility
It is obvious that text cannot convey the intended content if it is illegible.

Make presentation of text legible

Make font size large enough for all users

Use good contrast with background

n Use both color and intensity to provide contrast.

Figure 22-87

Chromostereopsis: humans
focus at different depths in
the eye for red and blue.

799UX DES IGN GUIDEL INES

Use mixed case for extensive text

Avoid too many different fonts, sizes

Use legible fonts

n Try Ariel, sans serif Verdana, or Georgia for online reading.

Use color other than blue for text

n It is difficult for the human retina to focus on pure blue for reading.

Accommodate sensory disabilities and limitations

n Support visually challenged, color blind users.

22.10.9 User Preferences
Allow user settings, preference options to control presentational parameters

Afford users control of sound levels, blinking, color, and so on. Vision-impaired

users, especially, need preference settings or options to adjust the text size

in application displays and possibly to hear an alternative audio version of

the text.

22.10.10 Accommodation of User Differences
As we have said, a treatise on accessibility is outside our scope and is treated well

in the literature. Nonetheless, all interaction designers should be aware of the

requirement to accommodate users with special needs.

Accommodate different levels of expertise/experience with preferences

Most of us have seen this sign in our offices or on a bumper sticker: Lead,

follow, or get out of the way. In interaction design, we might modify that slightly

to: Lead, follow, and get out of the way.

n Lead novice users with adequate cognitive affordances

n Follow intermittent or intermediate users with lots of feedback to keep them on track

n Get out of the way of expert users; keep cognitive affordances from interfering with

their physical actions

800 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Constantine (1994b) has made the case to design for intermediate users,

which he calls the most neglected user segment. He claims that there are more

intermediate users than beginners or experts.

Don’t let affordances for new users be performance barriers to experienced users

Although cognitive affordances provide essential scaffolding for

inexperienced users, expert users interested in pure productivity need effective

physical affordances and few cognitive affordances.

22.10.11 Helpful Help
Be helpful with Help

Do not send your users to Help in a handbasket. For those who share our warped

sense of humor, we quote from the manual for Dirk Gently’s (Adams, 1990,

p. 101) electronic I Ching calculator as an example of perhaps not so helpful

help. As the protagonist consults the calculator for help to a burning personal

question,

The little book of instructions suggested that he should simply concentrate

“soulfully” on the question which was “besieging” him, write it down, ponder on it,

enjoy the silence, and then once he had achieved inner harmony and tranquility

he should push the red button. There wasn’t a red button, but there was a blue

button marked ‘Red’ and this Dirk took to be the one.

Entertaining, yes; helpful, no. Note that it also makes reference at the end to

an amusing little problem with cognitive affordance consistency.

22.11 CONCLUSIONS

Be cautious using guidelines.

Use careful thought and interpretation when using guidelines.

In application, guidelines can conflict and overlap.

Guidelines do not guarantee usability.

Using guidelines does NOT eliminate need for usability testing.

Design by guidelines, not by politics or personal opinion.

801UX DES IGN GUIDEL INES

Intentionally left as blank

CHAPTER

Connections with Software
Engineering 23

Oh, East is East and West is West, and never the twain shall meet,

Till Earth and Sky stand presently at God’s great Judgment Seat;

But there is neither East nor West, Border, nor Breed, nor Birth,

When two strong men stand face to face, tho’ they come from the ends of the earth!

–Rudyard Kipling

Objectives

After reading this chapter, you will:

1. Understand the similarities and differences between software engineering (SE) and

UX lifecycles

2. Appreciate how the locus of influence among the major roles can affect the direction

of product development

3. Know how communication, coordination, and other factors form the foundation for

success in SE–UX connections

4. Understand the challenges of connecting SE and UX

5. Know about possible solutions to connecting SE and UX successfully

23.1 INTRODUCTION

In Chapter 2 we showed how software systems with interactive components

have two distinct logical parts: the functional core and the user interface.

Although the separation of code into two clearly identifiable components is not

always possible, the two parts are conceptually distinct and each must be

developed on its own terms with its own roles within the project team (Pyla et al.,

2003, 2005, 2007). Figure 23-1 is an abstraction of this separation and resulting

connections.

The user-interface part, the focus of this book, often accounts for half ormore

of the total lines of code in the overall system (Myers & Rosson, 1992). It begins

with contextual inquiry, takes shape in design, gets refined in evaluation, and is

ultimately implemented in user-interface software.

Therefore, a practical objective of UX practitioners is to provide interaction

design specifications, as we discussed in Chapter 9, which can be used by

software engineers to build the user interface component of a system.

The functional part of a software system, sometimes called the functional

core, is manifest as non-user-interface software. The design and development

of this functional core requires specialized software engineering knowledge,

training, and experience in topics such as algorithms, data structures,

software architectures, calling structures, and database management. The

goal of SE is to create efficient and reliable software systems containing the

specified functionality, as well as integrating and implementing user-interface

software.

To achieve the UX and SE goals for an interactive system, that is, to create an

efficient and reliable system with required functionality and a quality user

experience, effective development processes are required for both UX and SE

Figure 23-1

An abstract representation
of the separation of, and
communication between,
the two components of
system development.

804 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

lifecycles. The Wheel UX lifecycle template in this book is a time-tested process

for ensuring a quality user experience.

The SE development lifecycle, with its significantly longer history and

tradition than that of UX, comes in many flavors. On one end of this spectrum is

the rigid Waterfall Model (Royce, 1970): a sequence of stages for concept

definition, requirements engineering, design (preliminary and detailed

design), design review, implementation, integration and testing (I&T), and

deployment. On the other end of this spectrum are the agile methods

(Chapter 19), a test-driven incremental approach where delivering periodic

releases of software modules that add business value to the customer is the focus

of the process.

23.1.1 Similarities between Lifecycles
At a high level, UX and SE share the same objectives of understanding the

customer’s and users’ wants and needs, translating these needs into system

requirements, designing a system to satisfy these requirements, and testing to

help ensure their realization in the final product. At the process level, both

lifecycles have similar stages, such as identifying needs, designing, and

evaluating, even though these stages entail different philosophies and practices,

as discussed in the next section.

23.1.2 Differences between Lifecycles
As often mentioned in this book, UX practitioners iterate early and frequently

with design scenarios, screen sketches, paper prototypes, and low-fidelity,

roughly coded software prototypes before much, if any, software is committed to

the user interface. Often this frequent and early iteration is done on a small scale

and scope, primarily as a means to evaluate a part of an interaction design in the

context of a small number of user tasks.

UX roles evaluate interaction designs in a number of ways, including early

design walkthroughs, rapid evaluation techniques, and lab-based techniques.

The primary goal is to findUXproblems or flaws in the interaction design so that

the design can be improved iteratively.

Even though there is iteration in traditional SE development lifecycles, more

so in agile approaches than in the Waterfall approach, the iteration is still on a

larger scale (coarser granularity) and scope. In theWaterfall approach, iteration

takes place at the granularity of lifecycle stages, such as requirements or design.

In agile approaches, while there is iteration at the code-module level, it is still

coarser than most kinds of UX iteration because it includes both software code

and interaction design.

805CONNECTIONS WITH SOFTWARE ENGINEER ING

Another difference between these two lifecycles has to do with terminology.

Even though certain terms appear in both lifecycles, they often mean different

things.

For example, scenarios in SE (called “use cases” in the object-oriented design

paradigm) are used to “identify a thread of usage for the system to be

constructed (and) provide a description of how the system will be used”

(Pressman, 2009). Whereas in UX, a design usage scenario is “a narrative or story

that describes the activities of one or more persons, including information

about goals, expectations, actions, and reactions (of persons)” (Rosson &

Carroll, 2002).

Overall, software engineers concentrate on the system whereas usability

engineers concentrate on the users.

23.2 LOCUS OF INFLUENCE IN AN ORGANIZATION

In our experience we have seen three major roles in an organization that have a

significant influence on the direction of a product development: business role,

design or “creative” role, and software or development role. Each role brings a

unique skillset, perspective, or bias to a project effort.

The business role is concerned with the subject matter of that work domain.

For example, if you are building a software application for helping civil

engineers construct bridges, your “business” stakeholders will include structural

engineers and other people who know the mechanics of construction and

engineering. Sometimes marketing also plays a key role in formulating the

product direction under this business role umbrella.

Gross generalizations notwithstanding, in our experience we found that

people in business roles usually care about feature coverage. They tend to think

of a product’s quality in terms of what it can do, how comprehensively it accounts

for the business needs, how its features stack against the competition, and all the

nuances with which a particular business need is addressed.

The software or development role shares some of the business role’s tendency

to think of a product’s quality in terms of features or “use-cases” supported.

Perhaps an even stronger tendency of this role is to think of quality in terms of

code reliability, maintainability of code modules, speed of execution, and other

software performance attributes. The underlying sentiment is that optimizing

the functional core of a system is more important than all other concerns.

The UX or design role, however, tends to prioritize user needs and

experience over all other factors. This often trades off with feature counts

806 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

because simplicity and ease of use correlate inversely with abundance of options

and features on a user interface. For these roles, quality manifests itself in terms

of usability, user satisfaction, usefulness, and emotional impact.

This locus-of-influence perspective is somewhat orthogonal to general

projectmanagement concerns suchascost andresourceallocation;eachrole tends

to prioritize different aspects of the overall project effort given cost and resource

constraints. As a thought experiment, if you were to think of a measure of the

amount of influence or authority a given role has in an organization and average it

across all the people who play that role in an organization, you will get what we call

the locus-of-influence factor. Thehigher the valueof this factor for a given role, the

greater the influence on the product direction.

The locus-of-influence factors for the three roles color the personality of an

organization that builds interactive systems. It becomes the DNA that permeates

all aspects of the culture, including the everyday operations and priorities of that

organization. When you hear people say “Google has an engineering culture,”

they are probably referring to a heavy weighting of this factor toward SE.

Similarly, when people call Apple a design company, they are referring to a high

value for UX or design role there.

As an extension to this thought experiment, now assume you are somehow

able to assess quantitatively the amount of influence each role exerts on the

overall product direction, what we call the locus of influence for each role.

Suppose we are also able to combine those measures in a reasonable way to get

what we call the locus of influence in an organization. This abstract measure

represents an aggregate of the underlying forces, biases, aspirations, and

direction that propel a product through the development lifecycle.

This locus of influence for a company is usually a by-product of the

company’s history, leadership, culture, expertise of roles, and the perception

of value of each role’s expertise. So what happens to the project effort

when you manipulate the locus of influence for each role? We discuss

some generalizations for each of the interesting cases.

23.2.1 Scenario 1: SE as Primary Product Architects
In an organization with a predominantly high engineering or programming

locus of influence, the project is biased toward code and technology concerns.

The SE role, perhaps working with business, elicits requirements from

customers and envisions the product design. These requirements tend to

have a functional flavor rather than a user-centered one. The SE role translates

the gathered requirements into functional design, which then gets

implemented in code.

807CONNECTIONS WITH SOFTWARE ENGINEER ING

The emphasis of quality is on code and other software engineering concerns

such as cohesion and coupling. Because an SE role’s job performance is judged

in light of these concerns, it is natural that they work toward building the best

functional core they can.

The interaction design concerns are not a big priority in such an

organization, and people in the SE role probably do not have much training

or expertise in designing for user experience. We know of many companies

where, even today, SE roles create the interaction designs for the system. Even if

there are specialist UX roles in this scenario, they are often brought in near

the end of the lifecycle for “fixing” the experience and “making things pretty.”

The UX role is a “priest in a parachute,” brought in at the end to bless the

product by suggesting some quick, and mostly cosmetic, changes because it is

too late to change anything major.

UX roles in this kind of a culture are constrained by SE decisions and state of

progress. Because SE roles ultimately implement the interaction designs, there is

no “cultural” force to ensure that the designs by the UX roles are adopted.

Any change proposed by the UX role can require a difficult and often

protracted negotiation between SE and UX roles. The UX role is required to

“prove” that their suggestions are better and legitimate. This scenario can be

more extreme in organizations with legacy software infrastructure.

We know of organizations where SE roles are valued higher than any other

role, even to the extent of limiting career advancement options to other roles.

We have seen frustrated colleagues leave organizations because their

contributions were not considered an important part of the overall project

effort.

In summary, the scenario of having SE roles as primary product architects

suffers from an implicit conflict of interest due to the fact that something that is

easy to use is almost always not easy to implement. Cooper (2004) succinctly

sums up this scenario via the title of his popular book: The Inmates Are Running the

Asylum.

23.2.2 Scenario 2: UX as Primary Product Architects
In an organization with a predominantly high design or user experience

locus of influence, the project is biased toward users, usage, usability, and

emotional impact. The UX role conducts contextual inquiry, analyzes and

models the work practice, envisions an interaction design, and provides an

experience for the user. This emphasis on usage-in-context ensures grounding

in user concerns, goals, and aspirations, which in turn leads to a system with

better usability.

808 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

As an aside, why is this scenario likely to produce a system that fosters a better

user experience? Why will the outcome be any different when essentially the

process is similar to that in scenario 1 where SE roles conduct requirements

engineering activities with users and customers? Is not this essentially a similar

activity conducted by different roles? Are UX roles better than SE roles when

it comes to requirements? No. This is not about who is better. It is about each

role’s innate tendencies, allegiances, foci, and training.

UX roles are naturally interested in users because they design for usage.

SE roles are interested in system functionality because they implement that

functionality. UX role instincts tend to be about workflows, barriers, and

breakdowns in work practice, social aspects of work, and emotional impact of a

system. SE role instincts tend to be about algorithms and data structures,

separation of concerns among data and presentation layers, class hierarchies,

and code reuse. UX roles, starting with their human–computer interaction

(HCI) 101 classes, are trained in concepts such as contextual and task analysis.

SE roles, starting with their SE 101 classes, are trained in requirements

engineering via use-case modeling and functional decomposition.

Therefore, it is no surprise that, all other things being equal, a UX

role will produce a more user-centered and user experience-oriented

analysis of the work domain and what is needed in the envisioned system.

Conversely, the SE role will produce a more system-centered and

functionality-oriented analysis of the work domain and how it can be supported

by the system.

Getting back to the scenario, the UX role, after analyzing the work practice,

designs the envisioned interaction and hands it off to the SE role for

implementation. In an organization like this, the designers have a free reign and

usually tend to produce interaction designs that push the envelope with respect

to innovation and complexity. This model puts pressure on the SE role to

implement these sometimes blue-sky designs. This can become a coping

scenario for SE if the technology of the target platform does not support what is

needed in the UX designs or the SE role does not have the required skills or

training to translate the UX designs into code.

There are two possible outcomes in this scenario: (1) the SE role works toward

updating the underlying technology to support the new interaction design

needs or (2) the SE role resorts to “hacking” the available infrastructure to

implement the designs. Obviously the former is more advisable but requires

significant effort—an unlikely option for systems with a considerable legacy code

base. The latter delivers the envisioned user experience but results in a system

with brittle code and maintenance challenges.

809CONNECTIONS WITH SOFTWARE ENGINEER ING

Another issue with this scenario has to do with the communication of

constraints. The UX role does not know which aspects of its interaction designs

are feasible and which are expensive or impossible to implement. This is because

being easy to envision in a prototyping platform may not translate easily into

being easy to implement in the actual target platform.

Emphasis on interaction in the prototype almost always leads to stubbing of

computational functionality. The temptation is to stub the difficult parts of the

computational design without first understanding their design requirements.

Later, development of the stubbed functions can reveal basic problems that

affect the system at many levels above the stub in question. The result is upheaval

rather than a smooth progression toward an implementation.

In summary, the scenario of having UX roles as primary product architects

tends to push the envelope when it comes to design, with SE playing a “support”

role for the overall vision.

23.2.3 Scenario 3: SE and UX as Collaborators
It is not our intention in the previous two scenarios to take sides. We believe

that both the SE team and the UX team are essential and complementary. This

complementarity is the perspective of our third scenario, which occurs within

organizations where the three factors of influence are about even. In an

environment of collaboration between SE and UX roles—the two roles work

as equal partners together and with the business role. Working together, they

undertake early analysis activities. The UX roles conduct contextual inquiry and

analysis while briefing the SE role periodically on findings and the emerging

needs for the product. In other words, an UX role’s concerns and analyses for

the user interface imply requirements for the SE role, because they have to

implement the UI software component of the system. The two roles may also

collaborate during this phase and conduct these activities together.

As the UX role undertakes ideation, sketching, and other early design

activities, they keep the SE role updated. They ensure feasibility of their

explorations and address potential constraints early on. The UX role prototypes

the interaction and the SE role designs the backend. The UX role iteratively

refines the interaction design via evaluation, while keeping the SE role informed

of any surprises or findings with functional implications. The UX role delivers

the final prototypes or other models as specification of the interaction design

that the SE role implements along with the backend functionality.

This kind of an organizational environment plays to the strengths and

expertise of the different roles. When there are discussions, debates, or

810 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

disagreements, all opinions are heard and the final decision is left to the role

responsible for that area. For example, final interaction design decisions are left

to the UX role and final technology decisions to SE roles.

The implicit requirement for this scenario to work is intimate

communication and coordination between SE and UX roles. We discuss this

further later.

Once this kind of synchronization is established, we have known such

organizations to be very productive with high throughput. These organizations

tend to produce quality products—the best user experience within the

technology constraints—even if they tend to be more evolutionary than

revolutionary in terms of innovation.

In summary, the scenario of having UX and SE roles collaboratively

driving a product direction tends to result in productive work

environments, which generally produce optimal design solutions given

technology constraints. However, there is no overt push to break out of

existing constraints and innovate beyond normal progression of the

product evolution.

23.3 WHICH SCENARIO IS RIGHT FOR YOU?

This is an important question and, like most things in HCI, the answer is “it

depends.” It depends on the nature of the product under development,

available resources, company culture, expertise of people, and competition in

that product area.

In our experience, we found scenario 1, where SE roles lead the product

strategy, almost never advisable where a quality user experience is a goal.

Interaction design concerns must take precedence if user experience is a

product differentiator in the market.

Scenario 2, where UX roles lead the product strategy, is good for interactive

systems trying to push the envelope, break into a market, or displace an

existing market leader. This approach allows designers to flex their wings and

create an interaction design that is unencumbered by constraints. Often such

“pie in the sky” ideas require major changes on the SE side.

Scenario 3 is practical and probably appropriate for most situations.

Separation of concerns—each role concentrating on their domains while

being mindful of the other role’s constraints—provides a work

environment where things get done quickly without endless debates and

811CONNECTIONS WITH SOFTWARE ENGINEER ING

arguments. Because neither side pushes the other beyond “normal”

expectations, the end product tends to be functional with a good user

experience, but rarely a paradigm shifter.

23.4 FOUNDATIONS FOR SUCCESS IN SE–UX
DEVELOPMENT

23.4.1 Communication
Although SE and UX roles can successfully do much of their work

independently and in parallel, because of the tight coupling between the

backend and the user interface, a successful project requires that the two roles

communicate so that each knows generally what the other is doing and how that

might affect its own activities and work products.

The two roles cannot collaborate without communication, and the

longer they work without knowing about the other’s progress and insights,

the more their work is likely to diverge, and the harder it becomes to bring

the two lifecycle products together at the end. Communication is important

between SE and UX roles to have activity awareness about how the other group’s

design is progressing, what process activity they are currently performing,

what features are being focused on, what insights and concerns they have for

the project, what directions they are taking, and so on.

Especially during the early requirements and design activities, each group

needs to be “light on its feet” and able to inform and respond to events and

activities occurring in the counterpart lifecycle. However, inmany organizations,

such necessary communication does not take place because the two lifecycles

operate independently; that is, there is no structured development framework to

facilitate communication between these two lifecycles, leaving cross-domain

(especially) communication dependent on individual whim or chance.

Based on our experience, ad hoc communication processes have proven to be

inadequate and often result in nasty surprises that are revealed only at the end

when serious communication finally does occur. This usually happens too late in

the overall process.

There is a need for a role or a system to ensure that the necessary information is

being communicated to all relevant parties in the system development effort.

Usually, that role is a “projectmanager”whokeeps trackof theoverall statusofeach

role, work products, and bottlenecks or constraints. For larger organizations with

more complex projects, there is a need for communication systems to automate

and help the project manager manage some of these responsibilities.

812 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

23.4.2 Coordination
When the two lifecycle concepts are applied in isolation, the resulting lack of

understanding between the two roles, combined with an urgency to get their

own work done, often leads to working without collaboration and coordination.

This often results in not getting the UX needs of the system represented in the

software design.

Without coordination, the two roles duplicate their efforts in UX and

SE activities when they could be working together. For example, both SE

and UX roles conduct separate field visits and client interviews for

systems analysis and requirements gathering during the early stages of the

project. Without collaboration, each project group reports its results in

documentation not usually seen by people in the other lifecycle. Each uses those

results to drive only their part of the system design and finally merge at the

implementation stage. However, because these specifications were created

without coordination and communication, when they are now considered

together in detail, developers typically discover that the two design parts do not

fit with one another because of large differences and incompatibilities.

Moreover, this lack of coordinated activities presents the appearance of a

disjointed development team to the client. It is likely to cause confusion in the

clients: “why are we being asked similar questions by two different groups from

the same development team?”

Coordination will help in team building, communication, and in each

lifecycle role recognizing the value, and problems, of the other, in addition to

early agreement on goals and requirements. In addition, working together on

early lifecycle activities is a chance for each role to learn about the value,

objectives, and problems of the other.

23.4.3 Synchronization
Eventually the two lifecycle roles must synchronize the work products for

implementation and testing. However, waiting until one absolutely must

synchronize creates problems. Synchronization of the design work products of

the two lifecycle roles is usually put off until the implementation and testing

phases near the end of the development effort, which creates big surprises that

are often too costly to address.

For example, it is not uncommon to find UX roles being brought into the

project late in the development process, even after the SE implementation stage

(scenario 1 above). They are asked to test and/or “fix” the usability of an already

implemented system, and then, of course, many changes proposed by the UX

813CONNECTIONS WITH SOFTWARE ENGINEER ING

roles that require significant modifications must be ignored due to budget and

time constraints. Those few changes that actually do get included require a

significant investment in terms of time and effort because they must be

retrofitted (Boehm, 1981).

Therefore, it is better to have many synchronization points, earlier and

throughout the two project lifecycles. These timely synchronization points

would allow earlier, more frequent, and less costly “calibration” to keep both

design parts on track for a more harmonious final synchronization with fewer

harmful surprises.

The idea is for each role to have timely readiness of work products when the

other project role needs them. This prevents situations where one project role

must wait for the other one to complete a particular work product. However, the

more each team works without communication and collaboration, the less likely

they will be able to schedule their project activities to arrive simultaneously at

common checkpoints.

23.4.4 Dependency and Constraint Enforcement
Because each part of an interactive system must operate with the other, many

system requirements have both SE and UX components. If an SE component or

feature is first to be considered, the SE role should inform the UX role that an

interaction design counterpart is needed, and vice versa.

When the two roles gather requirements separately and without

communication, it is easy to capture requirements that are conflicting,

incompatible, or one-sided. Even if there is some ad hoc form of communication

between the two groups, it is inevitable that some parts of the requirements or

design will be forgotten or will “fall through the cracks.”

The lack of understanding of the constraints and dependencies between the

two lifecycles’ timelines and work products often create serious problems, such

as inconsistencies in the work products of the SE and UX design. As an example,

software engineers perform a detailed functional analysis from the requirements

of the system to be built. Interaction designers perform a hierarchical task

analysis, with usage scenarios to guide design for each task, based on their

requirements. These requirements and designs are maintained separately and

not necessarily shared. However, each view of the requirements and design has

elements that reflect constraints or dependencies in elements of the

counterpart view.

For example, each task in the task analysis on theUX side implies the need for

corresponding functions in the SE specifications. Similarly, each function in the

software design may reflect the need for access to this functionality through one

814 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

or more user tasks in the user interface. Without the knowledge of such

dependencies, when tasks are missing in the user interface or functions are

missing in the software because of changes on either lifecycle, the respective sets

of designs have a high probability of becoming inconsistent.

In our experience, we often encounter situations that illustrate the fact that

design choices made in one lifecycle constrain the design options in the other.

For example, we see situations where user interfaces to software systems were

designed from a functional point of view and the code was factored to minimize

duplication on the backend core. The resulting systems had user interfaces that

did not have proper interaction cues to help the user in a smooth task transition.

Instead, a task-oriented approach would have supported users with screen

transitions specific to each task, even though this would have resulted in a

possibly “less efficient” composition for the backend.

Another case in our experience was about integrating a group of individually

designed Web-based systems through a single portal. Each of these systems was

designed for separate tasks and functionalities. These systems were integrated

on the basis of functionality and not on the way the tasks would flow in the new

system. The users of this new systemhad to go through awkward screen transitions

when their tasks referenced functions from the different existing systems.

Constraints, dependencies, and relationships exist not only among activities

and work products that cross over between the two lifecycles, but they also exist

within each of the lifecycles. For example, on theUX side, a key task identified in

task analysis should be considered andmatched later for a design scenario and a

benchmark task.

“We Cannot Change THAT!”: Usability
and Software Architecture

Len Bass, NICTA, Sydney, Australia

Bonnie E. John, IBM T. J. Watson Research Center and Carnegie Mellon University

Usability analyses or user test data are in; the development team is poised to respond. The software had

been modularized carefully so that modifications to the user interfaces (UI) would be fast and easy. When the

usability problems are presented, someone around the table exclaims, “Oh, no, we cannot change THAT!”

The requested modification or feature reaches too far into the architecture of the system to allow

economically viable and timely changes to be made. Even when the functionality is right, even when the UI

is separated from that functionality, architectural decisions made early in development have precluded the

815CONNECTIONS WITH SOFTWARE ENGINEER ING

implementation of a usable system. Members of the design team are frustrated and disappointed that despite their

best efforts, despite following current best practice, they must ship a product that is far less usable than they know it

could be.

This scenario need not be played out if important usability concerns are considered during the earliest design

decisions of a system, that is, during design of the software architecture. Software architecture refers to the internal

structure of the software—what pieces are going to make up the system and how they will interact. The relationships

between architectural decisions and software quality attributes such as performance, availability, security, and

modifiability are relatively well understood and taught routinely in software architecture courses. However, the

prevailing wisdom in the last 25 years has been that usability had no architectural role except through modifiability;

design the UI to be modified easily and usability will be realized through iterative design, analysis, and testing.

Software engineers developed “separation patterns” or generalized architecture designs that separated the user

interface into components that could change independently from the core application functionality.

The Model–View–Controller (MVC) pattern, http://en.wikipedia.org/wiki/Model–view–controller, is an example of

one of these. Separation of the user interface has been quite effective and is used commonly in practice, but it has

problems: (1) there are many aspects of usability that require architectural support other than separation and (2) the

later changes are made to the system, the more expensive they are to achieve. Forcing usability to be achieved

through modification means that time and budget pressures are likely to cut off iterations on the user interface and

result in a system that is not as usable as possible.

Consider, for example, giving the user the ability to cancel a long-running command. In order for the user to cancel

a command, the system must first recognize that the particular operation will indeed be long enough that the user

might want to cancel (as opposed to waiting for it to complete and then undo). Second, the system must display a

dialogue box giving the user the ability to cancel. Third, the system must recognize when the user selects the “cancel”

button regardless of what else it is doing and respond quickly (or the user will keep hitting the cancel button). Next,

the system must terminate the active operation and, finally, the system must restore the system to its state prior to the

issuance of that command (having stored all the necessary information prior to the invocation of the command),

informing the user if it fails to restore any of the state.

In order for cancel to be supported, aspects of the MVC must all cooperate in a systematic fashion. Early software

architecture design will determine how difficult it is to implement this coordination. Difficulty translates into time and

cost, which, in turn, reduce the likelihood that the cancel command will be implemented.

Cancel is one of two dozen or so usability operations that we have identified as having a significant impact on the

usability of a system. These architecturally significant usability scenarios include undo, aggregating data, and allowing

the user to personalize their view. For a more complete list of these operations, see Bass and John (2003).

After identifying the architecturally significant usability scenarios important for the end users of a system, the

developers—software engineers—must know how to design the architecture and implement the command and all of

the subtleties involved in delivering a usable product. For the most part, this information is not taught in standard

computer science courses today. Consequently, most software developers will learn this only through painful

experience. To help this situation, we have developed usability-supporting architectural patterns embodied in a

checklist describing responsibilities of the software that architecture designers and developers should consider when

implementing these operations (Adams et al., 2005; Golden, 2010). However, only some usability scenarios have been

embodied in responsibility checklists and knowledge of the existence of these checklists among practicing developers

is very limited.

Organizations that have used these materials, however, have found them valuable. NASA used our usability-

supporting architectural patterns in the design of the Mars Exploration Rover Board (MERBoard), a wall-sized

collaborative workspace intended to facilitate shoulder-to-shoulder collaboration by MER science teams. During a

redesign of the MERBoard software architecture, 17 architecturally significant usability scenarios were identified as

essential for MERBoard and a majority of the architecture’s components were modified in response to the issues raised

by the usability-supporting architectural patterns (Adams et al., 2005). ABB considered usability-supporting

architectural patterns in the design of a new product line architecture, finding 14 issues with their initial design and

crediting this process with a 17:1 return on investment of their architect’s time—1-day’s work by two people saved

5 weeks of work later (Stoll et al., 2009). For more information, see the Usability and Software Architecture Website

at http://www.cs.cmu.edu/~bej/usa/index.html.

References

Adams, R. J., Bass, L., & John, B. E. (2005). Applying general usability scenarios to the design of the software architecture

of a collaborative workspace. In A. Seffah, J. Gulliksen & M. Desmarais (Eds.), Human-Centered Software Engineer-

ing: Frameworks for HCI/HCD and Software Engineering Integration. Kluwer Academic Publishers.

Bass, L., & John, B. E. (2003). Linking usability to software architecture patterns through general scenarios. Journal of

Systems and Software, 66(3), 187–197.

Golden, E. (2010). Early-Stage Software Design for Usability. Ph.D. dissertation in Human-Computer Interaction: Human-

Computer Interaction Institute, School of Computer Science, Carnegie Mellon University.

Stoll, P., Bass, L., Golden, E., & John, B. E. (2009). Supporting usability in product line architectures. In Proceedings of the

13th International Software Product Line Conference, San Francisco, CA August 24–28, 2009.

23.4.5 Anticipating Change within the Overall Project Effort
In the development of interactive systems, each phase and each iteration have a

potential for change. In fact, at least the early part of the UX process is intended

to change the design iteratively. This change can manifest itself during the

requirements phase (growing and evolving understanding of the emerging

system by project team members and users), design stage (evaluation identifies

that the interaction metaphor was not easily understood by users), and so on.

Such changes often affect both lifecycles because of the various dependencies

that exist between and within the two processes.

Therefore, change can be visualized conceptually as a design perturbation that

has a ripple effect on all stages in which previous work has been done. For

example, during theUXevaluation, theUX rolemay recognize the need for a new

task to be supported by the system. This new task requires updating the previously

generated hierarchical task inventory (HTI) document and generation of new

usage scenarios to reflect the new addition (along with the rationale).

On the SE side, this change to the HTI generates the need to change the

functional decomposition (for example, by adding new functions to the

functional core to support this task on the user interface). These new functions,

in turn, mandate a change to the design, schedules, and, in some cases, even the

architecture of the entire system.

Thus, one of the most important requirements for system development is to

identify the possible implications and effects of each kind of change and to

account for them in the design accordingly.

One particular kind of dependency between lifecycle parts represents a kind

of “feed forward,” giving insight to future lifecycle activities. For example, during

the early design stages in the UX lifecycle, usage scenarios provide insights as to

how the layout and design of the user interface might look like. In other words,

for project activities that are connected to one another (in this case, the initial

screen design is dependent on or connected to the usage scenarios), there is a

possibility that the designers can forecast or derive insights from a particular

design activity.

Sometimes the feed-forward is in the form of a note: “when you get to screen

design, do not forget to consider such and such.” Therefore, when the project

teammember encounters such premonitions or ideas about potential effects on

later stages (on the screen design in this example), there is a need to document

them when the process is still in the initial stages (usage scenario phase). When

the team member reaches the initial screen design

stage, previously documented insights are then readily

available to aid the screen design activity.

23.5 THE CHALLENGE OF
CONNECTING SE AND UX

23.5.1 User Interaction Design, Software,
and Implementation
In Figure 23-2 we show software design and

implementation for just UI software (middle and bottom

boxes). While this separation of UI software from

non-user-interface (functional core) software is an

acceptable abstraction, it is actually an oversimplification.

The current state of the art in software engineering

embodies a well-developed lifecycle concept and

Figure 23-2

User interaction design as
input to UI software
design.

818 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

well-developed process for producing requirements and design specifications

for the whole software system. But they do not have a process for developing UI

software separately from the functional (non-UI) software.

Furthermore, there are currently no major software development lifecycle

concepts that adequately support including the UX lifecycle as a serious part of

the overall system development process. Most software engineering textbooks

(Pressman, 2009; Sommerville, 2006) just mention the UI design without saying

anything about how it happens. Most software engineering courses in colleges

and universities describe a software development lifecycle without any reference

to the UI. Students are taught about the different stages of developing

interactive software and, as they finish the implementation stages in the lifecycle,

the UI somehow appears automagically. Important questions about how the

UI is designed, by whom, and how the two corresponding SE and UX lifecycles

are connected are barely mentioned (Pyla et al., 2004).

So, in practice, most software requirements specifications include little about

the interaction design. If they do get input from UX people, they include use

cases and screen sketches as part of their requirements, or they might sketch

these up themselves, but that is about the extent of it. However, in reality there is

a need for UX people to produce interaction design specifications and for SE

people tomake a connection with them in their lifecycle. And this is best done in

the long run within a broader, connected lifecycle model embracing both

lifecycle processes and facilitating communication across and within both

development domains.

23.5.2 The Promise of Agile Development
In Chapter 19, we attempted such an integrated model in an agile development

context. Even though traditional agile methods (such as XP) do not explicitly

mention UX processes, we believe that the underlying philosophy of these

methodologies to be flexible, ready for change, and evaluation-centered has the

potential to bridge the gap between SE and UX if they are extended to

include UI components and techniques. As we mentioned in Chapter 19, this

requires compromises and adjustments on both sides to respect the core tenets

of each lifecycle.

23.5.3 The Pipedream of Completely Separate Lifecycles
Although we have separated out the UX lifecycle for discussion in most of

this book for the convenience of not having to worry too much about the

SE counterpart, we realize that because the two worlds of development

cannot exist in isolation, we do try to face our connection to the SE world in

this chapter.

819CONNECTIONS WITH SOFTWARE ENGINEER ING

23.5.4 How about Lifecycles in Series?
Consider the make-believe scenario, very similar to the one discussed earlier, in

which timing means nothing and SE people sit around waiting for a complete

and final interaction design to be ready. Then a series connection of the two

lifecycles, as shown in Figure 23-3, might work.

The UX people work until they achieved a stable interaction design and have

decided (by whatever criterion) to stop iterating. Then they hand off that

finished version of the interaction design and agree that it will not be changed by

further iteration in this version of the system.

The output of the UX lifecycle used as input to the SE lifecycle is labeled

“interaction design specifications as UI software requirements inputs” to

emphasize that the interaction design specifications are not yet software

Figure 23-3

UX and SE lifecycles in
series.

820 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

requirements but inputs to requirements because only SE people can make

software requirements and those requirements are for the entire system.

We, the HCI folks, provide the inputs to only part of that requirements process.

There are, of course, at least two things very wrong about the assumptions

behind this series connection of lifecycles. First, and most obvious, the timing

just will not work. The absolute lack of parallelism leads to terrible inefficiencies,

wasted time, and an unduly long overall product lifecycle.

Once the project is started, the SE people could and would, in fact, work in

parallel on compiling their own software requirements, deferring interaction

design requirements in anticipation of those to come from the UX people.

However, if they must wait until the UX people have gotten through their entire

iterative lifecycle, they will not get the interaction design specifications to use in

specifying UI software requirements until far into the project schedule.

The second fatal flaw of the series lifecycle connection is that the SE side

cannot accommodate UI changes that inevitably will occur after the interaction

design “handoff.” There is never a time this early in the overall process when the

UX people can declare their interaction design as “done.” UX people are

constantly iterating and, even after the last usability testing session, design

changes continue to occur for many reasons, for example, platform constraints

do not allow certain UI features.

23.5.5 Can We Make an Iterative Version of the
Serial Connection?
To get information about the evolving interaction design to SE people earlier

and to accommodate changes due to iteration, perhaps we can change the

configuration in Figure 23-3 slightly so that each iteration of the interaction

design, instead of just the final interaction design, also goes through the

software lifecycle; see Figure 23-4.

