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We studied the latent factor structure of the Beck Depression Inventory (BDI) under the light of
Multidimensional Item Response Theory models. Under a Bayesian Markov chain Monte Carlo setting,
we chose the most adequate model, estimated its parameters and verified its fit to the data. An evaluation
of the inventory in terms of the assumed dimensions seems to agree with previous investigations in
the factor structure of the BDI present in the literature. Cognitive and somatic-affective latent traits
were identified in the analysis making possible the interpretation of symptom evolution along these
dimensions, in terms of probability of their appearance.
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1 Introduction

Item Response Theory (IRT) models are most frequently employed in educational settings to model
the interaction between a multiple choice item and a respondent in terms of the probability of an
answer which varies in function of a latent trait belonging to the individual, and item parameters
inherent to the item answered.

Such models can be of use to psychometric applications due to its natural formulation, only shifting
the interpretation of a correct or incorrect response to the item to a present or not present behavior or
symptom, according to the latent factor influencing the answers. Most studies in this field are composed
of a variety of Classical Test Theory, factor analysis, discriminant analysis, and other statistical tools
(check Wang et al., 2005, for a typical analysis) and would be enhanced by a single interpretable
theoretical framework, as IRT.

A central assumption in most IRT applications, however, is that only one latent trait significantly
influences the respondent. Such assumption is not always warranted. Multiple analysis of Beck De-
pression Inventory (BDI) applications hint at a separate second dimension to depression (Steer et al.,
1999; Cohen, 2008), which calls for an extension of said unidimensional IRT models like the one used
in Castro et al. (2010).

Adding up to the need to expand IRT models to measure more than one latent trait, the quality of
parameter estimates is at stake when additional dimensions are ignored due to the lack of conditional
independence (i.e., independence between answered items given a subject with fixed latent trait), which
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is paramount in obtaining item and individual parameter estimates that are more precise and less
biased. A complete study in a similar setting can be found in Finch (2011).

However, with the additional interpretation given by extra dimensions, there is a correspondent
increase in model complexity. The multiple latent traits might add up together to affect the response
probability, effectively compensating a deficiency in one trait with a surplus on other. Models with
this behavior are called compensatory models. Alternatively, each trait may act separately, requiring
an elevated trait level on every dimension in order to obtain a high response probability. Such models
are called noncompensatory.

Compensatory Multidimensional Item Response Theory (MIRT) models are most commonly ap-
plied and available in popular software for IRT data analysis, such as NOHARM (Fraser, 1988)
and TESTFACT (Wilson et al., 1987). Noncompensatory models are less popular, but estimation
procedures were presented in Bolt and Lall (2003) using Bayesian methods.

In this work, we analyzed a dataset with the responses of 1111 college students to the 21 items of
BDI. We employed uni- and multidimensional IRT models. The compensatory nature of the traits or
lack thereof is a premise not naturally present in most practical settings, so both models were fit to
the data and selected using the deviance information criterion (DIC, Gelman et al., 2004) as a model
choice criteria. The DIC was also used to select between an unidimensional or multidimensional IRT
models, deeming the model with the smaller DIC most appropriate to the data. Although there is a rich
literature in dimension choice for MIRT models, there is plenty of psychological literature indicating
more than one dimension to depression (Vanheule et al., 2008). Also, a likelihood ratio test using
marginal likelihood estimates significantly rejects one dimensional models in favor of two dimensions
(p-value ≤ 0.01) confirming the psychological findings.

With the most appropriate model, we then obtain point estimates to item and individual parameters
and check model fit by a posterior predictive check using the obtained a posteriori density and a test
score statistic similarly as in Beguin and Glas (2001) and Sinharay et al. (2006).

This work is structured as follows. Throughout the next session, we describe the application of
the BDI used for the modeling (Section 2.1), fundamental models of MIRT (Section 2.2.1), Bayesian
estimation and model choice (Section 2.2.2), and model fit (Section 2.2.3). We then present the results
of the modeling in Section 3 and perform the classification and interpretation of said results in Section
4. Finally, Section 5 presents the conclusion of this study.

