Control Systems
and
Real Time Scheduling Systems

Based on:

*Towards the integration of Control and Real Time
Scheduling, Anton Cervin, Licentiate Thesis, Lund
University, 2000.

Integrated Control and Real Time Scheduling, Anton
Cervin, Ph.D. Thesis, Lund University, 2003.

.
t V (i‘f }
u(t) Process - ‘
| Hold | ISampler
7, L ‘J.‘ﬁ
u, D-A = Computer | A-D Vi
. . . L I
» * *
-

Figure 2. Sampled control loop.

Sample Control

¥
| |
| | -
L I - D T Time
Latency
P-"'“"'""'"'"'""'"'"'TT'“"'"'"'""'"'-‘
Fesponse Time

Figure 2. [llustration of the relationship between deadline (D)), response time,

and input-output latency for a control task. The latency is bounded bv the re-

sponse time, which in turn 15 bounded by the deadline. The task is assumed to
be released at time zero.

A
x(t) = e x(t) —I—/ e =) Bu(s') ds’

L

t
= 2ty () —I—/ e2=*) ds' Bu(t;) (u piecewise constant)

L

t—t,
= Ay (t,) + / e**ds Bu(t,) (variable change)
0

= D(¢,tr)x(tr) + T(¢ tr)u(tr)

From this the values at ¢t = £,.; are given by

x(tk—i—l) — (I)(tk—i—latk)x(tk) 1 F(tk—Fla tk)u(tk)
y(tp) = Cx(ty) + Du(ty)

where

(I)(t}ﬁ+1, t;{) p— eA(tﬁ!+1—fk)

tpr1—Lp

[(tpy1,tr) = / eds B
Jo

x(kh + h) = Dx(kh) +Tu(kh)
y(kh) = Cx(kh)+ Du(kh)

D — eAh

h
F:/ e ds B
J0

A wide range of discrete-time controller design methods can then be
applied, e.g. pole placement design, linear quadratic design, or model
predictive control. The sampling intervals for discrete-time control de-
signs are normally based on the desired speed of the closed loop system.
A common rule-of-thumb 1s that one should sample 4 to 10 times per
rise time T, of the closed loop system.

N, ==L ~4to10
h

This gives relatively long sampling mtervals, compared to what 1s used
when discretization-based design 1s used. The long sampling interval
algo means that it may take long time before, e.g., load disturbances are
detected by the controller. The reason for this is that the disturbances
are not synchronized with the sampling.

Sample Control Sample Control
i '
¥ Y
-
= EERETEEEE TR [al- - ----- - - e [% R .
Latency Latency Time
el - - s e aa e -

Sampling Period

Figure 4. Basic timing constraints of a control loop.

r(t
Q > PD u(t) I = | v(@)
gl Controller G(s)

DC Servo

Figure 5. A DC Servo is being controlled by a PD controller.

Let the servo be described by the continuous-time transfer function

1000

Gls) = s(s+1)

A good discrete-time implementation of the PD controller, which in-
cludes filtering of the derivative part, is

P(t) = K(r(t) — y(2)),
D(t) = agD(t —h) + ba(y(t — h) — y(¢)),
u(t) = P(t) + D(¢),

NK' PAR:YYE
where ay; = w+T,D(T — h) and by = wi??:"

A nominal sampling period of 7~ = 10 ms i1s chosen, and the PD
controller is tuned to give a fast and well-damped response to set-point
changes. The resulting parameters are K =1, T; = 0.04, and N = 30.
The parameters ¢y and b, are normally precalculated, assuming that
the sampling interval is constant.

Reference signal (dashed) and measurement signal (full)

T
-
|

!
N -
-

I 1 I 1 L L L 1 .
0 0.2 04 06 08 l 1.2 1.4 1.6 1.8 2
Time
Control signal
T T T T I T ' I '
2 -
] -
= (F
—1
_2 -
| . | . . 1 | 1]
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time

Figure 6. When no sampling jitter is present, the control performance is good.

