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ABSTRACT

The combination of the time-discrete property of digital signals together with the commonly employed definition
of the discrete Fourier transform (DFT) can cause ambiguity when interpreting magnitude spectra with respect to
the physical unit of the signal under consideration. Standardized scaling of spectra increases the comparability of
frequency-domain data that are published in scientific articles or data sheets of commercial products. We present
and discuss in this tutorial a collection of the most relevant scaling options for DFT spectra to yield amplitude
spectra, power spectra, and power density spectra, and we illustrate how an implied physical unit of the underlying
signal is reflected by the magnitude of the spectrum. The tutorial is accompanied by Matlab/Octave scripts that

demonstrate the different cases.
1 Introduction

The Fourier transform (FT) is one of the most com-
mon mathematical operations in acoustics and audio.
Definitions for continuous signals (CFT) as well as
for discrete signals (DFT) exist. When speaking of a
discrete signal, we refer to a signal that exhibits a de-
pendency on a discrete variable such as time or space.
We assume the instantaneous amplitude of the signal
to be known with infinite accuracy.

Discrete signals require a somewhat different treatment
than continuous ones because discrete signals are not
physical. One aspect with which this becomes evi-
dent is interpreting the magnitude of the spectrum of
a discrete signal, which is greatly facilitated when the
spectrum is scaled. Although the scaling methods that
we present here are widely known, we are not aware of

a compact resource that summarizes the important in-
formation in an educational manner. This tutorial aims
at filling this gap. Our treatment will be simplifying
in a latent manner in the sense that we leave out cer-
tain less tangible details of the matter and focus on the
fundamental concepts. We refer the reader to the refer-
ences based on which we compiled this tutorial [1] [2,
Sec. 4.2] [3, Ch. 4] [4, Ch. 6] and to the supplementary
materials that we provide [5]. For ease of compactness,
we omit stating proofs.

After a brief excursion to the CFT in Sec. 2, scaling
options for the DFT are presented in Sec. 3.1 and 3.2.
Sec. 3.3 introduces the concept single-sided spectra,
which the scaling approach requires to produce a repre-
sentation of the spectrum that can be interpreted con-
veniently. Examples are presented. Further aspects are
discussed in Sec. 4 and 5.
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2 The Continuous Fourier Transform

We assume the following definition of the CFT:
X (o) :/ x(t) e 1 ¥dr (1)

x(t) is a purely real signal that is dependent on time,
o = 27nf is the angular frequency, f is the frequency
in Hz =s~!, and ¢ is time in 5. X(®) is termed the
spectrum of x(r). Note that above example represents a
CFT over time. CFT over space exists, too [6].

Let us assume that x() in (1) represents a microphone
signal in V. In terms of the units, the complex expo-
nential is dimensionless (i.e., it has unit 1, or no unit
in other words), and it is easy to show that integration
over ¢ results in multiplying with s, the unit of . The
spectrum X (@) is therefore given in the unit of

v

X(@)]=V-s= .

(@)
X () therefore represents an amplitude density, i.e. am-
plitude per frequency interval.

3 The Discrete Fourier Transform

Interpretation of the spectrum of the DFT in terms of
the units is not as straightforward as with the CFT.
We assume the following definition of the DFT in this
tutorial:

21k,

N-1 )
X(k)=Y x(n)e N 3)
n=0

x(n) is a signal that is dependent on the integer time
index n. One also speaks of x(n) as the signal at rap
n. k is the integer frequency index also known as bin.
Other definitions exist that differ only with respect to a
normalization constant and/or the sign of the exponent.
Eq. (3) appears to be the most widely used definition
of the DFT and is also used by MATLAB and Python.

3.1 Scaling of DFT Spectra of Discrete Tones

A continuous signal x(¢) that is composed of discrete
tones is characterized primarily by the amplitude and
phase of each of the tones. A first property of X (k) that
we notice is that |X (k)| is directly proportional to N,
which is undesired in most situations (cf. Fig. 1). It is

preferable to scale the spectrum such that the ampli-
tudes of said tones are apparent. Compensating for the
total number of samples as

X(k) = <X (k) )

yields an amplitude spectrum, i.e. a spectrum X (o)
whose implied unit! is the implied unit of x(n). Refer
to Fig. 2 and 3 in Sec. 3.3 for examples of amplitude
spectra.
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Fig. 1: |X (k)| of a sine wave of frequency f = 1000 Hz
and with amplitude A = 1 for N = 1-10° (left)
and N = 2-10° (right)®>. The horizontal axis
was converted from bin index k to frequency
in Hz as explained in Appendix A.

The square of this spectrum constitutes a power spec-
trum,

>l

W =RK@P = XEOF O

the values of which are directly proportional to the
power in each bin k 3. This means that the power of
each of the discrete tones in a signal is represented by
X (k) (if the energy of each discrete tone is confined to
one bin). Assuming the implied unit of x(¢) is V, then

the implied unit of X (k) is V2.