2 Methods

2.1 Description of the dataset

We employed a dataset of an application of the Portuguese version of the BDI to 1111 college
students gently given by Dr. Teng Chei-Tung from the Hospital das Clı́nicas, Faculdade de Medicina,
Universidade de São Paulo. The patients responded to the 21 items composing of four possible answers
regarding the intensity of a symptom of depression such as guilt or insomnia in a scale of 0, indicating
absence of said symptom, to 3, indicating a constant presence of the symptom evaluated in the past
two weeks.

Differently from Castro et al. (2010), we did not take the responses in the 0–3 scale. In order to
employ MIRT models to the data, we dichotomized the dataset to 0 if the respondent indicated an
absence of the symptom, and 1 if the answer was 1, 2, or 3 in the former scale. The rationale employed
is that the answer is taken as an indication of the symptom’s presence.

We provide a translated version of the Portuguese language BDI applied to our sample in Dr. Cúri’s
homepage.1

1http://www.icmc.usp.br/∼mcuri
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2.2 Statistical analysis

Being still a novel procedure in many applications, we take the length to explain the statistical tools
used in MIRT data analysis and model estimation in a bit more depth. A more complete reference can
be found in Bolt and Kim (2007).

2.2.1 Multidimensional item response models

Extending IRT models to allow for other latent traits carries an extra assumption regarding the
interaction among latent traits resulting in the response probability. Models that assume that a low
value of one latent trait can be compensated by a higher value in another are called compensatory
models, whereas models where the opposite assumption is made are regarded as noncompensatory.

In order to choose the most adequate model for the data, we employ a compensatory model,
the Multidimensional Logistic 2 Parameter (ML2P) model (McKinley and Reckase, 1980) where
the presence of the symptom evaluated in item i, i = 1, . . . , 21, is indicated by respondent j, j =
1, . . . , 1111, (Xi j = 1) with probability

P(Xi j = 1|θj, ai, bi) = 1

1 + exp

(
−

p∑
k=1

akiθk j + bi

) , (1)

where the p latent traits for the N-th individual are represented by the vector θ j = (θ1 j, . . . , θp j ),
j = 1, . . . , N, and k = 1, . . . , p. The item parameters are a vector of p discrimination parameters, one
for each dimension evaluated, ai = (a1i, . . . , api), and a difficulty parameter for the item i, bi.

Being only slightly similar to a regression model, it is appropriate to explain the model parameters
in light of the application at hand. The latent traits represent the aspects of the latent construct being
measured, which we assume independent and influencing all subjects.

As for the discrimination vector, it shares a similar interpretation with the factor loadings obtained
in factor analysis models more commonly used in Classical Test Theory. Each component of the
vector represents the “loading” of each latent trait on the response probability. Items with a high
discrimination on a latent trait are more likely answered in different ways by individuals with different
latent traits.

The difficulty parameter can be interpreted as the severity of the symptom described in the item,
for instance, if the difficulty of BDI’s ninth item (regarding suicidal thoughts) is high, it means that it
takes an elevated value of the latent traits in order to obtain an endorsement of the individual to the
existence of the symptom (Thomas, 2010).

In order to evaluate the MIRT models against the premise of unidimensionality, we fit the model
assuming p = 1, resulting in the unidimensional logistic 2 parameter model, and p = 2, implying that
two latent traits influence the answers.

We also employed the Non Compensatory Logistic 2 Parameter model (Sympson, 1977; Whitely,
1980) that models the probability of a response indicating presence of the symptom evaluated in the
i-th item by the j-th individual by the probability

P(Xi j = 1|θj, ai, bi) =
p∏

k=1

1

1 + exp
(
−akiθjk + bik

) , (2)

where the parameters are defined in a similar fashion as in (1), the only distinction being that we now
deal with as many difficulty parameters as there are dimensions, since the item is assumed to evaluate
each dimension of the latent trait separately, implying a severity of each aspect of depression required
to give an affirmative answer.

The noncompensatory model differs from the model (1) in the fundamental assumption that a high
level in both latent traits are required in order to obtain an affirmative response from the individual.
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Due to the additive nature of the compensatory model (1), a lower level in one latent trait can
be “compensated” by a higher level in another, obtaining the same response probability of a more
balanced individual, hence the denomination.