While this would help alleviate the timing problem by keeping SE people

informedmuch earlier of what is going on in the UX cycle, it could be confusing

and frustrating to have the UX requirements inputs changing so often. Each UX

iteration feeds an SE iteration, but the existing SE lifecycle concepts are not

equipped for iteration this finely grained; they cannot afford to keep starting

over with changing requirements.

23.5.6 It Needs to Be More Collaborative and Parallel
So variations of a series lifecycle connection are fraught with practical

challenges. We need parallelism between these two lifecycles. As shown in

Figure 23-5, there is a need for something in-between to anchor this parallelism.

821CONNECTIONS WITH SOFTWARE ENGINEER ING

As we mentioned earlier, however, this parallel configuration has the

strongest need for collaboration and coordination, represented by the

connecting box with the question mark in Figure 23-5. Without such

communication parallel lifecycles cannot work. However, traditional SE and

UX lifecycles do not have mechanisms for that kind of communication. So in

the interest of a realistic UX/SE development collaboration without undue

Figure 23-4

Iterating a serial
connection.

Figure 23-5

Need for connections
between the two lifecycles.

822 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

timing constraints, we propose some kind of parallel lifecycle connection, with a

communication layer in-between, such as that of Figure 23-6.

Conceptually, the two lifecycles are used to develop two views of the same

overall system. Therefore, the different activities within these two lifecycles have

deep relationships among them. Consequently, it is important that the two

development roles communicate after each major activity to ensure that they

share the insights from their counterpart lifecycle and to maintain situational

awareness about their progress.

The box in the middle of Figure 23-6 is a mechanism for communication,

collaboration, constraint checking, and change management discussed earlier.

This communication mechanism allows (or forces) the two development

domains to keep each other informed about activities, work products, and

(especially) design changes. Each stage of each lifecycle engages in work

product flow and communication potentially with each stage of the other

lifecycle but the connection is not one to one between the corresponding stages.

Because SE people face many changes to their own requirements, change

is certainly not a foreign concept to them, either. It is all about how you

handle change. In an ideal world, SE people can just plug in the new interaction

design, change the requirements that are affected, and move forward. In the

practical world, they need situational awareness from constant feedback

from UX people to prepare SE people to answer two important questions:

Can our current design accommodate the existing UX inputs? Second, based on

the trajectory of UX design evolution, can we foresee any major problems?

Having the two lifecycles parallel has the advantage that it retains the two

lifecycles as independent, thereby protecting their individual and inherent

interests, foci, emphases, and philosophies. It also ensures that the influence

and the expertise of each lifecycle are felt throughout the entire process, not just

during the early parts of development.

Figure 23-6

More parallel connections
between the two lifecycles.

823CONNECTIONS WITH SOFTWARE ENGINEER ING

This is especially important for the UX lifecycle because, if the interaction

design were to be handed over to the SE role early on, any changes necessary

due to constraints arising later in the process will be decided by the SE role

alone without consultation with the UX role and without understanding of

the original design rationale. Moreover, having the UX role as part of the

overall team during the later parts of the development allows for catching

any misrepresentations or misinterpretations of UI specifications by the SE role.

23.5.7 Risk Management through Communication,
Collaboration, Constraint Checking, and
Change Management
Taking a risk management perspective, the box in the middle of Figure 23-6

allows each lifecycle to say to the other “show me your risks” so that they can

anticipate the impact on their own risks and allocate resources accordingly.

Identifying and understanding risks are legitimate arguments for getting project

resources as an investment in reducing overall project risks.

If a challenge is encountered in a stage of one lifecycle, it can create a large

overall risk for parallel but non-communicating lifecycles because of a lack

of timely awareness of the problem in the other lifecycle. Such risks are minimal

in a series configuration, but that is unrealistic for other reasons. For example,

a problem that stretches the timeline on the UX side can eventually skew the

timeline on the SE side.

In Figure 23-6, the risk can be better contained because early awareness

affords a more agile response in addressing it. In cases where the UX design

is not compatible with the SE implementation constraints, Figure 23-3

represents a very high risk because neither group is aware of the incompatibility

until late in the game. Figure 23-4 represents only a medium risk because

the feedback loop can help developers catch major problems. Figure 23-6,

however, will minimize risk by fostering earlier communication throughout

the two lifecycles; risks are more distributed.

23.6 THE RIPPLE MODEL TO CONNECT SE AND UX

To connect the SE and UX lifecycles, we developed “Ripple” (so named because

of the ripple effect of a thread of communication), a communication-fostering

framework (Pyla, 2009).

The Ripple model, shown in Figure 23-7, describes the specific environment,

tool support, entities, and various components involved in a particular

interactive system development project. The Ripple model is expressed at a level

824 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

of detail that is useful for developers to adopt and employ manually for a

particular project context or as a framework on which to design an automated

software system to manage the communication required between the two

lifecycles.

As an example, a software implementation of the Ripplemodel would work as

follows (using quotes to set off state-change indicators that could be used as

communication triggers): A person in a UX role, John Doe, logs into the system,

“starts” working on task analysis by selecting that activity in Ripple, which

“creates” a hierarchical task inventory (HTI) document, which will be stored in a

work product repository.

Figure 23-7

The Ripple model.

825CONNECTIONS WITH SOFTWARE ENGINEER ING

The Ripple implementation automatically detects the fact that John Doe

started task analysis, and the work product repository automatically detects

the creation of this new work product. Upon creation, these two events are sent

to the event queue component directing them to be sent to the appropriate

parties. For example, if a dependency relationship exists between UX’s task

analysis and SE’s functional analysis: “every task in UX role’s HTI must have

one or more corresponding functions to support the task on the backend,”

the system automatically sends a message to the functional analysis work

activity in SE.

This message will be waiting when the SE role logs in through the developer

interface and starts to work on the functional analysis activity. Similarly,

when John Doe sends the insight about the need for a new task, the system

automatically sends messages to all other developers who work on

task-related activities (e.g., usage scenarios) and this message will be delivered

immediately.

23.6.1 The Ripple Project Definition Subsystem
Using a projectmanager interface, a projectmanager accesses the Ripple project

definition subsystem to specify the component parts of a project, including

SE and UX lifecycle types, work activities to be conducted as part of the two

lifecycles, roles, and work products.

23.6.2 The Ripple Constraint Subsystem
The job of the constraint subsystem is to represent, monitor, and enforce various

dependency relationships among different entities between the two lifecycles

during development. Through these constraints, different time-based events in

the development space can trigger other events that need to be performed to

maintain stability in the design.

Using the Ripple Mappings Description Component, the project manager can

declare the different relationships that exist among various entities within the

development space. For example, consider the relationship between the SE

role’s functional decomposition work product and the UX role’s hierarchical

task list work product: a mapping element must be declared so that a change

to one of these work products requires at least a consideration of change to

the other.

A project manager can declare amapping between these two work activities to

be dependent on the source work activity (e.g., HTI, by UX role), a trigger event

that perturbs the design space (e.g., new task description added to HTI by UX

role), a related work activity elsewhere in the design space (e.g., functional

826 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

analysis by SE role), or the type of relationship (e.g., every task in UX role’s HTI

must have one or more corresponding functions to support the task on the

backend).

The Trigger Event Listener is a software agent that monitors the event queue for

trigger events to enforce a relationship. For each event arriving at the event

queue, the trigger event listener checks the mappings description to identify the

corresponding relationship and delegates the enforcement of that relationship

to the Relationship Enforcement Component by passing to it the event and its

corresponding relationship. For example, in the case of the UX role creating a

new task in the HTI, the module upon verifying the existence of a relationship,

wherein the SE role is required to update their functional decomposition work

product, informs the relationship enforcement component to notify the SE role

about this change.

23.6.3 The Ripple Repository Subsystem
Various work products of the combined design process are stored as a shared

design representation in a single repository called the Work Product Repository

with each of the SE and UX roles having two separate views to this dataset.

Developers are required to post new work products created at the end of each

work activity here, creating “posting” trigger events.

The Ripple implementation of this repository has mechanisms to detect any

queue events as and when time-based events for work products, such as work

product created or is being modified, occur. Once detected, these events are sent to

the event queue to be acted upon by the trigger event listener.

23.7 CONCLUSIONS

23.7.1 You Need a True Separate Role for Interaction Design
Although we have seen remarkable exceptions where software engineering

people are also very good at interaction design, we generally stand by our

conclusion that the UX process generally should not be done by a software

engineering person. We need a true separate role for interaction designer.

In past years, this role has blossomed into a major career niche, going under

many appellations, including user experience specialist, usability engineer, UX

practitioner, UX designer, and information architect. While people entered this

field from human factors, psychology, computer science, or engineering, now

there are academic programs tailored specifically to train people to meet the

demand for these skills.

827CONNECTIONS WITH SOFTWARE ENGINEER ING

People in all roles in both domains must work together and share in the

design and development not just of the user interface, but of the whole

interactive system. While these roles correspond to distinguishable activities,

they are mutually dependent aspects of the same whole effort. These roles

represent essential ingredients in the development process, and trade-offs

concerning any one of themmust be considered with regard to its impact on the

other roles. Ever since we started working in this field, we have believed that

cooperating and complementary roles, coming from both software and UX domains, are

essential to the design of high-quality user interfaces. The roles require a lot of

communication during interaction design and development as they work across

the software, interaction, and work domain boundaries within a team of closely

coordinated peers.

23.7.2 Sometimes Team Members Need to Wear
Multiple Hats
Small organizations or resource-constrained teams sometimes force a situation

where both interaction design and software design are, in fact, done by the

same person, but that person must be aware of taking on both roles, roles that

differ in about every way, requiring different skills, approaches, methods,

and mind-sets. So, one individual person can take on two or more roles, a

person wearing multiple hats. As anyone who has had multiple roles living in

one head under the hats will tell you, the key is in maintaining the role

distinction, keeping the roles separated, and being aware of which activity one

is doing at any given time.

Failure to keep the roles separate will subject the hat wearer to a fundamental

conflict of interest between the two roles. What is best for users is almost always

not easiest for programmers. When push comes to shove, it is far too easy to

resolve this conflict of interest in favor of easier programming, at the cost of the

user experience. We have seen it far too often and far too blatantly. Cooper

(2004, p. 16) puts it well:

The process of programming subverts the process of making easy-to-use products

for the simple reason that the goals of the programmer and the goals of the

user are dramatically different. The programmer wants the construction process

to be smooth and easy. The user wants the interaction with the program to be

smooth and easy. These two objectives almost never result in the same program.

In the computer industry today, the programmers are given the responsibility for

creating interaction that makes the user happy, but in the unrelenting grip of

this conflict of interest, they simply cannot do so.

828 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

So, wearing multiple hats requires the wearer to be faithful to the needs and

goals of each hat. While you are reading this book, you should be wearing your

interaction designer hat.

23.7.3 Interaction Design Needs Specialized Expertise
and Training
Significant training and educational prerequisites for the software engineer’s

role are obvious, but how hard can it be to make an interaction design? Do you

really need a whole different role just to do interaction design? It definitely does

not take a rocket scientist.1 Is not it just common sense, something most anyone

on the development team can do if they put their minds to it? If it were just

common sense, we would have to wonder why good sense is not more common

in the designs we use.

It is especially easy for software people to think that they can do interaction

design with the best of them. Talk withmany programmers about user interfaces

and you will hear about widgets, interaction styles, callbacks, and everything you

will need to build a user interface. You may sense a feeling of confidence—a

feeling that helpful style guides and new interface software programming tools

have catapulted this programmer into a real user interface expert.

Anyone, in fact, can produce some user interaction design. However, just

because a programmer has an interface software toolkit does not mean that he

or she can design a highly usable interaction design, and it does not mean that

they necessarily know a good user interaction design when they see one. In our

experience, we have actually encountered junior software folks smiling

broadly as they wave the standards or guidelines manual and proclaim that not

only can they now create the interaction design, but there “will not be any

need for UX testing if I just follow the guidelines.”

As we now know, there is a significant prerequisite for the interaction

designer’s role, too, including psychology, human factors, industrial design,

systems engineering, and everything in this book! But computer science and

software engineering are not among those prerequisites. Sure, design guidelines

are important, but what is less well understood is the absolute necessity for a

good UX lifecycle process, including lifecycle concepts, and process activities

and techniques. Additionally, there is the song we played in the Preface: a

requisite mind-set for truly appreciating the plight of the user.

1What is the big deal about comparing everyone to a rocket scientist? You really have to know only one

thing to be a rocket scientist: rocket science.

829CONNECTIONS WITH SOFTWARE ENGINEER ING

23.7.4 Success Criteria for Developing Interactive Systems
Although we have talked much about processes, the bottom line is that the

success of an interactive system development project is, at its base, all about the

people. If team members in each role have respect for the other roles, and each

team member has the requisite capabilities to carry out the assigned roles, the

project will find a way to succeed.

Experienced developers already appreciate the importance of

communication but, in the fog of battle, people get busy and people get

consumed with their own responsibilities. So, the project needs to be infused

with reminders to maintain communication about activities and progress,

especially about problems and changes.

Finally, because resources are always limited, the teammust act in ways to take

utmost advantage of what resources they have. Among the issues this translates

into are the staggering of the two corresponding lifecycles so that one does not

constrain the productivity of the others and constantly ensuring situational

awareness of overall process and the design.

830 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

CHAPTER

Making It Work in the
Real World 24
Objectives

After reading this chapter, you will:

1. Understand what it takes to put the UX process to work as a practitioner in the field

2. Know how to be a smart UX practitioner

3. Know how to participate in UX professionalism

4. Understand the impact and limitations of cost-justifying a UX process

5. Appreciate the business and politics of UX within your organization

24.1 PUTTING IT TO WORK AS A NEW PRACTITIONER

Here is a little advice on getting started in applying the UX process within your

organization. Some readers will already be engaged in the UX process and

can ignore the points that no longer apply.

24.1.1 Professional Preparation

Find someone with whom you can apprentice
If possible, as you are getting started, find an established UX practitioner, in

your organization or elsewhere, with whom you can work to “learn the trade.”

Just following an expert around for a while can give you a great deal of

confidence to try some of the UX process activities on your own.

It is especially important for you to sit in on design sessions and observe UX

evaluation sessions. In a small company, it may be hard to find a knowledgeable

person with whom you can apprentice; you may be the resident expert! In most

large companies, however, you should be able to find someone suitable.

Get training for project team members
Get appropriate training on these new techniques for members of the project

team, especially those who are being given responsibility for the UX process.

Even those who are not involved directly in the UX lifecycle process can benefit

from some formal training because these ideas may be dramatically different

from those they encounter in their own domain. Having all members of the

team with a common baseline of knowledge in these techniques is helpful in

making it all work.

Get consulting help when needed, especially
during start-up
By having an expert around while you try these activities the first time or two, you

will learn a great deal more about how to do them and how not to do them

and you will gain skills and confidence that will allow you to continue with

subsequent activities yourself. There are two sources of consultants that you

can tap.

If your organization is large enough, there are probably already people

somewhere in it whom you can bring in to help you get started. If not, if

you are breaking entirely new ground in your organization by trying these

ideas or if your organization is fairly small, then you may want an outside

consultant to help you get started. While this may sound like an expensive

proposition, remember what Red Adair, the famous Texas oil-well firefighter,

said when someone confronted him about his costs for putting out oil-well

fires: “If you think the experts are expensive, wait until you bring in the

amateurs!”

Start a regularly scheduled brown-bag UX lunch bunch
Within your project, your organization, or your community start a regular

get-together for people with a mutual interest in UX design. This kind of a

support group can have many purposes, from serving as a critique group for

emerging interaction designs; to getting advice on some particular process

activity; to sharing experiences with the process; or to being an educational

forum for presenting and sharing relevant topics, showing videotapes of interest,

and so on.

Perhaps most importantly, a special interest group for UX raises awareness of

the UX process activities that are happening. Publicize it widely, on electronic

bulletin boards and any other communication medium you have available.

Begin by meeting once a month, and then meet more often if interest and

attendance warrant it. Instead, perhaps, subgroups with interest in some specific

topic(s) may want to meet more often. Many places that have tried this idea have

been amazed at how quickly their group has grown and how popular and

effective it can be.

832 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Start a small internal newsletter and/or electronic
bulletin board specifically related to UX activities
in your organization
A nice spin-off to the brown-bag lunch idea is a small newsletter to serve as

another forum for exchanging ideas. This newsletter can be published

electronically. In it, you can talk about actual evaluation sessions, suggest

readings from new articles and books, give conference reports, and relate

success stories—essentially the same kinds of things that you discuss during the

brown-bag lunch groups.

An internal electronic bulletin board or a blog is also an excellent medium

for exchanging information, asking questions, posting answers, making

suggestions, and so on. This kind of communication will increase the visibility of

human–computer interaction (HCI) and UX greatly in your organization.

Attend conferences related to human–computer
interaction and UX
The Usability Professionals Association (UPA)1 has an annual conference that

appeals to practitioners in the field. Sponsored by SIGCHI, a special interest

group of the Association for Computing Machinery, the Conference on Human

Factors in Computing Systems2 (known as the CHI, pronounced like the Greek

letter w) is the largest annual conference on HCI. CHI has a decidedly research

flavor but features many activities and attractions oriented toward practitioners,

too. CHI has a variety of activities, including the standard fare of paper

presentations, panels, and poster sessions. It also has special-interest group

meetings; impromptu birds-of-a-feather sessions; book exhibits; demonstrations

of tools and other applications by both research and commercial groups; and

exhibits of unusual, often futuristic, user interface technology.

For the new or aspiring UX practitioner, we especially recommend the UPA

conferences and their Body of Knowledge project.3 The mission is to create

“a living reference that represents the collective knowledge of the usability

profession and provides an authoritative source of reference and define the

scope of the profession.”

In addition, the annual User Interface Software and Technology Symposium

(UIST)4 is a smaller, single-track forum for exchanging state-of-the-art ideas

and results, more on the software side of things. The Human Factors and

1http://www.upassoc.org/
2http://www.sigchi.org/conferences
3http://www.upassoc.org/upa_projects/body_of_knowledge/bok.html
4www.acm.org/uist/

833MAKING IT WORK IN THE REAL WORLD

Ergonomics Society5 also has conferences with many sessions dedicated to user

interface issues. HCI International,6 Interact,7 CSCW,8 DIS,9 and other

conferences also abound.

We also recommend the Interaction Design Association (IxDA), a global

network dedicated to serving the professional practice of interaction design and

the professional needs of an international community of practitioners, teachers,

and students of interaction design. The “IxDA network provides an on-line

forum for the discussion of interaction design issues and provides other

opportunities and platforms for people who are passionate about Interaction

Design to gather and advance the discipline.”10

Prepare a UX portfolio
Also, if you are looking at the job market, it is time to compile a portfolio of your

existing UX work. Many companies interviewing for new UX professionals are

asking for this now. Highlight the process you followed, the prototypes you

created, the redesigns you made, and so on. Your portfolio must tell a story of

each design project you undertook: the users affected, the challenges faced,

and the innovation provided. Make it visual with design sketches, screen images,

and other design artifacts, with appropriate annotations. Include surprises

and unique insights. Use it as a conversational prop when you are presenting in

person, for example, at a job interview.

24.1.2 Administrative Preparation

Get a commitment from management to try
these new techniques
You cannot operate in a vacuum. In most organizations you need permission to

try new things. Share what you know about UX and get your management

committed to trying it. First, lay out your UXprocess plan, at least roughly. Then,

have a one-on-one meeting with one or more key upper-level managers and

convince them to let you try your plan.

If you are prepared and keep the plan pretty simple, chances are very good

that you will get the support you want. Ask this manager to call a meeting to

discuss the plan with the project team. Let themanager run themeeting, as if it is

5hfes.org/
6http://www.hci-international.org/
7http://interact2011.org/
8http://www.cscw2012.org/
9http://www.dis2012.org/
10http://www.ixda.org/

834 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

all the manager’s idea. If this does not work, you run the meeting, but have the

manager there to support you.

Establish UX leadership
Get at least one person on the project team who can be the UX leader. Maybe

this person is you! If it is not possible, for whatever reason, to get a full-time

person, start with a part-time person. Find a way with management to give that

person primary responsibility for design, evaluation, and iterative refinement of

the interaction design.

Also give that person the authority to carry out the responsibilities of the job.

Later, as the importance of this role becomes more recognized and

appreciated within your organization, you can add other people to your

emerging UX team.

Get a commitment from project team members
to try these new ideas
Those members of the team who are not responsible for developing the

interaction design should bemade aware of what those who are responsible for it

will be doing and why. Get at least some level of commitment from these

non-user-interface people for the ideas you will be trying out so that they will

know what to expect.

Generate a failure story and then a success story,
no matter how small
Often, whenmanagers and teammembers are asked “What will it take for you to

get approval to begin trying some of these new ideas?” they respond, “Failure!”

To convince people that these ideas will work, start by showing them failure

when the right process is not used for developing the user interaction design.

Set up some version of a system that needs a lot of UX improvement.

In your UX lab, make a 5-minute video of a user having a really terrible time

trying to use the interface. Using the techniques presented in this book, revise

the interaction design, or at least the worst part of it. Then make another

5-minute video of a user, the same one if it is feasible. Use the revised design to

perform the same tasks as in the first video. Presumably, of course, the user will

love—or at least like and be able to use—the revised design.

Show the two video clips tomanagers and explain to them the process that got

you from the first version to the second one. If your video clips are different

enough, they will make the point for you dramatically. What managers will

usually want to know after such a presentation is “Why did not we start using this

835MAKING IT WORK IN THE REAL WORLD

UX process before now?” This success story, demonstrating the effectiveness

of the process in action, can do more to help sell these ideas than almost

anything else you can do.

24.1.3 Technical Preparation

Start a blog about your UX activities
It will be a valuable and illuminating experience to maintain a record or journal,

as you go, of how you applied various techniques in the UX process and how

well they worked. Maintain it as an online blog and others can participate.

You will also impress your teammates with the ability to recall what you all

decided earlier and it might help keep the team from going in circles and

reinventing process ideas.

Get some practice doing contextual inquiry and analysis
On your next project, follow some of the steps of contextual inquiry and analysis

and go out and interview and observe customers and users in the application

domain. You will be surprised how easy and effective it soon becomes.

Personalize and actualize a process
Throughout this book we have encouraged you to personalize the process,

taking from our process what works, what you can afford, and what meets your

goals for a project. Now is the time to codify and document those process and

technique selections and actualize them—put them into action.

Marc Rettig (1992), whose HCI andUXwriting has resonated with us over the

years, gave this advice back in the 1990s to software programmers who found

themselves in a position where they had to do interaction design: Get a process.

He offers this “catchy truism,” “goodmanagementmeans doing the right things,

and doing them right.” Doing the right things is about having a process.

Guidance in doing them right is given in the techniques in the process-oriented

chapters, the techniques that support the lifecycle process.

Set up a UX lab
Find an enclosed (or enclosable) corner, a broom closet, a vacant office, some

space somewhere, and make it your official UX lab. This single activity, along

with getting a UX practitioner on the project team, can have a huge impact

on attitude toward these new ideas.

Put a big, bold sign on the door. People will wonder what is going on in

there and will start asking questions about what a UX lab is and what it is to

836 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

be used for. This will begin raising awareness about the increasing importance

of UX in your project and organization—good PR! Get in the minimal

equipment recommended and then—starting small—use it to do some

formative evaluations of your evolving user interaction designs.

24.1.4 Give It a Try

Start small
There is a lot of material in this book. The best way to get it under your

belt in real projects is to start small and work up to the whole process.

Choose an interaction design project that is small enough so that you

will not be overwhelmed from the beginning as you apply these new

techniques.

If you are required to work on a large project, choose some reasonable

portion of it to focus on initially. Select, for example, a smallish subsystem

of your large project or a few of its most important functions and features.

The project (or part of the project) you choose should be one that has some

visibility, but that is not extremely high risk.

As Nielsen (1994c) said, “Anything is better than nothing.” People often

fear that they will not be successful the first time they try these techniques.

These techniques are so effective that you almost cannot lose. Any data you

collect from even a short session with a single user is invaluable input

that you can use to make improvements in the interaction design. Do not

be afraid to try these techniques; you will become comfortable with

them quickly.

Prototype and evaluate only a core part of the
interaction design the first few times you
attempt to do formative evaluation
If you try to encompass too much of the interaction design in the initial

prototype, you will probably spend too much time developing it, and you could

become overwhelmed if you attempt to evaluate all parts of it. For your first

few prototypes and subsequent formative evaluation cycles, incorporate a

core set of functions, those functions without which a user cannot perform

useful work with the system being developed.

Keeping the prototype small will allow you to keep the formative evaluation

process manageable until you become more knowledgeable and confident

with it. Later prototypes can, and of course should, include much more of the

system functionality.

Formative
Evaluation

Formative evaluation is a

primarily diagnostic

approach to UX evaluation

with emphasis on collecting

qualitative data to identify

and fix UX problems and

their causes in the design.

837MAKING IT WORK IN THE REAL WORLD

Do some observations of users with a prototype
of the interaction design
If you cannot get management to agree to let you try all these ideas at once,

then at a minimum get them to let you either go off-site or bring in one or

two participants, whichever is most appropriate for your situation, for a short

period of time—2 hours, half a day, a day—to evaluate your interaction designs.

Informally observe people using the system and give management a short

report on your observations. Include in your report the major problems

identified and the expected impact of making changes to the interaction

design based on your observations.

Have developers and managers watch at least one
participant from an evaluation session
Often, developers, even after training, and managers, even after realizing the

need for UX, are still reluctant to believe in the UX lifecycle process. One of the

best ways to convince both developers and managers, for example, that

evaluation with users is critical to ensuring a quality user experience is to have

them observe some participants.

Once you get your UX lab set up, this is easy to do. Schedule a specific time for

them to come to the lab and watch at least one participant during an evaluation

session. If you have a video hookup or a one-way mirror with which they can

observe from a different room than where the participant is working, that is best

for the participant. If developers or managers simply will not come and watch a

participant live during an evaluation session, show them a few short, carefully

selected video clips of some sessions. This will go a long way toward convincing

skeptics about the value of these techniques.

24.2 BE A SMART UX PRACTITIONER

As you gain experience, you will learn “tricks of the trade” that will make

you more valuable as a UX practitioner on each project. We have said many

times in this book not to apply the process blindly but with judgment. Find the

most economical level of commitment to the process and be flexible in its

application.

In a 1993 workshop (Atwood, 1994), researchers and practitioners pooled

their experience to compile a list of tricks of the trade. The results are still

relevant today.

838 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

n. Better be fast andmostly right than slow andperfect. This follows our engineering advice

tomake it goodenough, butnot perfect. Engineeringmeans “satisficing” (Simon, 1956).

n Chase what gives themost bang for the buck. UX practice is a cost–benefit balancing act.

When you get good at this, you have increased your cost–benefit to your organization.

When you can prove it to management, ask for a raise.

n Distinguish between customers and users.

n Serve as a catalyst/lighting rod. The UX practitioner has the advantage over many other

jobs in the organization by being responsible for talking with customers, users, and

developers.

n Push what works.

n Know when to turn it over to product development. Do not get “married” to your designs

and prototypes; cut them loose—discard them if they are not working or let them

graduate when they are ready.

n Know the development environment and the developer’s concerns. Make sure your

designs are well received. If you have been communicating all along, there should be no

surprises at this point.

n Know the customer’s and the users’ concerns: the goal of contextual inquiry and

contextual analysis.

We have a few of our own to add.

n Make yourself a best-practices list by choosing from options in this book.

n Make your paper prototypes work economically for you. Before you go to the lab for UX

testing, use low-fidelity prototypes to be sure of the concepts, language use,

nonexistence of showstoppers, and effective task flow. The UX lab is not a cost-effective

place to discover the right verbs for button labels.

n Evaluate continuously, throughout the lifecycle.

n Early evaluation is to find UX problems, not performance measurements.

n Use goal-directed choices for process and techniques. It is not about which process or

method is best but which works best under a given constraint in a given context.

n Get your software developers to agree on the process and what it means. For example, do

not let them take your low-fidelity prototype too soon and start designing screens to

match it exactly before you have iterated and worked out the details.

24.3 UX PROFESSIONALISM

Beyond the preparation for project work we recommend professional career

preparation, including membership and participation in professional UX

societies, conferences, and workshops. Find out whichHCI andUXpublications

839MAKING IT WORK IN THE REAL WORLD

are most relevant to your interests and subscribe. Join the Usability

Professionals’ Association (UPA), the ACM Special Interest Group on CHI

(SIGCHI)11—local and/or national—and/or any other professional

organizations appropriate for your background and interests.

Get involved in a professional society and help steer it toward useful goals.

Morris (2005) makes the case for stronger representation of HCI or UX

as a profession to business. We have been looking inward to how getting

organized within a professional group can help us all be better practitioners,

which is good. But an effective professional organization succeeds by supporting

business in areas related to the profession.

He cites the American Chemical Society, for example, as an organization that

provides for chemists and their employers such services as employment

registration and competitive analysis tools regarding salaries.Morris feels that we

in HCI have not yet reached business with this kind of attention and are,

therefore, often more or less invisible to management.

Stewart (2002), leader of System Concepts in the United Kingdom, gauges

the HCI profession as finally becoming successful and tells us how to keep that

from becoming a danger to us. He thinks that our growing acceptance as a

profession will demand more from us as professionals, including improving our

credentials and competence. He wants to see us more as a real profession

and less as a black art and worries that otherwise acceptance of the importance of

UX will unseat us because managers will see it as a function too important to

leave to us.

24.4 COST-JUSTIFYING UX

One of the earliest articles stating concern over the cost of usability was by

Mantei and Teorey (1988). Since then there have been many articles and a few

books dedicated to the topic. Most notable is the Bias and Mayhew (1994)

edited collection. The book starts by posing very important questions to which

we need the answers when we propose doing usability or UX to our managers:

How much usability or UX are we going to get and how much will it cost?

How will we know we are getting it, and how much more money will it make for

us on our products? It continues with a framework for answering these

questions, a discussion of the business case for doing so, and offers some

different approaches and case studies.

11http://www.sigchi.org/

840 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

The second edition (Bias & Mayhew, 2005) extends the ideas to the Web

and is reviewed by Sutton (2007). Among the pioneers in cost–benefit and the

business case analysis of usability engineering is Karat (1990a, 1990b,

1991, 1993).

24.4.1 Cost Cutting Is Not Always the Best Idea
Sometimes cutting costs can save otherwise wasted resources, but sometimes cost

cutting directly reduces what you get in return. Cooper (2004, p. xxiii) is leery

about an obsessive appetite for slashing costs at every turn: “unfortunately, most

executives have an almost irresistible desire to reduce the time and money

invested in programming. They see, incorrectly, the obsolete advantage in

reducing costs.”

Similarly, going with the lowest bidder is not always the best idea. For

example, there is a story about the IRS buying a system from the highest bidder,

but it gave them the highest payback in increased productivity.

24.4.2 Cost–Benefit and Business Case Analysis of UX
As Siegel (2003) points out, we can be very impatient about having to prove

our value in a business case to our organization. We see the value of usability

andUX as self-evident or we would not be working in the area. So, when business

decision makers do not see it as clearly, we get frustrated.

Casting a broad net
Sometimes managers require cost–benefit analyses to be convinced of anything.

In the case of UX, as in many cases, the customer, the person with authority

to purchase an application or sign a development contract, is not always the final

user. The distance between cost and benefit can be great. As it is often the case,

UX usually has us paying the cost in one place and accruing the benefits

in another place. Developers pay a cost to develop, customers pay a cost to own,

and users pay a cost to use.

The concept of total cost of ownership (TCO) leads us to cast a broad net when

looking for all the costs and benefits. As George Flanagan (1995) has told us, “the

cost of end-user computing is greater than typically estimated and labor is the

most significant component.” He cited a survey of 500 business computer users in

which usability was the characteristic identified most often with quality.

Weiss (2005) tells how the distance between usability development cost and

benefit can be quite large in the telecom industry. Manufacturers bear the

brunt of usability costs of producing mobile handsets, which they sell to carriers

who retail them to their subscribers.

841MAKING IT WORK IN THE REAL WORLD

The fact that a manufacturer did, for example, usability testing is not an

immediate selling point to carriers. The benefits of good quality in the phones

and the penalties for bad design are felt by the end consumers. But, of course,

the marketing impact can eventually trickle back up to the carriers and

manufacturers so theymust be concerned with usability and other quality factors

to survive in the long run.

A rational argument about UX cost–benefit
Can we afford to include UX techniques in our system development process?

Instead of the standard pat answer of “can we afford not to?,” we think we

can help shed some light on the question rather than the answer. Cost–benefit

analyses have shown with dollar figures that usability or UX process costs

are often quite low, especially in comparison to the benefits. But, to some,

that is a counterintuitive finding because development costs always seem to

be high.

“No-Risk” Usability Support

Randolph G. Bias, Ph.D., CHFP, Associate Professor, School of Information, The University of Texas

at Austin12, and Principal, The Usability Team13

One Wednesday when I was a full-time consultant our team received a call from a U.S. rental car company. Well,

actually it was from the vendors who were responsible for designing the rental car company’s Website. It seems they

had a problem, they realized it was a usability problem, and could we run a usability study for them and make

redesign recommendations? Sure, no problem. “By Friday?” Whoa. We were confident we could find representative

users, business and leisure travelers, to serve as test participants. But we negotiated a delivery date of “this coming

Monday” and got to work discussing their perceived problems, designing the usability study, and recruiting test

participants.

We worked through the weekend, of course, and ended up grossing $14,000 for our 5-day gig, which ended with a

deliverable of a usability test report complete with prioritized usability problems and recommended redesigns. The

contracting team was pleased with the results and set about implementing some large subset of our recommendations.

In 1994, and again in 2005, Deborah Mayhew and I published edited volumes on Cost-Justifying Usability. I believe

strongly that we usability professionals can help ensure our seat at the software development table so that we can

12http://www.ischool.utexas.edu/~rbias/website/
13www.theusabilityteam.com

842 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

maximally, positively influence the users’ experience by attending to and comparing the tangible costs and benefits of

our work. One of the challenges with such an approach is that there are just about always confounds—at the same

time as usability improvements are made, there are also changes made to the marketing message, increases in the

sales force, or any number of other changes, making it difficult to attribute with confidence any certain fraction of new

benefits to the usability effort alone.

The joy of this exercise with the rental car Website team was that the only changes they instituted, in this revision,

were those motivated by usability testing. A few weeks later I called them and asked if they had any data on

improvements in user performance on their Website. The team was thrilled to report that from the first day of the new

design they had realized a $200,000 per day bump in revenue, and that even if everyone who had failed to secure a

reservation on the online site before the redesign had subsequently called the toll-free number to reserve a car, the

company still was realizing a $50,000/day increase in revenue. Thus, the payback period for the usability investment,

for this particular engagement, was “before lunch on the first day.”

As someone who is convinced that the state of Web and other software design world is such that investments in

professional, systematic usability engineering are just about always “worth it,” this experience has led me and my

current consulting partners (The Usability Team; www.theusabilityteam.com) to offer what we are calling “usability on

spec” or “no-risk usability.” We will work with you (Mr. or Ms. Web-or-Other-Software-Designer/Developer) to come

up with a plan for some usability support, based on your site/product, your historical user data, the stage in your

development process, and other variables. Then we will do the usability work for you, for free! But we will also

negotiate some small percentage (say, 5%) of the measureable benefits realized after the usability improvements are

implemented. [Note, in the example given earlier, using the conservative $50,000/day figure and assuming the same

effect across a year, the company realized an $18 million benefit for their $14,000 investment, an approximately

1300:1 return on investment (ROI), and a 5% fee would have been over $900,000. Nothing ventured, nothing gained,

eh.] While not every usability study will yield a four-figure ROI, and not every study will allow for such a crisp

connection between usability costs and subsequent tangible benefits, we are eager to help all realize the importance

and value of professional, systematic usability engineering of their customer-facing user interfaces.

However, usability or UX engineering, if done right, does not necessarily add

greatly to overall development cost. The first reason is that most of the usability

or UX costs are concentrated in early parts of the overall product lifecycle. Much

of the UX engineering should be done before the system is implemented in

software.

Out of the entire overall system development process, only a small cycle of

analysis, design, prototyping, and evaluation represents the part associated with

most UX engineering costs. Also, this mini-cycle is small and lightweight in

comparison to other parts of the overall process, if it can be accomplished before

a commitment to implementation in software.

Yes, this mini-cycle must necessarily be iterative, but it is only a small,

lightweight part of the overall process. It is hoped that you can rearrange

your project budget so that you do not use more resources for development

overall, just different resources with a different distribution during the

lifecycle.