'We speak of an implied unit as, strictly speaking, discrete signals
do not have a physical unit. If x(n) is the discrete representation of
a physical signal x(¢), then we consider [x(¢)], the unit of x(), the
implied unit of x(n).

2Note that magnitude spectra are typically plotted on a loga-
rithmic scale, i.e. 20log;|X (k)| when representing amplitude or
10log;( |X (k)| when representing power or energy. We chose a lin-
ear scale here for ease of demonstration.

3With electrical signals, the power P is obtained as P = UZ/R,
with U being the effective (RMS) voltage and R being a resistance.
The RMS spectrum Xgyms (k) is defined in (10), and its square is

directly proportional to X (k) via (8).
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3.2 Scaling of DFT Spectra of Broadband
Signals

As we will demonstrate in Sec. 3.3, for a continuous sig-
nal x(¢) that can be described as a broadband stochastic
signal of some frequency distribution and power rather
than an amplitude, it can be favorable to adapt the scal-
ing.
The most important alternative to amplitude and power
spectra is the power spectral density (PSD) or power
density spectrum
() = XX = 5 X)L = -
s Js IsN
with the implied unit V2/Hz. The PSD is the power
spectrum (5) divided by the frequency resolution f;/N.
Consider a continuous broadband signal that is sampled
at different sample rates but with the same number of
samples. At a lower sample rate, each bin represents a
narrower frequency band so that the magnitude of the
power spectrum will be lower. The PSD compensates
for this.

>l

X(K)* ()

It is also possible to create an amplitude density spec-
trum like (1). However, the usefulness of this with
discrete signals is not obvious.

3.3 Single-Sided and Double-Sided Spectra

When computing X (k) in (3) for a sufficient range of
k, one finds that X (k) is periodic with a period equal
to the length N of the signal x(n). When x(n) is purely
real — as it is the case with most audio-related scenarios
— then X (k) exhibits certain symmetries with respect
to k that allow for concluding that some of the values
of X (k) inside one period are redundant and may be
removed from the representation.

It is helpful in many situations — such as the context of
this paper — to convert the (symmetric) double-sided
spectrum, i.e., X (k) for a given range of length N of
k to a single-sided spectrum Xgg (k) that contains only
non-redundant values. To account for the change of
representation through omitting non-redundant values,
we multiply all values of X (k) that represent a pair of a
value of X (k) as well as a redundant value by 2.

Let us assume in the following a spectrum X (k) of a
purely-real signal x(n) of even length N. The symmetry
is summarized as

X(K) = X(=k)* VO<k< % %

The asterisk * denotes complex conjugation. The di-
rect current (DC) bin (k = 0) and the bin at k = N/2,
i.e., the bin that corresponds to the Nyquist frequency
(cf. Appendix A), are purely real and unique.

We therefore define the single-sided spectrum Xsg (k)
as

X(k) Vk=0
Xss(k)=<2-X(k) VO<k<% . ®)
X(k) Vk=1%

Note that for odd N, all bins other than kK = 0 have to be
multiplied with 2. The single-sided representations of
X (k), X(k), X (k), and X (k) are obtained equivalently
to (8).

To highlight the usefulness of the single-sided repre-
sentation, Fig. 2 depicts the single-sided amplitude
spectrum |Xss (k)| (cf. (4)) of a signal x(n) that rep-
resents a pure sine wave with amplitude 1 V and an
amplitude offset (DC) of 1 V. The amplitude of the sine
wave as well as and the DC can be directly deduced
from |Xgs (k)|.
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Fig. 2: Illustration of single-sided amplitude spectra.
The upper plot depicts x(n), a sine wave of
frequency f = 1000 Hz, with amplitude A =
1V, and a DC of 1 V. The lower plot depicts

Xss(k)|.

However, the picture is very different when interpreting
amplitude spectra of broadband signals as illustrated in
Fig. 3. The spectrum of a sine wave with additive noise
is depicted for two different lengths N of the DFT. The
magnitude of the sine wave is independent of N while
the magnitude of the noise changes with N.

When the analysis of the noise in the signal from Fig. 3
is of interest, a power density scaling is more favorable.
Fig. 4 presents the single-sided power density spectrum
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Fig. 3: Single-sided amplitude spectra [Xss(k)| on a
logarithmic scale of a sine of amplitude 1 and
implied unit V with additive white noise. f; =
100 kHz. Left: N =2-10°. Right: N =2/8.
10°

Xgg (k) of the signal from Fig. 3 for different sampling
frequencies fs and different lengths N. Contrary to
the amplitude spectrum in Fig. 3, the magnitude of the
noise is independent of f; and N. However, the magni-
tude of the discrete tone changes. This is a fundamental
dilemma that cannot be avoided. The reason for this is
that the concept of a spectral density is not meaningful
for discrete tones (and the concept of a spectral ampli-
tude is most of the times not meaningful for broadband
signals).
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Fig. 4: Single-sided power spectral density [X¢g(k)| of
the signal from Fig. 3 for different sampling fre-
quencies f; and lengths N. Left: f; = 100 kHz,
N =25000. Right: f; =12.5 kHz, N = 12500.

