
Chapter 4
Threads

Ninth Edition
By William Stallings

Operatin
g

Systems:
Internals

and
Design

Principles

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Processes and
Threads

Resource
Ownership

 Process includes
a virtual address
space to hold the
process image
 The OS performs a

protection function to
prevent unwanted
interference between
processes with
respect to resources

Scheduling/
Execution

Follows an execution
path that may be
interleaved with other
processes
 A process has an

execution state (Running,
Ready, etc.) and a
dispatching priority, and is
the entity that is
scheduled and dispatched
by the OS

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Processes and
Threads

 The unit of dispatching is referred to as a
thread or lightweight process

 The unit of resource ownership is referred to
as a process or task

 Multithreading - The ability of an OS to
support multiple, concurrent paths of
execution within a single process

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Single Threaded
Approaches

 A single thread
of execution per
process, in which
the concept of a
thread is not
recognized, is
referred to as a
single-threaded
approach

 MS-DOS is an
example

Figure 4.1 Threads and Processes

one process
one thread

one process
multiple threads

multiple processes
one thread per process

= instruction trace

multiple processes
multiple threads per process

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Multithreaded
Approaches

 The right half
of Figure 4.1
depicts
multithreaded
approaches

 A Java run-
time
environment is
an example of
a system of
one process
with multiple
threads

Figure 4.1 Threads and Processes

one process
one thread

one process
multiple threads

multiple processes
one thread per process

= instruction trace

multiple processes
multiple threads per process

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Process
Defined in a multithreaded environment as “the

unit of resource allocation and a unit of
protection”

Associated with processes:
 A virtual address space that holds the process

image
 Protected access to:

 Processors
 Other processes (for interprocess communication)
 Files
 I/O resources (devices and channels)

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

One or More
Threads

in a Process

• An execution state (Running, Ready,
etc.)

• A saved thread context when not
running

• An execution stack
• Some per-thread static storage for

local variables
• Access to the memory and resources

of its processes, shared with all other
threads in that process

Each thread has:

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Single-Threaded
Process Model

Process
Control
Block

User
Address
Space

User
Stack

Kernel
Stack

Multithreaded
Process Model

Process
Control
Block

User
Address
Space

User
Stack

Kernel
Stack

User
Stack

Kernel
Stack

User
Stack

Kernel
Stack

Thread
Control
Block

Thread Thread Thread

Figure 4.2 Single Threaded and Multithreaded Process Models

Thread
Control
Block

Thread
Control
Block

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Key Benefits of
Threads

Takes less
time to
create a

new
thread
than a
process

Less time to
terminate a

thread than a
process

Switching
between two
threads takes
less time than

switching
between

processes

Threads
enhance

efficiency in
communication

between
programs

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Thread Use in a
Single-User System

Foreground and background
work

Asynchronous processing

Speed of execution

Modular program structure

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Threads

 Most of the state information
dealing with execution is maintained
in thread-level data structures

 In an OS that supports threads,
scheduling and dispatching is done on a
thread basis

 Suspending a process involves
suspending all threads of the process

 Termination of a process terminates all
 threads within the process

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Thread Execution
States

The key states
for a thread
are:

 Running
 Ready
 Blocked

 Thread
operations
associated with
a change in
thread state are:

 Spawn
 Block
 Unblock
 Finish

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 4.3 Remote Procedure Call (RPC) Using Threads

(a) RPC Using Single Thread

(b) RPC Using One Thread per Server (on a uniprocessor)

Time

Process 1

Blocked, waiting for response to RPC

Blocked, waiting for processor, which is in use by Thread B

Running

Thread A (Process 1)

Thread B (Process 1)

Server

Server

Server

Server

RPC
Request

RPC
Request

RPC
Request

RPC
Request

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Time

Blocked

I/O
request

Thread A (Process 1)

Thread B (Process 1)

Thread C (Process 2)

Figure 4.4 Multithreading Example on a Uniprocessor

Ready Running

Request
complete

Time quantum
expires

Time quantum
expires

Process
created

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Thread
Synchronization

 It is necessary to synchronize the
activities of the various threads

 All threads of a process share the same
address space and other resources

 Any alteration of a resource by one
thread affects the other threads in the
same process

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Types of Threads

User Level
Thread (ULT)

Kernel level
Thread (KLT)

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

User-Level Threads
(ULTs)