Our second claim is that good usability saves on many other costs. As many of

the writers on UX cost have said, “Pay me now or pay me more later.” Poor

usability is costly; good usability is all about saving costs. UX process costs are

mostly one-time costs; operational costs can accrue for years. Downstream costs

of poor usability can be substantial.

Usage costs, such as for lost user productivity, employee dissatisfaction, heavy

user training, help desk operations, field support, or the cost of user errors, get

more attention if those users are your employees. User errors are sources of costs

that can keep cropping up over time if they cause other problems in your

operation, such as database corruption.

Perhaps the cost of poor usability is the highest in the e-commerce world of

the Web, where a bad design can mean lost revenue and losing a competitive

edge in a fast-moving marketplace. The Internet is where you absolutely

must avoid releasing something that will embarrass you and the organization,

despite the pressure to development in “Internet time.”

Costs of not having a good UX
According to a 2006 AP wire report (The Roanoke Times, 2006), a “Defense

Department’s computerized travel reservation system turned into a half-billion-

dollar fiasco, so flawed that only 17 percent of the travelers are using it as

intended, Senate investigators say.” It was supposed to be the pentagon’s

private version of an Internet travel site, but it took a half-hour to book a simple

itinerary that a regular travel agent could have booked in 5 minutes, and it

was missing flight and hotel information and did not always provide the least

expensive options.

In a similar story, Reuters UK Edition news service reported that a Taiwan

stock trader in 2005 bought over $200 million (value in US$) worth of shares

with one mis-stroke on her computer keyboard, causing a panic reaction on the

market and an immediate loss to her company of $12 million.

The cost of poor usability also weighs in heavily at the help desk. According to

Flanagan (1995) in a 90-day study of incoming calls to help desks for 24 different

software products, over 60% of all calls were determined to be about usability

issues and for 11 of the applications, over 90% of the calls were related to

usability.

844 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Thecost of correcting ausability problemin adesigndependson the stageof the

project in which you catch the problem.Naturally, the earlier it is detected, the less

it costs to fix. Early on,Mantei andTeorey (1988) stated that as problems are found

later and later in the lifecycle, costs associated with fixing them increase in a

geometric progression: a problem that costs $1 to fix in early analysis can cost $10 to

fix in design, $100 to fix in a prototype, and $1000 to fix after deployment. On the

other side of that coin, it has been estimated that for every $1 we spend on

usability, we get from $2 to $10 in return from the market (Kreitzberg, 2000).

Is return on investment (ROI) the right place to look?
Most practitioners and management would agree that good usability and good

UX are about good business, not about “being nice.” So, if good usability makes

for good business, what measures can be used to prove it? Certainly cost savings

within the process are one way, maybe by comparing the “with and without

usability” cases. For example, back in 1993, we heard of a NYNEX project in

which the company saved $1 billion by prototyping and iteratively refining the

interaction design for a voice-activated telephony system (Thomas, 1993). Such

success stories are impressive, but rare. Beyond those, not everyone believes

in the power of ROI calculations.

Daniel Rosenberg (2004), who oversaw UX at Oracle, says that ROI is a

phantom not worth chasing. In his 20 plus years of experience, he has never

been asked to produce an ROI analysis. He thinks that the kind of ROI analyses

in the HCI literature do not fit the real world he lives in. Rather, he defines

his professional goal as adding value to products through an improved UX. He is

part of the commercial software industry that produces large and complex

software suites for use in companies all over the world. It is a world in which a

single sale of a system can bring in millions of dollars for a system that will be

used by thousands of concurrent users.

At the other end of the scale are the small internal IT projects where, he says,

the argument is usually made for usability ROI. Unfortunately, he said, “case

study” stories based on little data get spread in the literature as “myths.” The

promise of better data is at least partially blocked by corporate legal departments

who consider development cost data to be confidential. He points out correctly

that the economics of software production are complex and contain too many

confounding factors to do a convincing “before and after” or “with and without”

comparison.

For example, increased revenue from a product that UX practitioners believe

has been improved through usability testing might instead be due to changes in

prices, size of the sales force, emphasis in a marketing campaign, and so on.

845MAKING IT WORK IN THE REAL WORLD

Instead, Rosenberg proposes that we consider more strategic indicators,

indicators of longer term effects of product value for executives and upper

management, a key example of which is the customer relationship. Customers of

large commercial software systems can have an ownership or usage lifecycle of a

decade, including in-the-field fixes and upgrades to new releases.

Over that time, total ownership costs can add up to much more than the

original purchase price. Whereas ROI can be an internal fascination about how

to save development costs, total cost of ownership (TCO) is an external measure

of how well your product is working for your customers, a measure of the

real value your product provides. He says that in business, saving money is

tactical but making money is strategic.

Our friend Gitte Lindgaard (2004) balances Rosenberg’s view by saying that,

the absence of requests for ROI justification notwithstanding, “if we want our

contribution to be taken seriously by other stakeholders, we absolutely must

demonstrate the business value of HCI.” We need to speak “clearly to business

decision makers and target issues that are truly of concern to them.” We must

find the issues that will provide the most persuasive arguments and apply the

most appropriate analysis techniques, and Lindgaard gives some compelling

examples of doing just that.

Bloomer and Croft (1997) echo this sound advice, “start by finding the ‘hot

buttons’ of the group,” such as enhancing customer service, improving product

quality, or reducing operational costs—and get data about problems in these

areas. Even though most of us will never be asked to produce a usability

justification analysis, we can and should seek actively to understand the broader

business context of our work and find ways to take the initiative within that scope

to define, address, and solve the organization’s business problems.

Lund (1997a) looks at the problem of economic justification of usability and

UX as more than just showing the difference between costs of usability and

savings from usability in a project. That kind of data is going to be for a project

that is in the past, but a company is interested in whether it is worth maintaining

a permanent usability group in the future. What is the value of a UX group in the

long-term, including projects that never get to market and, therefore, never

generate revenue?

Lund takes a corporate bottom-line view in which the value of any activity or

group in the company is assessed with respect to how it affects earnings. That

translates directly into decreasing company costs and increasing product

revenues, fundamental factors to which he says we must tie arguments for

our existence. This includes helping the company identify new business

opportunities emerging from technology and ideation that keep UX designers

846 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

engaged in contributing to the business. In his company they keep track of the

value of new product ideas generated by each department and the resulting

revenues from those ideas maturing into marketed products.

Siegel (2003) gives us some advice on how to approach our own persuasive

business case for UX. If you do use cost and savings figures, “show a conservative

bias.” Stretching the truth in your estimates can injure your credibility and

can build false expectations. As Lindgaard also said, target your analysis to

recognized company concerns. They will get the ear of management faster than

new ideas from the “outside.” It may be necessary to lay the groundwork for your

arguments by establishing the right metrics for cost, for example, and taking

enough data before making the justification case.

Do not promote your approach as a “new paradigm” that will “save the

company.” Suspicion that your proposal might be ideologically motivated can

raise stiff resistance. Instead, bill it as an effective way to pursue established

company goals and help the company do what it is already doing, such as

understanding its users. If necessary, invoke the companymission statement, if it

is appropriate.

One of Siegel’s points encountered often in our consulting and industry

practice is about “incrementalism.” The usual approach to cost–benefit analysis

is to look at the value of a product before and after applying usability testing, for

example, to improve the design. However, this “incremental” approach ignores

the “order-of-magnitude” improvements a very bad design can get from a

complete re-analysis and redesign and not just usability testing.

A small example of cost savings
For a large distributed system, a very large government organization we worked

with had about 75,000 active users at any point in time. On average, we showed,

for one particular task, that the number of transactions per user in a day was

about 20. This added up to a daily frequency for this one transaction of

75,000 � 20 ¼ 1,500,000.

The user time per transaction ranged from 5 to 20 minutes. We determined

that the average time saved per transaction, due to one specific improvement

in usability, was about 30 seconds. At that time, the average fully loaded

hourly rate for these agents/clerks was $25.00, so the average annual savings

for just this one task and this one modest usability improvement, not counting

other savings, such as for user training or help desk costs, were

¼ 75,000 users * 20 transactions/user-day * 0.5 minute/transaction * 230 days/year *

$25/hour * 1 hour/60 minutes ¼ $71,875,000.00.

847MAKING IT WORK IN THE REAL WORLD

For any reasonable usability engineering cost for this product, the payback is

enormous. Managers will pay attention to this kind of cost analysis because they

do similar analyses themselves for budgets. Also, you can remind them that long

after schedules are forgotten, the user experience, good or bad, remains.

Mayhew (2010) offers a free downloadable cost-justification tool for these

calculations.

Strategic planning for better UX in the future
The natural time for arguments in favor of adequate budget and schedules to

allow for quality UX design is at the beginning of a project, even before a project

begins. That is when such resources are allocated. However, that is also when

everyone, especially managers, are enthusiastic (and most unrealistic) about

getting it done fast. Although this is the opportune time to make a pitch for

additional resources, this is also when everyone is excited about getting going on

a big sprint. In any case, during a project is not a good time to argue for resources

because that is when the allocations have already been done and everyone is

obsessed with getting it done or getting a product out.

We offer an additional suggestion. Make your pitch for enough resources to

make it better the first time (instead of having to fix it later) at the end of a

project that did not go particularly well because there was not enough time to

do it right. This is the time, even if only for a brief and forgettable moment

before people move on, that everyone can see that it was not enough. Everyone

can see ways that you could have done better. People will still have that feeling

that, if only they had hadmore time, they could havemade itmuch better. This is

the time to point out in a non-emotional way that your team, and managers

above the team, chronically do not allow enough time to get a design right the

first time around.

24.5 UX WITHIN YOUR ORGANIZATION

24.5.1 Politics and Business of Selling UX
Your biggest challenge may be not technical, but possibly about selling the case

to management (Trenner & Bawa, 1998). This selling requires workable

techniques to convince managers that they should let you try these ideas out

(Schaffer, 2004). The material presented in this book can form a basis for

controllability, accountability, and quantitative methods that are so important,

and rightfully so, to managers.

Most managers are familiar with software engineering principles and

paradigms and probably even encourage or enforce their use. If you were

around in the days when structured programming and software engineering

848 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

were emerging as the accepted approaches to software development, you

will remember that there was the inevitable opposition to it, largely because

people claimed there was not time to do all those things in the development

process.

Also, now, managers are going through a similar encounter with new

methods and techniques, only this time it is for usability and UX (Mayhew,

2008). Now managers are hearing UX buzzwords, such as “user-centered

design,” “iterative refinement,” or “rapid prototyping.” And today we are hearing

the same kind of resistance that the software engineering people heard decades

ago. But already the arguments about why proper UX engineering cannot be

done are bearing less and less weight as people realize that this leads to the

situation where, as the saying goes, there is never time to do it right but always

time to do it over.

However, many managers will need to understand this relatively new UX

methodology. What they may not realize is that, by necessity, the UX lifecycle

process is not linear but is highly and continually iterative. An iterative lifecycle

can impact much of what managers have to deal with, including scheduling,

control, organizational roles, territoriality, project management, communication,

test facilities, and tools.

So, it is up to us—up to you—to help sell the new concepts, which could take

you out of your comfort zone as a UX practitioner. You might want to just do

your job and not have to hassle with trying to convince the rest of your

organization of the value of UX. Do you believe in UX so fervently that you feel it

should not need any selling?

Bloomer and Croft (1997) warn of trying to “evangelize rather than sell

usability.” If we try to spread our enthusiasm for how neat all this usability and

UX stuff is, you may find it is not as interesting to management as you expected.

It is not about beliefs; we have to demonstrate the benefits in business terms and

demonstrate a connection of UX to achieving key business goals.

Selling the process
To the readers seeing much of this contextual inquiry and contextual

analysis process for the first time, you might think it is just too much and can

never get accepted in your organization. But, in fact, contextual inquiry has

been finding acceptance in commercial software product and system

development simply because it is effective and helps solve the problem of

getting design requirements that represent real user needs in real work

contexts. Yes, it is a big piece of process that was not there before, but you

can start small, make some success stories, and sell its value to your

organization.

849MAKING IT WORK IN THE REAL WORLD

Beyond the factors that trade off inmaking a wise choice of howmuch process

to use, there always looms the prospect of criticism basedmerely on resistance to

anything new, regardless of cost or benefit. Selling new or additional processes is

always a challenge.

Selling UX as part of the business process
When you have difficulty in selling your vision of UX tomanagement, maybe it is

because you are still speaking the language of UX engineering. We all

understand that language and are convinced of the value but that is preaching to

the choir. And while we would love to see the whole organization revamped

around a UX process, Rideout (1991) reminds us that it is unlikely your existing

organizational structure will change to adapt to UX; “one of the most effective

ways to bring UX engineering into an organization is to build it into existing

processes.”

Alton (2007) suggests that one way for the UX practitioner or UX leader to

speak a language that business people understand is by making a connection

to risk management. Worst-case analysis of risk means asking what is the

worst thing that can happen, how likely is that to happen, what will it cost if it

happens, and how much will it cost to keep it from happening, or at least to

reduce the probability to an acceptable level?

In this light, usability and UX are more like business insurance, just like data

security and backing up of files. For a new commercialWebsite, for example, one

of the worst things that could happen is a failure that results in no one wanting to

use your site. Your investment and future sales are in jeopardy. Let management

decide how much that will cost the company.

Your job is to propose strategies based on UX engineering and user

involvement to minimize the probability of this kind of failure and loss.

The more the loss in the case of failure, the more you can afford to spend

on UX. Alton shows how a user-involvement questionnaire can be applied

to analyze exposure to risk based on the kinds of users and kinds of usage

you expect.

Selling an investment in UX
Just selling ideasmay not be enough. Depending on the nature of the projects in

your organization and your emphases in design, you might need to convince

management to invest in a UX evaluation lab and all its equipment or in an

ideation studio. Design and ideation cannot happen at desks in offices or

cubicles. A dedicated design studio space is a place to post sketches and drawings

and display other artifacts, the visual and tactile context for ideation.

850 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Legal and Intellectual Property Issues

Brad A. Myers, Carnegie Mellon University

User interfaces are subject to a variety of legal and intellectual property issues of which a commercial user interface

developer (and especially, a manager) must be aware. Property is something that a person or company can own, and

intellectual property (IP) is generally property that is nonphysical. Examples of the kinds of things that can be

intellectual property include ideas, designs, expressions, names, formulas, lists, and so on. Intellectual property can be

protected by various means, and the rules vary by country. In the United States, IP is enshrined in the U.S.

Constitution, where Article 1, Section 8, Clause 8 provides that Congress shall have the power “To promote the

Progress of Science and useful Arts, by securing for limited Times to Authors and Inventors the exclusive Right to their

respective Writings and Discoveries.”

Most people think of patents when they think of IP, but there are a variety of types.

n Trade secrets are intellectual property that a person or company keeps secret. People who are told the secret are generally required

not to divulge it. For example, the formula used for Coca-Cola is a trade secret of the Coca Cola Company. Employees generally

sign an agreement not to divulge a company’s secrets, and others who are told are often required to sign a “nondisclosure agreement”

in which they agree to keep the secret. Anyone can have a trade secret just by not telling others the information. However, trade

secrets are rarely useful for protecting a user interface, as the user must be able to see the user interface to use it. However, the

implementation of user interface algorithms is often a trade secret. An example would be the algorithm that predicts words from the

user’s typing using an onscreen keyboard.

n Copyrights are a legal mechanism that protects a particular expression of an idea. Copyrights are the primary way that literature,

music, and artwork are protected. A copyright does not cover ideas and information, only the form or manner in which they are

expressed. For example, one could not copyright the idea of dragging items to a trashcan icon to delete them, but one could copyright a

particular drawing of a trashcan. Software code can be copyrighted, but this only protects the exact expression—implementing the

same algorithm a different way would not be affected by a copyright. Copyrights are free and automatic—anyone can add a# symbol

to any work to put the public on notice that the work is protected. Copyrights last for a certain amount a time, which varies based on

various factors (e.g., in the United States, a copyright on a personally authored work such as a story lasts for the life of the author plus an

additional 70 years. For a work made for hire, the copyright lasts for 95 years from the year of its first publication or 120 years from the

year of its creation, whichever expires first. See http://www.copyright.gov/help/faq/faq-duration.html for full rules for the United

States). After a copyright has expired, the work is generally available to the public for use. For example, the works of Mozart are no

longer covered by copyright, but a particular performance of them (that particular expression) can still be copyrighted. If desired, user

interface designers can copyright their particular user interface expressions (icons, background designs, window decorations, etc.) as

well as their software code.

n Trademarks are a legal mechanism to protect a distinctive phrase or indicator that uniquely identifies a particular commercial

product. The goal of trademarks is to avoid confusion in the consumer’s mind. There are a variety of kinds of trademarks depending on

what is being protected and how. Marks that denote trademarks include W for registered trademark, ™ for trademark, SM for service

mark, etc. Logos and names of companies and products will almost always be trademarks. Trademarks are issued by a government

agency, such as the U.S. Patent and Trademark Office (USPTO), and are very expensive. Once issued, a trademark lasts for as long as

the product or company is available commercially. If one uses a name that a company thinks is too similar to its trademark, then

the company can sue to prevent that confusing name from being used.

n Patents are a legal mechanism to protect an invention. They give the inventor a monopoly to use the invention for a period of time in

exchange for revealing how the invention works. Patents were only ruled by the U.S. Supreme Court in 1981 to apply to software, and

hence to user interfaces (before that, the rule was “for an idea to be patentable it must have first taken physical form”). Now, there are

thousands of patents on user interface features and interaction techniques, with thousands more issued every year. A patent has a

“specification” with its figures, which are the description of the invention, and the “claims,” which describe what is actually protected

by the patent. Patents must describe something new (that has never been described or seen in public before), useful for some purpose,

nonobvious (it cannot only be an improvement that would be obvious to a regular person), and disclosed properly (so someone could

reproduce the invention using the specification). Patents are issued by a government agency, such as the USPTO, and may cost about

$20,000 to get. If one invents a new user interface, a patent can be written and filed, and then future users will have to license the

patent to create an interface that works the same way. Conversely, if one creates a user interface that does what someone else’s patent

describes, then one can be sued in federal court for patent infringement.

Enlist a UX champion
Most of the many books and articles (Billingsley, 1995; Butler & Ehrlich,

1994) about getting UX to work within an organization advise recruiting a

UX champion, for example. Look to senior management people who fund

development projects; they will have the power to includeUX as a key component

of the development process. It is even better if you can find a senior executive

who, perhaps through his or her own reading or conferences, already believes in

the value of UX to the organization.

Sell UX as important to marketing
It might be possible to sell the business case for UX based on its ability to

help with branding in the look and feel. No company has done this better than

Apple Corporation and they are looked up to bymany others for this connection

of UX to branding on the marketing side.

Revise reward policies
It may seem obvious, but one way to help the UX culture flourish in your

organization is to change the reward structure to favor product quality and the

UX process. If people are rewarded on the basis of timelines and meeting

delivery schedules, UX and other product quality factors will be eclipsed by these

schedule-driven concerns. If people in your team roles are rebelling against

changes in the development process, you may need an adjustment at the

corporate level in the culture of how people are rewarded and focus more on

how people follow the process.

Inertial resistance to change
Sometimes UX practitioners will run into resistance that comes from inertia or

just plain opposition to change, especially in large, established organizations

where software people and management are used to doing things the same way

for years. Sometimes the resistance comes in the form of passive-aggressive

behavior. They agree with you and say they will use the process, but they do not.

Or they say, “We are already ready doing that process,” when either they are not

really doing it or they are not doing it correctly.

Anderson (2000) has tracked obstacles to adoption of processes for UX,

including a lack of understanding of the process, fear of losing control,

discomfort in moving from something familiar, competing ideologies, turf

battles, and the feeling that UX is a marketing responsibility.

Alternatively, resistance to a UX process can stem from the impression that

because the current way of development “is not broken,” it does not need

improving. If the design passes your UX testing, there is a tendency to think “the

job is done and we should move on.”

But beyond just performing benchmark tasks in time, UX practitioners must

ask themselves constantly how to make it even better; can we make a better

conceptual design? Even though we have ironed out the surface user

performance questions, are there still deep UX issues?

Another way inertia shows up is in the lack of innovation in design. If your

electronic forms on the Web are the same as the paper forms that preceded

them because “that is the way we have always done it,” it could be that you are just

“paving the cow paths.”

UX credibility
Selling any idea or technology to business management takes credibility, which

first and foremost comes from delivering, from producing what is promised

andmore, and from doing it on time and within budget. That is what is required

of everyone in a development environment, and UX practitioners are no

exception.

Some established researchers and practitioners, such as Dennis Wixon

and others, decry even the need to defend our credibility. “Why single out

usability?” Why not ask software engineering to justify themselves. Well, we are

the relatively new kid on the block and we have to earn organizational respect,

just as the software engineering folks once did. Remember the state of

structured programming back in the 1970s? Also, while you cannot build a

software product without software engineering, you can build one without

UX, as we well know.

853MAKING IT WORK IN THE REAL WORLD

Be a source of information about your profession. Be a resource of expertise

and counsel others on their concerns about usability and UX. Give your own

project team training in UX to ensure that they do not have gaps in their

knowledge and skills.14 Also, importantly, give yourself some visibility. No one in

management will givemuch credibility to a process they know nothing about or a

process that is essentially invisible within the organization.

You can boost your visibility within the organization via presentations within

departmental meetings and periodically scheduled seminars and workshops,

spreading the word until everyone is UX literate. Showcase a failure story and

follow it with a genuine success story. Show before and after video presentations

of lost, confused, bewildered, and frustrated users followed by happy and

productive users due to design improvements. Seeing for themselves is one

of the most effective ways to boost your credibility among people outside the

UX team.

Be a UX evangelist and use “guerilla” tactics to insert UX into the corporate

culture. For example, almost all companies have quality assurance people and

activities. Visit the quality assurance people and convince them, over time, to

incorporate usability and UX as part of their concept of quality. Having the

support of a quality assurance group, long-established within the company, can

only enhance your credibility.

24.5.2 Getting Away from the “Human Factors
Pool” Model
In the early days, UX people were usually called human factors experts and, in

many organizations, were kept corralled in a centralized “pool” of human factors

consultants, often within a “service” arm of the organization lateral to the

development groups, for example, in the quality assurance department or the

documentation group.

Then they are split up and assigned to various business units doing

development, much like orphans are farmed out to working families, with about

as much clout in the new working environments. They are never really part of

a development project and continue to report to their “home” departments

while on loan to projects.

Once we had a couple of human factors people take us to lunch so they could

unburden themselves about their plight. They came from a central human

factors “pool” and were assigned to a project long after it had been designed and

14An example of a self-paced source for this kind of training is theOnline User eXperience Institute (OUXI) at

http://www.ouxinstitute.com/

854 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

parts had been implemented. Their job was to give feedback on the design

but, of course, not too much feedback as it was impossible to make all but the

most cosmetic changes by then.

They, however, had large issues with an enormous mismatch between the

application organizational structure and the users’ workflow. Several very closely

related parts of a task were located in different screens in the design and the flow

of the design was such that it was not easy to move among screens except by

following the built-in logical “next screen” path. Clearly, the design would have a

powerful negative impact on UX and user performance in the field, or at sea.

Although they protested vigorously about the huge design flaws, they were

flatly ignored because they had no authority within the development project.

It would be a long journey from this situation to where an organization has its

own UX division reporting to the CEO and UX practitioners hold the power

to enforce their design recommendations.

24.5.3 UX in the Organizational Structure
The question of UX ownership within an organization has been a popular

discussion topic in articles and workshops. ACM interactionsmagazine covered it

in a special section (Gabriel-Petit, 2005). Most of the articles began by saying that

it was the wrong question to ask, that no one can “own” UX within an

organization. Most of the authors got it right: no one “owns UX within the

organization” or, better yet, everyone in the organization has a stake in “owning”

the responsibility for UX.

Gabriel-Petit (2005, p. 17) said that the ownership of UX is best shared in a

culture of collaboration and vision. Within that context a person with the most

UX experience can function as a leader. Knemeyer (2005) says that business

decision makers should own UX; it is the CEOs and administrators who set

organizational goals and control budgets and even the HR people who hire the

staff. The way to help shape UX in the organization is to influence thinking

about it at these higher levels.

Aucella (1997) warns us that we should at least find some relatively

permanent place for UX in the organizational scheme of things. Perhaps the

UX approach was successful in one project but, when this project is over

and team members disperse, UX can die off and not be pursued further if

there is no “home” for UX in the organization. She recommends working

toward buy-in within the project and beyond, before the end of the project.

Project meetings should include a focus on UX; try to develop a culture in

which planning and budget negotiations include UX. Be sure you have at least

one experienced UX practitioner to lead the effort and be sure to document the

855MAKING IT WORK IN THE REAL WORLD

results prominently so that the “history” is preserved and not buried soon after

the project is done.

If UX practitioners are loaned out to develop projects from a centralized

“pool” of practitioners, a practitioner may serve on several development teams at

once, moving from team to team at appropriate times in their respective

development processes. This approach usually turns out to be undesirable

because it tends to fragment the process, for the UX practitioners, and can

stretch their usefulness too thin.

For example, one human factors engineer was assigned to rotate among

11 different projects with a total of 248 software engineers! This, of course, is an

extreme case—so much so that this practitioner was relatively ineffective on any

of the 11 projects. In addition to fragmentation, this on-loan-talent approach

usually precludes participating in the feeling of team ownership of the product.

In the long run, the best day-to-day “home” for UX practitioners seems to be

in carrying out UX roles as full-fledged members of project teams rather

than being centralized in talent pools. Even if a central pool was dignified by

making us our own department with corresponding standing within the overall

organization, we would still have to function as outsiders with development

projects.

It is much better to assign each UX practitioner to a specific permanent role

within the organization. Project teams are already composed of different skills

sets so why should the UX skill set be any different? Now we are all system

developers, as it should be! You do not read articles anymore about who owns

programming in a development organization; programmers work in

development projects where they are needed, as part of a team.

Similarly, there are advantages to having UX practitioners co-located

permanently with the rest of the project team and reporting administratively to

the same managers. The risk of this arrangement, of course, is for the manager

to not understand or appreciate the value of the UX practitioners, as that

manager will be doing annual performance evaluations for raises and

promotions. There is no longer any greater UX group in the organizational

structure to protect the UX practitioners. That highlights the imperative to sell

management on the value of UX.

In one successful instantiation of the team approach, the entire project team

was located in close physical proximity with each other. The team consisted of

one or more software engineers, user interaction designers, marketing people,

graphic artists, human factors engineers, technical writers, and trainers.

The usability lab was in the center of the physical space, with team members’

offices located around the lab.

856 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Some of the most interesting team interaction occurred when software

engineers began attending usability evaluation sessions. At first, only one or two

attended, but as the project progressed, there literally was standing room

only in the control room of the lab. In fact, all team members were told

when usability test sessions were scheduled, and many attended regularly.

Everyone was anxious to see how users would respond to the newest cycle of

changes to the interface.

Being able to position ourselves as part of the team this way is not a technical

issue, but depends on management. As Don Norman once put it, “Bad products

often arise because of poor organizational structure.” The structure of a

product often reflects the structure of the company that built it. Parts of a

company that build the various parts of a product or systemmay not talk to each

other; they may even compete with each other.

If your development organization is organized hierarchically, it may be easy to

communicate up and down within the hierarchy, but it can be difficult to

communicate across the structure. Before a cross-disciplinary team can make a

decision within this infamous “stovepipe” organization, each question must

travel up and down all the respective pipes.

Ferrara (2005) says that UX practitioners are responsible for the ultimate

UX in products and will be held accountable for same. So, if they do not control

the UX process, they must find ways to influence those who do, but should do so

with respect and as a team effort. Hawdale (2005) weighs in, supporting the

opinion that it is about leadership with vision.

The one who takes the lead and pursues a vision is the one others will look

up to as the UX person. Tognazzini (2005) says that we must work harder to

define ourselves as UX professionals and take control for design back from the

engineers.

Until that happens we will fight against the odds, playing catch-up instead

of having a fair chance at the head start we need to lead the project lifecycle

rather than follow it. Strategic approaches to UX within an organization mean

influencing people and integrating the profession and its practice into the

organization. UX is an organizational effort, not just a technical one.

Also, strategic approaches are organization-wide approaches. When usability

gets to a strategic level in a corporation, usability data are used in corporate-wide

decision making, including product priorities. Rosenbaum, Rohn, and

Humburg (2000) report on a series of CHI Conference workshops about

strategic UX planning, about how usability or UX groups can make themselves

“more effective and influential in how corporations develop products.” Their

findings are detailed but a few conclusions stand out.

857MAKING IT WORK IN THE REAL WORLD

For example, it seems reasonable that small UX groups in large

organizations will perceive more difficulty in creating a broadly felt

influence, but the survey showed that “organization size did not affect

what organizational approaches and usability methods were rated most

effective in achieving strategic usability.” Apparently organization size also

did not affect what factors were considered as obstacles to creating strategic

impact. So we are all in the same boat, needing to build partnerships with

marketing, engineering, and corporate management by educating about

UX and selling its value.

As part of strategic thinking, Deborah J. Mayhew (1999a) asks how can UX

practitioners position themselves as change agents? “Understanding what

motivates organizations and causes them to change is key.” To Mayhew,

strategic establishment of usability or UX within a development organization

occurs in three stages: promotion, implementation, and institutionalization.

Promotion is selling, influencing others. Identify the obstacles to this kind

of change in your organization and the right kind of motivation to

overcome them.

Implementation means putting the process to work in real projects,

which means getting the right people to manage and carry it out. To then

institutionalize the process, you have to extrapolate your success and

extend the influence of UX to be part of the development process at the

organization level. The key is to be strategic in the implementation phase

and plan for institutionalizing as you go. You have to get to know the

people who document and enforce the organization process standards

and help them integrate the UX process into their standard operating

procedures.

24.5.4 Legacy Systems
A legacy system is a system with maintenance problems that date back possibly

many years. Back in the 1990s, legacy systems were more of an issue than today.

The question was what to do about large systems that had aged but were still

working to provide important services (Schneidewind & Ebert, 1998)? The

classic and most extreme cases of legacy systems were the old mainframe

hardware and software systems with terminals being converted to systems of

networked desktop computers.

Such cases are becoming mercifully rare. When these cases do occur,

however, they have far-reaching implications and careful consideration must be

focused on whether to continuemaintaining the old system, redesign it, or retire

it altogether in favor of a replacement.

858 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

The legacy problem still exists in different forms; existing systems get old and

it is difficult to decide when to abandon system maintenance and opt for

developing or buying a new system with new technology. It is a matter of risk

management: When is the cost of old system shortcomings and constant

maintenance, including instability in the face of incremental functionality

changes, more than the cost of starting over?

Systems with better initial designs last longer. Almost always users want to

keep the old system as long as possible, as that is what they are used to. However,

they are often pleasantly surprised when they discover the improved UX in a

well-designed new system.

Alternatively, realization of older functionality and user interfaces with new

technology are often clumsy cut-and-paste reincarnations without good redesign

to leverage the advantages, including UX advantages, of the new technology.

24.5.5 Transition to Production
We talked a bit about the transition from prototype design to the product.

We cautioned not to hang onto it too long; let production developers do their

thing. However, we do advise to keep an eye on it even after you let it go.

Beltram (2005) describes a particularly heart-breaking scenario in which the

design was changed after the UX lifecycle was done, the interaction design

had stabilized, and the unevaluated design was passed on for production

development. After all the hard work of a long UX lifecycle, including

presentations to management about the high level of UX achieved, the UX

practitioner releases the design for production engineers to package it up for

distribution.

However, a year later, the UX practitioner is faced with angry ranting

customers and sees, for the first time, that many unbelievable changes have been

made to her designs. Labels that had been painstakingly worded were changed

for the worse, carefully placed navigation links were missing, and the user’s

workflow had been badly damaged. How could this possibly have happened?

In some organizations, especially those that develop software for domain-

complex systems, there are some “extra, unacknowledged phases of design”

that can occur in the process of getting the software ready for deployment; it is

not always just building and shipping. Many things can happen after the UX

cycle is over, including changes to address non-UX quality issues, changes in

code to fix bugs, or some last-minute customization at the request of the

customer—all done by people who did not work on the original project. As

Beltram puts it, “That’s a lot of cooks in the kitchen, all fussing with Nellie’s

original recipe.”

859MAKING IT WORK IN THE REAL WORLD

Looking to the Future

Dennis Wixon, PhD, Startup Business Group, Microsoft Corporation

In looking over the last 30 years of growth of the computer industry, one obvious conclusion is that “the user has

won.” No product team or business would begin a new venture without considering seriously how they would achieve

an excellent user experience. Given the vagaries of the development process, the final product may or may not provide

that excellent experience. Certainly suboptimal (from a UX perspective) products are created with surprising regularity.

However, I do not think anyone will ever hear statements such as “people like that do not deserve to be our

customers.” (Yes, I really heard that in one meeting many years ago.)

It would be tempting to say that such success was due to the creativity, hard work, and determination of a

community of UX researchers, practitioners, designers, and academics, led and inspired by a few geniuses (e.g., Doug

Englebart). Similarly, one could say that this progress was inevitable and driven by the inexorable economics of

industry, that is, we had to broaden the market for technology beyond computer scientists, mathematicians, engineers,

and hobbyists. To broaden that market we had to make computer technology approachable for novices, useful for

workers, productive for businesses, and fun for gamers. We could also say that this progress was inevitable given the

increase in performance and the reduction in price of technology, the growth of networking, and proliferation of form

factors such as PCs, cellphones, game consoles, and tablets. These three factors (and numerous others) worked in

synergy to drive the progress in user experience for the last 30 years.

Taking stock and even congratulating ourselves are no doubt in order. But as we do so, I would recommend that

we turn our attention to the future. What are the challenges that we face over the next 30 years in creating quality

user experience? The following are a few candidates; the reader is encouraged to add his/her own.

First, the growth of agile methods represents both a challenge and an opportunity. The speed and overall approach

of agile software methods challenge both research and design methodologies. Some have argued that it is impossible

to do good research or design in the context of an agile team. However, this argument ignores several important

considerations. First, in many cases we do not have a choice. We need to embrace these approaches or be left behind.

Second, many agile methods promise a partially working system as part of every sprint. Surely that promise offers

opportunities for testing or review. Third, a number of methods for working with agile teams are described in this

book. Certainly more will be created. The history of all the UX disciplines is adaptability, integration, and creativity. In

summary, while I would not minimize the challenge, I would not ignore the opportunity.

Second, the proliferation of platforms represents another challenge. Again, this challenge also creates opportunity.

The rapid growth of the cellphone market challenges designers to create great designs for tiny screens. It challenges

research to understand usage for a wide variety of users in every imaginable context from a shopping mall to a rural

farm. These challenges are compounded by a need to write software once and have it run on all platforms. However,

there are also great opportunities. Logging technology enables us to understand aggregate usage in ways that were

previously unimagined. The need to run on all platforms challenges teams to create flexible development

environments. Advances in touch technology and voice recognition offer promise. We have already seen products with

innovative and excellent user experience dominate the marketplace and inspire a variety of new products.

Third, the rise of analytics represents an opportunity and a challenge. Analytics provides an unprecedented

window into user behavior. It is possible now to look at the behavior of entire populations of users and see how

they use systems. At the same time, extracting valid conclusions can be challenging given the complexity of the

environment in which usage occurs. One way to think of this is that our study of whole populations as they

behave provides unprecedented ecological validity. However, this same environment is almost completely

uncontrolled. Seeing a rise or fall in usage could be due to anything happening at that time. For example, if we

observe a drop off in game play for a previously popular Internet game what do we conclude? We could conclude that

the game has limited replayability or we might know that a new version of a widely popular competitor has just been

launched and thus conclude that an external factor is causing the drop. Ironically, the most effective approach to the

problem of so much data is more data and more diverse data. The more we know, the more measured and confident

we can be in our conclusions.

Fourth, we do run the risk of retarding our future progress with some self-inflicted wounds. One example would be

the current manufactured controversy between research and design. It is unproductive to say research can be

dangerous. Any activity can be dangerous. Creative design is fraught with risk. Launching a product or service is risky

and dangerous. Lack of activity can be dangerous too. Markets move on, and playing it safe can lead one to be not a

player at all. We do not advance progress in user experience by creating rhetorical controversies between disciplines

that need to work together. We do advance the field when we look at successful products and product failures and

make an honest attempt to understand them and apply their lessons. For example, many years ago Petrosky wrote a

book entitled To Engineer Is Human in which he conducted a brilliant analysis of engineering failures. This type of

analysis does not lead to the intellectual cul-de-sac of suggesting we should not engineer new products. Instead it

leads us to a deeper of understanding of how to avoid the mistakes of the past and make true progress.