Sampling Jitter

A second simulation, where the actual sampling interval varies ran-
domly between h,,;, = 2 ms and h,,,, = 18 ms, 1s shown Fig. 7. The

discrepancy between the nominal and the actual sampling interval
causes the controller to repeatedly take either too small or too large
actions. The resulting performance is quite poor. This is especially vis-
ible in the control signal.

Reference signal (dashed) and measurement signal (full)

Time
Control signal

Time

Figure 7. Sampling jitter causes the control performance to degrade.

Finally, in a third simulation, the controller is redesigned to com-
pensate for the varying sampling interval. This 1s done by measuring
the actual sampling interval and recalculating the controller parame-
ters ay and b, at each sample. Fig. 8 shows that this version of the
controller handles the sampling jitter well. The performance is almost
as good as 1n Fig. 6 where there was no jitter at all.

Reference signal (dashed) and measurement signal {full)

I

] 0.2 0.4 0.6 0.8 | .2 [.4 [.6 [.8 2
Time

Figure 8. When compensating for the sampling jitter, the control performance
iz good again.

o

Input-Output Latency

Division of Algorithm into two parts:

1. Caculate Output

2. Update State

Try to ensure that the delay is constant, I.e., Jitter Free
Design the controller to be robust against jitter
Compensate the delay at each sample changing the
Controller parameters

b. Constant Delay

The sampled system will now be on the form (assuming that the

‘..'.'[.H

'y lelayed ‘-;-_l >—

=1gnal

Eh—h kR Eh+h Rh+2h i

Figure 9. Relationship among u(#) and the delaved signal u{f —), and the
sampling instances.

dx

— =A Bu(t —

T x(t) + Bu(t — 1)
y(t) = Cx(t) + Du(t)

x(kh + h) = Ox(kh) +Tou(kh)+ Tu(kh — h),

where

b = ef’ih’

h—1
[y = / ¢ ds B
J0

h
Iy :/ e ds B
Jh—t

EXAMPLE 2—INPUT-OUTPUT LATENCY JITTER

Again, consider PD control of the DC servo from Example 1. (The
sampling jitter is assumed to be zero.) A delay is now introduced from
the sampling to the output action. First, the input-output latency is
constant and equal to 0.007 ms. The controller is retuned assuming
this delay, and the resulting parameters are K = 1, T; = 0.045, and
N = 100. The simulation result is shown in Fig. 11. It is not possible
to get as good performance as in the previous example due to the time
delay.

Reference signal {dashed) and measurement signal (full)

1 1 1 1 1 1 1 1 1
] 0.2 0.4 0.6 0.8 | [.2 [.4 l.6G [.8 2
Time
Control signal
T T T T T T T T T

Figure 11. The

latencwy.

controller can be tuned to handle a

1 1 1 1 1]] 1
0.4 0.6 0.8 1 2 l.4 1.6 [.8 2
Time

constant input-output

Next, the mmput-output latency 1s randomly varying between
0.002 ms and 0.012 ms. Even though the average delay is the same as
before, the performance 18 now worse, as shown in Fig. 12.

[

Reference signal (dashed) and measurement signal {full)

1

Time

Figure 12. Variable input-output latencyv degrades the control performance.

Control Loop Timing and Scheduling

Scheduling theoryv can be used to analvze the time variations and de-
lays in control loops when thev are implemented as real-time tasks.
Understanding the control requirements, the implementation could be
made such that the resulting delayv and the jitter are small.