 All thread
management is
done by the
application

 The kernel is not
aware of the
existence of
threads

Figure 4.5 User-Level and Kernel-Level Threads

P P

User
Space

Threads
Library

Kernel
Space

P

P

User
Space

Kernel
Space

P

User
Space

Threads
Library

Kernel
Space

(c) Combined(b) Pure kernel-level(a) Pure user-level

User-level thread Kernel-level thread Process

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Ready Running

Blocked

Thread 1

Ready Running

Blocked

Thread 2

Ready Running

Blocked

Process B

(a)

Ready Running

Blocked

Thread 1

Ready Running

Blocked

Thread 2

Ready Running

Blocked

Process B

(b)

Ready Running

Blocked

Thread 1

Ready Running

Blocked

Thread 2

Ready

Figure 4.6 Examples of the Relationships Between User-Level Thread States and Process States

Running

Colored state
is current state

Blocked

Process B

(c)

Ready Running

Blocked

Thread 1

Ready Running

Blocked

Thread 2

Ready Running

Blocked

Process B

(d)

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

 Advantages of
ULTs

Thread switching does
not require kernel
mode privileges

Scheduling can be
application specific

ULTs
can run
on any
OS

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Disadvantages of
ULTs

 In a typical OS many system calls are blocking
 As a result, when a ULT executes a system call, not

only is that thread blocked, but all of the threads
within the process are blocked as well

 In a pure ULT strategy, a multithreaded
application cannot take advantage of
multiprocessing

 A kernel assigns one process to only one processor at
a time, therefore, only a single thread within a process
can execute at a time

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Overcoming ULT
Disadvantages

Jacketing
• Purpose is to convert a blocking system

call into a non-blocking system call

Writing an application as multiple
processes rather than multiple threads
• However, this approach eliminates the main

advantage of threads

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Kernel-Level Threads
(KLTs)

 Thread
management is
done by the kernel
 There is no thread

management code in
the application level,
simply an
application
programming
interface (API) to the
kernel thread facility

 Windows is an
example of this
approach

Figure 4.5 User-Level and Kernel-Level Threads

P P

User
Space

Threads
Library

Kernel
Space

P

P

User
Space

Kernel
Space

P

User
Space

Threads
Library

Kernel
Space

(c) Combined(b) Pure kernel-level(a) Pure user-level

User-level thread Kernel-level thread Process

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Advantages of KLTs

 The kernel can simultaneously schedule
multiple threads from the same process
on multiple processors

 If one thread in a process is blocked, the
kernel can schedule another thread of the
same process

 Kernel routines themselves can be
multithreaded

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Disadvantage of KLTs
 The transfer of control from one thread

to another within the same process
requires a mode switch to the kernel

Operation User-Level Threads
Kernel-Level

Threads Processes

Null Fork 34 948 11,300

Signal Wait 37 441 1,840

Table 4.1
Thread and Process Operation Latencies (s)

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Combined Approaches
 Thread creation is

done completely in
the user space, as is
the bulk of the
scheduling and
synchronization of
threads within an
application

 Solaris is a good
example

Figure 4.5 User-Level and Kernel-Level Threads

P P

User
Space

Threads
Library

Kernel
Space

P

P

User
Space

Kernel
Space

P

User
Space

Threads
Library

Kernel
Space

(c) Combined(b) Pure kernel-level(a) Pure user-level

User-level thread Kernel-level thread Process

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Threads:Processes Description Example Systems

1:1 Each thread of execution is a
unique process with its own
address space and resources.

Traditional UNIX
implementations

M:1 A process defines an address
space and dynamic resource
ownership. Multiple threads
may be created and executed
within that process.

Windows NT, Solaris, Linux,
OS/2, OS/390, MACH

1:M A thread may migrate from
one process environment to
another. This allows a thread
to be easily moved among
distinct systems.

Ra (Clouds), Emerald

M:N Combines attributes of M:1
and 1:M cases.

TRIX

Table 4.2
Relationship between Threads and Processes

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 4.7 Performance Effect of Multiple Cores

re
la

ti
ve

 s
pe

ed
up

re
la

ti
ve

 s
pe

ed
up

0

2

4

6

8

21

number of processors

(a) Speedup with 0%, 2%, 5%, and 10% sequential portions

3 4 5 6

0%

2%

5%

10%

10%
5%

15%
20%

7 8

0

0.5

1.0

1.5

2.0

2.5

21

number of processors

(b) Speedup with overheads

3 4 5 6 7 8

Figure 4.7 Performance Effect of Multiple Cores

re
la

ti
ve

 s
pe

ed
up

re
la

ti
ve

 s
pe

ed
up

0

2

4

6

8

21

number of processors

(a) Speedup with 0%, 2%, 5%, and 10% sequential portions

3 4 5 6

0%

2%

5%

10%

10%
5%

15%
20%

7 8

0

0.5

1.0

1.5

2.0

2.5

21

number of processors

(b) Speedup with overheads

3 4 5 6 7 8

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 4.8 Scaling of Database Workloads on Multiple-Processor Hardware