Finally, I see a major challenge ahead. While UX has made significant headway in creating better products and

contributing to business success, by and large, UX is still on the periphery in far too many businesses. By that I mean

that user experience experts do not play as full a role in product decision making as other disciplines do. The

contribution of UX to business success is unique, and UX needs to be an unfiltered voice in the product development

process. There are many reasons for perpetuation of this “glass ceiling.” Some of them are historical and cultural.

But it is most important that UX professionals focus on those factors that they have some control over. They can focus

on strategic work even if that means that detailed design and research may go undone. They can continue to

innovate in methodology and design and integrate those methods with more traditional approaches. They can

document their value and contribution to the success of products. They can shed some of the traditional values that

have marginalized their work. One example is the belief that we need to have a complete design before we can collect

data or offer an evaluation.

Overall, while there have been failures and setbacks, I see a past of accomplishment and a future of promise for UX.

24.6 PARTING WORDS

Congratulations! You made it through the book. May the UX force be with you.

Intentionally left as blank

References

ABC News Nightline, (1999). Deep Dive.

Abernethy, C. N. (1993). Expanding jurisdictions and other facets of human-machine interface IT

standards. StandardView, 1(1), 9–21.

Accot, J., & Zhai, S. (1997). Beyond Fitts’ law: Models for trajectory-based HCI tasks. In Proceedings of

the CHI Conference on Human Factors in Computing Systems (pp. 295–302). Atlanta, GA.

Acohido, B. (1999, November 18). Did Similar Switches Confuse Pilots? Controls’ Proximity Another

Aspect of Crash Probe. Seattle Times Investigative Reporter, from http://community.seattletimes.

nwsource.com/archive/?date¼19991118&slug¼2996058.

Adams, D. (1990). The Long Dark Tea-Time of the Soul. Pocket Books.

Alben, L., Faris, J., & Saddler, H. (1994). Making it Macintosh: Designing the message when the

message is design. interactions, 1(1), 11–20.

Altom, T. (2007). Usability as risk management. interactions, 14(2), 16–17.

Anderson, R. I. (2000). Business: Making an e-business conceptualization and design process more

“user”-centered. interactions, 7(4), 27–30.

Anderssona, B.-E., &Nilsson, S.-G. (1964). Studies in the reliability and validity of the critical incident

technique. Journal of Applied Psychology, 48(6), 398–403.

Andre, T. S., Hartson, R., Belz, S. M., &McCreary, F. A. (2001). The user action framework: A reliable

foundation for usability engineering support tools. International Journal of Human-Computer

Studies, 54(1), 107–136.

Ann, E. (2009). What’s design got to do with the world financial crisis? interactions, 16(3), 27–20.

Antle, A. N. (2009). Embodied child computer interaction: Why embodiment matters. interactions,

16(2), 27–30.

Apple Computer Inc, (1993).Making It Macintosh: The Macintosh Human Interface Guidelines Companion.

Addison-Wesley.

Arnheim, R. (1954). Art and Visual Perception: A Psychology of the Creative Eye. University of California

Press.

Atwood, M. E. (1994). Advances derived from real-world experiences: An INTERCHI ’93 workshop

report. SIGCHI Bulletin, 26(1), 22–24.

Aucella, A. F. (1997). Ensuring success with usability engineering. interactions, 4(3), 19–22.

August, J. H. (1991). Joint Application Design: The Group Session Approach to System Design. Yourdon Press.

Bailey, R. W. (1996). Human Performance Engineering: Designing High Quality Professional User Interfaces

for Computer Products, Applications, and Systems (3rd ed.). Upper Saddle River, NJ: Prentice Hall.

Bangor, A., Kortum, P. T., & Miller, J. T. (2008). An empirical evaluation of the System Usability

Scale. International Journal of Human-Computer Interaction, 24(6), 574–594.

Bannon, L. (2011). Reimagining HCI: Toward a more human-centered perspective. interactions,

18(4), 50–57.

Barnard, P. (1993). The contributions of applied cognitive psychology to the study of human-

computer interaction. In R. M. Baecker, J. Grudin, B. Buxton & S. Greenberg (Eds.), Readings

in Human Computer Interaction: Toward the Year 2000 (pp. 640–658). San Francisco, CA: Morgan

Kaufmann.

Baskinger,M., &Gross,M. (2010). Tangible interaction¼ Formþ computing. interactions, 17(1), 6–11.

Bastien, J. M. C., & Scapin, D. L. (1995). Evaluating a user interface with ergonomic criteria.

International Journal of Human-Computer Interaction, 7(2), 105–121.

Beale, R. (2007). Slanty design. Communications of the ACM, 50(1), 21–24.

Beck, K. (1999). Embracing change with extreme programming. IEEE Computer, 32(10), 70–77.

Beck, K. (2000). Extreme Programming Explained: Embrace Change. Addison-Wesley.

Becker, K. (2004). Log on, tune in, drop down: (and click “go” too!). interactions, 11(5), 30–35.

Becker, S. A. (2005). E-government usability for older adults. Communications of the ACM, 48(2),

102–104.

Beltram, D. (2005). Too many cooks. interactions, 12(2), 66–67.

Bennett, J. L. (1984). Managing to meet usability requirements: Establishing and meeting software

development goals. In J. Bennett, D. Case, J. Sandelin, & M. Smith (Eds.), Visual Display Ter-

minals (pp. 161–184). Englewood Cliffs, NJ: Prentice-Hall.

Berger, N. (2006). The Excel story. interactions, 13(1), 14–17.

Berry, R. E. (1988). Common user access: A consistent and usable human-computer interface for the

SAA environments. IBM Systems Journal, 27(3), 281–300.

Beyer, H., & Holtzblatt, K. (1998). Contextual Design: Defining Customer-Centered Systems. San Francisco,

CA: Morgan-Kaufman.

Beyer, H., Holtzblatt, K., & Baker, L. (2004). An agile customer-centered method: Rapid contextual

design. In Extreme Programming and Agile Methods (LNCS 3134) (pp. 50–59). Calgary, Canada:

Springer Berlin/Heidelberg.

Bias, R. G. (1991). Walkthroughs: Efficient collaborative testing. IEEE Software, 8(5), 94–95.

Bias, R. G., & Mayhew, D. J. (Eds.). (1994). Cost-Justifying Usability. Academic Press, Inc.

Bias, R. G., & Mayhew, D. J. (2005). Cost-Justifying Usability: An Update for the Internet Age (2nd ed.).

San Francisco, CA: Morgan Kaufmann.

Bier, E. A. (1990). Snap-dragging in three dimensions. In Proceedings of the Symposium on Interactive

3D Graphics (pp. 193–204), Snowbird, UT.

Bier, E. A., & Stone, M. C. (1986). Snap-dragging. In Proceedings of the Conference on Computer Graphics

and Interactive Techniques (pp. 233–240).

Billingsley, P. A. (1993). Reflections on ISO 9241: Software usability may be more than the sum of its

parts. StandardView, 1(1), 22–25.

Billingsley, P. A. (1995). Starting from scratch: Building a usability program at Union Pacific Railroad.

interactions, 2(4), 27–30.

Bittner, K., & Spence, I. (2003). Use Case Modeling. Addison-Wesley.

Bjerknes, G., Ehn, P., & Kyng, M. (Eds.), (1987). Computers and Democracy: A Scandinavian Challenge.

Aldershot, UK: Avebury.

Bloomer, S., & Croft, R. (1997). Pitching usability to your organization. interactions, 4(6), 18–26.

BMWAG.(2010).BMWautomobiles.http://www.bmw.com/com/en/insights/technology/joy/bmw_joy.html.

Last accessed 07/10/2011.

B�dker, S. (1989). A human activity approach to user interfaces. Human-Computer Interaction, 4(3),

171–195.

B�dker, S. (1991). Through the Interface: A Human Activity Approach to User Interface Design. Hillsdale,

NJ: Lawrence Erlbaum.

B�dker, S., & Buur, J. (2002). The design collaboratorium—A place for usability design. ACM Trans-

actions on Computer-Human Interaction, 9(2), 152–169.

364 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

B�dker, S., Ehn, P., Kammersgaard, J., Kyng, M., & Sundblad, Y. (1987). A utopian experience. In

G. Bjerknes, P.Ehn & M.Kyng (Eds.), Computers and Democrary—A Scandinavian Challenge

(pp. 251–278). Aldershot, UK: Avebury.

Boehm, B. W. (1981). Software Engineering Economics. Englewood Cliffs: Printice-Hall, Inc.

Boehm, B. W. (1988). A spiral model of software development and enhancement. IEEE Computer,

21(5), 61–72.

Boff, K. R., & Lincoln, J. E. (1988). Engineering Data Compendium: Human Perception and Performance.

Dayton, OH: Wright-Patterson AFB, Harry G. Armstrong Aerospace Medical Research

Laboratory.

Bolchini, D., Pulido, D., & Faiola, A. (2009). “Paper in screen” prototyping: An agile technique to

anticipate the mobile experience. interactions, 16(4), 29–33.

Borchers, J. (2001). A Pattern Approach to Interaction Design. Wiley.

Borman, L., & Janda, A. (1986). The CHI conferences: A bibliographic history. SIGCHI Bulletin,

17(3), 51.

Borsci, S., Federici, S., & Lauriola, M. (2009). On the dimensionality of the System Usability Scale:

A test of alternative measurement models. Cognitive Process, 10(3), 193–197.

Boucher, A., & Gaver, W. (2006). Developing the drift table. interactions, 13(1), 24–27.

Bradley, M. M., & Lang, P. J. (1994). Measuring emotion: The self-assessment manikin and the

semantic differential. Journal of Behavior Therapy and Experimental Psychiatry, 25(1), 49–59.

Branscomb, L. M. (1981). The human side of computers. IBM Systems Journal, 20(2), 120–121.

Brassard, M. (1989). The Memory Jogger Plusþ. Goal/QPC Inc.

Brooke, J. (1996). SUS: A quick and dirty usability scale. In P. W. Jordan, B. Thomas, B. A.

Weerdmeester& I. L.McClleland(Eds.),Usability Evaluation in Industry (pp. 189–194). London,

UK: Taylor & Francis.

Brown, C. M. (1988). Human-Computer Interface Design Guidelines. Norwood, NJ: Ablex Publishing.

Brown, L. (1993). Human-computer interaction and standardization. StandardView, 1(1), 3–8.

Brown, T. (2008, June). Design thinking. Harvard Business Review, 84–92.

Buchenau, M., & Suri, J. F. (2000). Experience prototyping. In: Proceedings of the Conference on

Designing Interactive Systems: Processes, Practices, Methods, and Techniques (DIS) (pp. 424–433).

Butler, K. A. (1996). Usability engineering turns 10. interactions, 3(1), 58–75.

Butler, M. B., & Ehrlich, K. (1994). Usability engineering for Lotus 1-2-3 Release 4. InM. E. Wickland

(Ed.), Usability in Practice: How Companies Develop User-Friendly Products (pp. 293–326). Boston,

MA: Academic Press.

Buxton, W., & Sniderman, R. (1980). Iteration in the Design of the Human-Computer Interface.

Proceedings of the 13th Annual Meeting, Human Factors Association of Canada (pp. 72–81).

Buxton, W., Lamb, M. R., Sherman, D., & Smith, K. C. (1983). Towards a Comprehensive User

Interface Management System. Computer Graphics, 17(3), 35–42.

Buxton, B. (1986). There’s more to interaction than meets the eye: Some issues in manual input. In

A. D. Norman & S. W. Draper (Eds.), User Centered System Design: New Perspectives on Human-

Computer Interaction (pp. 319–337). Hillsdale, NJ: Lawrence Erlbaum.

Buxton, B. (2007a). Sketching and Experience Design. In Stanford University Human-Computer

Interaction Seminar (CS 547). http://www.youtube.com/watch?v¼xx1WveKV7aE. Last accessed

7/14/2011.

Buxton, B. (2007b). Sketching User Experiences: Getting the Design Right and the Right Design. San Francisco,

CA: Morgan Kaufmann.

365RE F ER ENCES

Callahan, J., Hopkins, D., Weiser, M., & Shneiderman, B. (1988). An empirical comparison of pie

vs. linear menus. In: Proceedings of the CHI Conference on Human Factors in Computing Systems

(pp. 95–100), Washington, DC.

Capra, M. G. (2006). Usability Problem Description and the Evaluator Effect in Usability Testing. Ph.D.

Dissertation, Blacksburg: Virginia Tech.

Card, S. K., English, W. K., & Burr, B. J. (1978). Evaluation of mouse, rate-controlled isometric joy-

stick, step keys, and text keys for text selection on a CRT. Ergonomics, 21(8), 601–613.

Card, S. K., Moran, T. P., & Newell, A. (1980). The keystroke-level model for user performance time

with interactive systems. Communications of the ACM, 23(7), 396–410.

Card, S. K., Moran, T. P., & Newell, A. (1983). The Psychology of Human-Computer Interaction.Hillsdale,

NJ: Lawrence Erlbaum.

Carey, T. T., & Mason, R. E. A. (1989). Information system prototyping: Techniques, tools, and

methodologies. In Software Risk Management (pp. 349–359). Piscataway, NJ: IEEE Press.

Carmel, E., Whitaker, R. D., & George, J. F. (1993). PD and joint application design: A transatlantic

comparison. Communications of the ACM, 36(6), 40–48.

Carroll, J. M. (1984). Minimalist design for active users. In: Proceedings of the INTERACT Conference on

Human-Computer Interaction (pp. 39–44). Amsterdam.

Carroll, J. M. (1990). Infinite detail and emulation in an ontologically minimized HCI. In Proceedings

of the CHI Conference on Human Factors in Computing Systems (pp. 321–328). Seattle, WA.

Carroll, J. M., Kellogg, W. A., & Rosson, M. B. (1991). The task-artifact cycle. In J. M. Carrol (Ed.),

Designing Interaction: Psychology at the Human-Computer Interface (pp. 74–102). New York:

Cambridge University Press.

Carroll, J. M., Mack, R. L., & Kellogg, W. A. (1988). Interfacemetaphors and user interface design. In

M. Helander (Ed.), Handbook of Human-Computer Interaction (pp. 67–85). Holland: Elsevier

Science.

Carroll, J. M., & Rosson, M. B. (1985). Usability specifications as a tool in iterative development.

In H. R. Hartson (Ed.), Advances in Human-Computer InteractionVol. 1(pp. 1–28).

Norwood, NJ: Ablex.

Carroll, J. M., & Rosson, M. B. (1992). Getting around the task-artifact cycle: How tomake claims and

design by scenario. ACM Transactions on Information Systems, 10, 181–212.

Carroll, J. M., Singley, M. K., & Rosson, M. B. (1992). Integrating theory development with design

evaluation. Behaviour & Information Technology, 11(5), 247–255.

Carroll, J. M., & Thomas, J. C. (1982). Metaphor and the cognitive representation of computing

systems. IEEE Transactions on Systems, Man and Cybernetics, 12(2), 107–116.

Carroll, J. M., & Thomas, J. C. (1988). Fun. SIGCHI Bulletin, 19(3), 21–24.

Carter, P. (2007). Liberating usability testing. interactions, 14(2), 18–22.

Castillo, J. C., & Hartson, R. (2000). Critical incident data and their importance in remote usability

evaluation. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting

(pp. 590–593).

Checkland, P., & Scholes, J. (1990). Soft Systems Methodology in Action. John Wiley.

Chin, J. P., Diehl, V. A., & Norman, K. L. (1988, May 15–19). Development of an instrument mea-

suring user satisfaction of the human-computer interface. In Proceedings of the CHI Conference

on Human Factors in Computing Systems (pp. 213–218). Washington, DC.

Chorianopoulos, K., & Spinellis, D. (2004). Affective usability evaluation for an interactive music

television channel. ACM Computers in Entertainment, 2(3), 1–11.

Christensen, J. M., Topmiller, D. A., & Gill, R. T. (1988). Human factors definitions revisited.Human

Factors Society Bulletin, 31(10), 7–8.

366 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Churchill, E. F. (2009). Ps and Qs: On trusting your socks to find each other. interactions, 16(2),

32–36.

Clement, A., & Besselaar, P. V. D. (1993). A retrospective look at PD projects. Communications of the

ACM, 36(6), 29–37.

Clubb, O. L. (2007). Human-to-computer-to-human interactions (HCHI) of the communications

revolution. interactions, 14(2), 35–39.

Cobb, M. (1995). Unfinished Voyages. A follow-up to The CHAOS Report.

Cockton, G., & Woolrych, A. (2001). Understanding inspection methods: Lessons from an assess-

ment of heuristic evaluation. In Proceedings of the International Conference on Human-Computer

Interaction (HCI International) and IHM 2001 (pp. 171–192).

Cockton, G., & Woolrych, A. (2002). Sale must end: Should discount methods be cleared off HCI’s

shelves? interactions, 9(5), 13–18.

Cockton, G., Lavery, D., & Woolrych, A. (2003). Changing analysts’ tunes: The surprising

impact of a new instrument for usability inspection method assessment. In

Proceedings of the International Conference on Human-Computer Interaction (HCI International)

(pp. 145–162).

Cockton, G., Woolrych, A., Hall, L., &Hindmarch, H. (2003). Changing analysts’ tunes: The surprising

impact of a new instrument for usability inspection method assessment? In P. Johnson &

P. Palanque (Eds.), People and Computers (Vol. XVII). Springer-Verlag.

Constantine, L. L. (1994a). Essentially speaking. Software Development, 2(11), 95–96.

Constantine, L. L. (1994b). Interfaces for intermediates. IEEE Software, 11(4), 96–99.

Constantine, L. L. (1995). Essential modeling: Use cases for user interfaces. interactions, 2(2), 34–46.

Constantine, L. L. (2001). Cutting corners: Shortcuts in model-driven web development. Beyond

Chaos: ACM, 177–184.

Constantine, L. L. (2002). Process agility and software usability: Toward lightweight usage-centered

design. Information Age, 8(2).

Constantine, L. L., & Lockwood, L. A. D. (1999). Software for Use: A Practical Guide to the Models and

Methods of Usage-Centered Design. Addison-Wesley Professional.

Constantine, L. L., & Lockwood, L. A. D. (2003). Card-based user and task modeling for agile

usage-centered design. In Proceedings of the CHI Conference on Human Factors in Computing Systems

(Tutorial).

Cooper, A. (2004). The Inmates Are Running the Asylum: Why High Tech Products Drive Us Crazy and

How to Restore the Sanity. Indianapolis, IN: Sams–Pearson Education.

Cooper, A., Reimann, R., & Dubberly, H. (2003). About Face 2.0: The Essentials of Interaction Design.

John Wiley.

Cooper, G. (1998). Research into Cognitive Load Theory & Instructional Design at UNSW. http://paedpsych.

jku.at:4711/LEHRTEXTE/Cooper98.html. Last accessed 2/2/2011.

Costabile, M. F., Ardito, C., & Lanzilotti, R. (2010). Enjoying cultural heritage thanks to mobile tech-

nology. interactions, 17(3), 30–33.

Cox, D., & Greenberg, S. (2000). Supporting collaborative interpretation in distributed Groupware.

In Proceedings of the ACM Conference on Computer Supported Cooperative Work (pp. 289–298).

Philadelphia, PA.

Cross, K., Warmack, A., & Myers, B. A. (1999). Lessons learned: Using Contextual Inquiry Analysis To

Improve PDA Control of Presentations. Unpublished report. Carnegie Mellon University.

Cuomo, D. L., & Bowen, C. D. (1992). Stages of user activity model as a basis for user-system

interface evaluations. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting

(pp. 1254–1258).

367RE F ER ENCES

Curtis, B., & Hefley, B. (1992). Defining a place for interface engineering. IEEE Software, 9(2), 84–86.

Curtis, P., Heiserman, T., Jobusch, D., Notess, M., & Webb, J. (1999). Customer-focused design data

in a large, multi-site organization. In Proceedings of the CHI Conference on Human Factors in Com-

puting Systems (pp. 608–615), Pittsburgh, PA.

Dagstuhl, S. (2010). Demarcating User eXperience Seminar. In Dagstuhk Seminar. http://www.

dagstuhl.de/10373. Last accessed 08/16/2010.

Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1992). Extrinsic and intrinsic motivation to use

computers in the workplace. Journal of Applied Psychology, 22(14), 1111–1132.

del Galdo, E. M., Williges, R. C., Williges, B. H., & Wixon, D. R. (1986). An evaluation of critical in-

cidents for software documentation design. In Proceedings of the Human Factors and Ergonomics

Society Annual Meeting (pp. 19–23).

Desmet, P. (2003). Measuring emotions: Development and application of an instrument to measure

emotional responses to products. In M. A. Blythe, A. F. Monk, K. Overbeeke & P. C. Wright

(Eds.), Funology: FromUsability to Enjoyment (pp. 111–123). Dordrecht, TheNetherlands: Kluwer

Academic.

Diaper, D. (1989). Task Analysis for Knowledge Descriptions (TAKD): The method and an example.

In D. Diaper (Ed.), Task Analysis for Human-Computer Interaction (pp. 108–159). Chichester,

England: Ellis Horwood.

Dick, W., & Carey, L. (1978). The Systematic Design of Instruction. Glenview, IL: Scott, Foresman.

Donohue, J. (1989). Fixing Fallingwater’s flaws. Architecture, 99–101.

Dormann, C. (2003). Affective experiences in the home: Measuring emotion. In Proceedings of the Con-

ference onHomeOriented Informatics andTelematics, theNetworkedHome of the Future (HOIT) Irvine,CA.

Dourish, P. (2001). Where the Action Is: The Foundations of Embodied Interaction. Cambridge,

MA: MIT Press.

Draper, S. W., & Barton, S. B. (1993). Learning by exploration, and affordance bugs. In Proceedings

of the CHI Conference on Human Factors in Computing Systems (INTERCHI Adjunct) (pp. 75–76),

New York.

Dray, S., & Siegel, D. (2004). Remote possibilities? International usability testing at a distance. inter-

actions, 11(2), 10–17.

Dray, S. M., & Siegel, D. A. (1999). Business: penny-wise, pound-wise: Making smart trade-offs in plan-

ning usability studies. interactions, 6(3), 25–30.

Dubberly, H., & Pangaro, P. (2009). What is conversation, and how can we design for it? interactions,

16(4), 22–28.

Dumas, J. S., Molich, R., & Jeffries, R. (2004). Describing usability problems: Are we sending the right

message? interactions, 11(4), 24–29.

Dumas, J. S., & Redish, J. C. (1999). A Practical Guide to Usability Testing (Rev Sub ed.). Exeter,

England: Intellect Ltd.

Dzida, W., Wiethoff, M., & Arnold, A. G. (1993). ERGOGuide: The Quality Assurance Guide to Ergonomic

Software: Joint internal technical report of GMD (Germany) and Delft University of Technology (The

Netherlands).

Ehn, P. (1988). Work-Oriented Design of Computer Artifacts. Stockholm. Sweden: Arbetslivcentrum.

Ehn, P. (1990).Work-Oriented Design of Computer Artifacts (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum.

Ekman, P., & Friesen, W. (1975). Unmasking the Face: A Guide to Recognizing Emotions from Facial Clues.

Englewood Cliffs, NJ: Prentice Hall.

Elgin, B. (1995). How can networked users provide their own usability feedback? Subjective usability

feedback from the field over a network. SIGCHI Bulletin, 27(4), 43–44.

368 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Engel, S. E., & Granda, R. E. (1975).Guidelines for Man/Display Interfaces. Report Number TR 00.2720.

Poughkeepsie, NY: IBM.

Ferrara, J. C. (2005). Building positive team relationships for better usability. interactions, 12(3), 20–21.

Fitts, P. M. (1954). The information capacity of the human motor system in controlling the ampli-

tude of movement. Journal of Experimental Psychology, 47(6), 381–391.

Fitts, P. M., & Jones, R. E. (1947). Psychological aspects of instrument display: Analysis of factors

contributing to 460 “pilot error” experiences in operating aircraft controls. In H. W. Sinaiko

(Ed.), Reprinted in Selected Papers on Human Factors in the Design and Use of Control Systems (1961)

(pp. 332–358). New York: Dover.

Fitts, P. M., & Peterson, J. R. (1964). Information capacity of discrete motor responses. Journal of

Experimental Psychology, 67(2), 103–112.

Flanagan, G. A. (1995). Usability management maturity, Tutorial, CHI ’95. Unpublished CHI ’95

Tutorial.

Flanagan, J. C. (1954). The critical incident technique. Psychological Bulletin, 51(4), 327–358.

Foley, J. D., & Van Dam, A. (1982). Fundamentals of Interactive Computer Graphics. Addison-Wesley

Longman.

Foley, J. D., VanDam, A., Feiner, S. K., &Hughes, J. F. (1990).Computer Graphics: Principles and Practice

(2nd ed.). Addison-Wesley Longman Publishing Co., Inc.

Foley, J. D., &Wallace, V. L. (1974). The art of natural graphicman-machine conversation. Proceedings

of the IEEE, 62(4), 462–471.

Forlizzi, J. (2005). Robotic products to assist the aging population. interactions, 12(2), 16–18.

Frank, B. (2006). The science of segmentation. interactions, 13(3), 12–13.

Friedlander, N., Schlueter, K., &Mantei, M. (1998). Bullseye! when Fitts’ law doesn’t fit. In Proceedings of

the CHI Conference on Human Factors in Computing Systems (pp. 257–264), Los Angeles, California.

Frishberg, L. (2006). Presumptive design, or cutting the looking-glass cake. interactions, 13(1), 18–20.

Frishberg, N. (2006). Prototyping with junk. interactions, 13(1), 21–23.

Gabriel-Petit, P. (2005). Sharing ownership of UX (in Special Issue Whose profession is it anyway?).

interactions, 12(3), 16–18.

Gannon, J. D. (1979). Human factors in software engineering. IEEE Computer, 6–60.

Gaver, W. W. (1991). Technology affordances. In Proceedings of the CHI Conference on Human Factors in

Computing Systems (pp. 79–84), New Orleans, Louisiana.

Gellersen, H. (2005). Smart-Its: Computers for artifacts in the physical world. Communications of the

ACM, 48(3), 66.

Genov, A. (2005). Iterative usability testing as continuous feedback: A control systems perspective.

Journal of Usability Studies, 1(1), 18–27.

Gershman, A., & Fano, A. (2005). Examples of commercial applications of ubiquitous computing.

Communications of the ACM, 48(3), 71.

Gibson, J. J. (1977). The theory of affordances. In R. Shaw& J. Bransford (Eds.), Perceiving, Acting, and

Knowing: Toward an Ecological Psychology (pp. 67–82). Hillsdale, NJ: Lawrence Erlbaum.

Gibson, J. J. (1979). The Ecological Approach to Visual Perception. Houghton Mifflin.

Gilb, T. (1987). Design by objectives. SIGSOFT Software Engineering Notes, 12(2), 42–49.

Gillan, D. J., Holden, K., Adam, S., Rudisill, M., & Magee, L. (1990). How does Fitts’ law fit pointing

and dragging? In Proceedings of the CHI Conference on Human Factors in Computing Systems

(pp. 227–234), Seattle, WA.

Go, K., & Carroll, J. M. (2004). The blind men and the elephant: Views of scenario-based system

design. interactions, 11(6), 44–53.

369RE F ER ENCES

Good, M., Spine, T., Whiteside, J. A., & George, P. (1986). User derived impact analysis as a tool for

usability engineering. In Proceedings of the CHI Conference on Human Factors in Computing Systems

(pp. 241–246), New York.

Good, M. D., Whiteside, J. A., Wixon, D. R., & Jones, S. J. (1984). Building a user-derived interface.

Communications of the ACM, 27(10), 1032–1043.

Gould, J. D., Boies, S. J., Levy, S., Richards, J. T., & Schoonard, J. (1987). The 1984 Olympic Message

System: A test of behavioral principles of system design. Communications of the ACM, 30(9),

758–769.

Gray,W. D., Atwood,M., Fisher, C., Nielsen, J., Carrol, J. M., & Long, J. (1995). Discount or disservice?

Discount usability analysis–evaluation at a bargain price or simply damaged merchandise?

In Proceedings of the CHI Conference on Human Factors in Computing Systems (Panel Session)

(pp. 176–177), Denver, CO.

Gray, W. D., John, B. E., Stuart, R., Lawrence, D., & Atwood, M. E. (1990). GOMS meets the phone

company: Analytic modeling applied to real-world problems. In Proceedings of the INTERACT

Conference on Human-Computer Interaction (pp. 29–34).

Gray, W. D., & Salzman,M. C. (1998). Damagedmerchandise? A review of experiments that compare

usability evaluation methods. Human-Computer Interaction, 13(3), 203–261.

Greenbaum, J. M. & Kyng, M. (Eds.). (1991). Design at Work: Cooperative Design of Computer Systems.

Lawrence Erlbaum.

Greenberg, S., & Buxton, B. (2008). Usability evaluation considered harmful (some of the time). In

Proceedings of the CHI Conference on Human Factors in Computing Systems (pp. 111–120),

Florence, Italy.

Grudin, J. (1989). The case against user interface consistency. Communications of the ACM, 32(10),

1164–1173.

Grudin, J. (2006). TheGUI shock: Computer graphics and human-computer interaction. interactions,

13(2), 45–47, 55.

Gunn, C. (1995). An example of formal usability inspections at Hewlett-Packard Company. In: Pro-

ceedings of the CHI Conference on Human Factors in Computing Systems (Conference Companion)

(pp. 103–104), Denver, CO.

Gutierrez, O. (1989). Prototyping techniques for different problem contexts. In Proceedings of the CHI

Conference on Human Factors in Computing Systems (pp. 259–264).

Hackman, G., & Biers, D. (1992). Team usability testing: Are two heads better than one. In Proceedings

of the Human Factors and Ergonomics Society Annual Meeting (pp. 1205–1209).

Hafner, K. (2007). Inside Apple stores, a certain aura enchants the faithful. New York Times, from

http://www.nytimes.com/2007/12/27/business/27apple.html?ei¼5124&

en¼6b1c27bc8cec74b5&ex¼1356584400&partner¼permalink&exprod¼permalink&

pagewanted¼all.

Hallnös, L., &Redström, J. (2002). Fromuse to presence:On the expressions and aesthetics of everyday

computational things. ACM Transactions on Computer-Human Interaction, 9(2), 106–124.

Hammond, N., Gardiner, M. M., & Christie, B. (1987). The role of cognitive psychology in user-

interface design. In M. M. Gardiner & B. Christie (Eds.), Applying Cognitive Psychology to User-

Interface Design (pp. 13–52). Wiley.

Hamner, E., Lotter, M., Nourbakhsh, I., & Shelly, S. (2005). Case study: Up close and personal from

Mars. interactions, 12(2), 30–36.

Hanson, W. (1971). User engineering principles for interactive systems. In Proceedings of the Fall Joint

Computer Conference (pp. 523–532). Montvale, NJ.

370 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Harrison, M., & Thimbleby, H. (Eds.). (1990). Formal Methods in Human-Computer Interaction.

Cambridge University Press.

Hartson, H. R., & Hix, D. (1989). Toward empirically derived methodologies and tools for human-

computer interface development. International Journal of Man-Machine Studies, 31, 477–494.

Hartson, R. (1998). Human-computer interaction: Interdisciplinary roots and trends. Journal of Sys-

tems and Software, 43, 103–118.

Hartson, R. (2003). Cognitive, physical, sensory, and functional affordances in interaction design.

Behaviour & Information Technology, 22(5), 315–338.

Hartson, R., Andre, T. S., & Williges, R. C. (2003). Criteria for evaluating usability evaluation

methods. International Journal of Human-Computer Interaction, 15(1), 145–181.

Hartson, R., & Castillo, J. C. (1998). Remote evaluation for post-deployment usability improvement.

In Proceedings of the Conference on Advanced Visual Interfaces (AVI) (pp. 22–29), L’Aquila, Italy.

Hartson, R., & Smith, E. C. (1991). Rapid prototyping in human-computer interface development.

Interacting with Computers, 3(1), 51–91.

Hassenzahl, M. (2001). The effect of perceived hedonic quality on product appealingness. Interna-

tional Journal of Human-Computer Interaction, 13(4), 48–499.

Hassenzahl, M., Beu, A., & Burmester, M. (2001). Engineering joy. IEEE Software, 18(1), 70–76.

Hassenzahl, M., Burmester, M., & Koller, F. (2003). AttrakDiff: Ein Fragebogen zur Messung wahr-

genommener hedonischer und pragmatischer Qualität (AttrakDif: A questionnaire for the

measurement of perceived hedonic and pragmatic quality). In Proceedings of Mensch & Com-

puter 2003: Interaktion in Bewegung (pp. 187–196), Stuttgart.

Hassenzahl, M., Platz, A., Burmester, M., & Lehner, K. (2000). Hedonic and ergonomic quality

aspects determine a software’s appeal. In: Proceedings of the CHI Conference on Human Factors

in Computing Systems (pp. 201–208), The Hague, The Netherlands.

Hassenzahl, M., & Roto, V. (2007). Being and doing: A perspective on user experience and its mea-

surement. Interfaces, 72.

Hassenzahl, M., Schöbel, M., & Trautmann, T. (2008). How motivational orientation influences the

evaluation and choice of hedonic and pragmatic interactive products: The role of regulatory

focus. Interacting with Computers, 20, 473–479.

Hawdale, D. (2005). The vision of good user experience. interactions, 12(3), 22–23.

Heidegger, M. (1962). Being and Time. (J. Macquarrie & E. Robinson, Trans., 1st US ed.). New York:

Harper & Row.

Helms, J. W., Arthur, J. D., Hix, D., & Hartson, H. R. (2006). A field study of the wheel: A usability

engineering process model. Journal of Systems and Software, 79(6), 841–858.

Hertzum,M., & Jacobsen, N. E. (2003). The evaluator effect: A chilling fact about usability evaluation

methods. International Journal of Human-Computer Interaction, 15(1), 183–204.

Hertzum, M., Jacobsen, N. E., & Molich, R. (2002). Usability inspections by groups of specialists:

Perceived agreement in spite of disparate observations. In: Proceedings of the CHI

Conference on Human Factors in Computing Systems (Extended Abstracts) (pp. 662–663), Minne-

apolis, MN.

Hewett, T. T. (1986). The role of iterative evaluation in designing systems for usability. In: Proceedings

of the Conference of the British Computer Society, Human Computer Interaction Specialist Group on People

and Computers (pp. 196–214), York, UK.

Hewett, T. T. (1999). Cognitive factors in design: Basic phenomena in humanmemory and problem

solving. In Proceedings of the CHI Conference on Human Factors in Computing Systems (Extended Ab-

stracts) (pp. 116–117).

371RE F ER ENCES

Hinckley, K., Pausch, R., Goble, J. C., & Kassell, N. F. (1994). A survey of design issues in spatial input.

In Proceedings of the ACM Symposium on User Interface Software and Technology (pp. 213–222).

Marina del Rey, CA.

Hix, D., &Hartson,H. R. (1993).Developing User Interfaces: Ensuring Usability Through Product&Process.

New York: John Wiley.

Hix, D., & Hartson, R. (1993). Formative evaluation: Ensuring usability in user interfaces. In

L. Bass & P. Dewan (Eds.), Trends in Software: User Interface Software (pp. 1–30). New York:

John Wiley & Sons.

Hix, D., & Schulman, R. S. (1991). Human-computer interface development tools: A methodology

for their evaluation. Communications of the ACM, 34(3), 74–87.

Hochberg, J. (1964). Perception. Prentice-Hall.

Holtzblatt, K. (1999). Introduction to special section on contextual design. interactions, 6(1), 30–31.

Holtzblatt, K., Wendell, J. B., & Wood, S. (2005). Rapid Contextual Design: A How-to Guide to Key Tech-

niques for User-Centered Design. San Francisco, CA: Morgan-Kaufman.

Hornbæk, K. (2006). Current practice in measuring usability: Challenges to usability studies and re-

search. International Journal of Human-Computer Studies, 64(2), 79–102.

Hornbæk, K., & Fr�kjær, E. (2005). Comparing usability problems and redesign proposals as input to

practical systems development. In: Proceedings of the CHI Conference on Human Factors in Comput-

ing Systems (pp. 391–400), Portland, OR.

Howarth, D. (2002). Custom cupholder a shoe-in. In Roundel (p. 10). BMW Car Club publication.

Howarth, J., Andre, T. S., & Hartson, R. (2007). A structured process for transforming usability

data into usability information. Journal of Usability Studies, 3(1), 7–23.

Howarth, J., Smith-Jackson, T., & Hartson, H. R. (2009). Supporting novice usability practitioners

with usability engineering tools. International Journal of Human-Computer Studies, 67(6),

533–549.