Albeit enriching in terms of interpretation to the latent traits, the interpretation of the item param-
eters are not as straightforward as the unidimensional case due to the multitude of discrimination
parameters and a difficulty parameter that is not in the same scale as the latent trait.

For the ML2P, Reckase (1996) proposes some summary statistics in order to obtain similar conclu-
sions when evaluating unidimensional and multidimensional items alike. The discriminatory power of
the i-th item is defined as

MDISCi =
√√√√ p∑

k=1

a2
ki, (3)

which encompasses all the dimensions evaluated and gives a measure of the discrimination across all
latent traits assumed. When p = 1, we simply have the discrimination parameter for the sole latent
trait, in analogy with the unidimensional models.

A modification to the item difficulty in order to put it in the latent trait scale is given by

MDIFFi = −bi

MDISCi
. (4)

Note that, for p = 1, we simply rewrite (1) in terms of the distance between the difficulty and the
latent trait, which is the most common formulation of the unidimensional IRT models, in contrast
with the linear model formulation usually encountered in the literature for MIRT models.

2.2.2 Parameter estimation

To obtain estimates for the item and individual parameters, we used a joint Bayesian estimation
through Markov chain Monte Carlo (MCMC) sampling as discussed in Patz and Junker (1999). In
this estimation paradigm, we assume a priori probability distributions for the parameter we aim to
estimate and obtain possible values of said parameters according the probability distribution of said
parameters given the observed data. Such distribution is called a posteriori distribution and summary
statistics of the sampled values can be used to obtain point estimate and credibility intervals for the
model parameters.

We specified the a priori as follows: for the latent traits, we assumed the frequent standard normal
(zero mean and unit variance) frequently employed in the literature, as for each component of the
discrimination vector across all items, we assumed a log-normal distribution of location parameter
1 and scale parameter 0.5 and a standard normal distribution for the difficulty parameters for every
item as well.

Note that in most IRT applications, the latent traits are assumed as drawn from a standard normal
distributions for reasons of identifiability, that is, a scale change for the latent traits would produce
the same likelihood, producing an array of technical and practical problems. We assume a standard
distribution for the normal as a reasonable assumption that the latent traits are a priori independent
among each other and are homoscedastic in the population. The reasons for this premise are that
other identification procedures like ad hoc restraints on item parameters like the ones adopted in Bolt
and Lall (2003) imply assumptions about the items we did not want to carry over to our analysis of
the item parameters. More general modelings can allow for correlated traits like the one presented in
Fu et al. (2009).

As point estimates for the parameters, we calculated the sample mean for the adequate samples
obtained from the MCMC procedure, with its fine tuning parameters (autocorrelation and burn-
in) determined by the Raftery and Lewis (1995) and Geweke (1992) procedures. Ninety-five percent
credibility intervals were obtained by taking the sample 0.025 and 0.975 quantiles.
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Table 1 Deviance Information Criterion (DIC) for the three possible models.

UL2P ML2P MN2P

DIC 24,645 24,023 41,610

For model choice, we employed the DIC as exposed in Gelman et al. (2004) with the model with the
smallest DIC value being selected as most adequate. Estimation of the DIC index was performed in
the R Statistical Software (R Development Core Team, 2005) handling the samples obtained from the
(Spiegelhalter et al., 2003) software with the coda package (Plummer et al., 2006). The R scripts used
in our analysis can be obtained at Dr. Cúri’s webpage2 or from request from the authors. The reader
further interested in the fitting of IRT models using R and BUGS software is also directed to Li and
Baser (2012) for a more complete tutorial.

2.2.3 Model fit

Under the Bayesian MCMC framework, we can evaluate the model fit to some desirable aspects of the
dataset using posteriori predictive checks (Gelman et al., 2004). This technique allows us to specify an
aspect of the dataset we find desirable to measure model fit and summarize it into a predictive index,
which is called a p-value because it is a proportion.