The following example shows that a simple-minded implementation
of control loops can introduce a lot of jitter and delays:

EXAMPLE 3

Three control loops with different sampling periods are implemented in
a priority-preemptive real-time OS. The task code for each control loop
looks like this (this would be a good implementation in a single-task
svstem):

Tt = CurrentTime;
LOOF
AD-Conversion;
ControlAlgorithm;
DA-Conversion;
T := 1T + h;
WaitUntil{t);
END

Assume that the execution time is 2 ms for all three tasks, and that
the sampling periods are 71 = 12 ms, Ts = 8 ms, and 75 = 5 ms. Fixed
priorities are assigned to the tasks according to the rate-monotonic
theorv. Figure 2 shows the execution graph of the three control tasks
when released at time zero. Task 3 has the shortest period, thus the
highest priority, and executes with perfect periodicity. Tasks 1 and 2,
on the other hand, are frequently preempted. The preemption causes
variations in both the sampling period and in the input-output latency.

v Sample Iw
A Control
Task 3 .
Task 2 .
Task 1 .
() (.0710 (.020) 0.030 (3.041)

Time

Figure 13. The activation graph (hich=running, medium=preempted.
low=sleeping) of the three control tasks in Example 3

.-"!'.r 1l }IE jl"r.?..
]
| U] — 13 - 103
. \J L) g L

Figure 1.2 Three inverted pendulums should be stabilized using one computer.

h1=20ms, h2=29ms, h3=35ms

Output ¥

Input w

FPendulum 3

FPendulum 1 Fendulum 2
' 0.1 ' 0.1
0 ar
-1 -0.1
] 0.2 0.4 0.6] 0.2 0.4 0.6 0 0.2 0.4 0.6
1
0
-1
-2
] 0.2 0.4 0.6 0] 0.2 0.4 0.6 0 0.2 0.4 0.6
Time Time Time

Figure 1.3

[deal simulation of the inverted pendulum system.

File Edit wiew Simulaion Fomat Tools Help
E |_|1
—“l—b u thets, -
i
P erclulurn 1
E uE
AD Ofa * L] thete '
snd !.I'E
Interrupts schadula |:| Fenculur 2
Row . L] u3
Manitors Schedule
TrueTime b I -‘L
tueTirne Ferne , et >]
¥
Fenculurn 3

Figure 1.4 TrueTime simulation medel of the inverted pendulum system. The
TrueTime Kernel block simulates a real-time operating system that executes user-
defined tasks.

Rate Monotonic Scheduling

o Execution Time C=7ms

o Task with the highest rate has higher
priority

o Utilization test U=0.79

(a)

Pendulum 1 Pendulum 2 Pendulum 3
0.1 0.1 0.1
=
2
= 0 0 0
@]
-0.1 -0.1 -0.1
0 0.2 0.4 0.6 0 0.2 04 0.6 0 0.2 04 06
1 LI'IIJ_IP‘L/V | |
3
- 0 0 0
3
a
) B B ‘|-|_|_|__|_L‘_l_|_|\
-2 -2 -2
0 0.2 04 0.6 0 0.2 0.4 0.6 0 0.2 04 0.6
Time Time Time
T T T T T
i WMW
s
w
(4]
|_
|

o
e
@

:
=
1=
S

0.1 0.2 0.3 0.4 0.5 0.6
Time

Figure 1.5 TrueTime simulation of the inverted pendulum system under rate-
monotonic scheduling: (a) control performance, and (b) task schedule. The
scheduling-induced latencies in the control loops deteriorate the performance. (In
the schedule plots, a high level means that the task is running, a medium level that
it is preempted, and a low level that it is sleeping.)

Statistics

e Ls= Sampling latency, time from the release
of the task to the actual start of the task

e Lio= Input-output latency, time from the
sampling operation to the actuation
operation

e h=sampling interval

Frequency
&

—
[
=]

Frequency

A0

20

Frequency

T
I_l.-_l_-
0 0.01 0.02 0.03 0.04 0.05
Sampling latency L
T I I I I
1 I]] I]]
0 0.01 0.02 0.03 0.04 0.05
Input—output latency Lm
T I I I I
]] | —A_A_i—-—_l—.;
0 0.01 0.02 0.03 0.04 0.05

Figure 1.6

Sampling interval A

Distribution of the sampling latency, the input-output latency, and

the sampling interval for Task 3 under rate-monotonic scheduling. The controller is
designed for the sampling interval & = 0.035.