Hudson, W. (2001). How many users does it take to change a Web site? SIGCHI Bulletin, 6.

Huh, J., Ackerman, M. S., Erickson, T., Harrison, S., & Sengers, P. (2007). Beyond usability: Taking

social, situational, cultural, and other contextual factors into account. In Proceedings of the

CHI Conference on Human Factors in Computing Systems (Extended Abstracts) (pp. 2113–2116).

San Jose, CA.

HumanFactorResearchGroup. (1990). SUMIQuestionnaire.http://www.ucc.ie/hfrg/questionnaires/

sumi/index.html. Last accessed 11/18/2010.

Human Factor Research Group (1996a). MUMMS Questionnaire. http://www.ucc.ie/hfrg/

questionnaires/mumms/index.html.

Human Factor Research Group. (1996b). WAMMI Questionnaire. http://www.ucc.ie/hfrg/

questionnaires/wammi/index.html. Last accessed 11/18/2010.

Husserl, E. (1962). Ideas: General Introduction to Pure Phenomenology. Collier Books.

Hutchins, E. L., Hollan, J. D., & Norman, D. A. (1986). Direct manipulation interfaces. In D. A.

Norman & S. W. Draper (Eds.), User Centered System Design: New Perspectives on Human-Computer

Interaction (pp. 87–125). Hillsdale, NJ: Lawrence Erlbaum.

Iannella, R. (1995). HyperSAM: A management tool for large user interface guideline sets. SIGCHI

Bulletin, 27(2), 42–45.

Igbari, M., Schiffman, S. J., & Wieckowski, T. J. (1994). The respective roles of perceived usefulness

and perceived fun in the acceptance of microcomputer technology. Behaviour & Information

Technology, 13(6), 349–361.

372 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Ishii, H., & Ullmer, B. (1997). Tangible bits: Towards seamless interfaces between people, bits and

atoms. In Proceedings of the CHI Conference on Human Factors in Computing Systems (pp. 234–241).

Atlanta, GA.

ISO 13407. (1999).Human-centred design processes for interactive systems. International Organization for

Standardization.

ISO 9241-11. (1997). Ergonomic Requirements for Office Work with Visual Display Terminals

(VDTs) Part 11: Guidance on Usability.

Jacob, R. J. K. (1993). Eye movement-based human-computer interaction techniques: Toward non-

command interfaces. In R. Hartson & D. Hix (Eds.), Advances in Human-Computer Interaction

(Vol. 4., pp. 151–190). Norwood, NJ: Ablex Publishing Corporation.

John, B. E., & Marks, S. J. (1997). Tracking the effectiveness of usability evaluation methods. Behav-

iour & Information Technology, 16(4), 188–202.

John, B. E., & Mashyna, M. M. (1997). Evaluating a multimedia authoring tool with cognitive

walkthrough and think-aloud user studies. Journal of the American Society for Information Science,

48(11), 1004–1022.

Johnson, J. (2000). Textual bloopers: An excerpt from GUI bloopers. interactions, 7(5), 28–48.

Johnson, J., & Henderson, A. (2002). Conceptual models: Begin by designing what to design. inter-

actions, 9(1), 25–32.

Jokela, T. (2004). When good things happen to bad products: Where are the benefits of usability in

the consumer appliance market? interactions, 11(6), 28–35.

Jones, B. D., Winegarden, C. R., & Rogers, W. A. (2009). Supporting healthy aging with new technol-

ogies. interactions, 16(4), 48–51.

Jordan, P. W. (1996). Human factors in product use. Applied Ergonomics, 29, 25–33.

Judge, T. K., Pyla, P. S., McCrickard, S., & Harrison, S. (2008). Affinity diagramming in multiple dis-

play environments. In Proceedings of CSCW 2008 Workshop on Beyond the Laboratory: Supporting

Authentic Collaboration with Multiple Displays. San Diego, CA.

Kabbash, P., & Buxton, W. A. S. (1995). The “prince” technique: Fitts’ law and selection using

area cursors. In Proceedings of the CHI Conference on Human Factors in Computing Systems

(pp. 273–279), Denver, CO.

Kameas, A., & Mavrommati, I. (2005). Extrovert gadgets. Communications of the ACM, 48(3), 69.

Kane, D. (2003, June 25–28). Finding a place for discount usability engineering in agile development:

Throwing down the gauntlet. In Proceedings of the Agile Development Conference (ADC) (pp. 40–46).

Kangas, E., & Kinnunen, T. (2005). Applying user-centered design to mobile application develop-

ment. Communications of the ACM, 48(7), 55–59.

Kantrovich, L. (2004). To innovate or not to innovate. interactions, 11(1), 24–31.

Kapoor, A., Picard, R. W., & Ivanov, Y. (2004). Probabilistic combination of multiple modalities to

detect interest. In Proceedings of the International Conference on Pattern Recognition (ICPR)

(pp. 969–972).

Kapor, M. (1991). A software design manifesto. Dr. Dobb’s Journal, 16(1), 62–67.

Kapor, M. (1996). A software design manifesto. In T. Winograd (Ed.), Bringing Design to Software

(pp. 1–6). New York: ACM.

Karat, C.-M. (1990a). Cost-benefit analysis of iterative usability testing. In Proceedings of the INTERACT

Conference on Human-Computer Interaction (pp. 351–356).

Karat, C.-M. (1990b). Cost-benefit analysis of usability engineering techniques. In Proceedings of the

Human Factors and Ergonomics Society Annual Meeting (pp. 839–843).

373RE F ER ENCES

Karat, C.-M. (1991). Cost-benefit andbusiness case analysis of usability engineering,Tutorial,CHI ’91.

Unpublished CHI ’91 Tutorial.

Karat, C.-M. (1993). Usability engineering in dollars and cents. IEEE Software, 10(3), 88–89.

Karat, C.-M., Campbell, R., & Fiegel, T. (1992, May 3–7). Comparison of empirical testing and walk-

through methods in user interface evaluation. In Proceedings of the CHI Conference on Human

Factors in Computing Systems (pp. 397–404). New York.

Karn, K. S., Perry, T. J., & Krolczyk, M. J. (1997). Testing for power usability: A CHI 97 workshop.

SIGCHI Bulletin, 29(4).

Kaur, K., Maiden, N., & Sutcliffe, A. (1999). Interacting with virtual environments: An evaluation of a

model of interaction. Interacting with Computers, 11(4), 403–426.

Kawakita, J. (1982). The Original KJ Method. Tokio: Kawakita Research Institute.

Kaye, J. J. (2004). Making scents: Aromatic output for HCI. interactions, 11(1), 48–61.

Kennedy, S. (1989). Using video in the BNR usability lab. SIGCHI Bulletin, 21(2), 92–95.

Kennedy, T. C. S. (1974). The design of interactive procedures for man-machine communication.

International Journal of Man-Machine Studies, 6, 309–334.

Kensing, F., & Munk-Madsen, (1993). PD: Structure in the toolbox. Communications of the ACM, 36

(6), 78–85.

Kieras, D. E. (1988). Towards a practical GOMS model methodology for user interface design. In

M. Helander (Ed.), Handbook of Human-Computer Interaction (135–157). Elsevier Science.

Kieras, D. E., & Polson, P. G. (1985). An approach to the formal analysis of user complexity. Interna-

tional Journal of Man-Machine Studies, 22, 365–394.

Killam, H. W. (1991). Rogerian psychology and human-computer interaction. Interacting with Com-

puters, 3(1), 119–128.

Kim, J., & Moon, J. Y. (1998). Designing towards emotional usability in customer interfaces—

Trustworthiness of cyber-banking system interfaces. Interacting with Computers, 10(1), 1–29.

Kim, J. H., Gunn, D. V., Schuh, E., Phillips, B. C., Pagulayan, R. J., &Wixon, D. (2008). Tracking real-

time user experience (TRUE): A comprehensive instrumentation for complex systems. In

Proceedings of CHI Conference on Human Factors in Computing Systems (pp. 443–451).

Florence, Italy.

Kirakowski, J., & Murphy, R. (2009). A comparison of current approaches to usability measurement.

In Proceedings of the UPA International Conference. Portland, OR.

Knemeyer, D. (2005). Who owns UX? Not us!. interactions, 12(3), 18–20.

Koenemann-Belliveau, J., Carroll, J. M., Rosson, M. B., & Singley, M. K. (1994). Comparative usability

evaluation: critical incidents and critical threads. In Proceedings of the CHI Conference on Human

Factors in Computing Systems (pp. 245–251), Boston, MA.

Koffka, K. (1935). Principles of Gestalt Psychology. Harcourt, Brace.

Kreitzberg, C. B. (2000). Personal communication with Rex Hartson.

Kreitzberg, C. B. (2008). The LUCID framework: An introduction. http://www.leadersintheknow.

biz/Portals/0/Publications/Lucid-Paper-v2.pdf. Last accessed 07/13/2011.

Kreitzburg, C. Technology and Chaos. http://www.digitalspaceart.com/projects/cogweb2002v2/

papers/charlie/charlie5.html. Last accessed 07/09/2011.

Kuniavsky, M. (2003).Observing the User Experience: A Practitioner’s Guide to User Research. San Francisco,

CA: Morgan Kaufmann.

Kwong, A. W., Healton, B., & Lancaster, R. (1998). State of siege: New thinking for the next decade of

design. In Proceedings of the IEEE Aerospace Conference (pp. 85–93).

Kyng, M. (1994). Scandinavian design: Users in product development. In Proceedings of the CHI Con-

ference on Human Factors in Computing Systems (pp. 3–9).

374 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Lalis, S., Karypidis, A., & Savidis, A. (2005). Ad-hoc composition in wearable and mobile computing.

Communications of the ACM, 48(3), 67–68.

Landauer, T. K. (1995). The Trouble with Computers: Usefulness, Usability, and Productivity. Cambridge,

MA: MIT Press.

Landay, J. A., &Myers, B. A. (1995). Interactive sketching for the early stages of user interface design. In

Proceedings of the CHI Conference on Human Factors in Computing Systems (pp. 43–50), Denver, CO.

Lathan, C., Brisben, A., & Safos, C. (2005). CosmoBot levels the playing field for disabled children.

interactions, 12(2), 14–16.

Lavery, D., & Cockton, G. (1997). Representing predicted and actual usability problems. In Proceedings

of the International Workshop on Representations in Interactive Software Development (pp. 97–108).

London.

Lavie, T., & Tractinsky, N. (2004). Assessing dimensions of perceived visual aesthetics of web sites.

International Journal of Human-Computer Studies, 60, 269–298.

Law, E. L.-C. (2006). Evaluating the downstream utility of user tests and examining the developer

effect: A case study. International Journal of Human-Computer Interaction, 21(2), 147–172.

LeCompte, M. D., & Preissle, J. (1993). Ethnography and Qualitative Design in Educational Research

(2nd ed.). San Diego: Academic Press.

Lederer, A. L., & Prasad, J. (1992). Nine management guidelines for better cost estimating. Commu-

nications of the ACM, 35(2), 51–59.

Lee, G. A., Kim, G. J., & Billinghurst, M (2005). Immersive authoring: What You eXperience Is

What You Get (WYXIWYG). Communications of the ACM, 48(7), 76–81.

Lewis, C. (1982). Using the ‘thinking-aloud’ method in cognitive interface design. Report Number Research

Report RC 9265. Yorktown Heights, NY: IBM T. T. Watson Research Center.

Lewis, C., Polson, P. G., Wharton, C., & Rieman, J. (1990). Testing a walkthrough methodology for

theory-based design of walk-up-and-use interfaces. In Proceedings of the CHI Conference on Human

Factors in Computing Systems (pp. 235–242), Seattle, WA.

Lewis, J. R. (1994). Sample sizes for usability studies: Additional considerations. Journal of the Human

Factors and Ergonomics Society, 36, 368–378.

Lewis, J. R. (1995). IBM computer usability satisfaction questionnaires: Psychometric evaluation and

instructions for use. International Journal of Human-Computer Interaction, 7, 57–78.

Lewis, J. R. (2002). Psychometric evaluation of the PSSUQ using data from five years of usability stud-

ies. International Journal of Human-Computer Interaction, 14, 463–488.

Lewis, J. R., & Sauro, J. (2009). The factor structure of the System Usability Scale. In Proceedings of the

International Conference on Human-Computer Interaction (HCI International). San Diego, CA.

Likert, R. (1932). A technique for the measurement of attitudes. Archives of Psychology, 140, 55.

Lindgaard, G. (2004). Making the business our business: One path to value-added HCI. interactions,

11(3), 12–17.

Lindgaard, G., & Dudek, C. (2003). What is this evasive beast we call user satisfaction? Interacting with

Computers, 15(3), 429–452.

Lindgaard, G., Fernandes, G. J., Dudek, C., & Brownet, J. (2006). Attention web designers: You have

50 milliseconds to make a good first impression!. Behaviour & Information Technology, 25(2),

115–126.

Logan,R. J. (1994). Behavioral and emotional usability: ThomsonConsumerElectronics. InM.Wiklund

(Ed.), Usability in Practice (pp. 59–82). San Diego, CA: Academic Press Professional.

Logan, R. J., Augaitis, S., & Renk, T. (1994). Design of simplified television remote controls: A case

for behavioral and emotional usability. In Proceedings of the Human Factors and Ergonomics Society

Annual Meeting (pp. 365–369). Santa Monica, CA.

375RE F ER ENCES

Lohse, G. L., Biolsi, K., Walker, N., & Rueter, H. H. (1994). A classification of visual representations.

Communications of the ACM, 37(12), 36–49.

Löwgren, J. (2004). Animated use sketches: As design representations. interactions, 11(6), 23–27.

Lund, A. M. (1997a). Another approach to justifying the cost of usability. interactions, 4(3), 48–56.

Lund, A. M. (1997b). Expert ratings of usability maxims. Ergonomics in Design, 5(3), 15–20.

Lund, A. M. (2001). Measuring usability with the USE questionnaire. Usability & User Experience (the

STC Usability SIG Newsletter), 8(2).

Lund, A. M. (2004). Measuring Usability with the USE Questionnaire. http://www.stcsig.org/usabil

ity/newsletter/0110_measuring_with_use.html. Last accessed 7/15/2011.

Macdonald, N. (2004). CanHCI shape the future ofmass communications? interactions, 11(2), 44–47.

MacKenzie, I. S. (1992). Fitts’ law as a research and design tool in human-computer interaction.

Human-Computer Interaction, 7, 91–139.

MacKenzie, I. S. (1992). Fitts’ law as a research and design tool in human-computer interaction.

Human-Computer Interaction, 7, 91–139.

MacKenzie, I. S., & Buxton, W. (1992). Extending Fitts’ law to two-dimensional tasks. In Proceedings of

the CHI Conference on Human Factors in Computing Systems (pp. 219–226). Monterey, CA.

Macleod, M., Bowden, R., Bevan, N., & Curson, I. (1997). The MUSiC performance measurement

method. Behaviour & Information Technology, 16(4), 279–293.

Macleod, M., & Rengger, R. (1993). The development of DRUM: A software tool for video-assisted

usability evaluation. In Proceedings of the International Conference on Human-Computer Interaction

(HCI International) (pp. 293–309).

Manning, H. (2002). Must the sale end? interactions, 9(6), 56, 55.

Mantei, M. M., & Teorey, T. J. (1988). Cost/benefit analysis for incorporating human factors in the

software lifecycle. Communications of the ACM, 31(4), 428–439.

Marcus, A. (2002). The cult of cute: The challenge of user experience design. interactions, 9(6), 29–34.

Marcus, A. (2007). Happy birthday! CHI at 25. interactions, 14(2), 42–43.

Marcus, A., & Gasperini, J. (2006). Almost dead on arrival: A case study of non-user-centered design

for a police emergency-response system. interactions, 13(5), 12–18.

Marine, L. (1994). Common ground. The Newsletter of Usability Professionals, 4, 2.

Markopoulos, P., Ruyter, B.d., Privender, S., & Breemen, A. V. (2005). Case study: Bringing social

intelligence into home dialogue systems. interactions, 12(4), 37–44.

Mason, J. G. (1968, October). How to be of two minds. Nation’s Business, 94–97.

May, L. J. (1998). Major causes of software project failures. Crosstalk, 9–12.

Mayhew, D. J. (1999). The Usability Engineering Lifecycle: A Practitioner’s Handbook for User Interface

Design (1st ed). San Francisco, CA: Morgan Kaufmann.

Mayhew, D. J. (1999a). Strategic development of the usability engineering function. interactions,

6(5), 27–33.

Mayhew, D. J. (1999b). The Usability Engineering Lifecycle: A Practitioner’s Handbook for User Interface

Design. San Francisco, CA: Morgan Kaufmann.

Mayhew,D. J. (2008). User experience design: The evolution of amulti-disciplinary approach. Journal

of Usability Studies, 3(3), 99–102.

Mayhew, D. J. (2010). A spreadsheet-based tool for simple cost–benefit analyses of HSI contributions

during software application development. InW. B. Rouse (Ed.),The Economics of Human Systems

Integration (pp. 163–184). Hoboken, NJ: John Wiley & Sons.

McClelland, I., Taylor, B., & Hefley, B. (1996). CHI ’96 workshop: User-centred design principles:

How far have they been industrialized? SIGCHI Bulletin, 28(4), 23–25.

376 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

McCullough, M. (2004). Digital Ground: Architecture, Pervasive Computing, and Environmental Knowing.

MIT Press.

McGrenere, J., & Ho, W. (2000). Affordances: Clarifying and evolving a concept. In Proceedings of

Graphics Interface (pp. 179–186).

McGuffin, M. J., & Balakrishnan, R. (2005). Fitts’ law and expanding targets: Experimental studies

and designs for user interfaces. ACM Transactions on Computer-Human Interaction, 12(4),

388–422.

McInerney, P., & Maurer, F. (2005). UCD in agile projects: Dream team or odd couple? interactions,

12(6), 19–23.

Meads, J. (1999).Usability IsNotGraphicDesign.http://stuff.ratjed.com/UsabilityIsNotGraphicDesign

.htm. Last accessed 7/24/2011.

Meads, J. (2010). Personal communication with Rex Hartson.

Medlock, M. C., Wixon, D., McGee, M., & Welsh, D. (2005). The rapid iterative test and evalu-

ation method: Better products in less time. In R. G. Bias & D. J. Mayhew (Eds.), Cost Jus-

tifying Usability: An Update for an Internet Age (pp. 489–517). San Francisco, CA: Morgan

Kaufmann.

Medlock, M. C., Wixon, D., Terrano, M., Romero, R., & Fulton, B. (2002). Using the RITEmethod to

improve products: A definition and a case study. In Proceedings of the UPA International Confer-

ence. Orlando, FL.

Meister, D. (1985). Behavioral Analysis and Measurement Methods. Wiley-Interscience.

Memmel, T., Gundelsweiler, F., & Reiterer, H. (2007). Agile human-centered software engineering.

In Proceedings of the British HCI Group Annual Conference on People and Computers, (pp. 167–175)

UK: University of Lancaster.

Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for

processing information. Psychological Review, 63(2), 81–97.

Miller, L. (2010). Case study of customer input for a successful product. http://www.

agileproductdesign.com/useful_papers/miller_customer_input_in_agile_projects.pdf. Last

accessed 7/23/2011.

Miller, L., & Sy, D. (2009, April 4–9). Agile User Experience SIG. In Proceedings of the CHI Conference on

Human Factors in Computing Systems (pp. 2751–2754). Boston.

Miller, R. B. (1953). A method for man-machine task analysis. Report Number 53-137. Dayton, OH:

Wright Air Development Center, Wright-Patterson Air Force Base.

Moggridge, B. (2007). Designing Interactions. MIT Press.

Molich, R. (2011). Comparative Usability Evaluation Reports. http://www.dialogdesign.dk/CUE-9.

htm. Last accessed 07/15/2011.

Molich, R., Bevan, N., Butler, S., Curson, I., Kindlund, E., & Kirakowski, J. (1998, June). Comparative

evaluation of usability tests. In Proceedings of the UPA International Conference (pp. 189–200).

Washington, DC.

Molich, R., &Dumas, J. S. (2008). ComparativeUsability Evaluation (CUE-4).Behaviour& Information

Technology, 27(3), 263–282.

Molich, R., Ede, M. R., Kaasgaard, K., & Karyukin, B. (2004). Comparative usability evaluation. Behav-

iour & Information Technology, 23(1), 65–74.

Molich, R., Jeffries, R., & Dumas, J. S. (2007). Making usability recommendations useful and usable.

Journal of Usability Studies, 2(4), 162–179.

Molich, R., & Nielsen, J. (1990). Improving a human-computer dialogue. Communications of the ACM,

33(3), 338–348.

377RE F ER ENCES

Molich, R., Thomsen, A. D., Karyukina, B., Schmidt, L., Ede, M., van Oel, W., et al. (1999). Compar-

ative evaluation of usability tests. In Proceedings of the CHI Conference on Human Factors in Com-

puting Systems (Extended Abstracts) (pp. 83–84), Pittsburgh, PA.

Monk, A., & Howard, S. (1998). The rich picture: A tool for reasoning about work context. interac-

tions, 5(2), 21–30.

Moran, T. P. (1981a). The Command Language Grammar: A representation for the user interface of

interactive computer systems. International Journal of Man-Machine Studies, 15(1), 3–50.

Moran, T. P. (1981b). Guest editor’s introduction: An applied psychology of the user.ACMComputing

Surveys, 13(1), 1–11.

Morris, J. S. (2005). Professional societies and business relevance. interactions, 12(3), 45–47.

Mosier, J. N., & Smith, S. L. (1986). Application of guidelines for designing user interface software.

Behaviour & Information Technology, 5(1), 39–46.

Mowshowitz, A., & Turoff, M. (2005). Introduction to special issue: The digital society. Communica-

tions of the ACM, 48(10), 32–35.

Muller, M. J. (1991). PICTIVE: An exploration in participatory design. In Proceedings of the CHI

Conference on Human Factors in Computing Systems (pp. 225–231). New Orleans, LA.

Muller, M. J. (1992). Retrospective on a year of participatory design using the PICTIVE technique.

In Proceedings of the CHI Conference on Human Factors in Computing Systems (pp. 455–462),

Monterey, CA.

Muller, M. J. (2003). Participatory design: The third space inHCI. In J. A. Jacko & A. Sears (Eds.), The

Human-Computer Interaction Handbook: Fundamentals, Evolving Technologies and Emerging Applica-

tions (pp. 1051–1058). Lawrence Erlbaum.

Muller, M. J., & Kuhn, S. (1993). Participatory design. Communications of the ACM, 36(4), 24–28.

Muller, M. J., Matheson, L., Page, C., & Gallup, R. (1998). Participatory heuristic evaluation. interac-

tions, 5(5), 13–18.

Muller, M. J., Wildman, D. M., & White, E. A. (1993). ‘Equal opportunity’ PD using PICTIVE. Com-

munications of the ACM, 36(6), 64.

Mumford, E. (1981). Participative systems design: Structure andmethod. Systems, Objectives, Solutions,

1(1), 5–19.

Mundorf, N., Westin, S., & Dholakia, N. (1993). Effects of hedonic (emotional) components and

user’s gender on the acceptance of screen-based information services. Behaviour & Information

Technology, 12, 293–303.

Murano, P. (2006). Why anthropomorphic user interface feedback can be effective and preferred by

users. In C.-S. Chen, J. Filipe, I. Seruca & J. Cordeiro (Eds.), Enterprise Information Systems

(Vol. 7, pp. 241–248). Dordrecht, The Netherlands: Springer.

Murphy, R. R. (2005). Humans, robots, rubble, and research. interactions, 12(2), 37–39.

Myers, B. A. (1989). User-interface tools: Introduction and survey. IEEE Software, 6(1), 15–23.

Myers, B. A. (1992). State of the Art in User Interface Software Tools. Carnegie Mellon University.

Myers, B. A. (1993). State of the art in user interface software tools. In R. Hartson & D. Hix (Eds.),

Advances in Human-Computer Interaction (Vol. 4). Norwood, NJ: Ablex.

Myers, B. A. (1995). State of the art in user interface software tools. In R. M. Baecker, J.

Grudin, W. A. S. Buxton& S. Greenberg (Eds.),Readings in Human-Computer Interaction: Toward

the Year 2000 (pp. 323–343). San Francisco: Morgan-Kaufmann Publishers, Inc.

Myers, B. A., Hudson, S. E., & Pausch, R. (2000). Past, present, and future of user interface software

tools. ACM Transactions on Computer-Human Interaction, 7(1), 3–28.

Myers, B. A., & Rosson, M. B. (1992). Survey on user interface programming. In Proceedings of the CHI

Conference on Human Factors in Computing Systems (pp. 195–202), Monterey, CA.

378 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Myers, I. B., McCaulley, M. H., Quenk, N. L., & Hammer, A. L. (1998). MBTI Manual (A Guide to

the Development And Use of the Myers Briggs Type Indicator) (3rd ed.). Consulting Psychologists

Press.

Nardi, B. A. (1995). Context and Consciousness: Activity Theory and Human Computer Interaction.

Cambridge, MA: MIT Press.

Nass, C., Steuer, J., & Tauber, E. R. (1994). Computers are social actors. In Proceedings of the CHI Con-

ference on Human Factors in Computing Systems (pp. 72–78). Boston, MA.

Nayak, N. P., Mrazek, D., & Smith, D. R. (1995). Analyzing and communicating usability data: Now

that you have the data what do you do? A CHI’94 workshop. SIGCHI Bulletin, 27(1), 22–30.

Newman, W. M. (1968). A system for interactive graphical programming. In Proceedings of the Spring

Joint Computer Conference (pp. 47–54). Atlantic City, NJ.

Newman, W. M. (1998). On simulation, measurement, and piecewise usability evaluation. In G. M.

Olson & T. P. Moran (Eds.), Commentary 10 on “Damaged Merchandise,” Human-Computer Inter-

action (Vol. 13, Issue 3, pp. 316–323). Lawrence Erlbaum.

Nielsen, J. (1987). Using scenarios to develop user friendly videotex systems. In: Proceedings of the

NordDATA Joint Scandinavian Computer Conference (pp. 133–138), Trondheim, Norway.

Nielsen, J. (1989). Usability engineering at a discount. In G. Salvendy & M. J. Smith (Eds.), Designing

and Using Human-Computer Interfaces and Knowledge-Based Systems (pp. 394–401). Amsterdam:

Elsevier Science.

Nielsen, J. (1990). Traditional dialogue design applied to modern user interfaces. Communications of

the ACM, 33(10), 109–118.

Nielsen, J. (1992a). Finding usability problems through heuristic evaluation. In: Proceedings of the

CHI Conference on Human Factors in Computing Systems (pp. 373–380), Monterey, CA.

Nielsen, J. (1992b). The usability engineering lifecycle. IEEE Computer, 25(3), 12–22.

Nielsen, J. (1993). Usability Engineering. Chestnut Hill, MA: Academic Press Professional.

Nielsen, J. (1994a). Enhancing the explanatory power of usability heuristics. In: Proceedings of the CHI

Conference on Human Factors in Computing Systems (pp. 152–158), Boston, MA.

Nielsen, J. (1994b). Heuristic evaluation. In J. Nielsen&R. L.Mack (Eds.),Usability InspectionMethods.

New York: John Wiley.

Nielsen, J. (1994c). Guerrilla HCI: Using discount usability engineering to penetrate the intimida-

tion barrier. In R. G. Bias & D. J. Mayhew (Eds.), Cost-Justifying Usability (pp. 245–272).

Orlando, FL: Academic Press.

Nielsen, J. (2008). Agile development projects and usability. http://www.useit.com/alertbox/

agile-methods.html (useit.com Alertbox). Last accessed 07/23/2011.

Nielsen, J., Bush, R. M., Dayton, T., Mond, N. E., Muller, M. J., & Root, R. W. (1992). Teaching ex-

perienced developers to design graphical user interfaces. In: Proceedings of the CHI Conference on

Human Factors in Computing Systems (pp. 557–564), Monterey, CA.

Nielsen, J., & Landauer, T. K. (1993). A mathematical model of the finding of usability problems. In

Proceedings of the INTERACT Conference on Human-Computer Interaction and CHI Conference on

Human Factors in Computing Systems (INTERCHI) (pp. 206–213), Amsterdam, The Netherlands.

Nielsen, J., & Molich, R. (1990). Heuristic evaluation of user interfaces. In Proceedings of the CHI Con-

ference on Human Factors in Computing Systems (pp. 249–256), Seattle, WA.

Nieters, J. E., Ivaturi, S., &Ahmed, I. (2007).Making personasmemorable. In: Proceedings of the CHI Con-

ference on Human Factors in Computing Systems (Extended Abstracts) (pp. 1817–1824), San Jose, CA.

Nilsson, P., & Ottersten, I. (1998). Interaction design: Leaving the engineering perspective behind.

In L. E. Wood (Ed.), User Interface Design: Bridging the Gap from User Requirements to Design

(pp. 131–152).

379RE F ER ENCES

Norman, D. A. (1986). Cognitive engineering. In D. A. Norman & S. W. Draper (Eds.), User Centered

System Design: New Perspectives on Human-Computer Interaction (pp. 31–61). Hillsdale, NJ:

Lawrence Erlbaum.

Norman, D. A. (1990). The Design of Everyday Things. New York: Basic Books.

Norman, D. A. (1998). The Invisible Computer—Why Good Products Can Fail, the Personal Computer Is So

Complex, and Information Appliances Are the Solution. MIT Press.

Norman, D. A. (1999). Affordance, conventions, and design. interactions, 6(3), 38–43.

Norman, D. A. (2002). Emotion and design: Attractive things work better. interactions, 9(4), 36–42.

Norman, D. A. (2004). Emotional Design:WhyWe Love (Or Hate) Everyday Things.New York: Basic Books.

Norman,D.A. (2006).Logic versususage:Thecase for activity-centereddesign. interactions,13(6), 4563.

Norman, D. A. (2007a). Simplicity is highly overrated. interactions, 14(2), 40–41.

Norman, D. A. (2007b). The next UI breakthrough, part 2: Physicality. interactions, 14(4), 46–47.

Norman, D. A. (2008). Simplicity is not the answer. interactions, 15(5), 45–46.

Norman, D. A. (2009a). Designing the infrastructure. interactions, 16(4), 66–69.

Norman, D. A. (2009b). Systems thinking: A product is more than a product. interactions, 16(5), 52–54.

Nowell, L., Schulman, R., &Hix, D. (2002). Graphical encoding for information visualization: An em-

pirical study. In Proceedings of the IEEE Symposium on Information Visualization (INFOVIS). (p. 43).

Olsen, D. R., Jr. (1983). Automatic generation of interactive systems. Computer Graphics, 17(1), 53–57.

O’Malley, C., Draper, S., & Riley, M. (1984, September 4–7). Constructive interaction: A method for

studying human-computer-human interaction. In Proceedings of the INTERACT Conference on

Human-Computer Interaction (pp. 269–274), London, UK.

Open Software Foundation, (1990). OSF/Motif Style Guide: Revision 1.0. Prentice-Hall, Inc.

Paradiso, J. A. (2005). Sensate media. Communications of the ACM, 48(3), 70.

Paradiso, J. A., Lifton, J., & Broxton,M. (2004). Sensatemedia—Multimodal electronic skins as dense

sensor networks. BT Technology Journal, 22(4), 32–44.

Patton, J. (2002). Hitting the target: Adding interaction design to agile software development. In

Proceedings of OOPSLA 2002 Practitioners Reports (pp. 1–7). Seattle, WA.

Patton, J. (2008, June 27). Twelve emerging best practices for addingUXwork to Agile development.

http://agileproductdesign.com/blog/emerging_best_agile_ux_practice.html. Last accessed

11/29/2010.

Paulk, M. C., Curtis, B., Chrissis, M. B., & Weber, C. (1993). Capability Maturity Model for Software, Ver-

sion 1.1. Report Number CMU/SEI-93-TR-24. Pittsburgh, PA: Software Engineering Institute,

Carnegie Mellon University.

Payne, S. J., &Green, T. R. G. (1986). Task-action grammars: Amodel of themental representation of

task languages. Human-Computer Interaction, 2, 93–133.

Payne, S. J., & Green, T. R. G. (1989). Task-action grammar: The model and its developments. In D.

Diaper (Ed.), Task Analysis for Human-Computer Interaction (pp. 75–107). Chichester, England:

Ellis Horwood.

Pering, C. (2002). Interaction design prototyping of communicator devices: Towards meeting the

hardware-software challenge. interactions, 9(6), 36–46.

Petersen, M. G., Madsen, K. H., & Kjaer, A. (2002). The usability of everyday technology: Emerging and

fading opportunities. ACM Transactions on Computer-Human Interaction, 9(2), 74–105.

Pew, R. N., & Rollins, A. M. (1975). Dialog Specification Procedure . Report Number 5129 (Rev. ed.).

Cambridge, MA: Bolt, Beranek, and Newman.

Pogue, D. Appeal of iPad 2 is a matter of emotions. http://www.nytimes.com/2011/03/10/

technology/personaltech/10pogue.html?_r¼2&hpw. Last accessed 7/11/2011.

380 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Potosnak, K. (1987). Where human factors fits in the design process. IEEE Computer, 90–92.

Potosnak, K. (1988). Getting the most out of design guidelines. IEEE Software, 5(1), 85–86.

Pressman, R. (2009). Software Engineering: A Practitioner’s Approach (7th ed.). McGraw-Hill.

Pyla, P. S. (2009). Connecting the Usability and Software Engineering Life Cycles: Using a Communication-

Fostering Software Development Framework and Cross-Pollinated Computer Science Courses. Saarbrücken,

Germany: VDM Verlag.

Pyla, P. S., Hartson,H. R., Arthur, J. D., Smith-Jackson, T. L., Pérez-Quiñones,M. A., &Hix, D. (2007).

Evaluating ripple: Experiences from a cross pollinated SE-UE study. In Proceedings of CHI 2007

Workshop on Increasing the Impact of Usability Work in Software Development.

Pyla, P. S., Pérez-Quiñones, M. A., Arthur, J. D., & Hartson, H. R. (2003). Towards a model-based

framework for integrating usability and software engineering life cycles. In Proceedings of Inter-

act 2003 Workshop on Closing the Gaps: Software Engineering and Human Computer Interaction

(pp. 67–74).

Pyla, P. S., Pérez-Quiñones, M. A., Arthur, J. D., & Hartson, H. R. (2004). What we should teach, but

don’t: Proposal for a cross pollinated HCI-SE curriculum. In Proceedings of Frontiers in Education

(FIE) Conference (S1H17–S1H22), Savannah, Georgia.

Pyla, P. S., Pérez-Quiñones, M. A., Arthur, J. D., & Hartson, H. R. (2005). Ripple: An event

driven design representation framework for integrating usability and software engineering

life cycles. In A. Seffah, J. Gulliksen & M. Desmarais (Eds.), Human-Centered Software

Engineering: Integrating Usability in the Software Development Lifecycle (Vol. 8., pp. 245–265).

Springer.

Quesenbery, W. (2005). Designing theatre, designing user experience. interactions, 12(2), 55–57.

Quesenbery, W. (2005). Usability standards: Connecting practice around the world. In Proceedings of

the IEEE International Professional Communication Conference (IPCC) (pp. 451–457).

Quesenbery, W. (2009). Private communication with Rex Hartson.

Radoll, P. (2009). Reconstructing Australian aboriginal governance by systems design. interactions, 16

(3), 46–49.

Reeves, B., & Nass, C. I. (1996). The Media Equation: How People Treat Computers, Television, and New

Media Like Real People and Places. Stanford, CA: CSLI Publications.

Reisner, P. (1977). Use of psychological experimentation as an aid to development of a Query lan-

guage. IEEE Transactions on Software Engineering SE, 3(3), 218–229.

Rettig, M. (1992). Interface design when you don’t know how. Communications of the ACM, 35(1),

29–34.

Rettig, M. (1994). Prototyping for tiny fingers. Communications of the ACM, 37(4), 21–27.

Rhee, Y., & Lee, J. (2009). Amodel ofmobile community: Designing user interfaces to support group

interaction. interactions, 16(6), 46–51.

Rice, J. F. (1991a). Display color coding: 10 rules of thumb. IEEE Software, 8(1), 86.

Rice, J. F. (1991b). Ten rules for color coding. Information Display, 7(3), 12–14.

Rideout, T. (1991). Changing your methods from the inside. IEEE Software, 8(3), 99–100, 111.

Rising, L., & Janoff, N. S. (2000). The scrum software development process for small teams. IEEE

Software, 17(4), 26–32.

Rogers, Y., Sharp, H., & Preece, J. (2011). Interaction Design: Beyond Human-Computer Interaction

(3rd ed.). Wiley.