We used as test statistic the difference between the predicted scores under the model and the observed
scores in the sample as adopted by Beguin and Glas (2001)

T (X r) =
Q∑

k=0

(
N (r)

k − f (r)(k)
)2

f (r)(k)
, (5)

where N (r)
k represents the observed frequency of the k-th score (k = 0, . . . , 21) under the r-th dataset

obtained by using the r-th MCMC sample to simulate the responses whereas f (r)(k) represents the
frequency of said score expected by the model on the r-th simulated dataset using the sample.

Calculating the frequency the value the statistic (5) gets over the samples is lower than its value
calculated on the original dataset, one can obtain a number similar to the p-value where extreme
values (i.e., too close to 0 or 1) indicate poor model fit and average values indicate adequate model
fit. We can also compute the distribution for the scores using the simulated datasets and use it as a
graphical check of model fit. A more detailed exploration of the technique in MIRT settings is given
in Beguin and Glas (2001).

3 Results

The models were fitted to the data using the MCMC sampling algorithms available in the WinBUGS
(Spiegelhalter et al., 2003) software. We then took 105,000 samples, discarding the first 5000 as burn-in
and took every 50 iteration as thinning, resulting in an effective size of around 2000. The procedures
mentioned in Section 2.2.2 indicated convergence of the chain.

We then calculated the DIC for the unidimensional model (UL2P), the multidimensional compen-
satory model (ML2P) and the multidimensional noncompensatory model (MN2P). The results can
be found in Table 1. The lowest DIC is the one from the ML2P, therefore, we adopted it as the most
adequate model for the data.

We computed the sample means and standard deviations to obtain item parameter estimations
as displayed in Table 2 and in analogy with factor analysis approaches, we computed standardized

2http://www.icmc.usp.br/∼mcuri
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Table 2 Point estimates and standard deviations for the BDI item parameters.

Item a1 a2 b

Mean (std) Mean (std) Mean (std)

1 1.14 (0.13) 0.70 (0.14) 0.76 (0.09)
2 1.06 (0.13) 0.97 (0.15) −0.69 (0.09)
3 2.64 (0.27) 0.71 (0.23) −1.58 (0.16)
4 1.09 (0.16) 1.46 (0.19) 0.11 (0.09)
5 2.43 (0.25) 0.46 (0.20) −1.40 (0.14)
6 1.31 (0.13) 0.34 (0.13) −0.89 (0.09)
7 3.09 (0.40) 0.43 (0.23) 0.47 (0.14)
8 1.45 (0.14) 0.30 (0.13) 0.79 (0.09)
9 1.22 (0.16) 0.96 (0.18) −2.49 (0.15)
10 0.80 (0.12) 0.86 (0.13) −1.17 (0.09)
11 0.59 (0.12) 1.03 (0.13) 0.05 (0.07)
12 0.70 (0.13) 1.17 (0.16) −0.73 (0.09)
13 0.99 (0.14) 1.16 (0.15) −0.61 (0.09)
14 0.63 (0.10) 0.64 (0.11) −0.73 (0.07)
15 1.12 (0.15) 1.30 (0.16) −0.18 (0.09)
16 0.32 (0.11) 1.21 (0.17) −0.02 (0.08)
17 0.53 (0.14) 1.40 (0.19) 0.58 (0.09)
18 0.47 (0.11) 0.73 (0.11) −1.08 (0.08)
19 0.15 (0.08) 0.58 (0.13) −2.26 (0.12)
20 0.50 (0.09) 0.59 (0.11) −0.82 (0.07)
21 0.36 (0.10) 0.74 (0.12) −1.33 (0.09)

ak: Item discrimination on the k-th latent trait k = 1, 2.

b : Item difficulty.
std: Standard deviation.

discriminations for both traits in every item by dividing the estimated discrimination by the item
discriminating power 3, obtaining a “loading” of sorts which we use to classify items between traits
using an established cut-off point. In the present work, standardized discriminations higher than 0.5
were considered important and used for classification.