0
0

16

32

48

64

16 32
number of CPUs

sc
al

in
g

48 64

pe
rfe

ct
sc
ali

ng

Oracle DSS 4-way join
TMC data mining
DB2 DSS scan & aggs

Oracle ad hoc insurance OLTP

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Applications That
Benefit

 Multithreaded native applications
 Characterized by having a small number of highly threaded

processes

 Multiprocess applications
 Characterized by the presence of many single-threaded

processes

 Java applications
 All applications that use a Java 2 Platform, Enterprise

Edition application server can immediately benefit
from multicore technology

 Multi-instance applications
 Multiple instances of the application in parallel

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Valve Game
Software

Render

Skybox Main View

Scene List

For each object

Particles

Sim and Draw

Bone Setup

Draw

Character

Etc.

Monitor Etc.

Figure 4.9 Hybrid Threading for Rendering Module

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Windows Process
and

Thread
Management

 An application consists of
one or more processes

 Each process provides the
resources needed to
execute a program

 A thread is the entity
within a process that can
be scheduled for execution

 A job object allows groups
of process to be managed
as a unit

 A thread pool is a
collection of worker threads
that efficiently execute
asynchronous callbacks on
behalf of the application

 A fiber is a unit of
execution that must be
manually scheduled by the
application

 User-mode scheduling
(UMS) is a lightweight
mechanism that
applications can use to
schedule their own threads

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Management of Background
Tasks and Application Lifecycles

Beginning with Windows 8, and carrying through to Windows 10,
developers are responsible for managing the state of their
individual applications

Previous versions of Windows always give the user full control of
the lifetime of a process

 In the new Metro interface Windows takes over the process
lifecycle of an application

 A limited number of applications can run alongside the main app in the
Metro UI using the SnapView functionality

 Only one Store application can run at one time

Live Tiles give the appearance of applications constantly running
on the system

 In reality they receive push notifications and do not use system
resources to display the dynamic content offered

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Metro Interface
 Foreground application in the Metro interface has access

to all of the processor, network, and disk resources
available to the user

 All other apps are suspended and have no access to these
resources

 When an app enters a suspended mode, an event should
be triggered to store the state of the user’s information

 This is the responsibility of the application developer

 Windows may terminate a background app
 You need to save your app’s state when it’s suspended, in case

Windows terminates it so that you can restore its state later
 When the app returns to the foreground another event is

triggered to obtain the user state from memory

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Windows Process

Important characteristics of
Windows processes are:

• Windows processes are implemented as
objects

• A process can be created as a new
process or a copy of an existing process

• An executable process may contain one
or more threads

• Both process and thread objects have
built-in synchronization capabilities

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Process
object

Access
token

Virtual address descriptors

Thread x

File y

Section z

Handle1

Handle2

Handle3

Available
objects

Figure 4.10 A Windows Process and Its Resources

Handle Table

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Process and Thread
Objects

Processes

• An entity
correspondin
g to a user
job or
application
that owns
resources

Threads

• A
dispatchable
unit of work
that executes
sequentially
and is
interruptible

Windows makes use of two types of
process-related objects:

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Process ID A unique value that identifies the process to the operating system.

Security descriptor Describes who created an object, who can gain access to or use the

object, and who is denied access to the object.

Base priority A baseline execution priority for the process's threads.

Default processor affinity The default set of processors on which the process's threads can

run.

Quota limits The maximum amount of paged and nonpaged system memory,

paging file space, and processor time a user's processes can use.

Execution time The total amount of time all threads in the process have executed.

I/O counters Variables that record the number and type of I/O operations that

the process's threads have performed.

VM operation counters Variables that record the number and types of virtual memory

operations that the process's threads have performed.

Exception/debugging ports Interprocess communication channels to which the process

manager sends a message when one of the process's threads causes
an exception. Normally, these are connected to environment
subsystem and debugger processes, respectively.

Exit status The reason for a process's termination.

Table 4.3

Windows

Process

Object

Attribute
s

(Table is
on page
171 in
textbook)

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table

4.4

Window

s

Thread

Object

Attribut

es

Thread ID A unique value that identifies a thread when it calls a server.

Thread context The set of register values and other volatile data that defines the

execution state of a thread.

Dynamic priority The thread's execution priority at any given moment.

Base priority The lower limit of the thread's dynamic priority.