Rosenbaum, S., Rohn, J. A., &Humburg, J. (2000). A toolkit for strategic usability: Results from work-

shops, panels, and surveys. In: Proceedings of the CHI Conference on Human Factors in Computing

Systems (pp. 337–344), The Hague, The Netherlands.

381RE F ER ENCES

Rosenberg, D. (2004). The myths of usability ROI. interactions, 11(5), 22–29.

Rosson, M. B., & Carroll, J. M. (2002). Usability Engineering: Scenario-Based Development of Human-

Computer Interaction. Morgan Kaufmann.

Royce, W. W. (1970, August 25–28). Managing the development of large scale software systems. In

Proceedings of IEEE Western Electronic Show and Convention (WESCON) Technical Papers

(pp. A/1 1–9). Los Angeles, CA. (Reprinted in Proceedings of the Ninth International Conference

on Software Engineering, Pittsburgh, ACM Press, 1989, pp. 328–338).

Rudd, J., Stern, K., & Isensee, S. (1996). Low vs. high-fidelity prototyping debate. interactions, 3(1),

76–85.

Russell, D. M., Streitz, N. A., & Winograd, T. (2005). Building disappearing computers. Communica-

tions of the ACM, 48(3), 42–48.

Salter, C. (2009, June). 100 most creative people in business. Fast Company, 60.

Sauro, J. (2004). Premiumusability: Getting the discount without paying the price. interactions, 11(4),

30–37.

Savio, N. (2010). Solving the world’s problems through design. interactions, 17(3), 52–54.

Sawyer, P., Flanders, A., & Wixon, D. (1996). Making a difference—The impact of inspections.

In Proceedings of the CHI Conference on Human Factors in Computing Systems (pp. 376–382).

Vancouver, BC, Canada.

Schaffer, E. (2004). Institutionalization of Usability: A Step-by-Step Guide. Boston, MA: Addison-Wesley.

Schmandt, C. (2011). Private communication with Rex Hartson.

Schneidewind, N. F., & Ebert, C. (1998). Preserve or redesign legacy systems? IEEE Software, 15(4),

14–42.

Scholtz, J. (2005). Have robots, need interaction with humans!. interactions, 12(2), 12–14.

Schrepp, M., Held, T., & Laugwitz, B. (2006). The influence of hedonic quality on the attractiveness

of user interfaces of business management software. Interacting with Computers, 18(5),

1055–1069.

Scriven, M. (1967). The methodology of evaluation. In R. Tyler, R. Gagne & M. Scriven (Eds.),

Perspectives of Curriculum Evaluation (pp. 39–83). Chicago: Rand McNally.

Sears, A. (1997). Heuristic walkthroughs: Finding the problems without the noise. International Jour-

nal of Human-Computer Interaction, 9(3), 213–234.

Sears, A., & Hess, D. J. (1999). Cognitive walkthroughs: Understanding the effect of task-description

detail on evaluator performance. International Journal of Human-Computer Interaction, 11(3),

185–200.

Sellen, A., Eardley, R., Izadi, S., & Harper, R. (2006). The whereabouts clock: Early testing of a sit-

uated awareness device. In Proceedings of the CHI Conference on Human Factors in Computing Sys-

tems (Extended Abstracts).

Sellers, M. (1994). Designing for demanding users. interactions, 1(3), 54–64.

Shattuck, L. W., & Woods, D. D. (1994). The critical incident technique: 40 years later. In Proceedings

of the Human Factors and Ergonomics Society Annual Meeting (pp. 1080–1084).

Shih, Y.-H., & Liu, M. (2007). The importance of emotional usability. Journal of Educational Technology

Usability, 36(2), 203–218.

Shneiderman, B. (1980). Software Psychology: Human Factors in Computer and Information Systems.

Winthrop.

Shneiderman, B. (1982). The future of interactive systems and the emergence of direct manipula-

tion. Behavior and Information Technology, 1(3), 237–256.

382 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Shneiderman, B. (1983). Direct manipulation: A step beyond programming languages. IEEE Com-

puter, 16(8), 57–69.

Shneiderman, B. (1998). Designing the User Interface: Strategies for Effective Human-Computer Interaction

(3rd ed.). Menlo Park, CA: Addison Wesley.

Shneiderman, B., & Plaisant, C. (2005). Designing the User Interface: Strategies for Effective Human-

Computer Interaction (4th ed.). Reading, MA: Addison-Wesley.

Sidner, C., & Lee, C. (2005). Robots as laboratory hosts. interactions, 12(2), 24–26.

Siegel, D. A. (2003). The business case for user-centered design: Increasing your power of persuasion.

interactions, 10(3), 30–36.

Simon, H. A. (1956). Rational choice and the structure of the environment. Psychological Review, 63,

129–138.

Simon, H. A. (1974). How big is a chunk? Science, 183(4124), 482–488.

Slivka, E. (2009a, October 22). Apple Employee T-Shirt Unboxing Photos. In MacRumors: Page 2.

http://www.macrumors.com/2009/10/22/apple-employee-t-shirt-unboxing-photos/. Last

accessed 9/2/2010.

Slivka, E. (2009b, October 5). Apple Job Offer ‘Unboxing’ Pictures Posted. In MacRumors: Page 2.

http://www.macrumors.com/2009/10/05/apple-job-offer-unboxing-pictures-posted/. Last

accessed 09/02/2010.

Smith, D. C., Irby, C., Kimball, R., Verplank, B., & Harslem, E. (1989). Designing the Star user inter-

face (1982). In Perspectives on the Computer Revolution (pp. 261–283). Ablex Publishing.

Smith, S. L., & Mosier, J. N. (1986). Guidelines for Designing User Interface Software. Report Number

MTR-10090. Bedford, MA: Mitre Corp.

Snodgrass, A., & Coyne, R. (2006). Interpretation in Architecture: Design as a Way of Thinking. Routledge.

Sodan, A. C. (1998). Yin and yang in computer science. Communications of the ACM, 41(4),

103–114.

Sommerville, I. (2006). Software Engineering (8th ed.). Harlow, England: Addison Wesley.

Souza, F. D., & Bevan, N. (1990). The use of guidelines in menu interface design: Evaluation of a

draft standard. In Proceedings of the INTERACT Conference on Human-Computer Interaction

(pp. 435–440).

Spolsky, J. (2007,August29).Even theOffice2007boxhas a learningcurve.http://www.joelonsoftware.

com/items/2007/08/18.html. Last accessed 10/20/2010.

Spool, J., & Schroeder, W. (2001). Testing web sites: Five users is nowhere near enough. In

Proceedings of the CHI Conference on Human Factors in Computing Systems (Extended Abstracts)

(pp. 285–286), Seattle, WA.

Stake, R. (2004). Standards-Based and Responsive Evaluation. Sage Publications.

Stevens,W. P., Myers, G. J., & Constantine, L. L. (1974). Structured design. IBM Systems Journal, 13(2),

115–139.

Stewart, T. (2002). How to cope with success. interactions, 9(6), 17–21.

Strijland, P. (1993). Human interface standards: Can we do better? StandardView, 1(1), 26–30.

Sutherland, I. E. (1963). Sketchpad: A Man-Machine Graphical Communication System. Dissertation,

Cambridge, MA: MIT.

Sutherland, I. E. (1964). Sketchpad: A Man-Machine Graphical Communication System. Cambridge,

United Kingdom: University of Cambridge.

Sutton, S. (2007). Review of “Cost-Justifying Usability: An Update for the Internet Age (2nd ed.) by

Randolph G. Bias and Deborah J. Mayhew, Editors.” interactions, 14(5), 48–50.

383RE F ER ENCES

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12,

257–285.

Sweller, J. (1994). Cognitive load theory, learning difficulty, and instructional design. Learning and

Instruction, 4(4), 295–312.

Tatar, D., Harrison, S., & Sengers, P. (2007). The three paradigms ofHCI. In Proceedings of Alt.chi, CHI

Conference on Human Factors in Computing Systems. San Jose, CA.

Taylor, F. W. (1911). The Principles of Scientific Management. New York: Harper & Brothers.

The Open Group. Motif. http://www.opengroup.org/motif/. Last accessed 07/10/2011.

The Roanoke Times. (2006). Travel reservation system found to be costly flop. The Roanoke Times,

(November 16).

The Standish Group. (1994). The CHAOS Report.

The Standish Group. (2001). Extreme CHAOS.

Theofanos, M., & Quesenbery, W. (2005). Towards the design of effective formative test reports. Jour-

nal of Usability Studies, 1(1), 27–45.

Theofanos, M., Quesenbery, W., Snyder, C., Dayton, D., & Lewis, J. (2005). Reporting on Formative

Testing: A UPA 2005 Workshop Report. In Proceedings of the UPA International Conference.

Montreal, Quebec.

Thibodeau, P. (2005, June 20). Large users hope for broader adoption of usability standard.

Computerworld.

Thomas, J. C. (1993). Personal communication with Rex Hartson.

Thomas, J. C., & Kellogg, W. A. (1989). Minimizing ecological gaps in interface design. IEEE Software,

6(1), 78–86.

Thomas, P., & Macredie, R. D. (2002). Introduction to the new usability. ACM Transactions on

Computer-Human Interaction, 9(2), 69–73.

Tognazzini, B. T. (2005). Why engineers own user experience design. interactions, 12(3), 32–34.

Tohidi, M., Buxton, W., Baecker, R. M., & Sellen, A. (2006). User sketches: A quick, inexpensive, and

effective way to elicit more reflective user feedback. In Proceedings of the Nordic Conference on

Human-Computer Interaction (pp. 105–114). Oslo, Norway.

Travis, A. T. (2009). Sketchy Wireframes: When you can’t (or shouldn’t) draw a straight line. http://

boxesandarrows.com/view/sketchy-wireframes. Last accessed 7/14/2011.

Trenner, L., & Bawa, J. (1998). The Politics of Usability: A Practical Guide to Designing Usable Systems in

Industry. Secaucus, NJ: Springer-Verlag New York, Inc.

Truss, L. (2003). Eats, Shoots & Leaves: The Zero Tolerance Approach to Punctuation. United Kingdom:

Profile Books.

Tscheligi, M. (2005). Ambient intelligence: The next generation of user centeredness. interactions,

12(4).

Tufte, E. R. (1983). The Visual Display of Quantitative Data. Cheshire, CT: Graphics Press.

Tufte, E. R. (1990). Envisioning Information. Cheshire, CT: Graphics Press.

Tufte, E. R. (1997). Visual Explanations: Images and Quantities, Evidence and Narrative. Cheshire, CT:

Graphics Press.

Tullis, T. S. (1990). High-fidelity prototyping throughout the design process. In Proceedings of the

Human Factors and Ergonomics Society Annual Meeting (p. 266). Santa Monica, CA.

Tullis, T. S., & Albert, B. (2008). Measuring the User Experience. Burlington, MA: Morgan

Kaufmann.

Tullis, T. S., & Stetson, J. N. (2004). A comparison of questionnaires for assessing website usability. In

Proceedings of the UPA International Conference (pp. 1–12).

384 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Tungare,M., Pyla, P. S., Glina, V., Bafna, P., Balli, U., Zheng,W., et al. (2006). Embodied data objects:

Tangible Interfaces to Information Appliances. In Proceedings of 44th ACM Southeast Conference

(ACMSE) (pp. 359–364).

U.S. Department of Health and Human Services. (2006). Research-Based Web Design & Usability

Guidelines .

Usability Net. (2006). Questionnaire resources. http://www.usabilitynet.org/tools/r_questionnaire.

htm. Last accessed 7/15/2011.

Venkatesh, V., Ramesh, V., & Massey, A. P. (2003). Understanding usability in mobile commerce.

Communications of the ACM, 46(12), 53–56.

Vermeeren, A.P.O.S., Bouwmeester, K. D., Aasman, J., & de Ridder, H. (2002). DEVAN: A tool

for detailed video analysis of user test data. Behaviour& Information Technology, 21(6), 403–423.

Vermeeren, A.P.O.S., van Kesteren, I. E. H., & Bekker, M. M. (2003). Managing the evaluator effect in

usertesting. InProceedingsof the INTERACTConference onHuman-Computer Interaction(pp.647–654).

Zurich, Switzerland.

Vertelney, L. (1989). Using video to prototype user interfaces. SIGCHI Bulletin, 21(2), 57–61.

Virzi, R. A. (1990). Streamlining the design process: Running fewer subjects. In Proceedings of the

Human Factors and Ergonomics Society Annual Meeting (pp. 291–294).

Virzi, R. A. (1992). Refining the test phase of usability evaluation: Howmany subjects is enough? Jour-

nal of the Human Factors and Ergonomics Society, 34(4), 457–468.

Virzi, R. A., Sokolov, J. L., & Karis, D. (1996). Usability problem identification using both low- and high-

fidelity prototypes. In Proceedings of the CHI Conference on Human Factors in Computing Systems.

(pp. 236–243). British Columbia, Canada: Vancouver.

Wasserman, A. I. (1973). The design of ‘idiot-proof’ interactive programs. In Proceedings of National

Computer Conference (pp. M34–M38).

Wasserman, V., Rafaeli, A., & Kluger, A. N. (2000). Aesthetic symbols as emotional cues. In S. Fine-

man (Ed.), Emotion in Organizations (pp. 140–165). London: SAGE.

Weiser, M. (1991). The computer for the 21st century. Scientific American, 265, 94–100.

Weiss, S. (2005). An alternative businessmodel for addressing usability: Subscription research for the

telecom industry. interactions, 12(4), 62–64.

Weller, H. G., & Hartson, R. (1992). Metaphors for the nature of human-computer interaction in an

empowering environment: Interaction style influences the manner of human accomplish-

ment. Computers in Human Behavior, 8(4), 313–333.

Westerman, S., Gardner, P. H., & Sutherland, E. J. (2006).HUMAINED9g, Taxonomy of Affective Systems

Usability Testing (Workpackage 9 Deliverable). Information Society Technologies.

Whiteside, J. A., & Wixon, D. (1985). Developmental theory as a framework for studying human-

computer interaction. In R. Hartson (Ed.), Advances in Human-Computer Interaction (Vol. 1,

pp. 29–48). Norwood, NJ: Ablex Publishing.

Whiteside, J. A., Bennett, J., & Holtzblatt, K. (1988). Usability engineering: Our experience and

evolution. In M. Helander (Ed.), Handbook of Human-Computer Interaction (pp. 791–817).

Elsevier Science.

Whiteside, J. A., Jones, S., Levy, P. S., & Wixon, D. (1985). User performance with command, menu,

and iconic interfaces. In Proceedings of the CHI Conference on Human Factors in Computing Systems

(pp. 185–191). San Francisco, CA.

Wiklund, M., Thurrott, C., & Dumas, J. S. (1992). Does the fidelity of software prototypes affect the

perception of usability. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting

(pp. 399–403). Santa Monica, CA.

385RE F ER ENCES

Wildman, D. (1995). Getting the most from paired-user testing. interactions, 2(3), 21–27.

Williges, R. C. (1982). Applying the human information processing approach to human/computer

interactions. In W. C. Howell & E. A. Fleishman (Eds.), Information Processing and Decision Mak-

ing (Vol. 2., p. 83). Hillsdale, NJ: Lawrence Erlbaum.

Williges, R. C. (1984, May). Evaluating human-computer software interfaces. In Proceedings of the

International Conference on Occupational Ergonomics (pp. 81–87), Toronto, Canada.

Wilson,C. (2011,March).Perspective-Based Inspection(Method10 in100UserExperienceDesignand

Evaluation Methods for Your Toolkit). http://dux.typepad.com/dux/2011/03/. Last accessed

7/15/2011.

Wilson, C. E. (2007). Please listen to me!: Or, how can usability practitioners be more persuasive?

interactions, 14(2), 44–45, 55.

Winchester, W. W., III, (2009). Catalyzing a perfect storm: Mobile phone-based HIV-prevention

behavioral interventions. interactions, 16(6), 5–12.

Winograd, T., & Flores, F. (1986). Understanding Computers and Cognition: A New Foundation for Design.

Norwood, NJ: Ablex Publishing Co.

Wixon, D. (2003). Evaluating usability methods: Why the current literature fails the practitioner.

interactions, 10(4), 28–34.

Wixon, D., &Whiteside, J. A. (1985). Engineering for usability (panel session): Lessons from the user

derived interface. In Proceedings of the CHI Conference on Human Factors in Computing Systems

(pp. 144–147). San Francisco, CA.

Wood, S. (2007). CHI ’07 Course: Building Affinity Diagrams to Reveal User Needs and Engage Devel-

opers. Unpublished CHI ’07 course notes.

Wright, P. K. (2005). Rapid prototyping in consumer product design. Communications of the ACM, 48

(6), 36–41.

Wright, P., Lickorish, A., & Milroy, R. (1994). Remembering while mousing: The cognitive costs of

mouse clicks. SIGCHI Bulletin, 26(1), 41–45.

Ye, S. X., & Qiu, R. G. (2003). Global identification code scheme for promptly retrieving the perti-

nent information of a worldwide uniquely identifiable object. In Proceedings of the International

Conference on Control and Automation (ICCA) (pp. 1000–1004).

Young, R. M., Green, T. R. G., & Simon, T. (1989). Programmable user models for predictive eval-

uation of interface designs. In Proceedings of the CHI Conference on Human Factors in Computing

Systems (pp. 15–19).

Zhang, P. (2009). Theorizing the relationship between affect and aesthetics in the ICT design and

use context. In Proceedings of the International Conference on Information Resources Management, Du-

bai: United Arab Emirates.

Zhang, P., & Li, N. (2004). Love at first sight or sustained effect? The role of perceived affective qual-

ity on users’ cognitive reactions to information technology. In Proceedings of the International

Conference on Information Systems (ICIS) (pp. 283–296). Washington, DC.

Zhang, P., & Li, N. (2005). The importance of affective quality. Communications of the ACM, 48(9),

105–110.

Zhang, Z., Basili, V., & Shneiderman, B. (1999). Perspective-based usability inspection: An empirical

validation of efficacy. Empirical Software Engineering, 4(1), 43–69.

Zieniewicz, M. J., Johnson, D. C., Wong, D. C., & Flatt, J. D. (2002). The evolution of army wearable

computers. IEEE Pervasive Computing, 1(4), 30–40.

386 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

APPENDIX

Exercises

INTRODUCTION TO EXERCISES

Active Learning
The best way to learn the processes described in this book is by doing them!

We have organized your participation in the process at three levels: examples

for you to follow in the text, a more or less parallel set of exercises to do on your

own, and a set of extensively specified team project assignments (on the

book Website).

Pointers to the exercises are indicated within many of the chapters, often

right after a similar example in the text. Those pointers refer to the exercise

descriptions here. The location of each forward reference is where you should

consider doing the exercise before moving on, but we have put the exercise

descriptions here so as not to interrupt the flow of the rest of the text in the

chapters. Finally, a comprehensive set of team project assignments is available in

the Instructor’s Guide, available to instructors from the publisher. The exercises

require medium-level engagement, somewhere in between the in-text examples

and full project assignments.

Within the broader audience of this book, individual readers are encouraged

to follow the examples and undertake the exercises on their own. Groups of

readers, whether within classes taking the material as a course or within

organizations that wish to acquire competency in these processes, will benefit

evenmore from carrying out the exercises as a team. You should be able to figure

out, from each exercise description, how to pursue the exercise either as an

individual or as a team.

The exercises are for learning, not for producing a product, so you do not

have to complete every detail if you think you have gotten what you need to out

of each one. You should be able to learn most of what you can get from most

exercises in an hour or so. In the case of a team within a classroom setting, this

means that you can do the exercises as in-class activities, breaking out into teams

and working in parallel, and possibly finishing the exercise as homework before

the next class. This has the advantages of working next to other teams with

similar goals and problems and of having an instructor present who can move

among teams as a consultant and mentor. We recommend that student team

deliverables be prepared in summary form for presentation to the rest of the

class so that each team can learn from the others.

Choosing a Target Application System
Your choice of a target application system should be gauged toward the goal of

learning, not producing a product. That means choosing something the right

size. Avoid applications that are too large or complex; choose something for

which the semantics and functionality are relatively easy to understand.

However, avoid systems that are too small or too simple because they may not

support the process activities very well. The bottom line: Choose something

broad enough so that you can use the same system in all the exercises, each time

building on your previous experience.

The criterion for selection here is that you will need to identify at least a

half-dozen somewhat different kinds of user tasks. That usually means, for

example, that a Website used only for information seeking is not a good

candidate because information seeking is only a single type of task and often

does not involve enough differences in the kinds of interaction. You should

also choose a system that has more than one class of user. For example, an

e-commerce Website for ordering merchandise will have users from the public

doing the ordering and employee users processing the orders.

For practitioner teams in a real development organization, we recommend

against using a real development project for these exercises. There is no sense in

introducing the pressure to produce a real design and the risk of failure into this

learning process.

Because many parts of these processes are best learned by interacting with

a “user,” “customer,” or “client,” it helps to choose an application for which

you can find (among friends, family, or fellow students or practitioners) or

simulate these roles, for example, for contextual inquiry interviews.

CHAPTER 3 EXERCISES

Exercise 3-1: System Concept Statement for a System
of Your Choice

Goal: Get practice in writing a concise system concept statement.

Activities:

n Write a system concept statement for a system of your choice.

n Iterate and polish it. The 150 or fewer words you write here will be among the most

important words in the whole project; they should be highly polished, which means that

888 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

you should spend a disproportionate amount of time and energy thinking about,

writing, reading, editing, discussing, and rewriting this system concept statement.

Deliverables: Your “final” system concept statement.

Schedule: Given the simplicity of the domain, we expect you can get what you need from

this exercise in about 30 minutes.

Exercise 3-2: Contextual Inquiry Data Gathering for the
System of Your Choice

Goal: Get practice in performing contextual inquiry.

Activities:

n The best conditions for this exercise are to work as a team and have a real client, as you

would in a team project, for example, in a course.

n If you are working with a team but do not have a real client, divide your team members

into users and interviewers and do a role-playing exercise. If you are working alone,

invite some friends over for one of your famous pizza-and-beer-and-contextual-inquiry

parties andhave themplay auser rolewhile you interview them.Wehave found that youget

the best results if you follow this order: eat the pizza, do the exercise, drink the beer.

n Do your best to suspend disbelief and pretend that you and your users are in a real

situation within the context of your domain of investigation.

n Interviewers each take their own transcripts of raw data notes as you ask questions and

listen to users talk about their work activities in this domain.

n Preface each note with the user ID, for example, U3, of the user from whom the note is

derived.

Deliverables: At least a few pages of raw contextual inquiry data transcript, hand written or

typed, for the investigations you conducted for your example system. Include a few

interesting examples (something unexpected or unique) from your notes to share.

Schedule: Given the simplicity of the domain, we expect this exercise to take about 1 to

2 hours.

CHAPTER 4 EXERCISES

Exercise 4-1: Flow Model Sketch for Your System
Goal: Get practice in making an initial flow model sketch for the work practice of an

organization.

Activities:

n For your target system sketch out a flow model diagram, in the same style as our flow

model sketch for MUTTS, shown in Figure 4-3, showing work roles, information flow,

information repositories, transactions, etc.

n Draw on your raw work activity data and construct a representation of the flow of data,

information, and work artifacts.

889EXERCISES

n Even if there is no existing automated system, you should capture the flow of themanual

work process.

n Start with representing your work roles as nodes, add in any other nodes for databases

and so on.

n Label communication and flow lines.

n If you do not have enough contextual data from your limited data-gathering exercise,

make some up to make this work.

Deliverables: A one-page diagram illustrating a high-level flow model for the existing work

process of your target system.

Schedule:Given the simplicity of the domain, we expect this exercise to take about an hour.

Exercise 4-2: Work Activity Notes for Your System
Goal: Get practice in synthesizing work activity notes from your contextual data.

Activities:

n If you are working alone, it is time for another pizza-and-beer-and-contextual-analysis

party with your friends.

n However you form your team, appoint a team leader and a person to act as note

recorder.

n The team leader leads the group through raw data, synthesizing work activity notes on

the fly.

n Be sure to filter out all unnecessary verbiage, fluff, and noise.

n As the work activity notes are called out, the recorder types them into a laptop

(preferably with a screen projector so that the group can see the work in progress).

n Everyone in the team should work together tomake sure that the individual work activity

notes are disambiguated from context dependencies (usually by adding explanatory text

in italics).

Deliverables: At least a few dozen work activity notes synthesized from your raw contextual

inquiry data transcript for your system, hand written or typed into a laptop. Highlight a

few of your most interesting synthesized work activity notes for sharing.

Schedule: Based on our experience with these activities, we expect this to take you an hour

or two.

Exercise 4-3: WAAD Building for Your System
Goal: Get practice in building a work activity affinity diagram to sort and organize

contextual data.

Activities:

n If you are working alone, it is time for yet another pizza-and-beer-and-contextual-analysis

party with your friends (the last time you have to buy pizza, at least in this chapter).

890 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

n However you assemble your team, using all the work activity notes created from the

contextual inquiry investigations you did in the previous exercise, do your best to follow

the procedure we have described in this chapter for WAAD building.

n Take digital photographs of your work process and products, including the full WAAD,

some medium-level details, and some close-ups of interesting parts.

n Hang them on your fridge with magnets.

Deliverables: As much of the full WAAD for your system as you were able to produce. It is

probably best to keep it rolled up into a bundle for safe keeping unless you have the

luxury of being able to keep it taped to the wall. You should also have the digital photos

you took of your WAAD. If you are working in a classroom environment, be prepared to

share the photos in a narrated slide show and to discuss your WAAD and the process of

building it with other teams in the class.

Schedule: This is one of the more time-consuming exercises; expect it to take 4 to 6 hours.

CHAPTER 5 EXERCISES

Exercise 5-1: Extracting Requirement Statements
for Your System

Goal: Get some practice with requirements extraction.

Activities:

n Assemble a team per the preparation guidelines in this chapter.

n Choose a leader and recorder.

n Get together with your team where you have hung your WAAD for the Ticket Kiosk

System or hang it back up again if you had to take it down before.

n Number all the WAAD nodes and notes with a structured set of ID markers.

n Do a careful walkthrough, traversing the WAAD.

n For each work activity note in the WAAD, work as a team to:

n Deduce user need(s) and interaction design requirements to support the need(s).

n As you go, have the recorder capture requirements in the format of Figures 5-4 and

5-5, including extrapolation requirements and rationale statements, where

appropriate.

n In the process, also make notes and lists about:

n Questions about missing data

n Software requirements inputs

n System support needs

n Marketing inputs

n Ways to enhance the overall user experience

n Information about design-informing models

n Future features and issues

891EXERCISES

n To speed things up, have each person be responsible for writing the requirement

statements extracted from a different sub-tree in theWAAD structure. Set aside any work

activity notes that require additional thought or discussion to be dealt with at the end by

the team as a whole.

n If time permits, have the whole team read all requirement statements to assure

agreement.

Deliverables:

n A requirements document covering at least one subtree of the WAAD for your

system.

n Notes and lists of the other kinds of information (above bullets) that come out of this

process.

Schedule:We expect that this exercise could take at least a couple of hours. If you simply do

not have that kind of time to devote to it, do as much as you can to at least get a flavor of

how this exercise works.

Exercise 5-2: Constraints for Your System
Goal: Get a little experience in specifying constraints for system development.

Activities: Extract and deduce what you can about development and implementation

constraints from contextual data for the system of your choice.

Deliverables: A short list of same.

Schedule: A half hour should do it.

CHAPTER 6 EXERCISES

Exercise 6-1: Identifying Work Roles for Your System
Goal: Get a little practice at identifying work roles from your contextual data.

Activities: By now you should be pretty certain about the work roles for

your system.

n Using your user-related contextual data notes, identify the major work roles for your

system.

n Write the major ones in a list.

n For each role, add explanatory notes describing the role.

n For each role, add a description of the major task set that people in that role would be

expected to perform.

Deliverables: A written list of work roles you identified for your system, each with an

explanation of the role and a description of the associated task set.

Schedule: A half hour should do it.

892 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Exercise 6-2: User Class Definitions
for Your System

Goal: Get practice in defining user classes for work roles.

Activities:

n Using your user-related contextual data notes, create a few user class definitions to go

with the work roles definitions you created in the previous exercise.

n For each of the work roles that you identified in the previous exercise, draw on your

user-related contextual data notes to define one or two corresponding user classes,

describing the characteristics of each.

Deliverables: A few user class definitions to go with the work roles identified for the system

of your choice.

Schedule: A half hour to 45 minutes should be enough to get the most out of this

assignment.

Exercise 6-3: A Social Model for Your System
Goal: Get a little practice in making a social model diagram.

Activities:

n Identify active entities, such as work roles, and represent as nodes in the diagram.

n Include groups and subgroups of roles and external roles that interact with work roles.

n Include system-related roles, such as a central database.

n Include workplace ambiance and its pressures and influences.

n Identify concerns and perspectives and represent as attributes of nodes.

n Identify social relationships, such as influences between entities, and represent these as

arcs between nodes in the diagram.

n Identify barriers, or potential barriers, in relationships between entities and represent

them as red bolts of lightning ().

Deliverables: One social model diagram for your system, with as much detail as feasible.

Schedule: This could take a couple of hours.

Exercise 6-4: A Social Model for a “Smartphone”
Sketch out an annotated social model for the use of an iPhone or similar

smartphone by you and your friends.

Exercise 6-5: Creating a Flow Model for Your System
Goal: Get a little practice in creating a flow model for an enterprise.

Activities:

n Follow up on your flow model initial sketch that you did in Exercise 4-1.

n Again represent each work role or system entity as a node in the diagram.

893EXERCISES

n Use arcs between nodes to show all communication and coordination necessary to do

the work of the enterprise.

n Use arcs to represent all information flow and flow of physical artifacts.

n Include all forms of communication, including direct conversations, email, phones,

letters, memos, meetings, and so on.

n Include both flow internally within the enterprise and flow externally with the rest of the

world.

Deliverables: One flow model diagram for your system, with as much detail as feasible.

Schedule: This could take a couple of hours.

Exercise 6-6: Hierarchical Task Inventory for Your System
Goal: Get some practice creating a hierarchical task inventory diagram.

Activities: Using your task-related contextual data notes, make a simple hierarchical task

inventory diagram for your system.

Deliverables: Simple HTI diagram(s) for the system of your choice.

Schedule: An hour should be enough to get what you need from this exercise.

Exercise 6-7: Usage Scenarios for Your System
Goal: Get some practice in writing usage scenarios.

Activities:

n Select one or two good representative task threads for the most interesting user class, for

example, the customer.

n Write a couple of detailed usage scenarios, referring to user roles, tasks, actions, objects,

and work context.

n Work quickly; you can clean it up as you go.

Hints and cautions: Do not worry too much about the design yet; we will get to that.

Deliverables: A few usage scenarios to share and discuss.

Schedule: An hour should be enough time for this one.

Exercise 6-8: Design Scenarios for Your System
Goal: Get some practice in writing usage scenarios.

Activities:

n For the same usage scenarios you wrote in the previous exercise, write a couple of

detailed design scenarios, again referring to user roles, tasks, actions, objects, and work

context.

n Make up anything you need about the design on the fly.

n Do this quickly; you can clean it up as you go.

Deliverables: A few design scenarios to share and discuss.

Schedule: An hour should be enough time for this one.

894 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Exercise 6-9: Identifying Information Objects for Your System
Goal: Get a little practice in identifying information objects for a system.

Activities:

n Review the ontology of your system.

n Identify the entities within your application that are operated on by users—searched and

browsed for, accessed and displayed, modified and manipulated, and stored back again.

n Sketch an outline or list of these information objects, their attributes, and the

relationships among them.

Deliverables: The list just described.

Schedule: A half hour should do it.

CHAPTER 7 EXERCISES

Exercise 7-1: Creating a User Persona for Your System
Goal: Get some experience at writing a persona.

Activities:

n Select an important work role within your system. At least one user class for this work role

must be very broad, with the user population coming from a large and diverse group,

such as the general public.

n Using your user-related contextual data, create a persona, give it a name, and get a photo

to go with it.

n Write the text for the persona description.

Deliverables: One- or two-page persona write-up

Schedule: You should be able to do what you need to learn from this in about an hour.

Exercise 7-2: Practice in Ideation and Sketching
Goal: To get practice in ideation and sketching for design.

Activities:

n Doing this in a small group is strongly preferable, but you can do it with one other

person.

n Get out blank paper, appropriate size marking pens, and any other supplies you might

need for sketching.

n Pick a topic, a system, or device. Our recommendation is something familiar, like a

dishwasher.

n Start with some free-flow ideation about ways to design a new and improved concept of

a dishwasher. Do not limit yourself to conventional designs.

n Go with the flow and see what happens.

n Remember that this is an exercise about the process, so what you come up with for the

product is not that crucial.

895EXERCISES

n Everyone should make sketches of the ideas that arise about a dishwasher design, as you

go in the ideation.

n Start with design sketches in the ecological perspective. For a dishwasher, this might

include your dining room, kitchen, and the flow of dishes in their daily cycle. You could

include something unorthodox: sketch a conveyor belt from the dinner table through

your appliance and out into the dish cabinets. Sketch how avoiding the use of paper

plates can save resources and not fill the trash dumps.

n Make some sketches from an interaction perspective showing different ways you can

operate the dishwasher: how you load and unload it and how you set wash cycle

parameters and turn it on.

n Make sketches that project the emotional perspective of a user experience with your

product. This might be more difficult, but it is worth taking some time to try.

n Ideate. Sketch, sketch, and sketch. Brainstorm and discuss.

Deliverables: A brief written description of the ideation process and its results, along with

all your supporting sketches.

Schedule: Give yourself enough time to really get engaged in this activity.

Exercise 7-3: Ideation and Sketching for Your System
Goal: More practice in ideation and sketching for design. Do the same as you did in the

previous exercise, only this time for your own system.

CHAPTER 8 EXERCISES

Exercise 8-1: Conceptual Design for Your System
Goal: Get a little practice in initial conceptual design.

Activities:

n Think about your system and contextual data and envision a conceptual design,

including any metaphors, in the ecological perspective. Try to communicate the

designer’s mental model, or a design vision, of how the system works as a black box

within its environment.

n Think about your system and contextual data and envision a conceptual design in the

interaction perspective. Try to communicate the designer’s mental model of how the

user operates the system.

n Finally, think about your system and contextual data and envision a conceptual design in

the emotional perspective. Try to communicate a vision of how the design elements will

evoke emotional impact in users.

Deliverables: Brief written descriptions of your conceptual design in the three perspectives

and/or a few presentation slides of the same to share with others.

Schedule: You decide how much time you can afford to give this. If you cannot do this

exercise in all three perspectives, just pick one, perhaps the ecological perspective.

896 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Exercise 8-2: Storyboard for Your System
Goal: Get a little practice in sketching storyboards.

Activities:

n Sketch storyboard frames illustrating narrative sequences of action in each of the three

perspectives.

n Include things like these in your storyboards:

n Hand-sketched pictures annotated with a few words

n All the work practice that is part of the task, not just interaction with the system, for

example, include telephone conversations with agents or roles outside the system

n Sketches of devices and screens

n Any connections with system internals, for example, flow to and from a database

n Physical user actions

n Cognitive user actions in “thought balloons”

n Extra-system activities, such as talking with a friend about what ticket to buy

n For the ecological perspective, illustrate high-level interplay among human users, the

system as a whole, and the surrounding context.

n In the interaction perspective, show screens, user actions, transitions, and user

reactions.

n Use storyboards in the emotional perspective to illustrate deeper user experience

phenomena such as fun, joy, and aesthetics.

Schedule: You decide how much time you can afford to give this. If you cannot do this

exercise in all three perspectives, just pick one, perhaps the ecological perspective.

CHAPTER 9 EXERCISES

Exercise 9-1: Intermediate and Detailed Design
for Your System

Goal: Get some practice in developing a few parts of the intermediate and

detailed design.

Activities:

n If you are working with a team, get together with your team.

n Choose just one principal work role for your system (e.g., the customer).

n Choose just one key task that work role is expected to perform.

n For that work role and task, make a few illustrated scenarios to show some of the

associated interaction.

n Sketch some screen layouts to support your scenarios, along with some representation of

the navigational structure.

n Go for a little depth, but not much breadth.

n Make a few annotated wireframes for the same scenarios.

897EXERCISES

Hints, cautions, and assumptions:

n Do not get too involved in design guidelines issues yet (e.g., icon appearance or menu

placement).

n Control time spent arguing; learn the process!

n Base your screen designs on the contextual analysis and design you have done so far.

Deliverables: Just the work products that naturally result from these activities.

Schedule: Whatever you can afford. At least give it an honest try.