In order to evaluate model fit, we calculated the test statistic 5 for the observed data and for the 2000
datasets simulated using the MCMC samples and calculated the frequency of the event consisting of
the value of the statistic being lower than the value calculated for the real dataset. The obtained p-value
was 0.13, indicating an adequate capability of predicting test scores, which is also corroborated by the
test score mean frequency and 95% credibility intervals (Fig. 1).

Regarding the latent trait estimates, we obtained 2222 values, 2 for each patient. Summary statistics
of the estimates resulted in a sample mean of approximately 0 for both dimensions, variances of 0.62
and 0.71 respectively and a correlation between latent traits of 0.25.

4 Discussion

As a mean of comparison with Castro et al. (2010) which evaluated the Brazilian version of the BDI
using an unidimensional IRT model, we fit the same model to the dataset as well as a compensatory
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Figure 1 Observed scores (connected dots), expected scores (full line), and 95% credibility interval
(dashed line).

and noncompensatory two-dimensional model in order to evaluate certain assumptions in light of the
model fit, which we measure by the DIC.

The results as expressed in Table 1 point out that the compensatory two dimensional model is
the most adequate for the data, having a lower value of the DIC than the unidimensional model,
therefore indicating two factors influencing individual responses. A lower value for the DIC in the
compensatory model and a much higher one on the noncompensatory model also indicate that both
aspects of depression interact among each other, compensating a deficiency in one dimension with a
surplus in another.

Fitting the compensatory model to the data, we then obtain point estimates and standard errors for
both discrimination parameters and difficulties, as one can see in Table 2. We observe that the difficulty
parameters are overall very low and negative values, indicating that, after the scaling shown in (4), we
have high difficulties consistent with the purpose of the BDI to evaluate depressed individuals instead
of the average population (which we center in 0).

The latent trait estimates can be interpreted looking at the respondents’ response pattern. For
instance, the individual with the higher score in the first dimension, individual 322, with estimates
θ̂322 = (2.02, 0.33), representing a high level on the first latent trait dimension and an average value
for the second. Using Table 4, we can conclude the individual must have the symptoms represented by
items 1,4, 7, and 8 with high probability. Indeed, the individual has positive responses for items 1, 7, and
8. For the second dimension, we can see in Table 5 that items 4, 11, 12, 15, 16, and 17 are expected with
high probability for individuals with high latent trait values on the second latent trait. The individual
presents only symptoms indicated by items 16 and 17, the remaining symptoms expected to appear
following the increase of depression associated with the second dimension.

As for the discrimination parameters, the best way to interpret might be scaling over the overall dis-
criminative power MDISCi as shown in (3), wielding a number between 0 and 1 analogous with factor
analysis loadings. In a similar fashion, we used the fixed cut-off to classify items. The standardized
values are shown in Table 3 where one can classify the items relative to each dimension.

The first conclusion we reached is that the BDI has indeed a multidimensional structure, as indicated
by items having significant loadings in both dimensions (items 1, 2, 4, 9, 10, 12 through 15, 18, and 20),
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Table 3 Significant standardized discriminations for the BDI items (cut-off = 0.5).

Item a∗
1 a∗

2

1 0.85 0.52
2 0.74 0.68
3 0.97
4 0.60 0.80
5 0.98
6 0.97
7 0.99
8 0.98
9 0.79 0.62
10 0.69 0.72
11 0.87
12 0.51 0.86
13 0.65 0.76
14 0.70 0.71
15 0.65 0.76
16 0.97
17 0.94
18 0.54 0.84
19 0.97
20 0.65 0.76
21 0.90

a∗
k: Item standardized discrimination on the k-th latent trait k = 1, 2.

which is a common conclusion in many factor analysis studies, as reported in Vanheule et al. (2008).
The solid advantage of MIRT modeling in this context is that one can associate the items with both
associated latent traits, perhaps characterizing the items as indicators of more nonspecific aspects of
depression.

By evaluating the items which were reduced to one dimension by the cut-off, we can also derive similar
interpretations for the latent traits as the ones observed in the literature. Items 3 (sense of failure), and 5
through 8 (guilty feelings, sense of punishment, self-dislike, and self-accusations) seem strongly related
with the first dimension of the latent trait, indicating the cognitive dimension pointed in Steer et al.
(1999). Whereas items 11 (irritability), 16 (sleep disturbance), 17 (fatigability), 19 (weight loss), and 21
(loss of libido) were associated with the second dimension, often regarded as the “somatic-affective”
dimension.