Thread processor affinity The set of processors on which the thread can run, which is a

subset or all of the processor affinity of the thread's process.

Thread execution time The cumulative amount of time a thread has executed in user mode

and in kernel mode.

Alert status A flag that indicates whether a waiting thread may execute an

asynchronous procedure call.

Suspension count The number of times the thread's execution has been suspended

without being resumed.

Impersonation token A temporary access token allowing a thread to perform operations

on behalf of another process (used by subsystems).

Termination port An interprocess communication channel to which the process

manager sends a message when the thread terminates (used by
subsystems).

Thread exit status The reason for a thread's termination.

(Table is on
page 171 in
textbook)

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Multithreading

Achieves concurrency
without the overhead

of using multiple
processes

Threads within the
same process can

exchange information
through their common

address space and
have access to the
shared resources of

the process

Threads in different
processes can

exchange information
through shared

memory that has been
set up between the

two processes

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 4.11 Windows Thread States

Transition

Ready

Waiting

Runnable

Not Runnable

StandbyPick to
Run Switch

Preempted

Block/
Suspend

Unblock/Resume
Resource Available

Resource
Available

Unblock
Resource Not Available

Terminate

Terminated

Running

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Solaris Process

• Includes the user’s address space,
stack, and process control blockProcess

• A user-created unit of execution within
a process

User-level
Threads

• A mapping between ULTs and kernel
threads

Lightweight
Processes

(LWP)
• Fundamental entities that can be

scheduled and dispatched to run on
one of the system processors

Kernel
Threads

Makes use of four thread-related
concepts:

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Hardware

Figure 4.12 Processes and Threads in Solaris

Kernel

System calls

syscal l ()syscal l ()

Process

Kernel
thread

Kernel
thread

Lightweight
process (LWP)

Lightweight
process (LWP)

user
thread

user
thread

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Process ID

UNIX Process Structure

User IDs

Signal Dispatch Table

File Descriptors

Memory Map

Priority
Signal Mask
Registers

STACK

Priority
LWP ID

Signal Mask
Registers

STACK

Processor State

Process ID

Solaris Process Structure

User IDs

Signal Dispatch Table

File Descriptors

LWP 1

Priority
LWP ID

Signal Mask
Registers

STACK

LWP 2

Memory Map

Figure 4.13 Process Structure in Traditional UNIX and Solaris [LEWI96]

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

A Lightweight Process
(LWP) Data Structure
Includes:
 An LWP identifier

 The priority of this LWP and hence the kernel thread that
supports it

 A signal mask that tells the kernel which signals will be
accepted

 Saved values of user-level registers

 The kernel stack for this LWP, which includes system call
arguments, results, and error codes for each call level

 Resource usage and profiling data

 Pointer to the corresponding kernel thread

 Pointer to the process structure
© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

IDLE

thread_create() i ntr()

swtch()
syscal l ()

wakeup()

prun() pstop() exi t() reap()

preempt()

RUN

PINNED

ONPROC SLEEP

STOP ZOMBIE FREE

Figure 4.14 Solaris Thread States

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Interrupts as Threads

 Most operating systems contain two
fundamental forms of concurrent activity:

Processe
s
(threads)

Cooperate with each other and manage the use of
shared data structures by primitives that enforce
mutual exclusion and synchronize their execution

Interrupt
s

Synchronized by preventing their handling for a period
of time

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

 Solaris unifies these two concepts into a single
model, namely kernel threads, and the mechanisms
for scheduling and executing kernel threads

 To do this, interrupts are converted to kernel
threads

Solaris Solution

Solaris employs a set of kernel threads
to handle interrupts

 An interrupt thread has its own identifier,
priority, context, and stack

 The kernel controls access to data
structures and synchronizes among
interrupt threads using mutual exclusion
primitives

 Interrupt threads are assigned higher
priorities than all other types of kernel
threads© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Linux Tasks

A process, or
task, in Linux is

represented by a
task_struct data

structure

This structure
contains

information in a
number of
categories

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Stopped

Ready

Running
State

Uninterruptible

Interruptible

Executing Zombie

Figure 4.15 Linux Process/Thread Model

creation
scheduling

termination

signalsignal

event
signal

or
event

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Linux Threads
Linux

does not
recognize

a
distinction
between
threads

and
processes

User-level
threads

are
mapped

into
kernel-
level

processes

A new
process is
created

by
copying

the
attributes

of the
current
process

The new
process
can be

cloned so
that it
shares

resources

The
clone()

call
creates

separate
stack

spaces for
each

process

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Linux Namespaces
 A namespace enables a process to have a different

view of the system than other processes that have
other associated namespaces

 There are currently six namespaces in Linux
mnt
pid
net
ipc
uts
user

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Android Process and
Thread Management