CHAPTER 10 EXERCISES

Exercise 10-1: Identifying User Experience Goals
for Your System

Goal: A little experience in stating user experience goals.

Activities: Review the WAAD and user concerns in the social model for the system of your

choice, noting user or customer concerns relating to user experience goals.

Deliverables: A short list of user experience goals for one user class of the system of your

choice.

Schedule: A half hour or so (it should be easy by now).

Exercise 10-2: Creating Benchmark Tasks and UX Targets
for Your System

Goal: To gain experience in writing effective benchmark tasks and measurable UX targets.

Activities:

n We have shown you a rather complete set of examples of benchmark tasks and UX

targets for the Ticket Kiosk System. Your job is to do something similar for the system of

your choice.

n Begin by identifying which work roles and user classes you are targeting in evaluation

(brief description is enough).

n Write three or more UX table entries (rows), including your choices for each column.

Have at least two UX targets based on a benchmark task and at least one based on a

questionnaire.

n Create and write up a set of about three benchmark tasks to go with the UX targets in the

table.

n Do NOT make the tasks too easy.

n Make tasks increasingly complex.

n Include some navigation.

n Create tasks that you can later “implement” in your low-fidelity rapid prototype.

898 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

n The expected average performance time for each task should be no more than about

3 minutes, just to keep it short and simple for you during evaluation.

n Include the questionnaire question numbers in the measuring instrument column of

the appropriate UX target.

Cautions and hints:

n Do not spend any time on design in this exercise; there will be time for detailed design in

the next exercise.

n Do not plan to give users any training.

Deliverables:

n Two user benchmark tasks, each on a separate sheet of paper.

n Three or more UX targets entered into a blank UX target table on your laptop or on

paper.

n If you are doing this exercise in a classroom environment, finish up by reading your

benchmark tasks to the class for critique and discussion.

Schedule: Work efficiently and complete in about an hour and a half.

CHAPTER 11 EXERCISES

Exercise11-1: Building a Low-Fidelity Paper Prototype
for Your System

Goal: To obtain experience with rapid construction of a low-fidelity prototype for early

stages of user interaction design and to have a real paper prototype to generate lots of

critical incidents later in your evaluation exercise.

Activities: This should be one of your most fun exercises, but it can also be a lot of work.

n Following the guidelines for paper prototype construction given in Section 11.6.5, build

a paper prototype for your system or product design.

n Make sure that the prototype will support at least the benchmark tasks, descriptions for

which you wrote in the previous exercise.

n Add in some other “decoy” interaction design “features,” widgets, and objects so that the

prototype does not look tailored to just your benchmark tasks.

Hints and cautions:

n It is normal for you to have to do more design work during this exercise, to complete

details that were not fully designed in previous exercises.

n Remember: You are learning the process, not creating a perfect design or prototype.

n Assuming you are doing this as a team: Get everyone on your team involved in drawing,

cutting, taping, and so on, not just one or two people.

n You will be done much faster if everyone pitches in.

899EXERCISES

n This is not art class so do not worry too much about straight lines, exact details, etc.

n Pilot test to be sure it will support your benchmark tasks for evaluation.

Deliverables: A right smart “executable” paper prototype that will support your benchmark

tasks in user experience testing, and your pilot tests passed with flying colors (no

monochromatic flying).

Schedule: Just git ‘er done. It could take several hours, but it is essential for all the exercises

that follow.

CHAPTER 13 EXERCISES

Exercise13-1: Formative UX Inspection of Your System
Goal: Get a little practice in doing a UX inspection.

Activities:

n Unless you have another prototype, use the paper prototype you built in the previous

exercise. If your paper prototype is not suitable for an effective exercise in UX

inspection, select an application or appropriate Website as the target of your inspection.

n Perform a UX inspection as described in Chapter 13.

n If you are working with a team, use the team approach described in Chapter 13.

Deliverables: A list of UX problems identified by your UX inspection.

Schedule: An hour and a half.

CHAPTER 14 EXERCISES

Exercise 14-1: Formative UX Evaluation Preparation
for Your System

Goal: To get some practice in preparation for a simple empirical evaluation.

Activities:

n If you are working with a team, get together with your team.

n Decide roles for team members. Include at least a facilitator and a prototype executor,

plus a quantitative data recorder and one or more critical incident recorders.

n In addition, if you are doing this exercise in a classroom with other teams, assign two

teammembers as participants to trade to another team when you start data collection in

the next exercise.

n The prototype executor should get out the paper prototype you made in Exercise 11-1

and make sure the prototype works without breaking.

900 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

n If you developed a programmed prototype, everything will be the same except that you

will not need an interface executor. You will, instead, need someone to make sure the

prototype hardware and software are set up, installed, and running properly for

evaluation.

n This activity works well for a team of about four. If you have more or fewer members

in your team, it is easy tomake adjustments. If there are only two of you, for example, one

person can be the executor and the other person can record critical incidents and

time the benchmark tasks. If there are four or five of you, the extra people will be

valuable in helping record critical incidents. If you have been working alone on all the

previous exercises, you may want find a couple of other people to help you run the

evaluation. In addition and in any case, you need to recruit two people to serve as

participants to evaluate your prototype.

n Get out the UX target table you made in Exercise 10-2.

n Have at least two benchmark tasks that you created in Exercise 10-2, each written on a

separate piece of paper.

n Assuming you used a questionnaire for subjective data in your evaluation session, get out

copies of the questionnaire, one for each participant you will be using, and circle the

questions you want participants to answer.

n Review your evaluation protocols.

Deliverables: Just have everything just mentioned ready for the next exercise, data

collection.

Schedule: It should not take too long to get ready for evaluation.

CHAPTER 15 EXERCISES

Exercise 15-1: UX Evaluation Data Collection for Your System
Goal: To get a little practice in the data collection part for a very simple formative UX

evaluation using a paper prototype.

Activities: This is perhaps the most fun and most rewarding of all the exercises when you

finally get to see some users in action with your interaction design.

n New team formation:

n This is described in terms of multiple teams in a classroom setting. For other setups,

make appropriate adjustments.

n After all the teams are gathered and sitting around a table, make the switch of

participants with another team.

n You send the two people in the participant role from your team to another team.

Curb the potential confusion here by doing the swap in an orderly circular fashion

among the teams.

901EXERCISES

n You will now have new participants from a different team who are unfamiliar with

your design. These new participants are now permanently on your team, for the

rest of these exercises, including data collection, analysis, and reporting.

n As an alternative, if you do not have multiple teams, try recruiting a couple of

co-workers or friends as participants.

n Sitting together in your newly formed teams, get out your UX target table form,

your benchmark task descriptions, and your questionnaires.

n Dismiss your two participants (the new team members you just got) to the hallway

or other waiting area.

n Data collection:

n Assemble and boot up your prototype, per the instructions in Section 15.3.6.

n Call in your first participant into the “lab,” greet the participant, and explain the

evaluation session.

n Have this first participant perform your first benchmark task for your objective UX

targets.

n Have the participant read the first benchmark task aloud.

n Ask the participant to perform that task while thinking aloud.

n The executor moves prototype parts in response to participant actions.

n The facilitator directs the session and keeps it moving.

n Timer(s) writes down or enters timing and error count data as indicated in UX

targets as the user performs the task (do not count participant’s reading aloud of

task in task timing).

n Everyone else available should be used to take notes on critical incidents and UX

problems.

n Remember the rules about not coaching or anticipating user actions. And the

computer may not speak!

n Have this first participant perform your second benchmark task for your objective UX

targets.

n Have the participant read the second task aloud and perform it while thinking

aloud.

n How much data to collect?

n You need to collect a dozen or more critical incidents in this overall exercise (i.e.,

from both participants doing both benchmark tasks).

n If you do not get at least a half dozen from each participant, continue with that

participant doing exploratory use of your prototype until you get enough critical

incidents.

n For example, have them browse through each screen, looking at each object

(button, menu, etc.), commenting on and giving their opinion about the quality of

the user experience relating to various features.

902 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

n Have this participant complete your questionnaire and then give them their “reward.”

n Keep your first participant as a new member of the rest of the team to help with

observations.

n Bring in the second participant and perform the same session again.

Deliverables: All your data.

Schedule: Complete by end of class (about an hour and a half, if you are efficient).

CHAPTER 16 EXERCISES

Exercise 16-1: UX Data Analysis for Your System
Goal: To get some practice with the analysis part of a very simple formative UX evaluation.

Activities:

n If you are working with a team, get together with your team, including any new

participants you picked up along the way.

n Fill in the UX target table “Observed results” column.

n Together, your team compiles and compares the quantitative results to determine

whether UX targets were met.

n Review your raw critical incident notes and write a UX problem list.

n Organize the UX problem list and perform cost-importance analysis.

n Using a paper cost-importance table or laptop spreadsheet, list a dozen or more UX

problems from critical incidents.

n Assign an importance (to fix) rating to each observed problem.

n Propose solutions (without doing all the work of redesign).

n Group together any related problems and list as single problem.

n Assign cost values (in person-hours) to each solution.

n Compute priority ratios.

n Compile your results:

n Move your “Must fix” problems to the top of your cost-importance table.

n Sort the remaining problems by decreasing priority ratios to determine the priority

rank of UX problems.

n Fill in the cumulative cost column.

n Assume a hypothetical value for available time resources (something to make this

exercise work).

n Draw the cutoff, line of affordability.

n Finalize your “management” decisions (resolution) about which changes to make

now and in the next version.

Deliverables:

n Summary of quantitative results, written in “Observed results” column in your UX target

table form (for comparison with UX targets).

903EXERCISES

n List of raw critical incidents.

n Cost-importance table form containing three UX problems selected as interesting to

present to class or your work group (complete across all three rows).

n Choose someone to give brief a report on your evaluation results.

Schedule: Given the simplicity of the domain, we expect this exercise to take about 30 to

60 minutes.

CHAPTER 17 EXERCISES

Exercise 17-1: Formative Evaluation Reporting
for Your System

Goal: Write a report of the formative UX evaluation you did on the system of your choice.

Activities:

n Report on your informal summative evaluation results using a table showing UX targets,

benchmark tasks, questionnaires, and so on used to gather data, along with target values

and observed values.

n Add brief statements about whether or not each UX target was met.

n Write a full report on a selected subset (about half a dozen) of UX problems found in

the qualitative part of your formative UX evaluation. Follow the guidelines in this

chapter regarding content, tone, and format, being sure to include redesign

proposals for each problem.

n Report on the results of your cost-importance analysis, including problem resolutions,

for all the problems you reported previously and, if appropriate, some others for

context.

Deliverables: Your formative evaluation report.

Schedule: We expect this exercise to take about an hour.

904 THE UX BOOK : PROCESS AND GUIDEL INES FOR ENSURING A QUAL ITY USER EXPER IENCE

Index

Note: Page numbers followed by b indicate boxes, f indicate figures and t indicate tables.

A
Abridged methods

contextual analysis process, 157–159

contextual inquiry process, 120

cost-importance analysis, 589

designer-ability-driven models, 247

design-informing models, 246–248

hybrid of WAAD and other models, 247–248

on-the-fly modeling during interviews, 248

Active learning, 887

Affinity diagrams, 159–160

Affordances

cognitive, 650

characterization, 651–652

role of, 646

use of, 646, 647

concept, 643, 653–654

definition, 644

description, 643

emotional, 660–661

false cognitive

dial marks, power settings, 657, 657f

door sign, 655, 655f

form, insurance company, 656, 656f

misdirection, 657, 657f

radio switch, 656, 656f

Web page links, 656, 656f

functional, 649

physical, 647

sensory, 647–649, 653

role of, 647–648

text legibility, 647–648

summary, 649

types, 644, 649, 652

user-created

adhesive label, 660, 660f

cobbled design modifications, 658

copier darkness settings, 659, 659f

cup-holder artifact, 659, 659f

glass door, 658–659, 658f

physical, 658

road sign, 660, 660f

sidewalk patterns, 657–658

After Scenario Questionnaire (ASQ), 450

Agile SE methods

characteristics

communication, 621

description, 620

goals, 621

practitioners, 621

principle, 621

planning

controlling scope, 623–624

customer stories, 622–623, 622f

story-based, 623, 623f

sprints

acceptance test creation, 624

acceptance testing and deployment, 625

code testing, 625

description, 624

implementation coding, 625

unit code test creation, 624

Alpha and beta testing, 490–491

Amazon’s Kindle™, 308, 325–328, 788

Ambient computing, 331

The American National Standards Institute (ANSI), 598

Apple’s iPad™, 788

Artifact model, 72b

ASQ. See After Scenario Questionnaire

AttrakDiff, questionnaires

administration, 454

alternatives, 457

description, 454

employment, 455

factors, 454

list, 454, 455, 455t

use, 454

variation, 454, 456t

versions, 454

word choices and terminology, 456–457

Automatic UX evaluation method, 492

B
Benchmark tasks

content, construction

ambiguities, 370

ecological validity, 373b

midtask change, intention, 373

parameters, 372

rubrics for special instructions, 373

start and end points, timing, 371–372

task script, 373–374

words, usage, 371

work context and usage-centered wording, 371

degraded modes, 369

description, 366

designer questions, 366–367

design scenarios, 368

engineering judgment, 375

error recovery, 369

initial user performance, 368

navigation, 368

power users, 369

selection, 367

establishing targets, 370

Ticket Kiosk System example

first impression, 374, 375t

initial performance, 374

measuring instrument, 374, 374t

objective, measure, 365t, 374

typing skills, 368

using combinations, 368–369

user tasks, spectrum, 367

Borland’s 3-D Home Architect™, 705

Brainstorming

breakout groups, 280

contextual analysis process, 282

“deep dive” approach, 281–282

description, 280

Kiva, 281, 281f

physical mock-ups, 281, 281b

rules of engagement, 282

sub-teams, 280–281

C
Calendar Management System, 739–740

Choosing process instance

instantiation, 60

mapping project parameters to process parameter,

63–64

process parameters, 63

project parameters, 61–62

Chunking

description, 697

grouping and recoding, 698

phone number and Miller estimate, 698

trick case, 698

CIF. See Common Industry Format

Cognitive affordance

clarity, 719

complete information, 744–745

long labels, 744

consistency

continue/retry, 725

Find dialogue box, Microsoft Word, 729, 729f

Nero Express, 727

906 INDEX

presentation, 716–717, 717f

problems, 730

Select Pay Stub year, 726, 727

View Pay Stub Summary, 726, 726f

controlling complexity

airline departure board, 733, 734f

decomposing, 731

instructions, bewilderment, 731, 731f

layout and spatial grouping, 731

light and call switch, flight, 735

push-button controls, washing machine, 734, 735f

Search button, 733

distinguishability, choices

elimination process, 723

tragic airplane crash, 723

error recovery

feedback, 749

undo actions, 749

error avoidance, 746–748

existence

feed-forward, 710

Microsoft PowerPoint, 710, 710f, 711f

requirements, 708–709

legibility, 714

noticeability

log-in boxes, 714

status lines, 714

users’ attention, 713–714

precise wording, 719–723

presentation complexity, 714–715

sensory needs, 712

timing, presentation

paper towel dispenser, 715, 715f

pasting, 715

user choices and useful defaults

current date, 736

planning events, calendar system, 737

tragic choice, defaults, 736

visibility

invisible, 712

store user, deodorant, 712

Cognitive directness

heater control, car, 743

knob arrangement, cook top, 741

Macromedia Dreamweaver™, 741

natural mapping, 740–741

rotation, graphical object, 741

Cognitive load theory, 699

Common Industry Format (CIF)

reporting formal summative UX evaluation results

ANSI, 598

NIST, 597

requirements, 598

reporting qualitative formative results, 595

Comparative Usability Evaluation (CUE) series, 497

Complex interaction

complex work domain, 66–69

simple work domain, 70–71

Computer-printed paper prototypes, 408

Computer System Usability Questionnaire (CSUQ), 450

Conceptual design

description, 305

domain-complex systems, 305–306

ecological perspective

Amazon Kindle, 308

description, 308

iPods and iTunes, 308–311

emotional perspective

description, 312

designer work flow and connections, 312, 312f

ideation and sketching, 305

interaction perspective

description, 311

Microsoft Outlook, 311–312

use, animation, 311

metaphors (see Metaphors, conceptual design)

screen designs and widgets, 305

Ticket Kiosk System example

communicating and social networking, 314, 316f

communication connection, 314, 315f

early, 314, 314f

feature, 314, 315f

907INDEX

Conceptual design (Continued)

immersion, emotional perspective, 313, 313f

interaction perspective, 316, 317f

Wheel lifecycle template, 299, 300f

Constructing design-informing models

abridged methods

creation, on-the-fly modeling, 248

designer-ability-driven models, 247

hybrid of WAAD and other models,

247–248

selective, 246

barriers, work practice, 185–186, 242–244

contextual inquiry and analysis, 184–185

data, 184

exercises, 6–7, 8–9

extract inputs, 184

model consolidation, 244–245

MUTTS (see Middleburg University Ticket

Transaction Service (MUTTS))

second span bridge (see Second span bridge)

slideshow presentations, 186

software use cases, 248–249

sources, 246

Ticket Kiosk System (see Ticket Kiosk System)

usage models

flow model, 209–215

hierarchical task inventory, 216–219

information object model, 232–235

task interaction models, 219–232

task models, 216

user models

personas, 209

social models, 196–209

work roles, 187–190

Web accessability (see Web accessability)

Wheel lifecycle template, 181, 182f

work environment models

artifact model, 235–238

physical model, 238–242

Contextual analysis

abridged contextual analysis process, 157–159

affinity diagrams, 159–160

data interpretation, 130, 132

exercises, 3–5

flow model and work roles

identification, 133–134

managing complexity, 133

sketching, 134–135

MUTTS

flow model, sketching, 135b

work activity note synthesis, 141b

work role, 134b

raw work activity data, 131

WAAD (see Work activity affinity diagram (WAAD))

Wheel lifecycle template, 129, 130f

work activity notes, creating and managing

anticipated data bins, 143–144

interview and observation, 136

printing, 144

raw user work activity data, 136–137

synthesization, 137–143

work roles, 132

Contextual inquiry

abridged contextual inquiry process, 120

activity theory, 125

application

MUTTS, 94–95

organizational context, 95

Ticket Kiosk System, 95–96

contextual user studies

design and iteration, 124–125

measures, 125

problem, 123–124

cross-cultural user-experience design (see Cross-

cultural user-experience design)

data-driven vs. model-driven inquiry,

121–125

domain complex systems (see Domain complex

systems)

emotional aspects, work practice, 120

ethnography, 126

exercises, 2–3

908 INDEX

existing system/new system, 93–94

goals, 99

MUTTS, user data gathering, 116b

observing and interviewing, 91–93, 92f

participatory design, 127

people’s work practice, 89–90

SnakeLight, 93

system concept statement, 96–98

task analysis/marketing survey, 90–91

Ticket Kiosk System, system concept

statement, 97b

voting process, 88–89

Wheel lifecycle template, 87–88, 88f

work, 91

work activities, 91

work practice, 91

Cooperative user-system task performance

path variations

description, 671

interaction cycle task context instances, 673, 673f

multiuser task, 671–672

secondary tasks and intention shifts, 672

stacking and restoring task context, 672

primary tasks

description, 670

environment, system/users, 671

user-initiated, 671

Cost benefit and business case analysis, UX

casting, net, 841–842

correcting, usability problem, 845

politics and business

champion, 852

credibility, 853–854

engineering, 850

inertial resistance, 853

investment, 850–852

marketing, 852

reward policies, 852

selling, process, 849–850

poor usability, 844–845

ROI, 845–847

savings, 847–848

strategic planning, 848

system development process, 843

techniques, 842

Cost-importance analysis

abridged, 589

cost to fix (see Cost to fix)

cumulative cost, 584

importance to fix, 577–578

line of affordability, 584–586

multiple problem solutions, 588

priorities, emotional impact problems, 589

priority rankings, 582–584

priority ratio, 581–582

problem groups straddling, 576, 589

solutions

photo album problem, 579

Ticket Kiosk System, 579

Cost to fix

actual vs. predicted costs, 581

cost values, 580

Critical incident

data collection mechanisms

comments, 546–547

manual note taking, 547

markers, 546

raw data filtration, 546, 547f

video recording, 546

information collection, 545–546

Critiquing vs. ideation

designers, cross-disciplinary team, 275

implementation constraints, 274–275

low-fidelity prototypes, 275

Cross-cultural user-experience design

cautions, considerations and developments,

105–106

culture models and dimensions, 105

cultures, 104, 106

localization, 104, 105

CSUQ. See Computer System Usability Questionnaire

Cultural conventions, 650–651

909INDEX

D
Data collection techniques

critical incident identification

capture and document, 439

description, 436–437

evaluator’s recognition, 439–440, 439f

formative evaluation, objective, 436

form of, 437

notable indication, 437

observance, 437

optimum time, 440

origins, technique, 438

relevance, 437

self-reporting mechanism, 438–439

software tools, 438

variation, 438

emotional impact

AttrakDiff, questionnaires, 454–458

bio-metrics, 459–460

description, 452–453

indicators, 453

physiological responses, observation, 458–459

self-reported indicators, 453

phenomenological aspects, 460–464

questionnaires (see Questionnaires, UX evaluation)

think-aloud (see Think-aloud technique)

Data-driven inquiry, 107b

Data value formats, 721–723

Design

creative activity, 252

design-thinking, 256–258

engineering, 253–254

human information processing (HIP), 254–256

paradigms, 253–259

ideation (see Ideation)

perspectives

ecological, 261

emotional, 261–264

interaction, 261

phenomenology

HCI, 294, 295

hermeneutics, 295

humanistic studies, 294

method, 294

personal engagement and attachment, 291

presence, 295–296

usage and interaction, 296–297

sketching, 284–291

thinking, 256–258

visual appeal, emotion and usability

alarm management system, 262, 263f

calm computing, 263

mission-critical system, 264f

snap decisions, 262

Design of Everyday Things. See The Design of Everyday

Things

Designer’s mental models

description, 300

ecological perspective

description, 301

thermostat example, 302

emotional perspective, 303

interaction perspective

thermostat example, 302, 303

description, 302

mapping, 300, 301f

Design guidelines, UX

accommodating, user differences, 800–801

anthropomorphism

avoidance, 794–795

direction-finding tasks, 796

feedback, 795

user-computer dialogue, 796

assessment

feedback (see Feedback, interaction cycle)

information displays, 786–789

system response, 773–774

consistency

absolute, 792–793

innovation, 793

structural, 791–792

gratuitous graphics, 799

910 INDEX

GUIs, 693–694

help, 801

human-computer interaction (HCI), 693

human memory

chunking, 697–698

cognitive load, 699

long-term memory, 700

muscle memory, 701–702

recognition vs. recall, 700–701

sensory memory, 697

shortcuts, 701

short-term/working memory, 697

stacking, 699

humor, 793

interaction cycle, parts, 702, 702f

internal and external review, 694

outcomes

automation issues, 770–773

system functionality, 769

system response time, 770

physical actions

help user, 762–768

sensing objects, 761–762

planning

clear system task model, 703–705

efficient task paths, 705–706

progress indicators, 706

transaction completion slips, avoidance, 706–708

psychology principles, 694

scope and universality, 689–693

simplicity

consumer appliances, 789

digital phone system, 790

functionality, 790

machines, more controls, 789

sound and color

blinking red, 797–798

blue, 798

bright colors, 797

chromostereopsis, 798, 799f

text legibility, 799–800

tone and psychological impact, 796

translation

cognitive affordance (see Cognitive affordance)

sensory and cognitive actions, 708

task structure, 751–761

usability principles, VE, 691b

user interfaces, handheld devices

conventional user interfaces, 690

description, 690

user preferences, 800

using and interpreting

bewilderment, 695

consistency, 695–696

errors, 695

simplicity, 696

UAF, 696

Design production

exercises, 12

interaction specifications

defined, 350

multiple, overlapping representation techniques,

352

prototype usage, 351–352

resources, design and iterative refinement, 351

intermediate, 337–339

macro view, lifecycle iterations

conceptual, 336

detailed, 336–337

ideation, 335

intermediate, 336

refinement, 337

maintaining, custom style guide

defined, 348

rules, organizational signature elements,

349–350

Social Security Administration (SSA), 349–350

user interface objects, 349

uses, 348–349

participatory design, 352–356

UX lifecycle process, 333

Wheel lifecycle template, 333, 334f

911INDEX

Design walkthroughs and reviews

description, 469

group, 469

materials, 469–470

practitioner, 470

Detailed design

annotated wireframes, 339

visual comps, 339

Dilbertian HFTAWR (high-frivolity-to-actual-work ratio)

approach, 562–563

Discount UX engineering methods

goals, 498–499

Nielsen and Molich’s original heuristics,

492, 493t

risk management

evaluation errors, mitigation, 499

false negatives, 499–500

false positives, 500

studies, 501

Domain complex systems

complex and esoteric domains, 99–100

customer organization, visit, 99

data collection, 114

emotional impact, 116

goals, 108

observation and interview, task data, 109

phenomenological aspects, 116

process, 111–112

product perspective, 103–106

work roles, 115–116

E
Ecological validity

definition, 375–376

using telephones for, 376

Ticket Kiosk System example, 376b

Embedded computing, 331

Embodied interaction

advantage, 330

cognitive actions, 329–330

description, 328

embodiment, 329

physical mock-ups, 329

Scrabble, 330–331

shape and augment, 330

Emotional impact, data collection techniques

aesthetics and affect

cognitive paradigm, 29

interaction design, 29

processing model, 30

subjective view, 29

symmetrical designs, 29

AttrakDiff, questionnaires (see AttrakDiff,

questionnaires)

bio-metrics

definition, 459

monitoring equipment, 459

polygraph/lie detector, 460

pupillary dilation, 459

centrality, context, 31

description, 452–453

fun, work, 32

indicators, 453

physiological responses, observation

behavioral observations, 458

faceAPI, 459

facial and bodily expressions, 458

limitations, 459

monitoring, 458

reviewing process, 458

software-assisted recognition, 458–459

potential breadth

blood and adrenaline pumping, 28

cross-disciplinary approach, 25–28

social and cultural interactions, 25

software system, 24

standard, expectation/desire, 24–25

self-reported indicators

advantages, 453

dependance, 453

questionnaires, 453

reactions, 453

912 INDEX

think-aloud technique, 453

written diaries/logs describing, 453

Entities, modeling

activity

groups and subgroups, roles, 197

system-related roles, 197

work domain, 197

workplace ambiance, 197

nodes, 210

slideshow presentation social model, 198f

Ethnography

characteristics, 126

contextual inquiry, 126

ethnographic-based approach, 126

Evaluation lab, Bloomberg LP

observation room

description, 517

mobile prototype, 517–518

stakeholders, 518

participant room

formative evaluation session, 517

mobile prototype, evaluation, 518

multi-monitor workstation, 517

Evaluation reporting

exercises, 18

formative

content, 599–600

customer/client, 604

description, 601

format and vocabulary, 605–606

inform and/or influence, management,

603–604

problem report effectiveness,

608–609

project team, 602–603

qualitative data, 609–610

time, 607–608

tone, 606–607

UPA workshop report, 601

UX engineering, 601–602

informal summative results

formative evaluation, 595

product design, 595

participant anonymity, 594–595

qualitative formative results

CIF, 597–599

rapid methods, 597

UX practitioners, 597

quality communication, 593–594

Extracting interaction design requirements

abridged methods

anticipating needs, 179

using the WAAD directly, 178

work activity notes, 179

contextual analysis, 161–162

exercises, 891–892

formal requirements extraction

constraints, 175–176

customers and users, validation, 177

deductive reasons, 165–166

document structure, 169

emotional impact and user experience,

170–171

extrapolation, 171–172

generic structure, 168–169

“hinges”, 166

marketing inputs, 173–175

missing data, 172

preparation, 166

prioritizing, 176–177

resolve organizational, social and personal issues,

customer, 177–178

statements, 167–168

system support needs, 173

terminology consistency, 167

WAAD, 165, 170

gap, 162–163

needs and requirements, 163–165

Ticket Kiosk System

extraction, 173b

statement, 169b

Wheel lifecycle template, 161, 162f

913INDEX

F
Feedback, interaction cycle

clarity, 779–780

completeness, 780–781

consistency, 784–786

existence

database system, 775

Unix operating system, 774–775

precise wording, 780

presentation

complexity, 777

consistency, 778

legibility, 777

medium, 778

noticeability, 776–777

timing, 777–778

visibility, 776

tone, expression, 782

usage centeredness

error-handling routine, 783

Gobbledygook email message, 782f

system-centered “error” message, 783f

user control, 786

Fidelity, prototypes

high

description, 397

use, 397

level of, 395

low

aesthetic quality, 396

description, 396

experience, differences, 396

“kindergarten” activity, 396

paper, 396

medium, 397

Fitts’ law, 764–765, 764b

Formal requirements extraction

constraints

legacy system, 175

MUTTS, 176b

products, 175–176

customers and users, validation, 177

deductive reasoning

design, 165–166

work activity note, WAAD, 165

document structure, Ticket Kiosk System, 169b

emotional impact and user experience, 170–171

extrapolation, 171–172

generic structure, 168–169

“hinges”, 166

marketing inputs, 173–175

missing data, 172

MUTTS, constraints, 176b

preparation, 166

prioritizing, 176–177

social and personal issues, customer,

177–178

statements, 167–168

system support needs, 173

terminology consistency, 167

Ticket Kiosk System, 169b, 173b

work activity data, 165

Formative and informal summative methods

advantages and disadvantages, 494–495

analytic vs. empirical

axe design, 434–435

critical incident, 434b

description, 433–434

emotional impact factors, 435

expert usage, 434

intrinsic methods, 434

payoff and intrinsic approaches, 434

payoff methods, 434

think aloud technique, 434b

UX inspection, 434

classification, dimensions, 432

CUE series, 497

“damaged merchandise”, 496

description, 492–497

dimensions intersection, 435, 435f

effectiveness, 493

evaluators and problems, 494

914 INDEX

interactive software systems, 495

lab-based approach, 494

practical problems, 496

rigorous vs. rapid

description, 433

ecological validity, 433b

expense, 433

quality vs. cost trade-offs, 433

usability inspection methods vs. lab-based

testing, 495

usability metrics, 495–496

Formative (qualitative) data analysis

abridged approach, 575

clarification and amplification, emotional impact

data, 563–564

clean up, raw data, 563

consolidating, merging and grouping, UX problem

data, 562f

consolidation, raw critical incident notes

critical incidents vs. UX problem instances, 565

single UX problem instance, 566b

UX problem instance concept, 565

critical incident, 561b

description, 561

Dilbertian HFTAWR (high-frivolity-to-actual-work

ratio) approach, 562–563

early UX problem data records, 563

exercises, 17–18

individual critical incident descriptions, 564

photo album example, 567

problem instance, 561b

sources, 564

UX problem instances

content, 567–568

data management, 574–575

group records, 571–573

merging into UX problem records,

569–571

project context, 569

Formative reporting

content

cost-importance data, 600

emotional impact problems, 600

individual problem, 599–600

video clips, 600

customer/client, 604

format and vocabulary

evaluation, 605

jargon, 605

precision and specificity, 606

inform and/or influence, management,

603–604

problem report effectiveness

law, 608–609

redesign proposals, 609

usability problem, 609

project team, 602–603

qualitative data, 609–610

time, 607–608

tone

positive approaches, 607

respect feelings, 606–607

UX engineering

concepts, 601–602

persuasion and selling, concept,

602

rapport and empathy, 602

teaching, 602

Formative vs. summative evaluation

description, 429, 430

design, 429

education and curriculum, 429

engineering, informal summative, 432

engineering vs. science

fundamental differences, 431–432

quantitative metrics, 431

validity, 432

informal summative, engineering

design phase, 430

lab-based UX testing sessions, 430

qualitative data, 429b

quantitative data, 429b

915INDEX

G
Gods Must Be Crazy (see The Gods Must Be Crazy)

Green Machine User-Experience Design

behavior-changing process, 327

business data bases, 328

energy use, comparisons, 327

funding, Smart Grid, 326

home-consumer context, 326

mental model and navigation, 328

product purchase, 327

prototypes, 326

Smart Grid data, 326

testing, 328

H
Handheld devices, 690b

Haptics

BMW iDrive, 767

car radio, 768

defined, 763b

microwave, 767

HCI. See Human–computer interaction

HE. See Heuristic evaluation

Heuristic evaluation (HE)

advantages, 473

default practitioner, 472

heuristics, 473

limitations, 478–479

procedure, 474–475

reporting, 475–477

rule-based method, 472

variations

participatory, 477–478

perspective-based usability inspection, 478

problem reporting, 478

UX inspections, 477

walkthroughs, 478

Hierarchical task inventory (HTI)

description, 214b

envisioned task structure model, 219

MUTTS, 217b, 218f

task inventories, 216–217

temporal implications, 217–219

Ticket Kiosk System example, 219b

Horizontal vs. vertical prototypes

depth, 394

description, 393–394, 394f

functionality, 394

product overview, 394

workflow, 394

HTI. See Hierarchical task inventory

Human–computer interaction (HCI)

activity theory, 253

automated cockpit warning systems, 255–256

community, 356

contextual design, 126–127

creativity and innovation, 259

description, 253

designers, 402

design-thinking

architects, 258

car design, 257–258

description, 256–257

iPad, 258

participatory design techniques, 257, 257b

engineering, 253–254

ethnography, 92

frameworks, 258

human information processing (HIP), 254–256

identification, 262

iterative lifecycle, 350

methods, 254

participatory design, 353–354

PICTIVE approach, 356

prototyping tools, 410–411, 425–426

research community, 422–423

utilitarian engineering approach, 258–259

work activity theory, 125b

world-view, 255

Human information processing (HIP) paradigm,

254–256

Human–Machine Interaction Network on Emotions

(HUMAINE) project, 553–554

Human memory limitations

916 INDEX

Calendar Management System example, 739–740

chunking

description, 697

designed, phone number, 698

grouping and recoding, 698

trick case, 698

cognitive load

defined, 699

task closure, 699

command vs. GUI selection interaction styles

recognition vs. recall, 700–701

shortcuts, 701

long-term memory

capacity, 700

hypnosis, 700

learning, 700

muscle memory

“on” and “off”, electrical switch, 701–702

rhythm, 701

sensory memory

persistence, sensory, 697

visual persistence, 697

short-term/working memory

proactive interference, 697

throw-away data, 697

stacking

execution context, 699

large and complex tasks, 699

task performance, 699

Human spirit, UX

connectedness, music, 26–27

disconnection, absorption, 27

serendipity, projects, 27–28

work, spirit, 28

I
Ideation

brainstorming

breakout groups, 280

contextual analysis process, 282

“deep dive” approach, 281–282

description, 280

Kiva, 281, 281f

physical mock-ups, 281, 281b

rules of engagement, 282

sub-teams, 280–281

vs. critiquing

designers, cross-disciplinary team, 275

implementation constraints, 274–275

low-fidelity prototypes, 275

user interface, 276

description, 274

emotional factors, 278

exercises, 9–10

exploration, 274

input bin, 278

Magitti activity-aware leisure guide, 278b

team assembling, 277–278

Ticket Kiosk System

community outreach, 284

emotional impact, 283

features and coverage, 283

ontological artifacts, 282

themes and motifs, 283

ubiquitous locations, 284

work space, set up

individual and group designer, 277, 277f

Kiva, 276–277, 276f

Informal summative (quantitative) data analysis

UX targets

convergence toward quality user experience, 560

descriptive statistics, 557

inferential statistical analyses, 556

iteration, 556

Observed Results column, 557

partial informal quantitative testing results, 557t

Information displays

organization, presentation

complexity control, 787

train passengers example, 787

visual bandwidth

limited horizontal, 788–789, 788f

limited vertical, 788–789, 789f

reading devices, 788

917INDEX

Inspection, UX

description, 470–471

design, 470

inspectors, 471–472

practical approach

co-discovery/team approach, 480

design guidelines/heuristics, 480

emotional impact, 482

evolution, 479–480

feedback and credibility, 479

inspector, role, 481

note-taking and analysis, 483–484

problems, 481, 482

reporting, 484

time and effort, 481

usage-based approach, 480

user-surrogate role, 483

user tasks, 481

tool, 471

Interaction

complex and domain-complex systems,

66–69

phenomenological aspects, 70b

simple and domain-complex systems,

69–70

Interaction cycle

assessment, 684–685, 773–789

concepts, HCI, 664

cooperative user-system task performance,

670–673

defined, core functionality, 683

effectiveness, 683–684

existence

functionality/feature, 684

unwanted automation, 684

gulfs, user and system

description, 665

evaluation, 667

execution, 666–667

hierarchical structure, 676

human user vs. machine, 663

knowledge base, design concept, 663

non-user-interface system functionality, 683

Norman’s stages-of-action model, 664–665,

668–670

outcomes, 768–773

parts, 702

physical actions, 680–683, 761–768

planning, 676–677, 703–708

principles and guidelines, 663

quality, functionality, 684

translation, 678–679, 708–761

UAF, affordances, 685–686

usability problem, 664

user action, 683

UX design, concepts and issues,

664, 675

Interaction Design Association (IxDA), 834

Interactive prototypes

amount, 398

click-through, 398

fully programmed

project team, requirement, 398

proposals, 398–399

real programming language, 399

physical mock-ups

description, 400

fidelity, 400

handheld, 400

hardware, 400

paper-in-device, 401

physicality, 400

power, 401

use, 401

wood block, 400–401

scripted, 398

video animations

animated sketches, 402

description, 402

Wizard of Oz

description, 399

human evaluator, 399

918 INDEX

use, 399, 400

users, unawareness, 399

Intermediate design

application ontology, information objects

graphics-drawing example, 337

Ticket KioskSystem example, 338

communication, 338–339

goal, 337

screen layout and navigational structure, 339

strategies, realization, 337

IxDA. See Interaction Design Association

K
K-YAN project

emotional impact, form, 288, 293f

flip-open mechanism, 288, 292f

ideation sketches, 288, 290f

mid-fidelity exploration sketches,

288, 291f

L
Legacy system, 175b

Lifecycle process

concept

calibration, 48–49

interaction design process, 50

repeatable formula, 49

rigid structure, 50

described, 47b

influences on, 50–53

iterative process, 47b

misbegotten approach, 47–48

UX process template (see Lifecycle template, UX

process)