Our findings are resonant with a factor analysis performed in the same dataset of healthy Brazilian
college students studied in Gorenstein et al. (1999), which performed multiple factor analyses agreeing
with most of our findings in their two-factor modelings and agree in the first factor with their three-
factor approach with our second dimension being associated with their second and third factor.

Similarly to Cohen (2008), we aimed to interpret the BDI items in terms of its dimensions to clarify
its characteristics in terms of the symptoms evaluated in the inventory. To this purpose, we used the
items’ discrimination in both dimensions and used it to evaluate which items are more sensible to one
dimension more than another. A graphical representation can be observed in Fig. 2 where we classify
the items relative to the two dimensions adopted (θ1 and θ2) using the values in Table 3.

Another way to visualize the item parameters is through a vector plot proposed in Reckase (1996),
in which we plot the items as vectors scattered in the plane in positions relative to their normalized
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Table 4 Anchor items in dimension 1, for fixed values for dimension 2.

θ1

θ2 −2 0 2

−2 5. Guilty 2. Pessimism
9. Suicidal 7. Dislike

8. Self-accusation
10. Crying
14. Body image

0 2. Pessimism 1. Sadness
3. Failure 4. Insatisfaction
5. Guilty 7. Dislike
6. Punishment 8. Self-accusation
10. Crying
12. Social withd.
13. Indecisiveness
14. Body image

2 2. Pessimism 1. Sadness 8. Self-accusation
4. Insatisfaction 3. Failure
9. Suicidal 5. Guilty
10. Crying 6. Punishment
13. Indecisiveness
14. Body image
15. Work

difficulty 4 and angles relative to both axes depending of their normalized discriminations. Such plot
is shown in Fig. 3, albeit in more real settings and complex tests it can get really cluttered and hard to
read.

We concluded that the inventory evaluates both assumed dimensions adequately and the positions
of the vectors in the positive quadrant imply that the items aim to evaluate above average values of
depression, which is consistent with the intent of the test. The vectors closer to the θ1 axis (items 3,
6, 5, and 8) and those closer to the θ2 axis (items 17, 19, 21, for example) are also consistent to the
interpretation of dimensions previously discussed.

To focus on the evolution of depression symptoms, we considered four values for each of the two
BDI dimensions, denoted by θ jk, for j = 0, 1, 2, 3 and k = 1, 2: a very low value, θ0k = −4, a low
value, θ1k = −2, an intermediate value, θ2k = 0, and a high value, θ3k = 2. In this way, we defined 16
intensities for depression combining four levels for the first dimension with four levels for the second
one. One item i is called an anchor item (Beaton and Allen, 1992) for dimension 1 in level θ j1, for
j = 1, 2, 3, if:

(1) P(Xi, j = 1|θ j1, θ j′,2) ≥ 0, 6

(2) P(Xi, j−1 = 1|θ j−1,1, θ j′,2) < 0, 5

(3) P(Xi, j = 1|θ j1, θ j′,2) − P(Xi, j−1 = 1|θ j−1,1, θ j′,2) ≥ 0, 3,

where θ j′,2 is fixed at −2, 0, or 2, and P(Xi, j = 1|θ j1, θ j′,2) is the probability of the presence of symptom
i, specified by the adopted model (1). In other words, an anchor item has an abrupt increase in its
probability of presence in a specific level of the latent trait, characterizing that trait level in terms of
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Table 5 “Anchor” items in dimension 2, for fixed values for dimension 1.

θ1

θ2 −2 0 2

−2 9. Suicidal 2. Pessimism
10. Crying
14. Body image
18. Appetite
21. Libido

0 21. Libido 2. Pessimism 4. Insatisfaction
10. Crying 11. Irritability
12. Social withd. 12. Social withd.
13. Indecisiveness 15. Work
14. Body image 16. Sleep
18. Appetite 17. Fatigability
21. Libido

2 2. Pessimism 1. Sadness
4. Insatisfaction 4. Insatisfaction
10. Crying 11. Irritability
11. Irritability 17. Fatigability
12. Social withd.
13. Indecisiveness
14. Body image
15. Work
16. Sleep
17. Fatigability

symptoms that are most likely to manifest in patients with the specified levels of depression. We can
define an “anchor” item for dimension 2 in an identical manner.