 An Android application is the software that implements an
app

 Each Android application consists of one or more instance of
one or more of four types of application components

 Each component performs a distinct role in the overall
application behavior, and each component can be activated
independently within the application and even by other
applications

 Four types of components:
 Activities
 Services
 Content providers
 Broadcast receivers© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Dedicated Process

Figure 4.16 Android Application

Broadcast
Receiver

Application

Dedicated
Virtual Machine

Content
Provider

Activity Service

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Activities
 An Activity is an application component that provides a screen with which

users can interact in order to do something

 Each Activity is given a window in which to draw its user interface

 The window typically fills the screen, but may be smaller than the screen and
float on top of other windows

 An application may include multiple activities

 When an application is running, one activity is in the foreground, and it is this
activity that interacts with the user

 The activities are arranged in a last-in-first-out stack in the order in which
each activity is opened

 If the user switches to some other activity within the application, the new
activity is created and pushed on to the top of the back stack, while the
preceding foreground activity becomes the second item on the stack for this
application

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Resumed

Paused

Entire
Lifetime

Visible
Lifetime

Foreground
Lifetime

Stopped

Figure 4.17 Activity State Transition Diagram

Activity
launched

App process
killed

Activity
shut down

onCreate()

onStart() onRestart()

onResume()

onPause()

onStop()

onDestroy()

User returns
to the activity

Apps with higher
priority need memory

User navigates
to the activity

User navigates
to the activity

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Processes and
Threads
 A precedence hierarchy

is used to determine
which process or
processes to kill in
order to reclaim
needed resources

 Processes are killed
beginning with the
lowest precedence first

 The levels of the
hierarchy, in
descending order of
precedence are:

Foreground
process

Visible process

Service process

Background
process

Empty process

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Mac OS X Grand Central
Dispatch (GCD)

 Provides a pool of available threads

 Designers can designate portions of
applications, called blocks, that can be
dispatched independently and run
concurrently

 Concurrency is based on the number of
cores available and the thread capacity of
the system

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Block
 A simple extension to a language
 A block defines a self-contained unit of

work
 Enables the programmer to encapsulate

complex functions
 Scheduled and dispatched by queues
 Dispatched on a first-in-first-out basis
 Can be associated with an event source,

 such as a timer, network socket, or
file descriptor© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Summary
 Processes and threads

 Multithreading
 Thread functionality

 Types of threads
 User level and kernel level threads

 Multicore and multithreading
 Performance of Software on Multicore

 Windows process and thread
management
 Management of background tasks and

application lifecycles
 Windows process
 Process and thread objects
 Multithreading
 Thread states
 Support for OS subsystems

 Solaris thread and SMP
management
 Multithreaded architecture
 Motivation
 Process structure
 Thread execution
 Interrupts as threads

 Linux process and thread
management
 Tasks/threads/namespaces

 Android process and thread
management
 Android applications
 Activities
 Processes and threads

 Mac OS X grand central
dispatch

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

	Chapter 4 Threads
	Processes and Threads
	Processes and Threads
	Single Threaded Approaches
	Multithreaded Approaches
	Process
	One or More Threads in a Process
	Slide 8
	Key Benefits of Threads
	Thread Use in a Single-User System
	Threads
	Thread Execution States
	Slide 13
	Slide 14
	Thread Synchronization
	Types of Threads
	User-Level Threads (ULTs)
	Slide 18
	Advantages of ULTs
	Disadvantages of ULTs
	Overcoming ULT Disadvantages
	Kernel-Level Threads (KLTs)
	Advantages of KLTs
	Disadvantage of KLTs
	Combined Approaches
	Slide 26
	Slide 27
	Slide 28
	Applications That Benefit
	Valve Game Software
	Windows Process and Thread Management
	Management of Background Tasks and Application Lifecycles
	Metro Interface
	Windows Process
	Slide 35
	Process and Thread Objects
	Slide 37
	Table 4.4 Windows Thread Object Attributes
	Multithreading
	Slide 40
	Solaris Process
	Slide 42
	Slide 43
	A Lightweight Process (LWP) Data Structure Includes:
	Slide 45
	Interrupts as Threads
	Solaris Solution
	Linux Tasks
	Slide 49
	Linux Threads
	Linux Namespaces
	Android Process and Thread Management
	Slide 53
	Activities
	Slide 55
	Processes and Threads
	Mac OS X Grand Central Dispatch (GCD)
	Block
	Summary