Web user experience design, 51b

Lifecycle template, UX process

activities (see Process activities)

choosing process instance

instantiation, 60

mapping project parameters to process parameter,

63–64

process parameters, 63

project parameters, 61–62

commercial product perspective, 72

complex interaction

complex work domain, 66–69

simple work domain, 70–71

evaluation activity, 54

fundamental activities involved, 78–79

gradations, 72–73

implementation, 53–54

interface engineering, 75–76

iteration for interaction design refinement,

81–83

lifecycle diagram, ISO 13407 standard, 77f

parallel streams, software and interaction process

activities, 79–81

phases, 76

prototype

horizontal, 56b

local, 56b

T, 56b

vertical, 56b

scope, 75

simple interaction

complex work domain, 69–70

simple work domain, 70–71

sub-activities, 55

system complexity space

low interaction complexity, 65

MUTTS example, 65b

PhotoShop, Lightroom, and Aperture, 65b

work domain complexity, 65, 66

think-aloud technique, 55

universal abstract activity cycle, 53f

usability engineering, 76

Usability Engineering for Bioinformatics, 67b

usability testing, 77–78

user interface team, 73–75

Local prototypes

description, 395

design discussions, 395

919INDEX

Local prototypes (Continued)

dialogue box, 395

use, 395

Local UX evaluation method, 491

M
Mac Mail™ program, 707, 707f

Macromedia Dreamweaver™, 741

Master Document feature, Microsoft Word™, 704

Measuring instruments

benchmark tasks (see Benchmark tasks)

description, 365

initial user performance, 366

time-on-task, 365

user satisfaction questionnaires

description, 376–377

first-impression UX measure, 377, 377t

goals, measures, and measuring instruments,

377, 378t

performance, 377–378

Measuring the usability of multi-media systems

(MUMMS), 450

Mental models

description, 299

designer’s (see Designer’s mental models)

exercises, 10–11

mapping, 301f, 304

role, conceptual design, 304

user’s

cars, 304

comedy curve balls, 304

description, 303

knowledge, 303, 304

mapping, 301f, 303

Norman’s binary switch explanation,

304

thermostat, 303–304

Metaphors, conceptual design

description, 300, 306

ecological perspective, 306

emotional perspective, 307

interaction perspective

components, 307

description, 306

‘desktop’, 307

Macintosh platform, 307

time machine feature, 306–307

typewriter, 306

use, 306

Metrics and targets

abridged approach, 389

baseline level

description, 381

Ticket Kiosk System example,

383b, 384t

description, 361–362

engineering process, 388–389

exercises, 12, 13

measures (see UX measures)

measuring instruments (see Measuring instruments)

metrics (see UX metrics)

observed results, 386

practical tips and cautions

class definitions, 386

measures and levels, 387–388

target level values, 387

trade-offs, 387

usefulness and emotional impact, 388

project context

completeness level, 359–360

creation, 360

evaluation, 359

interaction design process, 360

quantifiable end, 360–361

roots, 361

setting levels

description, 382

formative evaluation sessions,

383–386

problem-solving skills, 383

values, 382

tables, 362, 362t

target level

description, 381

920 INDEX

experience test, 382

performance, 382

quantification, goal, 381

Ticket Kiosk System example, 383b, 385t

Ticket Kiosk System example, 362b

Wheel lifecycle template, 359, 360f

work roles and user classes

measuring instrument, 363–364

Ticket Kiosk System example,

363b, 363t

Middleburg University Ticket Transaction Service

(MUTTS)

bins as inputs, 185b

business process, 95

customers, 117–119

description, 94

essential use case, 231b

flow model, 211b

consolidation, 244b

sketching, 135b

hierarchical task inventory (HTI), 217b

information objects and attributes, 233b

physical model, 241b

social model, 205b

step-by-step task interaction model, 192b

task interaction branching and looping, 228b

usage scenario, 221b

user class, 195b

user data gathering, 116b

work activity note synthesis, 141b

work role, 134b

work roles and sub-roles, 188b

Model-driven inquiry, 107b

Modes

bad mode, 750

email system, 749

good mode, 750

meaning change, user action, 749

MUMMS. See Measuring the usability of multi-media

systems

MUTTS. See Middleburg University Ticket Transaction

Service

N
National Institute of Standards and Technology

(NIST), 597

NDAs. See Non-disclosure agreements

NIST. See National Institute of Standards and

Technology

Non-disclosure agreements (NDAs), 523

Norman’s stages-of-action model

adoption, 664, 665f

business report creation example

print dialogue box, 670

print report, 670

steps, financial status, 669

sub-steps, task decomposition, 669–670

defined, cognitive walkthrough, 665

goals, 664–665

outcomes and system response, 668

partitioning, 668

significance and importance, translation, 668–670

transition, 669f

O
Onion-layers effect, 590

Organizational structure

development organization, 857

human factors engineer, 856

implementation, 858

practitioners, 856

strategic approaches, 857

team interaction, 857

P
Paper prototypes

coding blocker, role, 407–408

computer-printed

description, 408

graphical images, 408

hand–eye feedback loop, 409

OmniGraffle/Microsoft Visio, 408

software tool, 408, 409

stopgap measure, 409

time spend, 409

921INDEX

Paper prototypes (Continued)

construction, approaches

adhesive-backed colored circles, 417, 417f

corners cutting, 415

creative techniques, use, 413

data entry, 416, 416f

decoy user interface objects, 416

drawing, 411

executor, task threads, 417

foam-core board easels, 411, 411f, 412f

formative evaluation exercise, 415

foundation screen, underlying,

411–412, 412f

highlighting object, 413, 415f

machine/scanner, use, 415

materials, set, 410–411

“not yet implemented” message,

415–416, 416f

paper cutouts, 412, 412f, 414, 415f

pilot test, 417

plastic interaction sheets, 413

preferences dialogue box, 412, 413f

pull-down menu, 412, 414f

screen/display, buildup, 414

scrolling, cutting slits, 412–413, 414f

sketching and storyboarding, 415

time management, 410

work faster, 411

description, 407

design reviews and demos, 408

hand-drawn, 408

low fidelity, 407

program, low-fidelity

dead time, 410

execution, 409

run-time, 409

Web page production tool, 410

writing code, 408

Participants

selection

demographic survey, 512

expert, 512–513

lab-based and non-lab-based methods,

511

need and budget establishment,

511–512

number, determination, 513

representative users, 512

sampling, 511

user class attributes, 512

“three to five users” rule (see “Three to five users”

rule)

Participatory design

HCI history and literature, 352

interaction situations, 353

Joint Application Design, 355

PICTIVE2

objective, 354

paper prototyping, 354

UTOPIA, 353–354

project UTOPIA, 355

reciprocal learning, 353

rules, engagement, 355

Scandinavian approach, 356

user participation, 355

Personal information ecosystem (PIE)

computational power, 308–309

definition, 309–310

designing and assessing usability, 310

email management, 310

email programs, 309

equilibrium, 309

information flow, 311

information practices, 310

multiple devices, 309

system architecture, 310

wicked problem, 309–310

workflow, 310

Phenomenological aspects, data collection techniques

diaries

description, 462

digital voice recorder, 463

922 INDEX

mobile phone, 462

verbal reports, 463

voice-mail method, 462–463

direct observation and interviews, 464

goals, 461–462

long-term studies

audio, 461

constant attention, 461

description, 460

inquiry and ethnography, 461

iPod, 461

participants report, 461

studying and evaluating, 460–461

systems and product, 460

timeline, 460

periodical, 463–464

reporting, 463

Photo album problem, cost-importance analysis, 579

Physical actions, interaction cycle

affordance, 680

components, 680

defined, snap-dragging, 681

description, 680

Fitts’ law, 680

haptics and physicality, 682

help user

awkwardness and physical disabilities,

763–764

haptics and physicality, 767–768

manual dexterity and Fitts’ law, 764–765

overshoot errors, avoidance, 765–766

menu choices, 681–682

sensing objects, 761–762

software modification, 681

in UAF

existence, physical affordances, 682

manipulation, UI objects, 682–683

Physical model

creation, 239

description, 238

envision, 242

MUTTS example, 241b, 241f

slideshow presentations, 239b, 240f

PIE. See Personal information ecosystem

Pilot test, 417

Planning, interaction cycle

clear system task model

library information system, 705

Master Document feature, Microsoft WordT, 704

support users, 703

tab reorganization, 704, 704f

concepts, 676

efficient task paths, 705–706

hierarchy, plan entities, 676

progress indicators

task sequencing, 706

Turbo-Tax™, 706

transaction completion slips, avoidance

attachment, forgotten, 707

defined, 706

Gmail reminder, file attachment, 707f

Mac reminder, attach file, 707f

microwave, 707

Ticket Kiosk System example, 706–707

in UAF

goal decomposition, 677

task/step, work flow, 677

use and exploration, 677

user knowledge, 677

user model and high-level system, 677

user work context, environment, 677

Post-study system usability questionnaire

(PSSUQ), 450

Preparation, rigorous empirical evaluation

lab-based and field-based evaluation, 503–504

method and data collection techniques

adaptation, 511

critical incident, think-aloud and co-discovery, 510

emotional impact, 510

goal driven, 510

questionnaires, 510, 511

number of participants, 529–536

923INDEX

Preparation, rigorous empirical evaluation (Continued)

participants

number, determination, 529–536

preparation, 516–528

recruitment, 513–516

selection, 511–513

pilot testing, 528–529

planning

cost-effective decisions and trade-offs, 504

description, 505

goals, 505–506

tasks

benchmark, 508

exploratory free use, 509

unmeasured, 508

user-defined, 509

team roles

evaluation activities, 506

facilitator, 506

practitioners and observers, 506

prototype executor, 506–507

qualitative data collectors, 507

quantitative data collectors, 507

supporting actors, 507

Wheel lifecycle template, 503, 504f

Priority rankings, 582–584, 588

Priority ratio, 581–582

Process activities, UX

analysis, 55

design, 56

evaluation, 56

flow

iteration, 58–59

managing with transition criteria, 57–58

not always orderly, 56–57

lifecycle streams, 60

prototype

horizontal, 56b

local, 56b

T, 56b

vertical, 56b

Prototyping

advantages, 418

aspects, design, 403

breadth and depth, effects,

407, 407f

depth and breadth

choices, approach, 393

horizontal vs. vertical, 393–394

local, 395

“T” prototypes, 394–395

description, 402

dilemma and solution

product version, time, 391–392

Scandinavian origins, 393

significance, 392

traditional development approaches, 392

universality, 392–393

ecological perspective

conceptual design, 404

description, 404b

hallway methodology, 405

IBM’s Olympic Message System, 404

system structure, level, 404

validity, 405b

emotional perspective, 405, 405b

exercises, 14

fidelity (see Fidelity prototypes)

fidelity level and interactivity amount

breadth and depth, effects, 407

description, 402

design perspective, 403–405

risk and cost management, 406–407

stage of progress, 402–403

horizontal, 56b

interaction perspective

computer-printed paper/mock-up, 405

conceptual design, 405

description, 405b

design iteration, 405

wireframes, use, 405

interactivity (see Interactive prototypes)

924 INDEX

local, 56b

paper (see Paper prototypes)

potential pitfalls

buy-in, 418

cooperation, 418

limitations, 419

overwork, 419

project management, 419

selling, 418

risk and cost management

behavior and sequencing, 406

low- vs. high-fidelity, 406, 407t

user interaction design, parts, 406

software tools

autocompletion, 423–424

functional behaviors, 424

HCI research community,

422–423

programming, 423

UIMSs, 423

stage of progress

audience and explaining,

402–403

increase, progression, 403

iteration kinds, 403

T, 56b

transition, product

formative evaluation, 420

interaction design, reuse, 421

investment, 420

keeping, 421

prototype code, 420

recoding, 420

tail, lifecycle, 420

UX and SE collaboration,

421–422

UX team, 422

vertical, 56b

Wheel lifecycle template, 391, 392f

PSSUQ. See Post-study system usability

questionnaire

Q
Qualitative UX data, generation and collection

critical incident

data collection mechanisms,

546–547

information collection, 545–546

lab-based testing, 545

think-aloud data collection, 548

Quantitative UX data, generation and collection

benchmark tasks, 543

objective

online help, 544

“oops” errors, 544–545

timing measurements, 543

user errors, counting, 544

subjective, 545

Quasi-empirical UX evaluation method

data analysis and reporting, 489

experienced practitioners, 487–488

formal protocols and procedures, 487

preparation, 488

session and data collection, 488–489

task driven, 488

Questionnaire for user interface satisfaction (QUIS)

calculation, 446

categories, 445

description, 445

time, 446

Questionnaires, UX evaluation

ASQ, 450

CSUQ, 450

description, 444

hedonic quality evaluation, 450

modification

data collection technique,

450–451

formative evaluation, 452

scale values, 451

semantic differential scales, 451, 451b

SUS, 451

term substitution, 451–452

925INDEX

Questionnaires, UX evaluation (Continued)

“user-friendliness”, 451

warning, 452

Websites, 452

MUMMS, 450

PSSUQ, 450

QUIS (see Questionnaire for user interface

satisfaction (QUIS))

semantic differential scales

assessment, agreement, 445

description, 445

discrete points, 445

SUMI, 450

SUS (see System usability scale (SUS))

traditional usability, 444–445

USE

applications, questions sets, 449, 449t

bottom line, 449

description, 448–449

WAMMI, 450

QUIS. See Questionnaire for user interface satisfaction

R
Rapid iterative testing and evaluation (RITE)

method

collaborative process, 485

data collection, 487

description, 484

problem fixing, 485

procedure

evaluation session, 485–486

follow-up evaluation, 486

practitioner selection and team preparation,

485

problem fixing, 486

Rapid UX evaluation methods

alpha and beta testing, 490–491

automatic, 492

characteristics, 467–468

design walkthroughs and reviews

description, 469

group, 469

guidelines and style guides, 470

materials, 469–470

practitioner, 470

discount UX engineering methods (see Discount

UX engineering methods)

exercises, 14–15

fast-track projects, 467

HE (see Heuristic evaluation (HE))

informal, 468

inspection, 469, 469b

interactive prototype, 468–469

local, 491

quasi-empirical, 487–489

questionnaires, 490

remote, 491

RITE (see Rapid iterative testing and evaluation

(RITE) method)

think-aloud technique, 468–469, 468b

UX inspection

description, 470–471

design, 470

inspectors, 471–472

practical approach, 479–484

tool, 471

Wheel lifecycle template, 467, 468f

Remote UX evaluation method, 491

Requirements. See also Extracting interaction

design requirements

domain-complex systems, 164

generic structure, 168f

legacy system, 175

software engineering traditions, 163–164

usability, 163

WAAD, 178

work role, 177

Return on investment (ROI)

analysis, 845

incremental approach, 847

NYNEX project, 845

usability, 845

926 INDEX

Rigorous empirical evaluation

cost and information extraction, 530

ecological validity

A330 Airbus, 525–526

description, 524, 524b

SSA- Model District Office, 526–527

third age suit, 525

usage/design scenarios, 525

exercises, 15–16

informed consent

data collection, 519

form, 519–521, 522f

permission application, 520

lab and equipment

Bloomberg LP, 516, 517–518

data collection, 516

DRUM, 516–519

novice UX practitioners, 530

paperwork

data collection forms, 523–524

instructions, 521–523

NDAs, 523

questionnaires and surveys, 523

planning room usage, 524

recruitment

co-discovery evaluation, 515

database, 514

incentives and remuneration, 514

management, 515–516

methods and screening, 513–514

subsequent iterations, 516

user participants, 515

rules of thumb, 530–531

sampling, 529

session parameters

full lifecycle iterations, 519

task and session lengths, 519

session work package

benchmark tasks, 528

contents, 527–528

training materials, 524

Ripple model, SE

constraint subsystem, 826–827

environment, 824–825, 825f

project definition subsystem, 826

repository subsystem, 827

software implementation, 825

UX role, 826

ROI. See Return on investment

S
SAM. See Self-Assessment Manikin

SE. See Software engineering

Second span bridge

barrier, 183

models, 182

Self-Assessment Manikin (SAM), 457–458

Sessions running, rigorous empirical evaluation

emotional impact data

nonverbal techniques, 550

questionnaires, 550

think-aloud technique, 548–549

exercises, 16–17

HUMAINE project, 553–554

participants, preliminaries

benchmark tasks, 539

data collection, 539

design and process, 538

paperwork, 538–539

reception room, 537

setup and lab, 538

phenomenological evaluation data

diary-based technique, 550

direct observation and interviews, 551

questionnaires, 551

self-reporting, 550

usage changes, 551–552

voice-mail and per-call payment, 550–551

post-session probing, 552–553

protocol issues and participants

assistance, 541

comfortableness, 541

927INDEX

Sessions running, rigorous empirical evaluation

(Continued)

interaction, 540–541

low-fidelity prototypes, 541–542

partnership cultivation, 540

UX problems, attitude, 539

qualitative UX data

critical incident information and data

collection, 545–547

lab-based testing, 545

think-aloud data collection, 548

quantitative UX data

benchmark tasks, 543

objective, 543–545

subjective, 545

reset, next participant

paper prototype, 553

Web-based evaluation, 553

Wheel lifecycle template, 537, 538f

Shared cultural conventions,

650–651

Simple interaction

complex work domain, 69–70

simple work domain, 70–71

Situated awareness, 332

Sketching, design process

conversation, 285

description, 284

embodied cognition, 286

exercises, 9–10

ideation and design, 285

K-YAN project (see K-YAN project)

language

characteristics, 287–288

designers, 288–290, 289f

Ticket Kiosk System, 287, 288f, 289f

vocabulary, 287

mobile phone example, 285

physical mock-ups

description, 290

rough and finished, 290, 293f, 294f

vs. prototypes, 285–286

supplies, 286–287

Small UpFront Analysis (SUFA)

aim, user stories, 636–637

goals, 636

user interviews and observation, 636

UX

lifecycle process, 634–635

role, planning, 635, 635f

SnakeLight, 93

Social models

commercial product perspective, 208

concerns and perspectives, 199–200

entities (see Entities)

envisioned, 208–209

influences, 200–208

MUTTS example, 205b, 205f

slideshow presentation example

arcs representing influences, 203b

concerns, 200b

entities, 198b

Ticket Kiosk System example, 208b

Social Security Administration (SSA)

policy, 349–350

telephone interviews, 349

Software engineering (SE)

agile development, 819

connections, lifecycles, 821, 822f

developing interactive systems, 830

differences, lifecycles

design usage, 806

UX iteration, 805

UX practitioners, 805

UX roles, 805

functional core, 804

HCI, 811

interaction design, 829

lifecycle, 819

mechanism, communication, 823

organization, locus of influence

business role, 806

928 INDEX

description, 806

design role, 806–807

factors, 807

The Inmates Are Running the Asylum, 808

roles, 808

software/development role, 806

parallel connections, lifecycles, 822–823, 823f

ripple model (see Ripple model, SE)

risk management

parallel connections, lifecycles, 823f, 824

UX and SE lifecycles, 820f, 824

role, interaction design, 827

serial connection, iterative version, 821, 822f

similarities, lifecycles, 805

team members, 828–829

UI (see User Interface (UI))

UI changes, 821

user-interface, 803–804

UX

communication, 812

coordination, 813

dependency and constraint enforcement, 814–817

dependency type, 818

evaluation, 817–818

people, 821

roles, 811

and SE goals, 804–805

synchronization, 813–814

and UX lifecycles, series, 820, 820f

Software usability measurement inventory (SUMI), 450

SSA. See Social Security Administration

Step-by-step task interaction models

barriers, 225, 243t

branching and looping structures, 229f

creation, 225

description, 224

information and needs, 225

MUTTS example, 230f

task and step goals, 224

task interaction model, 224

task triggers, 224

Storyboards

components, 317–318

description, 316

ecological perspective, 318

emotional perspective, 318–321

frame transitions

cognitive affordance, 321b

description, 321

dynamics, interaction, 321

state changes, 322, 324f

value, 321–322

ideation and sketches, 317

interaction perspective, 318

Ticket Kiosk System example

differences, ecological perspective, 319, 319f

purchase, sample sketches, 321, 322f

sequence of sketches, ecological perspective,

318, 318f

three-screen kiosk design, interaction perspective,

320–321

Subjective questionnaire data analysis, 561

SUFA. See Small UpFront Analysis

SUMI. See Software usability measurement inventory

SUS. See System usability scale

System complexity space

low interaction complexity, 65

MUTTS, 65b

PhotoShop, Lightroom and Aperture, 65b

work domain complexity, 65, 66

System usability scale (SUS)

analogy, use, 448

analysis, 448

calculation, 448

description, 447

dimensionality, 447–448

evaluation grade, 448

numerical score, 448

possibilities, 447

questionnaires (see Questionnaires, UX evaluation)

significances, 447

statements, 447

929INDEX

T
Task interaction model, 71b

Task models

task interaction models

design scenarios, 222–223

envisioned, 232

essential use case, 228–232

scenarios use, 219–222

step-by-step (see Step-by-step task interaction

models)

task structure models

envisioned, 219

HTI (see Hierarchical task inventory)

inventory, 216–217

Task structure, interaction cycle

designing, flexibility and efficiency, 751–752

direct manipulation and natural interaction control

adding appointment example, 760

commands, 759

GUIs, 759

physicality, 760, 760b

grouping

hardware store organization, 753

Ticket Kiosk System example, 753

human working memory loads, 751

task thread continuity

description, 753–754

online shopping, 755

Outline view, 755

query screen, 754

“Save As” task, Microsoft Office,

755, 756f

select, item, 757

undoing user work, 757–758

users, control

EndNote™, 759

interaction dialogue and bossy attitude, 758

TCO. See Total cost of ownership

The Design of Everyday Things, 650

The Gods Must Be Crazy, 651

Think-aloud technique

co-discovery

interactive conversation, 443

natural conversation, 443

origin, 443

participant personalities, 443–444

planning, 444

quantitative task performance metrics, 444

significances, 443

time verbalizing statements, 443

description, 440

management, 442

natural, participants, 441–442

retrospective, 442

types, participants, 441

use

analyst and participant, 440

evaluation session, 440

rigorous and rapid empirical methods, 441

“Three to five users” rule

approach and practical outcome, 535–536

assumptions, 534–535

cumulative percentage, problems, 533

detection rates, 532–533

interaction design, 532

marginal added detection and cost–benefit,

533–534

probability function, 531

UX problem detection, 532

Throw-away data, 697

Ticket Kiosk System

constructing design-informing models

conceptual design (see Conceptual design)

design scenario, 222b

envisioned flow model, 215b, 215f

envisioned hierarchical task inventory,

219b

envisioned social model, 208b

envisioned work roles, 190b

ontological elements, 233b

storyboards (see Storyboards)

system concept statement, 97b

930 INDEX

cost-importance analysis, 579, 585t

grouping related problems, 572b

priority ratios, 582b

problem resolutions, 587t

UX benchmark tasks

baseline level values, 383b

benchmark tasks, 374b

ecological validity, 376b

questionnaire, 377b

target level values, 383b

UX goals, 362b

UX measures, 365b

UX metrics, 380b

work role and user class, 363b

Total cost of ownership (TCO), 841

“T” prototypes

description, 394–395

role, 395

Translation, interaction cycle

concepts, 678

description, 678

in UAF

content, meaning, 679

existence, cognitive affordance, 679

presentation, 679

task structure, interaction control, preferences

and efficiency, 679

use, UI objects, 679

U
UAF. See User action framework

Ubiquitous computing, 331

Ubiquitous interaction

ambient intelligence, 5–6

computing

commercial application, 2–3

healthcare rehabilitation, 3

multimodal receptors and sensors, 3

Smart-ITs, 2

wearable computers, 2

desktops, graphical user interfaces and Web, 1

highway signage, 7

human–computer interaction (HCI), 6

implementation technology, 5

quality user experience, 3–5

radio-frequency identification technology, 6

UI. See User interface

UIMSs. See User Interface Management Systems

UIST. See User Interface Software and Technology

Symposium

UPA. See Usability Professionals Association

Usability

computer science

growth, graphics, 46

hardware and software developments, 45

interaction technique, 45

linguistic structure, 45

programming language translation, 44

standardization, 46

User Interface Management Systems (UIMS),

45

computer usage, 7

disastrous system development, 9

disciplines

civil engineering, 37

ergonomics, hardware devices, 37

effects, 20

extensive training, 9

formal methods, 44

human factors and systems engineering

cockpit control layouts, 39

products maintenance, 38

scientific management, 38

testing systems, 40

human work activity and ethnography, 44

intellectual gratification, 8

interaction design, 7

psychology and cognitive science

developmental approach, 41–42

empiricism, 40–41

information processors, 41

interaction design, 41

931INDEX

Usability (Continued)

software engineering

architectural implications, 46

development lifecycles, 46

functional modules, 46

task analysis, 42

theory, 42–44

user experience

expanding concept, quality, 10–11

misconceptions, 10

traditional concept, 9–10

user satisfaction, 11

Usability Engineering for Bioinformatics, 67b

Usability principles, VEs, 691b

Usability Professionals Association (UPA), 833

Usage models

flow model

architecture, 209

creation, 210–213

envisioned, 214–215

MUTTS example, 213f

product perspective, 213–214

slideshow presentations, contextual inquiry,

211b, 212f

work roles, 190b, 190f

information object model, 232–235

task models (see Task models)

Usefulness, satisfaction, and ease of use (USE)

questionnaire, 448–449

User Action Framework (UAF). See also Interaction cycle

advantages

organized and structured usability data, 687

richness, usability problem analysis schemes, 687

usability data reuse, 688

vocabulary and communicate design issue, 686

affordance

interaction cycle, user actions,

686, 686f

sensory and cognitive, 686

users connection, design, 685, 685f

structured knowledge base

completeness, 675

design concept, 674–675

device independent, 674

interaction cycle, 674, 674f

User experience (UX)

broad definition

initial awareness, product, 23

shared design vision, 23

business strategy

goals, increased productivity, 36

instructional bulletin example, 35–36

policy, law, 35–36

coders, 625–626

components

aesthetics, food presentation, 19

minimum errors and frustration, 15–16

nutritional value, 19

controlling scope, 632–633

customer and user representatives, 631

description, 620–625

design beyond technology, 15

domain-complex systems, 619

environment, 619

functionality

hedonic quality, 12

stellar interaction design, 12

usability testing, 12

fuss over usability

field support, 33

software design, 33

sub-standard product, 34

high quality designing, 26b

High-Tech/“Cool”

intrinsic benefactors, 13

loss, enthusiasm, 14

low-end model, 14–15

Microsoft software packaging design, 13, 13f

Vista’s gratuitous redesign, 13–14

hotcakes, 34–35

ideation, design, 626

interaction and usage context, 21, 21f

932 INDEX

lifecycle aspects, 620–622, 622f

marketing department, 34

paradigm shift

customer, 632

traditional UX process, 631

problems, anticipate, 633

productivity-enhancing tools, 11

prototype, 810

qualitative data, 20

role, branding and corporate culture

emotional responses, 22

interaction design, 23

spectacular design, 22

SE

approaches, 620

characteristics, 620–622

description, 620–625

lifecycle aspects, 620–622

planning, 622–624

prototypes, 810

requirement, 811

roles, 809, 810

sprints, 624–625

synthesized approach, integrating UX

communication, 642

counterpart activities, 637, 637f

customers and users, 641

design partners, 638

feedback, value, 640–641

goal, 641

impact, 642

planning, iterations, 641–642

practitioners, 638

prototype integration, 640

prototyping and UX evaluation, 640

role, 637

and SE activities, 638

style guides, 642

SUFA, 634–637

user-centered design techniques, 634

UX and SE work flow, 638, 639f

usage context, 19

UX component, 630–631

UX lifecycle, 626

User experience (UX) work

administrative preparation

commitment, 834–835

UX lab, 835

UX leadership establishment, 835

video clips, managers, 835–836

agile methods, 860

analytics rise, 861

cost-justifying

articles and books, 840

benefit and business case analysis,

841–848

cutting costs, 841

human factors, 854–855

legacy systems, 858–859

organizational structure, 855–858

transition, 859–861

description, 831

design project, 837

evaluation session, 838

formative evaluation

description, 837b

prototype, 837

practitioner, 838–839

professionalism, 839–840

professional preparation

apprentice, 831

consulting help, 832

IxDA, 834

portfolio, 834

training, project team members, 831–832

UIST, 833–834

UPA, 833

UX activities, 833

UX design, 832

proliferation, platforms, 860

technical preparation

personalize and actualize, process, 836

933INDEX

User experience (UX) work (Continued)

practice, contextual inquiry and analysis, 836

UX activities, 836

UX lab, 836–837

techniques, 837

users observations, 838

User interaction

software, 818

software design and implementation, 818, 818f

software requirements, 819

UX lifecycle, 819

User interface (UI)

graphical, 1

objects, 349

team, 73–75

User Interface Management Systems (UIMSs),

423

User Interface Software and Technology Symposium

(UIST), 833–834

User models

social model (see Social models)

user classes

experience-based characteristics, 194–195

knowledge and skills-based characteristics, 191

physiological characteristics, 192–194

user personas, 209

work roles

envisioned, 189–190

mediates, 187–189

relationship, 190

sub-roles, 187

User personas

candidate, identification, 268

characteristics

commercial products/systems, designing, 270

memorability, 270

relevance and believability, 270

richness, 270

work role, 271

Cooper’s in-flight entertainment system,

272–274

creation mechanics, 269–270

description, 264–274

ecstatic customers, 266–267

edge cases and breadth, 267

entertainment events, 272b

functionality and flexibility, design, 266

goal-based consolidation, 268

goals for design, 271

selection, primary, 269

stories, 271

usage, design, 271–272

work role, 268

User’s behavior

Amazon Kindle™ device, 325–328

bringing carts, 325

domain, airport baggage, 325

idea, design, 325

slanty design, 324–325

sloped reading desks, 325

User’s mental models. See Mental models

UX. See User experience

UX evaluation

architect designer, 618

data collection techniques

critical incident identification, 436–440

emotional impact, 452–460

phenomenological aspects, 460–464

questionnaires, 444–452

think-aloud, 440–444

data, types

description, 435–436

objective vs. subjective, 436

quantitative vs. qualitative, 436

description, 611

design concepts, 615

emotional impact and phenomenological

aspects, 616

flexibility

goals, 616

quantitative and qualitative data, 617

formative and informal summative methods

analytic vs. empirical, 433–435

classification, dimensions, 432

dimensions intersection, 435

rigorous vs. rapid, 433

934 INDEX

formative results, variations

detection rates, problems, 465

evaluator effect, 464

inspection methods, 465

lab-based testing, 465

limitations, 465

metal detector, 465

screen/Web page, 465

formative vs. summative

description, 429, 430

design, 429

education and curriculum, 429

engineering, informal summative, 432

engineering vs. science, 431–432

informal, 430

and informal summative, engineering,

430–431

qualitative data, 429b

quantitative data, 429b

goals, 611

in situ vs. user reflections, 615–616

lifecycle, 618

measurability

productivity/ease, 428

questionnaires, 428

teaching and learning, 427–428

methods

design representations stages, 613, 613t

hybrid approaches, 614

inspection, 613–614

lab-based test, 612

prototypes, 613, 614

resources, 612

process, 612, 617

prototype, 427

testing, 428–429

Wheel lifecycle template, 427

UX measures

characteristics, 364

description, 364

long-term performance, 364

performance, initial, 364

quantitative metrics, 364

targets, 364

Ticket Kiosk System example, 365b, 365t

user performance requirements, 365

UX metrics

characteristics, 379

description, 378–379

frustration/satisfaction, 379

numeric average, 379

performance trade-offs, 379–380

project context, 359–361

roots, 361

Ticket Kiosk System example, 380b, 380t

UX problem instances

analysis, 573

content, 567–568

as feedback to process improvement,

590–591

group records, 571–573

merging into UX problem records

find and merge, 569–570

records creation, 570–571

project context, 569

V
Verbal instruments, 457

Verbal protocol, 440–444

W
WAAD. See Work Activity Affinity Diagram

WAMMI. See Website analysis and measurement

inventory

WCAG. See Web Content Accessibility Guidelines

Web accessability

government Web sites, 194

impairments, 193

people, disabilities, 192–193

policy changing, 193

WCAG 1.0 guidelines influence, 193

Web Content Accessibility Guidelines (WCAG),

193

Website analysis and measurement inventory

(WAMMI), 450

935INDEX

Web User Experience Design

conceptual model design, 52

detailed UX design, 53

information architecture design, 52

page design standards design, 52

Wheel lifecycle template, 503, 504f. See also Lifecycle

template, UX process

Wireframes

building

drawing/word processing software, 345

information architecture, 345

windows/container elements, 346

workflow, 345–346

defined, 340

drawing aspects, 340–341

elaboration, conceptual design and layout,

342, 342f

high-level conceptual design, 341–342, 341f

layers, 346–347

path, 340

prototypes, 346

sketchy

conventional drawing tools, 347

description, 347

strong community, 347

uses

feedback, potential users and stakeholders, 344

hyperlinking capabilities, deck, 344

interaction design specifications, 344

Wizard of Oz

description, 399

human evaluator, 399

prototypes (see Interactive prototypes)

use, 399, 400

users, unawareness, 399

Work Activity Affinity Diagram (WAAD)

builds, 144

clusters, 148–149

colors of label, 152

consolidation and communication, 155–157

data ownership, 151

elimination, 179

grouping groups, 153

growing clusters, 147

hands of analysts, 151

hierarchical and nonhierarchical relationships,

154–155

hierarchical structure, 185

hybrid, 247–248

labeling groups, 152–153

mind-sets, 146–147

monitoring note groups, 151–152

MUTTS example, 171

number of levels, 153

process, 170

and requirements, 183

set rules, 145–146

source node ID, 168–169

speed, 150

team members, 145

use, 178

user statements, 171

work activity note groups, 150

work roles, 147–148

Work activity data, domain-complex system

analyst and designer ideas, 113

complex and esoteric domains, 99–100

contextual data “bins”, creation,

106–107

customer and user people, 100–101

customer organization, visit, 99

data collection, 114

description, 99b

designers create, 112

design ideas, 113

emotional impact, 116

goals, 108

group interview, 103

“key” people, 101–102

note taking, 110

numbering system, use, 110–111

observation and interview, task data, 109

partnerships, users, 108

phenomenological aspects, 116

process, 111–112

product perspective, 103–106

936 INDEX

real users, 102

right conditions, 102–103

team, 100

trust and rapport, 108

video recording, 109–110

visits, 107

work artifacts, collection, 114

work roles, 115–116

Work activity notes

creating and managing

anticipated data bins, 143–144

interview and observation, 136

prints, 144

raw user work activity data, 136–137

synthesization, 137–143

groups, 150

mind-sets, work activity notes, 146–147

Work activity theory, 125b, 355

Work environment models

artifact

construction, 237–238

restaurant, 236b, 236f

slideshow presentations, 238b

work products, 235–237

physical

creation, 239

description, 238

envision, 242

MUTTS, 241b

slideshow presentations, 239b

937INDEX

Intentionally left as blank