Note that while X(k) = [X(k)|*> (Eq. (5)) holds for
double-sided power spectra, this relation reads

%‘Yss(kﬂz VO <k < %

X 9
Xss(k)[> Vk=0,k=5% (€))

Xss(k) = {

for single-sided spectra (and similarly for the PSD).
This can be interpreted in terms of the crest factor of
sine waves of v/2, i.e., the ratio of maximum value (in
the case of sine waves the amplitude) to root-mean-
square (RMS, cf. Sec. B). For 0 < k < %, the RMS
of the signal at each bin is obtained by dividing the
magnitude of the amplitude spectrum by /2 as the
basis functions of the DFT may be interpreted as sine
waves:

%Yss(k) V0 <k < %

_ (10
Xss(k) Vk=0,k=1%

Xrwms (k) = {

We term Xrms(k) RMS spectrum. Tt represents the
RMS amplitudes of the discrete tones in the signal, and
Xss(k) = |Xrms (k)| holds. A similar definition can
be established for an RMS density spectrum X gy (k).
Note that RMS-spectra are inherently single sided and
have no equivalent double-sided representation.

4 Windowing

It is common in spectral analysis of discrete signals
to apply a window w(n) to the signal before the DFT
in (3). This needs to be taken into account in the scaling
of the spectra, which has be performed differently for
tonal signals as in Sec. 3.1 and for broadband signals
as in Sec. 3.2:

— 1

XW(k) = 7znw(n)xw(k) (11)
— _ 1 2

Xulk) = 1w % ! (12
K0 = o M0P 0

where X,, (k) is the DFT of x(n) - w(n). Simply put,
the factors N in (4) and (5) are replaced by the sum
Y., w(n) of the window samples, and the factor N in the
last equality in (6) is replaced by the sum ¥, w?(n) of
the squared window samples. Eq. (11) simplifies to (4)
for the case of w(n) = 1, (12) to (5), and (13) to (6).

5 Other Remarks
A complex number z may be represented either as real
and imaginary parts R{z} and 3{z} or as magnitude

|z| and phase /z as

2= R{z} +iS{z} = || €< (14)
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Since the complex exponential is dimensionless, R{z},
3{z}, and |z| carry the same physical unit that is deter-
mined from the type of spectrum that z is part of.

The transfer function H(k) of a system can be rep-
resented as the ratio of output and input spectra as
H(k) =Y(k)/X (k). Any scaling of Y (k) and X (k) will
cancel out. Regarding the units, [H (k)] = [Y (k)] /[X (k)]
holds so that H (k) is dimensionless if [Y (k)] = [X (k)].
Similar considerations hold of the impulse response.
Note that the magnitude of the unscaled spectrum of
an impulse with amplitude 1 is always 1 independent
of N.

6 Conclusions

The combination of scaling and the single-sided rep-
resentation of the DFT spectra of purely real signals
allow for spectral representations like amplitude spec-
tra, power spectra, and power density spectra of discrete
signals that can be conveniently interpreted in terms of
the implied physical units. Different scaling is required
for discrete tones and for stochastic signals to make
the scaled magnitude spectrum of one of the two signal
types independent of the length of the Fourier transform
and the sampling frequency. This causes a fundamen-
tal dilemma when analysing signals that contain both
types of elementary signals. We provide supplementary
material to this tutorial online [5], where we illustrate,
amongst other things, how the signal-to-noise ratio can
be deduced from scaled spectra.

APPENDICES

A The Relation Between Bin Index and
Frequency

When taking the into account with what frequency fs a
previously time-continuous signal was sampled, then it
is possible to relate the bin index k in (3) to a frequency
f(k) in Hz that represents the center frequency of the
bin as

f(k)z%fs VO<k<N/2. (15)

Eq. (15) was used in all figures in this paper that depict
spectra to express the horizontal axis in Hz.

B Root Mean Square

The RMS xgryms of a discrete time domain signal x(n)
is given by

1 N—-1

XRMS = N Z |x(n)|2 . (16)
n=0

Inserting Parseval’s theorem given by

1 N—-1

N—1
Y P =5 ¥ X (k) (17
n=0 k=0

into (16) allows for computing the RMS from the spec-
trum X (k) as

1 N—1
— = 2
XRMS N & X (k)J> . (18)
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