Sub-task scheduling

Listing 1.1 Typical implementation of a control loop. The control algorithm is split
into two parts: Calculate Output and Update State.

LOOP
ReadInput;
CalculateOutput;
WriteOutput;
UpdateState;
WaitForlNextFeriod;
END;

{:H :] Pandulum 1 Pandulum 2 Pendulurn 3

0.1 1 01 0.1
=
_g- 0 0 ar
o

] 0z 0.4 0.6 a 0.2 0.4 0.6 a 0.2 0.4 0.6

1 1 1F
_E a [i] 1]
=3
[=R
£ 1 -1 -1
-2 -2 -2f
o 0z 0.4 0.6 o 0.z 0.4 0.6 o 0.z 0.4 0.6
Tirne Time Time
1™ T T T T T
(b) -]
[z}
)
'—
1 1 1 1 1
0 0.1 0.2 0.3 04 0.5 0.6
T T T T T
od
e
[z}
R
]]]]] 1
0 0.1 0.2 0.3 04 0.5 0.6
T T T T T
=
[z}
1]]] 1
0 0.1 0.2 0.3 04 0.5 0.6
Tima

Figure LI TrueTime simulation of the inverted pendulom system under subtask
scheduling: (a) control performance, and (b) task schedule. The performance is very
close to the ideal case (see Figure 1.3). The scheduling strategy increases the number
of context switches compared to rate-monotonic scheduling (see Figure 1.6).

80 | |

=
c 60 =
Q
> 40 .
QD
w20 |
O B | | | |
0 0.01 0.02 0.03 0.04 0.05
Sampling latency Lq
I I l I
& 100 - .
c
S
o 50F .
Q
L
0 | | — | l |
0 0.01 0.02 0.03 0.04 0.05
Input—output latency LI.O
I I l I
o 40 N
c
0]
S 20 -
L
o= | I | W o
0 0.01 0.02 0.03 0.04 0.05

Sampling interval h

Figure 1.11 Distribution of the sampling latency, the input-output latency, and
the sampling interval for Task 3 under subtask scheduling. Compared with the rate-
monotonic scheduling case (Figure 1.6), the latencies are shorter and the sampling
interval is more closely centered around the nominal interval 4 = 0.035.

Rate monotonic scheduling
overloaded CPU

e Designed for C=7/ms
e Actual C=10ms
e Utilization test U=1.13

FPendulum 1 Pendulum 2 Pendulum 3

0.1 1 0.1 1 0.1
\/‘\’— oF OF
0 0.2 0.4 0.6 0 0.2 0.4 0.6 0 0.2 0.4 0.6

1] : 1 1} .
0 0 0
~1] - 1 -1}
_2 . . ||

0 0.2 0.4 0.6 0 0.2 04 0.8 0 02 0.4 0.8
Time Time Time

Cutput
]

|
(=]
=

Input u

sl LU i in
I L
]

Figure 1.12 TrueTime simulation of the inverted pendulum system under rate-
monotonic scheduling and an overloaded CPU: (a) control performance. and (b)
task schedule. Task 3 is preempted most of the time. causing the control loop to he
destabilized.

Control Server Model

(a) Pendulum 1 Pendulum 2 Pendulum 3

0.1 0.1 1 041
=
% 0 0 0
o
-0.1 -0.1 -0.1

] 0.2 0.4 0.6] 0.2 0.4 0.8 0 0.2 0.4 0.6

b ' ' ' | |
A
AL AL
A

i

0.1 0.2 0.3 0.4 0.5 0.6
Time

Task 1
—
:;
.
E——

=]

Figure 1.14 TrueTime simulation of the inverted pendulum system under the
Control Server model: (a) control performance, and (b) task schedule. The perfor-
mance is very close to the ideal case (see Figure 1.3). The kernel handles the I/O
operations of all the control tasks.

