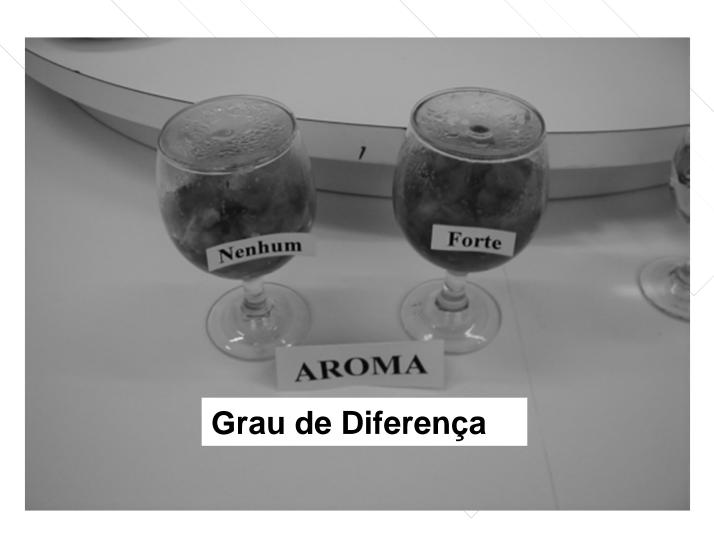
TESTES DISCRIMINATIVOS

- Objetivo: verificar se há diferença entre 2 ou mais amostras
- Triangular
- Duo-Trio
- Comparação pareada
- Ordenação
- Diferença do Controle
- Escalas

TESTE DE DIFERENÇA DO CONTROLE

- Verifica se existe diferença entre várias amostras e uma amostra Controle/Padrão
- Estima o grau da diferença, se ela existir
- Provador recebe uma amostra Padrão/Controle e várias amostras codificadas
- Provador é solicitado a avaliar o grau da diferença entre o padrão e as amostras codificadas usando uma escala:


ESCALA DE DIFERENÇA DO CONTROLE

```
0 nenhuma diferença do Controle
1
2 ligeiramente diferente do Controle
3
4 moderadamente diferente do Controle
5
6 muito diferente do Controle
7
8 extremamente diferente do Controle
```

TESTE DE DIFERENÇA DO CONTROLE: Equipe

- Equipe sensorial: 12 a 15 provadores e 2 ou 3 repetições
- Provadores selecionados com base em poder discriminativo
- Provadores podem ser treinados com amostras representativas dos extremos e meio da escala :
 - 0 nenhuma diferença do Controle
 - 4= moderadamente diferente do Controle
 - 8= extremamente diferente do Controle

TESTE DE DIFERENÇA DO CONTROLE: Treinamento

TESTE DE DIFERENÇA DO CONTROLE: Lembrar

■ Nunca se esquecer que:

 A própria amostra Padrão é introduzida codificada junto com as demais amostras codificadas para que se possa eliminar o erro psicológico inerente a este teste.

TESTE DE DIFERENÇA DO CONTROLE: Exemplo

Um teste de Diferença do Controle foi aplicado para verificar se "snacks" produzidos por duas filiais recém inauguradas, diferiam de "snacks" produzidos pela matriz de uma indústria alimentícia.

Vinte e quatro provadores avaliaram as amostras utilizando a Ficha Anexa. Os resultados são expressos a seguir. Qual a conclusão obtida?

TESTE DE DIFERENÇA DO CONTROLE: Exemplo

Nome: Data
Você está recebendo uma amostra Controle (C) e 3 amostras
codificadas. Prove a amostra padrão e em seguida, prove
cada uma das amostras codificadas e avalie na escala
abaixo, o quanto cada amostra codificada difere, em termos
globais, do amostra Controle (C).
0 = nenhuma diferença do Controle
2
3
4
5
6
7
8
9 = extremamente diferente do Controle
Amostra Grau de Diferença

Tabela de Resultados do Teste de Diferença do Controle entre snacks da matriz e duas filiais:

Provadores	Matriz	Filial A	Filial B	Total/Prov.
1	2	1	6	9
2	0	1 3	7	10
3	1	2	5	8
4	1	3	7	\11
5	0	3	6	9
1 2 3 4 5 6		2	6	10
	3	1	6	10
8	2	3	6	11
7 8 9	2 3 2 2 3	2 3 3 2 1 3 2 4	6	10
10	3	4	6	13
11	1	2	7	10
12	$\overline{0}$	$\overline{1}$	7	8
13	3	$\overline{1}$	4	8
14	0	$\bar{2}$	8	10
15	0	$\overline{0}$	6	6
16	$\ddot{0}$	$\dot{1}$	7	8
17	ľ	$\bar{1}$	7	9
18	$\bar{3}$	4	6	13
19	ĭ	1	9	11
20	$\bar{0}$	$\bar{3}$	6	9
$\frac{20}{21}$	Ŏ	1	7	8
$\frac{22}{22}$	ľ	$\overline{2}$	6	9
23	$\overline{2}$	$\bar{1}$	4	8 9 7
24	1	$\overline{1}$	6	8
Total/Am.	29	45	152	8 226
Média/Am.	1.21	1.88	6.33	

TABELA N° 7
Limites unilaterais de "F" ao nível de 5% de probabilidade para o caso de F > 1. n1 = grau de liberdade da amostra ou provador. n2 = grau de liberdade do resíduo.

n1	1	2	3	4	5	6	8	12	24	∞
1	161.4	199.5	215.7	224.6	230.2	234.0	238.9	243.9	249.0	254.3
2	18.51	19.00	19.16	19.25	19.30	19.33	19.37	19.41	19.45	19.50
3	10.13	9.55	9.28	9:12	9.01	8.94	8.84	8.74	8.64	8.53
4	7.71	6.94	6.59	6.39	6.26	6.16	6.04	5.91	5.77	5.63
. 5	6.61	5.79	5.41	5.19	5.05	4.95	4.82	4.68	4.53	4.36
6	5.99	5.14	4.76	4.53	4.39	4.28	4.15	4.00	3.84	3.67
7	5.59	4.74	4.35	4.12	3.97	3.87	3.73	3.57	3.41	3.23
8	5.32	4.46	4.07	3.84	3.69	3.58	3.44	3.28	3.12	2.93
9	5.12	4.26	3.86	3.63	3.48	3.37	3.23	3.07	2.90	2.71
. 10	4.96	4.10	3.71	3.48	3.33	3.22	3.07	2.91	2.74	2.54
11	4.84	3.98	3.59	3.36	3.20	3.09	2.95	2.79	2.61	2.40
12	4.75	3.88	3.49	3.26	3.11	3.00	2.85	2.69	2.50	2.30
13	4.67	3.80	3.41	3.18	3.02	2.92	2.77	2.60	2.42	2.21
14	4.60	3.74	3.34	3.11	2.96	2.85	2.70	2.53	2.35	2.13
15	4.54	3.68	3.29	3.06	2.90	2.79	2.64	2.48	2.29	2.07
16	4.49	3.63	3.24	3.01	2.85	2.74	2.59	2.42	2.24	2.01
17	4.45	3.59	3.20	2.96	2.81	2.70	2.55	2.38	2.19	1.96
18	4.41	3.55	3.16	2.93	2.77	2.66	2.51	2.34	2.15	1.92
19	4.38	3.52	3.13	2.90	2.74	2.63	2.48	2.31	2.11	1.88
20	4.35	3.49	3.10	2.87	2.71	2.60	2.45	2.28	2.08	1.84
21	4.32	3.47	3.07	2.84	2.68	2.57	2.42	2.25	2.05	1.81
22	4.30	3.44	3.05	2.82	2.66	2.55	2.40	2.23	2.03	1.78
23	4.28	3.42	3.03	2.80	2.64	2.53	2.38	2.20	2.00	1.76
24	4.26	3.40	3.01	2.78	2.62	2.51	2.36	2.18	1.98	1.73
25	4.24	3.38	2.99	2.76	2.60	2.49	2.34	2.16	1.96	1.71
26	4.22	3.37	2.98	2.74	2.59	2.47	2.32	2.15	1.95	1.69
27	4.21	3.35	2.96	2.73	2.57	2.46	2.30	2.13	1.93	1.67
28	4.20	3.34	2.95	2.71	2.56	2.44	2.29	2.12	1.91	1.65
29	4.18	3.33	2.93	2.70	2.54	2.43	2.28	2.10	1.90	1.64
30	4.17	3.32	2.92	2.69	2.53	2.42	2.27	2.09	1.89	1.62
40	4.08	3.23	2.84	2.61	2.45	2.34	2.18	2.00	1.79	1.51
60	4.00	3.15	2.76	2.52	2.37	2.25	2.10	1.92	1.70	1.39
120	3.92	3.07	2.68	2.45	2.29	2.17	2.02	1.83	1.61	1.25
∞	3.84	2.99	2.60	2.37	2.21	2.09	1.94	1.75	1.52	1.00