The thresholds are chosen in terms of the response probability, the exact values inherited from
educational settings (Beaton and Allen, 1992; Harraway and Andrade, 2006). For an item to be an
anchor for a trait level, the response probability at the anchor level must be high (as enforced by the
first item in the definition), the probability at the preceding level must be relatively low (second item),
and the anchor item must mark a transition from a low probability to a high response probability
(third item).

In Tables 4 and 5, we present the anchor items of dimensions 1 and 2 for levels −2, 0, and 2 of
the latent traits. Note that all items, except items 19 (weight loss) and 20 (somatic preoccupation),
are anchors for some level of at least one dimension. Those items more associated to the cognitive
trait (3, 5, 6, 7, and 8; see Fig. 2) are anchor only in this dimension, whereas the items more related
to the somatic-affective trait (11, 16, 17, and 21; see Fig. 2) are anchor only in this trait dimension.
These facts corroborate the previous interpretation and definition of cognitive and somatic-affective
dimensions. The nonidentification of items 19 and 20 as anchor for any level of the dimensions may
be justified by the low estimates of discrimination parameters.

In order to illustrate the usefulness of Tables 4 and 5, suppose a subject with an intermediate level
for dimension 1 (equal to 0, for instance) and a low level for dimension 2 (equal to −2). A worsening
in cognitive aspects may be remarked by symptoms as pessimism, dislike, self-accusation, crying, and

C© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



Biometrical Journal 55 (2013) 4 537

Figure 2 Venn diagram for the BDI-II items.

body image, while a worsening in somatic-affective aspects probably leads to the presence of pessimism,
crying, social withdraw, indecisiveness, body image, appetite, and libido symptoms.

As a final remark, our model proved itself capable of modeling the expected behavior of the score,
which may provide consistent conclusions with Classical Test Theory methods. In Fig. 1, we note
the observed scores appearing in the 95% credibility bands, indicating a good predicting capability
of the model, as summarized by a not too extreme posterior predictive checking p-value of 0.13. In
the same way, we represent in Fig. 4 the boxplots of latent trait estimates categorized by groups of
nondepressed (BDI total score 0–15), dysphoria (BDI total score 16–20), and depressed subjects (BDI
total score 21–63), as suggested by Kendall et al. (1987). For both dimensions, we can see that the
latent trait estimates increase as expected from group nondepressed through depressed one, being more
distinguishable between nondepressed and dysphoria groups.

5 Conclusions

MIRT models can prove themselves as a valuable modeling tool for psychometric data, confirming
conclusions obtained under different techniques, like the factor analysis performed by Steer et al.
(1999) to verify the number of underlying factors to depression or the item classification performed by
Cohen (2008) under a single class of models and estimation paradigms.

Such possibility is extremely empowering for the analysis, as a unified theoretical framework may
make certain questions way easier to ask. For instance, the interaction between the latent aspects of
depression can be translated as a different model, the existence of more sociably acceptable behavior
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Figure 3 Vector plot for the BDI-II items.

Figure 4 Boxplots for latent trait estimates of subjects classified as nondepressed, dysforia, or
depressed using Kendall criteria.
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in answering some questions can be interpreted in the context of the guessing parameter in the three-
parameter model.

With an interpretable parameter like the latent traits, one can also proceed with the analysis using
the obtained estimates as independent variables in regressions over predictors such as sex, income,
literacy, and other sensible indicators, using the IRT model we fitted as a first step in the analyses (Fox
and Glas, 2001).

The Bayesian estimation methods used are also very well discussed in IRT models (Bock et al., 1988;
Patz and Junker, 1999; Beguin and Glas, 2001, to cite a few) and may provide powerful methods for
most of the possibilities raised in this section.
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