Cálculo da ANOVA

Fontes de	Graus de	Soma de	Quadrados	F
variação	liberdade	quadrados	médios	
Amostra	2	372,69	186,35	136,85
Provador	23	21,28	0,93	0,68
Resíduo	46	62,64	1,36	
TOTAL	71	456,61		

Dunnett
$$\longrightarrow$$
 MDS = d \bigcirc 2QMresíduo \bigcirc n

TABELA Nº 9

Valores de D para teste unilateral de Dunnett para a (nível de erro) = 5%, segundo o número de tratamentos (p) excluindo o controle e número de graus de liberdade do resíduo (n')

n'		p							
•	1	2	3	4	5	6	7	8	9
5	2,02	2,44	2,68	2,85	2,98	3,08	3,16	3,24	3,30
6	1,94	2,34	2,56	2,71	2,83	2,92	3,00	3,07	3,12
7	1,89	2,27	2,48	2,62	2,73	2,82	2,89	2,95	3,01
8	1,86	2,22	2,42	2,55	2,66	2,74	2,81	2,87	2,92
9	1,83	2,18	2,37	2,50	2,60	2,68	2,75	2,81	2,86
10	1,81	2,15	2,34	2,47	2,56	2,64	2,70	2,76	2,81
11	1,80	2,13	2,31	2,44	2,53	2,60	2,67	2,72	2,77
12	1,78	2,11	2,29	2,41	2,50	2,58	2,64	2,69	2,74
13	1,77	2,09	2,27	2,39	2,48	2,55	2,61	2,66	2,71
14	1,76	2,08	2,25	2,37	2,46	2,53	2,59	2,64	2,69
15	1,75	2,07	2,24	2,36	2,44	2,51	2,57	2,62	2,67
16	1,75	2,06	2,23	2,34	2,43	2,50	2,56	2,61	2,65
17	1,74	2,05	2,22	2,33	2,42	2,49	2,54	2,59	2,64
18	1,73	2,04	2,21	2,32	2,41	2,48	2,53	2,58	2,62
19	1,73	2,03	2,20	2,31	2,40	2,47	2,52	2,57	2,61
20	1,72	2,03	2,19	2,30	2,39	2,46	2,51	2,56	2,60
24	1,71	2,01	2,17	2,28	2,36	2,43	2,48	2,53	2,57
30	1,70	1,99	2,15	2,25	2,33	2,40	2,45	2,50	2,54
40	1.68	1.97	2.13	2.23	2.31	2 37	2 42	2 47	2 51

Cálculo do Dunnet

Dunnett
$$\square$$
 MDS = d $\sqrt{2QMresiduo/n}$

$$MDS = 1.96 \cdot \sqrt{2 \times 1.36/24}$$

$$MDS = 0.66$$

Uma média que diferir da amostra Padrão por um valor ≥ 0,66 indica uma amostra que difere sensorialmente do Padrão a p≤ 0,05

TESTANDO DIFERENÇAS

Padrão x Filial A: 1,88 - 1,21 = 0,67 > 0,66 *

Padrão x Filial B= 6,33 - 1,21 = 5,12 > 0,66 *

Amostra	Grau de Diferença_	
A	1,88*	
В	6,33*	

^{*} Indica diferença significativa do padrão a p<0,05